• English
    • Türkçe
  • English 
    • English
    • Türkçe
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları / WOS
  • Araştırma Çıktıları / WOS
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları / WOS
  • Araştırma Çıktıları / WOS
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Novel Channel Models For Visible Light Communications

Thumbnail
View/Open
Novel channel models for visible light communications.pdf (733.7Kb)
Date
2015
Author
Miramirkhani, Farshad
Uysal, Murat
Panayırcı, Erdal
Abstract
In this paper we investigate channel modeling for visible light communications (VLC) using non-sequential ray tracing simulation tools. We create three dimensional realistic simulation environments to depict indoor scenarios specifying the geometry of the environment the objects inside the reflection characteristics of the surface materials as well as the characteristics of the transmitter and receivers i.e. LED sources and photodioes. Through ray tracing simulations we compute the received optical power and the delay of direct/indirect rays which are then used to obtain the channel impulse response (CIR). Following this methodology we present CIRs for a number of indoor environments including empty/furnished rectangular rooms with different sizes and wall/object materials (e.g. plaster gloss paint wood aluminum metal glass) assuming deployment of both single and multiple LED transmitters. We further quantify multipath channel parameters such as delay spread and channel DC gain for each configuration and provide insights into the effects of indoor environment parameters (e.g. size wall/object materials etc.) transmitter/receiver specifications (e.g. single vs. multiple transmitters location rotation etc.) on the channel.

Source

Broadband Access Communication Technologies IX

Volume

9387

URI

https://hdl.handle.net/20.500.12469/655
https://dx.doi.org/10.1117/12.2077565

Collections

  • Araştırma Çıktıları / Scopus [1565]
  • Araştırma Çıktıları / WOS [1518]
  • Elektrik-Elektronik Mühendisliği / Electrical - Electronics Engineering [321]

Keywords

Visible light communications
Ray tracing
Channel modeling
Spectral reflectance

Share


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateBy AuthorsBy TitlesBy SubjectsBy TypesBy LanguagesBy DepartmentsBy PublishersBy KHAS AuthorsBy Access TypesThis CollectionBy Issue DateBy AuthorsBy TitlesBy SubjectsBy TypesBy LanguagesBy DepartmentsBy PublishersBy KHAS AuthorsBy Access Types

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV