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Abstract. Several areas of applications, such as model order reduction, preconditioner design, and eigenvalue problems
for spectral projectors can be found in the literature. In this paper, a fast and sparsity preserving approach for computing the
spectral projectors is proposed. The suggested approach can be used in both Newton iteration and integral representation based
methods. A comparison of the original and the suggested approaches interms of computation time, sparsity preservation and
accuracy is presented in this paper.
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INTRODUCTION

The simulation of large scale dynamical systems requires huge amount of computational power. Thus, reducing
the computational cost of these types of simulations deserves attention in the applied mathematics community. A
well-known solution method for these types of problems is the model order reduction (MOR), which aims to build
an approximate dynamical model of the system under study with an order significantly smaller than that of the
original system. There are several approaches for MOR [1]. An important application area of spectral projectors is
the eigenvalue based model order reduction. These types of methods are based on determination of the dominant poles
of dynamical system for approximation and named as modal approximation generally [2, 3]. To find the dominant
eigentriplet of the system matrices, one can use Matrix SignFunction (MSF) iteratively. MSF behaves like its scalar
equivalent, which extracts the sign of a real number. Similarly, MSF detects the signs of eigenvalues of a matrix and its
output is two blocks of identity matrix. The sizes of the firstand the second block matrices correspond to the number
of positive and negative eigenvalues of the matrix respectively.

Another possible application area of the spectral projectors is the preconditioner design for iterative solution of a
linear equation systems. One can use the spectral projectors to vanish the extremal eigenvalues of an ill-conditioned
coefficient matrix to accelerate the solution with Krylov subspace methods like GMRES [4].

In the literature one can find several methods for computation of MSF [5]. The inverse of a square matrix has to be
taken explicitly several times in all of these spectral projector computation algorithms. Therefore, the computational
cost of these types of algorithms is very high. Most of the time, the system matrices of the large scale dynamical
systems are very large and sparse. Thus, the inverse becomesfull. Hence, it is a challenging problem to find an
efficient and sparsity preserving method for the computation of the MSF of the system matrices. In the present work,
the MSF required by the model reduction algorithm proposed in [3] is computed by both the Newton-type methods
and the integral form methods with sparse approximate inversion [6]. The results are compared in terms of accuracy,
sparsity preservation capability and the computational efficiency.

The rest of the paper is as follows. In the second chapter, some definitions and well known techniques for
computation of MSF and the proposed method are given. In the third chapter, some numerical tests are shown. Finally
in the last chapter, the concluding remarks and the planned future work are given.

COMPUTATION OF SPECTRAL PROJECTORS

Let A ∈ ℜn×n be given and its spectrum be composed of two different parts as Λ(A) = Λ1 ∪Λ2 andΛ1 ∩Λ2 = /0.
Then one can define anA-invariant subspaceZ, which can be called as a spectral projector corresponding to Λ1. A
well-known spectral projector is matrix sign function (MSF). MSF can be defined assign(A) = 2P(A)− I where the
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functionP is defined as a contour integral,

P(A) =
1

2π i

∮

Γ
(zI−A)−1dz. (1)

In (1), Γ can be defined as any closed curve enclosing the desired eigenvalues of matrixA. But for MSF,Γ has to be
selected to enclose the negative eigenvalues of matrixA in complex plane.

There are several methods for computing the MSF [5]. The simplest iterative method is based on the Newton’s
iteration, which uses the equation((sign(A))2− I) = 0. If Newton’s method is applied to this equation, one can obtain
an iteration, which converges to thesign(A).

Ak+1 =
1
2
(Ak+A−1

k ), A0 = A (2)

The iteration is quadratically convergent [5]. To accelerate this iteration, some scaling procedures can be applied.
To do this, in each step,Ak is replaced by1

αk
Ak. Some popular selections forαk can be given as determinantal scaling,

norm scaling, and Robert’s scaling [7].
More general iterative schemes based on Pade approximationcan be also found in literature [5]. Halley iteration

can be given as an example for Pade type iterations. The iterative scheme of the Halley iteration is given below.

Ak+1 = Ak(3I +A2
k)(I +3A2

k)
−1 (3)

Once the MSF of matrixA is computed, it can be used for the spectral block decomposition of the matrix as shown in
Alg. 1.

Algorithm 1 BLOCK DECOMPOSITION

Require: Spectral ProjectorS
Ensure: Diagonal Blocks ofA matrix

1: Compute rank revealing decomposition of the projector,S= QRΠ
2: Build A-invariantS1 subspace from the firstk column of the orthogonal matrixQ
3: Compute the below transformation

Â= QTAQ=

[

A11 A12
0 A22

]

(4)

4: Λ(A11) = Λ1 andΛ(A22) = Λ2

Another way of computing the spectral projector is to compute explicitly the contour integral given in 1. The most
appropriate integration method will be the Gauss quadrature [8]. Let us a polygon contour with m edges asΓ. Then,
the integral can be written for each edge with appropriate boundaries and variable changes as,

P(A) =
1

2π i

m

∑
j=1

∫ zj+1

zj

(zI−A)−1dz (5)

After the evaluation of this integral with Gaussian quadrature in a few points, the spectral projector can be used to
decompose the matrix spectrum in a similar way with the Alg. 1. It is known that the trace of theP is equal to the
number of the eigenvalues of the matrixA in the preselected contourΓ. Implementation of the spectral projector is
shown in the Alg. 2. All of these methods need matrix inversion. To overcome this problem, one can use some special

Algorithm 2 BLOCK DECOMPOSITION WITHINTEGRATION

Require: Spectral ProjectorP
Ensure: Diagonal Blocks of matrixA

1: Compute the trace ofP and assign it tor.
2: Compute the SVD decomposition of the projector,P=USVT

3: Let Ur =U(:,1 : r), andUp =U(:, r +1 : n)
4: Compute the transformationsA11 =UH

r AUr andA22 =UH
p AUp.

5: Λ(A11) = Λ1 andΛ(A22) = Λ2
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sparse matrix tools like Sparse Approximate Inverse (SPAI)[6]. The SPAI algorithm computes a sparse approximate
inverseM of a given sparse matrixA by minimising ||I −AM||F provided that the sparsity structure ofM is the
same as the original matrix. To compute MSF ofA, one can employ the SPAI to produce the approximate inverse in
every step of the Newton iteration given in (1) or in every integration point of Gauss quadrature given in the integral
(5). Because of the use of approximate inverse instead of exact inverse, while the number of Newton iterations in (1)
increases, the accuracy of the integration in (5) decreases. But the computation time in both cases decreases.

Another important advantage of using SPAI to obtain a spectral projector is the preservation of sparsity. Because
of the matrix inversion, sparsity structure of matrixA is lost. Hence, the computation of the orthogonal bases of the
spectral projector needs more computational effort. But ifSPAI is employed, the sparsity structure of matrixA is
completely preserved.

In this work, the effect of the usage of sparse approximate inversion instead of the exact inverse methods is
investigated. To do this, matrix inversions in both type of methods (direct integration and iteration schemes) for spectral
projector computation is replaced with the sparse approximate inverses produced by the SPAI algorithm.

NUMERICAL EXAMPLES

To illustrate the effect of SPAI usage on spectral projectorcomputation, some well-known electrical power network
data [4] are selected. The dimensions of the matrices are changed from 106 to 530. In the first experiment, the
computational time of the algorithms for building spectralprojectors are compared. The comparison of the sparsity
structures is also given. These comparisons are made for Newton iteration and explicit integration with Gauss
quadratures. In the second test, the effect of the SPAI is discussed for each method in terms of the accuracy of the
results.

In the first experiment,ε parameter for the SPAI method is selected as 0.1. ε parameter controls the quality of the
approximation of M to the inverse of A. It has to be between in 0and 1. Smallerε values corresponds to usually better
results [6].

Sparsity structure of the methods are compared according toa measure which can be defined as,

sparsity=
nnz(A)

n2 (6)

where nnz stands for the number of non-zeros of then×n dimensional matrixA .
TABLE 1. Comparison of the computational time and sparsity structures for variousIEEE test matrices

Newton ∗
Newton

SPAI Gauss
Gauss
SPAI

IEEE 57 1.10 1.86 1.80 0.37
IEEE 118 3.81 1.40 5.19 0.87
IEEE 300 65.40 5.04 44.50 3.05

Newton †
Newton

SPAI Gauss
Gauss
SPAI

IEEE 57 1 0.075 1 0.076
IEEE 118 1 0.043 1 0.055
IEEE 300 1 0.014 1 0.006

∗ computational times in seconds
† sparsity measures

In the second experiment, the methods are compared to each other with respect to their accuracy. To do this, the
well known property of the spectral projectors is employed.The trace of a spectral projector gives the number of
the eigenvalues of the matrixA in the predefined domain in complex plane. The eigenvalues ofthe matrixA and the
eigenvalues computed via spectral projectors with the suggested methods are given in Fig. 1. The traces of the spectral
projectors and the exact number of the eigenvalues in selected domains for various examples are given in Table 2. In
the experiments, the number of the integration points with Gaussian quadrature based methods is selected as relatively
small. So the results are not exactly true as in the Newton iteration based methods. On the other hand, the computed
eigenvalues are found as close enough to the original eigenvalues of matrixA in selected domain of complex plane.
The SPAI gives more accurate results with the Gauss quadrature approach. These results can be seen in Fig.1.
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TABLE 2. Number of the eigenvalues in the selected domain in com-
plex plain with several examples

Number of
eigenvalues Newton

Newton
SPAI Gauss

Gauss
SPAI

IEEE 57 14 14 14 13.14 12.7
IEEE 118 53 53 53.28 53.37 53.35
IEEE 300 23 23 23 24 23.75
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FIGURE 1. Eigenvalues computed via Newton iteration, Newton iteration with SPAI , Gaussquadrature and Gauss quadrature
with SPAI methods.

CONCLUSIONS AND FUTURE WORK

In this work, a faster and sparsity preserving method for thespectral projector computation is proposed. To realize
this aim, sparse approximate inversion algorithm is used with the well-known computational methods for spectral
projectors. In the experiments it is shown that the sparse approximate inversion can be an efficient tool to accelerate
the computational time. Another important advantage of theSPAI tool is the sparsity preservation. Main reason of
using SPAI is to avoid matrix inversion.

The experimental test matrices were selected from the powersystem matrices. In future work, the proposed method
will be tested on different matrices from different disciplines. We are also planning to focus on the optimal selection
of theε value for SPAI algorithm and the realization of the algorithm on parallel environments.
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4. H. Dăg, E. F. Yetkin, M. Manguoglu,IREE Int. Review of Electrical Engineering, 6, 1339–1348, (2011).
5. J. , H. Higham,Functions of Matrices Theory and Computations, SIAM, Philadelphia, USA, (2008).
6. M. J. Grote and T. Huckle,SIAM Journal of Scientific Computing, 18, 838–853, (1997).
7. Z. Bai, J. Demmel,Design of a Parallel Nonsymmetric Eigenroutine Toolbox Part I, Technical Report, UCB/CSD-92-718, UC

Berkeley, (1992).
8. W. W. Hager,Applied Numerical Linear Algebra, Prentice-Hall, New Jersey, USA, (1988).

270


