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The bound-free electron-positron pair production is considered for relativistic heavy ion collisions. In par-
ticular, cross sections are calculated for the pair production with the simultaneous capture of the electron into
the 1s ground state of one of the ions and for energies that are relevant for the relativistic heavy ion collider
and the large hadron colliders. In the framework of perturbation theory, we applied Monte Carlo integration
techniques to compute the lowest-order Feynman diagrams amplitudes by using Darwin wave functions for the
bound states of the electrons and Sommerfeld-Maue wave functions for the continuum states of the positrons.
Calculations were performed especially for the collision of Au+Au at 100 GeV/nucleon and Pb+Pb at 3400
GeV/nucleon.
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I. INTRODUCTION

The bound-free electron-positron pair production plays an
important role at modern colliders such as the relativistic
heavy ion collider �RHIC� or the large hadron colliders
�LHC�, since it may restrict the luminosity of the ion beams
that will be available. Especially in peripheral collisions of
the ions, it is known that a large number of lepton pairs can
be produced owing to the Lorentz contracted electromagnetic
fields that occur in course of the collisions. In the bound-free
pair production, the electron is captured by one of the col-
liding ions

Za + Zb → �Za + e−�1s1/2,. . .
+ Zb + e+ �1�

and leads to the loss of the �one-electron� ion from the beam.
The bound-free pair production �BFPP� will therefore be an
important problem at the LHC; in fact, this process does not
only reduce the intensity of the beam but also leads to a
separate beam of one-electron ions that strikes the beam pipe
about 140 m away from the interaction point. In the worst
scenario, there might be enough energy in this separated
beam to quench the LHC magnets as it was pointed out by
Spencer Klein �1� but was investigated in further detail in
Refs. �2–4�.

A computation on the bound-free pair production cross
sections were performed by Baltz, Rhoades-Brown, and
Weneser �5� in the mid 1990s. These authors used large-basis
coupled-channel Dirac-equation of BFPP in their calcula-
tions. In particular, Baltz and co-workers derived a simple
formula for the BFPP cross sections at ultrarelativistic ener-
gies ��=23 000�

�BFPP = Aln��� + B , �2�

where A and B are the parameters independent of energy. In
this expression for the cross section, the Aln� term repre-

sents the region of large impact parameters, and A was cal-
culated by using perturbation theory, while the parameter B
represents the contributions from small impact parameter and
includes both, perturbative and nonperturbative parts. The
production of bound-free electron-positron pairs was calcu-
lated also by Bertulani and Baur �6� who used a semiclassi-
cal method in order to calculate the production of bound-free
pairs at energies and for collision systems appropriate for the
RHIC facility. From these computations it was found that the
BFPP cross sections for the capture of the electron into the
ns excited states of the ion decreases with �1 /n3, which
means a factor of 1/8 for the L shell and to a net effect of all
ns excited states of approximately 20% in total �7,8�.

An alternative method was later applied by Rhoades-
Brown and co-workers �9� who performed an “exact” inte-
gration of the Feynman diagrams by using Monte Carlo tech-
niques. In this work, the cross section for the capture of an
electron was obtained as the convolution of the amplitude of
direct and crossed Feynman diagrams in Fig. 1,
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FIG. 1. Lowest-order Feynman diagrams for the pair production
of a bound-free electron-positron pair in heavy-ion collisions: �i�
direct and �ii� crossed diagrams for the simultaneous capture of the
electron into a bound state of target �T� ion. In the figure, a and b
represents the two ions, and q is the momentum of the positron �9�.
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B�k,q;p�� = A�+��k,q;p�� + A�−��k,q;k� + q� − p�� ,

�3�

with the momentum distribution of the bound-state wave
function. The results from these Feynman–Monte Carlo com-
putations were compared with the Weizsacker-Williams cal-
culations by Baur and Bertulani �6� and were found larger by
about a factor of 3, a discrepancy which was explained later
in a comment by Baur �10�. In the present work, we have
calculated the cross section for the capture of an electron into
the K shell by applying a Monte Carlo integration for the
lowest-order Feynman diagrams as shown in Fig. 1. This
procedure is known also in the literature �11,12� as the two-
photon method since the colliding nuclei �nucleus a and
nucleus b� exchange one photon �total two photon� and the
two-photon-exchange diagrams are proportional to Z�. In
contrast to our previous computations, where plane waves
were applied for both the electron and the positron �11,12�,
we here apply bound K-shell wave functions for the electron
as well as modified plane-waves functions for the positrons
that includes a correction due to the distortion by the
“bound” electron. In fact, this distortion of the positron wave
function arises from the necessary �re-� normalization of the
continuum waves in order to account for the reduction of the
wave functions of the positron near to the nucleus to which
the electron is localized �13�. In the literature, these �one-
particle� functions are known as Sommerfeld-Maue wave
functions for the positrons and Darwin wave functions for
the bound electrons. Similar wave functions have been ap-
plied also in Refs. �6,13� for studying the captured electrons
and free positrons.

In the next section, we first present the formalism for
evaluating the pair production cross sections with an electron
bound to one of the ions. Apart from the representation of the
electron and positron states, this includes the analysis and a
stepwise simplification of the bound-free amplitudes by us-
ing the wave functions from above. In Sec. III, then, the
differential BFPP cross sections are calculated as function of
the transverse and longitudinal momentum, the energy and
rapidity, and especially for those collision energies of the
ions that are relevant for the RHIC and LHC facilities. A
comparison of our Monte Carlo–Feynman calculations with
previous computations is made. Finally, a few conclusions
are drawn in Sec. IV.

II. THEORETICAL BACKGROUND

Lowest-order perturbation theory in the framework of
quantum electrodynamics �QED� has been applied to derive
and calculate the cross section for generating bound-free
electron-positron pairs in relativistic heavy-ion collisions.
For this electron-positron BFPP process, the signature is that
the electron is captured by one of the colliding ions, while
the free positron leaves the collision system. In lowest QED
order, this process is described by the two Feynman dia-
grams, the �so-called� direct and crossed terms, as depicted
schematically in Fig. 1. These diagrams represent the leading
contributions to the bound-free pair production as appropri-
ate especially for the high collision energies available at the
RHIC and LHC facilities.

For two ions a and b, that collide with high energy, the
leading contributions to the pair production arise from those
Feynman diagrams for which each ion interacts exactly once
with the electromagnetic field of the other ion. This restric-
tion gives rise to the direct and crossed diagrams from Fig. 1,
and to an gauge-invariant total amplitude that is Lorentz co-
variant. In the sudden �or impulse� approximation, the pair
creation with simultaneous capture of the electron by one of
the ions is then described by convoluting the electron line in
Fig. 1 with the momentum wave function of the final bound
state �9�. In the following, we consider the collision of the
ions in the “collider frame” with zero total momentum of the
overall system. In these coordinates, the two nonzero com-
ponents of the vector potential of ion a is given by

Aa
0 = − �2�Ze���q0��e

�−iq�·b/2��
−�

�

d3r
e−iq�·r

�r�
, �4a�

Aa
z = 	Aa

0, �4b�

while, similarly, the potential of ion b is obtained by just
substituting the impact parameter b→−b in the exponent of
Eq. �4a� and the relative velocity 	� v

c →−	 in the formulas
above. In these expressions, moreover, v refers the velocity
of nucleus a moving from right to left parallel to the z axis.
Nucleus b moves from left to right with velocity −v. In this
work, we consider only the symmetric collisions �equal mass
and equal charge� of the heavy ions, although the calcula-
tions can be done easily for the asymmetric collisions. For
the overall collision system, therefore, the classical four-
potential A
 can be written as �11,12�

A
 = Aa

 + Ab


, �5�

which describe a retarded Lienard-Wiechert interactions.
To evaluate the diagrams in Fig. 1, we need of course a

proper set of one-particle states in order to represent the
electron-positron pairs after their generation in the field of
the moving ions. For the outgoing positron, the spinor struc-
ture is

u�q

�+� =	Eq
�+� + mc2

2mc2 
 ��s�

� · pc

Eq
�+� + mc2��s� � �6�

�for spinors with positive energy Eq
�+��0�, and where

��s�=1/2
�s� denotes a Pauli spinor and s= �1 /2 its spin pro-

jection. Here, after the creation of electron-positron pairs,
electron is captured by one of the colliding ions and positron
becomes free which is described by the plane waves

�q
�+� = N+�eiq·ru�q

�+� + ��� , �7�

and together with the �correction� term �� in order to ac-
count for the distortion due to the charge of one of the
nucleus. In expression �7�, moreover,
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N+ = e−�a+/2��1 + ia+�, a+ =
Ze2

v+
, �8�

is a normalization constant which accounts for the distortion
of the wave function is acceptable for Z��1 �6,13,14�, and
where �=e2 /�c�1 /137 is the fine structure constant and v+
the velocity of the positron in the rest frame of the ion, into
which the electron is captured in course of process �1�. For
sufficiently large energies of the ions, we can approximate
v+�c=1 by using natural units ��=c=m=1�, and which are
used throughout this work if not stated otherwise.

After the pair production �1� has occurred, the electron is
captured by one of the ions and, thus, need to be described as

a bound state. In a semirelativistic approximation, these elec-
tron states are often represented by �15,16�

��−� = 1 −
i

2m
� · ��u�nonrel�r� , �9�

i.e., in terms of the nonrelativistic �ground� state function

�nonrel�r� =
1

	�
 Z

aH
�3/2

e−Zr/aH, �10�

of the hydrogenlike ion, and where u represents the spinor
part of the captured electron and aH=1 /e2 the Bohr radius of
atomic hydrogen.

Using the positron and electron states from above, the
direct diagram in Fig. 1�i� can be written as

���−��Sab��q
�+�� = i�

p
�

s
�

−�

� d�

2�

���−��Va�� − E�−���p
�s���p

�s��Vb�Eq
�+� − ����q

�+��
�Ep

�s� − ��
�11�

=i�
p

�
s
�

−�

� d�

2�
�

−�

�

d3r1 +
i

2m
� · ���nonrel�r�eip·rAa�r;� − E�−��

� �
−�

�

d3r�N+e−i�p−q�·r�Ab�r�;Eq
�+� − ��

�u��1 − 	�z��u�p

�s���u�p

�s���1 + 	�z��u�q

�+��

�Ep
�s� − ��

, �12�

and where Va and Vb are the potentials of the two nuclei a
and b,

Va = �1 − 	�z�Aa
0, �13a�

Vb = �1 + 	�z�Ab
0, �13b�

respectively, and with the vector potentials taken from above
�cf. Eq. �4��. Apparently, therefore, the overall �direct� am-
plitude contains a threefold integration over the coordinates
of the bound electron �d3r�, the coordinates of the free pos-
itron �d3r�� as well as the integration over the frequency � of
the virtually exchanged photons between the heavy ions. In
the evaluation of Eq. �11�, moreover, we have used the com-
pleteness relation,

�
p

�p
�+���p

�+�� + �p
�−���p

�−�� = 1 �14�

with p
�s� being

p
�+� = eip·ru�p

�+�, �15a�

p
�−� = e−ip·ru�p

�−�. �15b�

In this notation of the one-particle states, again, u�p

�s� refers to
the spinor part of the intermediate state of p

�s�, and the sum-
mation over the spin and momentum of the one particle can
be replaced by

�
p

= �
�p

�
p

→ �
�p

� d3p

�2��3 . �16�

We can perform the integration over r and r� explicitly in
Eq. �12�. If we first consider the integral over r, the two parts
of this integral

�
−�

�

d3r1 +
i

2m
� · ���nonrel�r�eip·rAa�r;� − E�−��

= �
−�

�

d3r�nonrel�r�eip·rAa�r;� − E�−��

+  i

2m
��

−�

�

d3r� · ��nonrel�r�eip·rAa�r;� − E�−��

�17�

can be analyzed independently. Making use of the explicit
form of the nonrelativistic 1s-function �nonrel�r� and the vec-
tor potential Aa�r ;�−E�−��, we can write the first part �on the
rhs� of Eq. �17� as
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�
−�

�

d3r�nonrel�r�eip·rAa�r;� − E�−�� = − �2�Ze���p0��e�−ipy�b � 2� 1
	�

 Z

aH
�3/2�

−�

�

d3re−Zr/aH
eip·r

r

= −
8�2Ze

	�
 Z

aH
�3/2 e�ip�·b/2�

 Z2

aH
2 +

pz
2

�2 + p�
2 ���� − E�−� − 	pz� . �18�

Here, in the second line, we made use of the known integral

�
−�

�

d3re−Zr/aH
eip·r

r
=

4�

 Z2

aH
2 + p2� �19�

together with the Lorentz transformation as displayed in Appendix. In Eq. �18�, moreover, p0 represents the energy term, pz the
longitudinal momentum and, p��py� is the transverse momentum of the intermediate state as given by Eq. �14�.

The second part of the integral �17�

 i

2m
��

−�

�

d3r� · ��nonrel�r�eip·rAa�r;� − E�−�� =  i

2m
� 1
	�

 Z

aH
�3/2�− �2�Ze���p0��e�−ipy�b � 2��

−�

�

d3r� · �e−Zr/aH
eip·r

r �
= −

1

2m

1
	�

 Z

aH
�3/2

8�2Ze� · p��� − E�−� − 	pz�
e�ip�·b � 2�

 Z2

aH
2 +

pz
2

�2 + p�
2 � �20�

can be evaluated by following similar lines, but it now contains the factor i
2m� ·� which arises from the wave function of the

captured electron. This additional “derivative” with regard to the coordinates of the electrons can be removed by an integration
by parts,

�
−�

�

d3r� · �e−Zr/aH
eip·r

r
= − i� · p

4�

 Z2

aH
2 + p2� . �21�

For the overall integral �17�, this gives rise to the expression,

�
−�

�

d3r1 +
i

2m
� · ���nonrel�r�eip·rAa�r;� − E�−�� = − �1 +

� · p

2m
�8�2Ze

1
	�

 Z

aH
�3/2��� − E�−� − 	pz�

 Z2

aH
2 +

pz
2

�2 + p�
2 � e�ip�·b � 2� , �22�

where E�−� is the energy of the captured electron.
Using analog steps, the integral over r� in Eq. �12� can be written as

�
−�

�

d3r�N+e−i�p−q�·r�Ab�r�;Eq
�+� − �� = − N+8�2Ze�2 ��Eq

�+� − � − 	�pz − qz��
�pz − qz�2 + �2�p� − q��2ei�p�−q��·b � 2 , �23�

where Eq
�+� is now the energy of the positron. Thus, by combining both integrals in Eq. �17�, we obtain for the direct BFPP

amplitude the explicit expression,

���−��Sab��q
�+�� = iN+�

s
�
�p

� d3p

�2��3� d�

2�
ei�p�−q� � 2�·b8�2Ze

1
	�

 Z

aH
�3/2��� − E�−� − 	pz�

 Z2

aH
2 +

pz
2

�2 + p�
2 � �1 +

� · p

2m
�

� 8�2Ze�2 ��Eq
�+� − � − 	�pz − qz��

�pz − qz�2 + �2�p� − q��2

�u��1 − 	�z��u�p

�s���u�p

�s���1 + 	�z��u�q

�+��

Ep
�s� − �

, �24�
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and where Ep
�s� is the energy of intermediate state.

The vector p describes the momentum of the intermediate
�electron and positron� states in the field of the ion and can
be decomposed into its transverse and parallel part,
p=p�+ pz, relative to the motion of the ions. In Eq. �24�, the
two Dirac delta functions gives us the component along the
velocity of the heavy ions

pz =
Eq

�+� − E�−� + 	qz

2	
, �25a�

in terms of the energies and the longitudinal momentum, qz,
of the positron. Similarly, we can write the frequency of
virtually exchanged photons as

� = E�−� + 	pz =
E�−� + Eq

�+� + 	qz

2
, �25b�

owing to the conservation of the momentum that is obtained
from the Dirac delta functions in Eq. �24�. In contrast to the
parallel part, however, the transverse momentum of the elec-
trons p� is not fixed by the kinematics of the collision part-
ners, but also depends on the momentum that is carried by
the fields. After integrating the Eq. �24� over � and pz, and
by inserting the values from Eqs. �25� into Eq. �24�, the
transition matrix element for a fixed spin and momentum
state of the positron as well as for a given intermediate state
can be expressed as

���−��Sab��q
�+�� =

iN+

2	

1
	�

 Z

aH
�3/2� d2p�

�2��2ei�p�−q� � 2�·b

�F�− p�:�a�F�p� − q�:�b�Tq�p�:+ 	� ,

�26�

where b is again the impact parameter of the ion-ion colli-
sion, and the function F�q ,�� can be described as the scalar
part of the field associated with the ions a and b in momen-
tum space. Explicit form of these scalar fields can be written
in terms of the corresponding frequencies as

F�− p�:�a� =
4�Ze

 Z2

aH
2 +

�a
2

�2	2 + p�
2 � �27a�

for the frequency �a, and as

F�p� − q�:�b� =
4�Ze�2	2

��b
2 + �2	2�p� − q��2�

�27b�

for the frequency �b, respectively.
Owing to the asymmetry in the behavior of the electrons

and positrons in course of the BFPP process, the wave func-
tions of the free positron and captured electron will differ
substantially. This difference gives rise also to different ex-
pressions for the frequencies of the virtual photons as emit-
ted by the two nuclei, i.e.,

�a =
− E�−� + Eq

�+� + 	qz

2
= 	pz, �28a�

for ion a, and

�b =
Eq

�+� − E�−� − 	qz

2
= 	�pz − qz� �28b�

for ion b, respectively. As mentioned before, these frequen-
cies are obtained from integrating Eq. �24�. Apart from the
scalar field of each ion, Eq. �26� contains also the transition
amplitudes T which relates the intermediate photon lines to
the outgoing electron-positron lines. This amplitude depends
explicitly on the �relative� velocity of the ions 	, the trans-
verse momentum p�, and the momentum of the positron q,
and it is given by

Tq�p�:+ 	� = �
s

�
�p

1

�Ep
�s� − E�−� + Eq

�+�

2
� − 	

qz

2
�

��1 +
� · p

2m
�

��u��1 − 	�z��u�p

�s���u�p

�s���1 + 	�z��u�q

�+�� .

�29�

In this amplitude, moreover, the parallel component of the
intermediate state momentum pz is determined by Eq. �25a�.
Finally, let us note that the integration over the impact pa-
rameter b in Eq. �26� can be carried out also analytically.
Following very similar lines, it is possible also to evaluate
the crossed-term amplitude ���−��Sba��q

�+�� from Fig. 1.
Having the amplitudes for the direct and crossed diagram,

we are now prepared to write down the cross section for the
generation of a free-bound electron-positron pair in colli-
sions of two heavy ions

� =� d2b�
q�0

����−��S��q
�+���2, �30�

where S=Sab+Sba denotes the sum of the direct and crossed
terms in Fig. 1. Making use of all the simplifications from
above, these cross sections for the BFPP can be expressed as

� =� d2b�
q�0

����−��Sab��q
�+�� + ���−��Sba��q

�+���2

=
�N+�2

4	2

1

�
 Z

aH
�3

�
�q

� d3qd2p�

�2��5

��A�+��q:p�� + A�−��q:q� − p���2, �31�

with

A�+��q:p�� = F�− p�:�a�F�p� − q�:�b�Tq�p�:+ 	� ,

�32a�

and

A�−��q:q� − p�� = F�p� − q�:�b�F�− p�:�a�

�Tq�q� − p�:− 	� �32b�

being some proper products of the transition amplitudes and
scalar parts of the fields as associated with ions a and b.
All these functions have been displayed explicitly in Eqs.
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�27� and �29� above. Moreover, the square of the normaliza-
tion constant for the positron wave function is equal to �6,13�

�N+�2 =
2�a+

e2�a+ − 1
. �33�

Indeed, this constant appears to be very similar to

2��Z

e2��Z − 1
, �34�

i.e., the factor that represents the distortion of the positron
wave function due to the shielding of the nucleus by the
electron �13,14,17�.

III. RESULTS AND DISCUSSIONS

Calculations have been performed for the total production
cross sections of bound-free electron-positron pairs in rela-
tivistic collisions of bare ions. Theoretical cross sections are
obtained especially for the collisions of Au+Au ions at en-
ergies relevant for the RHIC facility as well as for Pb+Pb
ions at LHC energies. These cross sections are compared
with those for the production of free electron-positron pairs.
While, however, the free-pair production includes an eight-
dimensional integral, the BFPP cross sections eventually de-
pend only on five-dimensional integrals. To evaluate these
amplitudes, Monte Carlo techniques were utilized, and the
integrands have been tested on about 10 M randomly chosen
“positions” in order to ensure a sufficient convergence of our
theoretical results. The total numerical errors in the compu-
tations is estimated to be less or approximately five percent.

As a test of our implementation, first computations of the
total BFPP cross sections were performed for a few selected
collision energies. Table I displays these BFPP cross sections
for the two collision systems from above and for those col-
lision energies that are relevant for forthcoming experiments
at the RHIC and LHC collider facilities. Our results for the
total cross sections are in good-to-excellent agreement with
the previous computations by Meier et al. �18�, especially for
the RHIC energies of 100 GeV per nucleon. For the much
higher collision energies of �3000 GeV per nucleon, that
will be available at the LHC storage ring, our theoretical
predictions for the BFPP cross sections are in contrast lower
by about 20%, compared with the computations by Meier
and co-workers.

As mentioned above, the correction term �� was omitted
to the positron wave functions in Eq. �7�, in line with previ-
ous experience and computations of the free �electron-
positron� pair production for which a perfect agreement with

experiment was found by omitting this term �11,12�. We
therefore conclude that the distortion of the positron states
due to the shielding of the electron is small and remains
negligible for the present computations.

To understand the importance of the bound-free process,
Fig. 2 displays the BFPP cross sections for symmetric colli-
sions of ions with charge Z as function of the nuclear charge.
Cross sections are shown for the two collision energies
E=100 GeV/nucleon �dashed line� and 3400 GeV/nucleon
�solid line� as important for modern accelerators. While the
cross sections for the production of free-pair scale approxi-
mately with ��Z��4ln3���, the BFPP cross sections increase
with ��Z��8ln���. In this scaling behavior, the reason for an
extra factor Z3 arises from the bound wave function of the
electron, while another power in Z comes from the normal-
ization constant for the positron wave function.

Figure 3 shows the total BFPP cross sections for two dif-
ferent systems as functions of the Lorentz contraction factor
�. Our calculation is done in the center-of-momentum frame,

TABLE I. Bound-free pair production cross sections �BFPP �in
barn� for selected collision systems and cross sections as accessible
at RHIC and LHC collider facilities.

This work Ref. �18�

RHIC Au+Au at 100 GeV 94.5 94.9

LHC Pb+Pb at 2957 GeV 202 225
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FIG. 2. BFPP cross sections for two different systems as func-
tions of the nuclear charge Z. BFPP cross sections �in barn� for the
symmetric collision of bare ions with nuclear charge Z at 100 GeV/
nucleon �dashed line� and 3400 GeV/nucleon �solid line�. The cap-
ture cross sections increases by about three orders of magnitude in
going from Z=10 to Z=90.
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FIG. 3. BFPP cross sections for two different systems
�Au+Au-dashed line and Pb+Pb-solid line� as functions of the �.
The magnitude of � is going from 10 to 3400.
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therefore the relationship between the Lorentz factor � and
the collider energy per nucleon in GeV E /A is given by
�=1 /	1−v2=E /m0, where m0 is the mass of the nucleons.
Results are displayed for Pb+Pb collisions �solid line� and
for Au+Au collisions �dashed line�. As function of the Lor-
entz factor �, the free-pair production scales with ln3��� and
the bound-free pair production with ln���. All these results
are obtained in previous computations �6,13,19,20� and, thus,
we also verify that our calculations gives the similar results.

Results for the free and bound-free pair production are
displayed in the Figs. 4–7 within the same graph. At colli-
sion energies of 100 GeV per nucleon, as relevant to the
RHIC facility, we have considered Au+Au collisions, while
Pb+Pb collisions were analyzed at 3400 GeV per nucleon, as
they are hoped to be reached within the near future with the
LHC at CERN. The same notation is used throughout the

Figs. 4–7. Thin-lines and thin-dashed lines represent the
bound-free pair production and free-pair production at RHIC
collisions of Au+Au, respectively. On the other hand, thick
lines and thick-dashed lines shows the BFPP and free-pair
production at LHC collisions of Pb+Pb, respectively.

Figure 4 plots the the differential cross section as function
of the transverse momentum of the produced positrons. From
this figure, it becomes clear that the bound-free and free-pair
production distributions display a rather similar behavior as
function of transverse momentum, although the free-pair dis-
tribution function is larger by about three orders of magni-
tude than the BFPP function. Obviously, moreover, BFPP
distribution function decreases much faster with the size of
the transverse momentum than those for the free-pair produc-
tion.

Figures 5 and 6 displays the differential cross sections as
function of the longitudinal momentum and the energy, re-
spectively. Again, cross sections are shown for the free and
bound-free case. From Fig. 5 we find that the ratio of the
RHIC and LHC increases if the value of the longitudinal
momentum increases. Moreover, since the longitudinal mo-
mentum of the positron is much higher than the transverse
momentum, the energy of the produced positron arises
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mainly from the longitudinal momentum of the positrons.
Therefore, the behavior of the differential cross section as
functions of longitudinal momentum and energy must look
very similar as seen from Figs. 5 and 6. We can conclude that
energy of the positrons, E=	p�

2 + pz
2+1, consist of mainly by

the longitudinal momentum of the positrons.
Finally, Fig. 7 plots the differential cross section as func-

tion of the rapidity. At RHIC energies, the behavior of the
free and bound-free differential cross sections of rapidity is
almost the same, while a different behavior is observed at
LHC energies. For large values of the rapidity, the bound-
free cross sections decay more rapidly than for the free pro-
duction sections. Since the rapidity is a function of the en-
ergy and momenta,

y =
1

2
ln� p0 + pz

p0 − pz
� , �35�

the discrepancies in the behavior in the cross sections as
function of the longitudinal momenta and the energies ap-
pears closely related to its the behavior as function of the
rapidity.

IV. CONCLUDING REMARKS

In this work, we have investigated the electron-positron
pair production that is associated with the �simultaneous�
capture of the electron into the K shell of one of the ions.
Calculations of the cross sections have been performed espe-
cially for two collision systems, Au+Au and Pb+Pb, and for
energies that are relevant for the RHIC and LHC facilities. In
the framework of QED perturbation theory, the lowest-order
Feynman diagrams have been evaluated by applying Darwin
wave functions for the 1s bound state of the electron and
Sommerfeld-Maue wave functions for the continuum states
of the outgoing positron. In line with previous experience,
however, we have not taken into account the correction term
for the positron wave function whose influence was esti-
mated to be small. We plan to incorporate this term in the
future to analyze its contribution in further detail.

Comparison of our theoretical cross sections is made with
previous computations as far as available. Good agreement is
found especially for the total cross sections of Au+Au col-
lisions at 100 GeV per nucleon as utilized at RHIC. For these
collision, it is found in particular that the free and bound-free
pair production cross section behave very similar as a func-
tion of energy with an almost constant factor of �103 with
which the bound-free pair production is suppressed. This is
quite different for collision at �3000 GeV/nucleon, the ex-
pected conditions at the LHC, where there is discrepancy
between BFPP and free pair production differential cross
sections especially for large values of longitudinal momen-
tum, energy, and rapidity.

For the total electron-positron pair production, the effect
of the “Coulomb correction” is known to play an important
role �21� due to multiphoton exchange of the produced
electron-positron with the colliding nuclei. This Coulomb
correction for the free-pair production has a negative value

and it is proportional to Z2 which is obtained by Bethe-
Maximon �22�. So far, these higher-order corrections were
not included in the computation but we plan to derive and
calculate this effect in a forthcoming work.

ACKNOWLEDGMENTS

This research is partially supported by the Istanbul Tech-
nical University and Kadir Has University. We personally
thank S. R. Klein and G. Baur for valuable advise in calcu-
lating the cross sections and M. Şengül for the carefully
reading of our paper.

APPENDIX: LORENTZ TRANSFORMATION
OF THE FOUR-VECTOR POTENTIAL

In Sec. II, the integrals �18 and 20� were evaluated by
using the Lorentz-transformed potentials of the Coulomb
field of the heavy ions. Here, we derive this potential in
momentum space and perform the Lorentz transformation
onto it. In the rest frame of an ion with the nuclear charge Z,
fixed to the coordinates �0,b/2,0�, the four-vector potential is
given by

A� = 0,

A0� =
− Ze

�x�2 + �y� − b/2�2 + z�2�1/2 . �A1�

In momentum space, this vector potential can be expressed
by

A0��q�� =� d4x�eiq�·x�A0��x��

= − �2�Ze���q0��e
�−iqy�b/2��

−�

�

d3r�
e−iq�·r�

�r��
, �A2�

and with

r� = x� + �y� − b�/2� + z�. �A3�

Moreover, since A�=0 and A
� must transform like a four-
vector, we obtain

A0�q� = ��A0� − 	A1�� = �A0�,

A1�q� = ��A1� − 	A0�� = − �	A0�,

A� = A�� = 0. �A4�

Thus, by doing the integration over r� on the rhs of Eq. �A2�
and by performing the Lorentz transformations, we obtain
the potential for the colliding ions,

A0 = − �8�2Ze���q0 + 	q1��2 e−iq�·b/2

�q1
2 + �2q�

2 �
, �A5�

and where q1 refers to the longitudinal momentum, q� the
transverse momentum and q0 is the energy term.
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