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ABSTRACT

We provide a model to integrate the visualization of biclusters ex-
tracted from gene expresion data and the underlying PPI networks.
Such an integration conveys the biologically relevant interconnec-
tion between these two structures inferred from biological experi-
ments. We model the reliabilities of the structures using directed
graphs with vertex and edge weights. The resulting graphs are
drawn using appropriate weighted modifications of the algorithms
necessary for the layered drawings of directed graphs. We provide
applications of the proposed visualization model on the S.cerevisiae
dataset.

Categories and Subject Descriptors

H.5 [Information Interfaces and Presentation]: Miscellaneous;
H.1 [Information Systems]: Models and Principles

General Terms
Design, Algorithms
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1. INTRODUCTION

In a gene expression data matrix the rows correspond to the genes
and the columns correspond to the conditions such as time points
or environmental conditions of interest. Each entry of the matrix
is a real number that represents the expression level of a gene un-
der a certain condition. Several techniques have been suggested
to analyze gene expression data to gather useful biological corre-
lations. Biclustering is one such technique that refers to the pro-
cess of extracting submatrices of genes and conditions exhibiting
“significant” correlation across both the rows and the columns of
the data matrix. In more general settings its first appearance has
usually been attributed to Hartigan under the name direct cluster-
ing [15]. Almost thirty years later the technique has been intro-
duced to the field of gene expression analysis, first by Cheng and
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Church [7]. Since then several methods have been suggested for the
problem; see [20] for a survey. Another common structure that en-
ables an understanding of cellular mechanisms and processes is that
of protein interactions. As proteins rarely act as isolated species,
but rather form a close association with partner proteins for some
specific biological activity, it is necessary to analyze these interac-
tions which globally give rise to protein-protein interaction (PPI)
networks. There is usually a natural interconnection between the
information contained within gene expression data and the PPI net-
works [17]. The validity of extracted high-level structures as bi-
clusters is usually cross-checked via low-level biological data such
as in the form of protein interactions [12, 22]. Conversely, to im-
prove the accuracy and the coverage of protein interactions it is
usually necessary to integrate complementary data sources includ-
ing gene expression [19]. In order to reflect this interconnection
and the recently growing need for integrated inference and analysis
methods, it is crucial to provide visualization models that integrate
the high-level structures arising from expression data and the rela-
tively low-level experimentally inferred PPI networks. Reliability
is a major concern for both biclusters and the protein interactions.
The biclustering algorithms are usually based on well known sta-
tistical data mining techniques and thus should be cross validated
with previously known biological results. Similarly the PPI net-
works are generated using various experimental approaches. As
the experimental techniques suffer from noise and systematic bi-
ases several computational methods are employed for improving
confidence. Nevertheless in both biclustering and the protein in-
teractions data there are techniques to assign a confidence value to
the resulting inferences. A faithful visualization of these inferred
structures should embed the confidence values in the visualization
model.

We provide a model that integrates the visualization of biclusters
and the underlying PPI networks. Besides the obvious role in con-
veying biologically relevant interconnection, such an integration is
also important as a visualization aid. Large graphs such as the PPI
networks are usually visualized using an appropriate form of clus-
tered graph visualization, where the clusters are formed using some
graph-theoretical measures. With the proposed integration such a
clustering is indirectly achieved using natural context-based mea-
sures. The reliabilities of the inferred structures are modelled using
weights. The main layout paradigm used in the visualization model
is the Sugiyama-style layered drawings. The resulting weighted
graphs are laid out using appropriately modified algorithms neces-
sary for this layout style.

2. PREVIOUS WORK

Several methods and tools for the visualization and analysis of
PPI networks have previously been proposed [5, 11, 16, 24]. Usu-



ally the visualization of the network is done as a whole and various
analysis options are provided within the tools. One such widely
used visualization tool is Cytoscape [24]. It supports many of the
layout paradigms suggested for graph visualization in literature. Its
main advantage is that it is extendible with plugins such as Gene-
Pro [28]. GenePro provides a cluster-centric visualization of PPI
networks with features similar to our proposed model. However
the visualization model lacks the important concept of reliability.
The directional information inherent in the structures is also not
represented as a result of the choice of the layout algorithm. In
SpringScape the main layout is based on a spring embedder [11].
It is yet another tool with similar concepts of integrating differ-
ent biological information from multiple data sources such as gene
expression and PPI networks. This integration is realized on the
same view which leads to cluttered visualization. The absence of
a clustering paradigm, be it contextual or graph theoretical, adds
another complication to readability of the visualized graphs. Sim-
ilar to GenePro the reliability factor has no affect on the produced
visualizations.

On the other hand a number of tools and methods have also
been suggested for visualization and analysis of biclusters. Bi-
cat [2], Click and Expander [25] are tools that can be employed
both for biclustering the data in the expression matrix and also for
basic visualizations of the output biclusters. Heatmaps and gene
versus condition plots constitute the employed visualization tech-
niques. Bicoverlapper is a bicluster visualization tool that uses a
force directed layout [23]. It supports many visualization function-
alities. However, the tool itself is complicated and slow because of
a straightforward implementation of the force directed layout com-
putations. Furthermore it has no components to integrate various
data sources. BiIGGESTS [14] is another tool aimed at visual anal-
ysis of biclusters. The employed visualization techniques include
parallel coordinate, heatmap, and graph visualizations. Enrichment
ratio calculations based on p-values can be considered as a measure
of what we call reliability. However as far as the graph visualiza-
tions are concerned, the representations of these measures are only
limited to visual clues such as color intensity. The suggested vi-
sualization methods do not take into account the reliability values
while producing the final graph layout itself. Moreover there is not
a general model to integrate the visualization of a bicluster with that
of biologically relevant data. Such an integration is only provided
via the construction of a graph of enriched GO terms per bicluster.

In more general settings starting with Sugiyama et al [26] the
layered drawing paradigm has received considerable attention in
graph drawing literature; see [3] for a survey. Although weighted
versions of some of the steps involved in the layered drawing paradigm
such as layer assignment [13] or vertex orderings within layers [6]
have previously been suggested, none of them presents a compre-
hensive approach covering all the major steps.

3. VISUALIZATION MODEL
3.1 Modelling Integration and Reliability

To convey the interconnection between the bicluster structures
and the protein interactions we provide a two-level visualization
model; see Figure 1. The first level is the central view represen-
tation which shows the high-level relationships between biclusters,
the bicluster graph. Each vertex in the graph corresponds to a bi-
cluster that is extracted from a given gene expression data matrix
using some specific biclustering algorithm. The second level is the
detailed peripheral view which shows the possible low-level rela-
tionships in the form of protein interactions between pairs of genes

inside each bicluster from the central view. The vertices and edges
are assigned weights appropriately in the constructed graphs. The
vertex and edge weights assigned in both bicluster graphs in the
central view and the subgraphs of the PPI network in the peripheral
view are employed in the layout phase so that the visualization can
capture the reliability inherent in the structures. Additionally to en-
hance visual understanding the vertices are drawn in sizes, and the
edges are drawn with thicknesses proportional to their weights.

3.1.1 Peripheral View: PPI Subgraphs

It is the subgraph of the global PPI network that is defined on
the genes contained within the bicluster. Each gene corresponds
to a vertex and there exists an edge (u,v) with weight w(u, v) if
the underlying PPI network contains an interaction from gene u to
gene v. The weight w(u, v) represents the reliability of the inter-
action. Suthram et al. define a confidence score between 0 and 1
for the protein interactions [27]. We normalize these scores to in-
teger values and obtain the corresponding edge weight. The PPI
networks of the selected sets of biclusters constitute the peripheral
view of the visualization.

3.1.2 Central View: Bicluster Graph

The vertices of the bicluster graph are weighted and each weight
represents the quality (reliability) of the corresponding bicluster.
We use two alternative scoring functions for this weight assignment
to reflect the quality. One is to evaluate a bicluster in terms of its H -
value (mean squared residue) [7] and assign the weight accordingly.
Assume a bicluster as a submatrix with I rows and J columns. The
residue R of an entry at the 7*" row and the %" column is defined

as,

Rr,5(3,j) = ai; —ar; —aig +arg,

where a; s is the mean of row 4, az; is the mean of column j and
ay g is the mean of the submatrix. H-value is then defined as,

B J)= ﬁ > (Ria(ing)?).
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With this measure the lower the H-value of a bicluster is, the more
“correlated” the data values are. Therefore the weight of a vertex
u, denoted with w(w), is the inverse of the H-value of the sub-
matrix corresponding to the bicluster denoted with u. As a sec-
ond alternative for the vertex weights we propose to use contextual
interpretations gathered from the biclusters. The Gene Ontology
(GO) Consortium has published curated gene-attribute association
lists for several organisms [9]. For instance, each gene of Yeast
belongs to one of 13 main categories including Energy Production,
Amino Acid Metabolism, Cellular Fate. Given a set of genes it is
straightforward to find its enrichment ratio which corresponds to
the ratio of the number of genes associated with the dominant at-
tribute (functional category) in the whole set to the size of the set.
Each vertex weight w(w) is equal to the enrichment ratio of the
bicluster corresponding to w in this case.

We propose two alternatives for the edges of the bicluster graph
as well. In the first alternative every pair of vertices u, v are con-
nected with an undirected edge with weight w(u,v) equal to the
number of shared genes in the biclusters corresponding to u,v.
Next the edges not satisfying a minimum weight threshold are re-
moved from the graph. Such a visualization is especially preferable
if the biclustering algorithm provides overlapping biclusters and the
emphasis of the relationship between biclusters is on the degree of
these overlaps. Analogous to the vertex weighting alternatives, the
second alternative scheme for edge weights is again context-based.



Figure 1: Snapshot of the proposed visualization model with the central and peripheral views. Bicluster graph is at the center.
Biclusters of interest are clicked and the PPI network corresponding to them are laid out on the peripheral view. Colors of vertices
in the peripheral view indicate the different functional categories. The directions of edges are naturally downward. Only the upward
edge directions are indicated with arrows to reduce the clutter in the visualization.

A directed edge from u to v is created if there exists a considerable
number of reliable protein interactions from the set of genes inside
the bicluster u to the set of genes inside the bicluster v. The weight
assignment is defined as

w(u,v) = Z

Vg, Eu,gjEV

w(gi, 95 )-

Here w(gs, g;) is the weight of the edge between the genes g;, g; in
the underlying global PPI network and it corresponds basically to
the reliability of the interaction. Both alternatives are designed so
as to provide clues on how to modify an unsatisfactory biclustering
at hand. If a bicluster is to be expanded the most similar biclusters
which are the graph-theoretically closest ones are to be considered
first. The difference between these alternative schemes is that the
similarity in the former is captured in essence by the degree of over-
laps which in turn is a property of the employed biclustering algo-
rithm, whereas the latter provides such clues after a context-based
and integrated interpretation of the underlying structures.

3.2 Layout Algorithm

We employ the layered drawing paradigm for both graph types.
Proposed by Sugiyama et al., it is the layout style where a directed
graph is embedded in layers in such a way that the directional
flow of the graph is clearly visible and certain aesthetic criteria are
achieved. Attributed to these constraints, there are usually three
main steps involved: Cycle Removal, Layer Assignment, and Or-
dering within Layers. For the first step the usual goal is to remove
cycles by reversing the minimum number of edges in the graph.
Once an acyclic graph is achieved the next step assigns disjoint
subsets of vertices to the layers. Several optimization goals includ-
ing minimizing the number of layers or minimizing the number of
vertices in any layer can be employed. Finally the order of the ver-
tices in each layer should be assigned in such a way that the number
of edge crossings in the complete layout is minimized. Almost all
the interesting versions of each step is an NP-hard task. We pro-
pose a weighted extension of the mentioned steps. We note that
both the vertices and the edges in the graphs under consideration
are weighted. Since the steps involved in the layout computation
are usually related to optimizing certain criteria with regards to the



Figure 2: Left: The optimum solution to weighted FAS reverses
two light edges. Right: One heavy edge reversed if weights are
not considered.

edges of the graph we first modify the edge weights so as to include
both the original weights of the edges and the weights of the inci-
dent vertices. For the layout purposes each edge (u,v) is assigned
the weight

w(u) X w(v)
\/Outdeg(u) * indeg(v) x w(e(u,v))

where w(u), w(v),w(u,v) represent the original weights of the
vertices and the edge, and outdeg, indeg represent the outdegree
and the indegree of the vertex respectively. The contribution of
the vertices is determined by the geometric mean of the contribu-
tion of each vertex independently. This independent contribution
is computed as the weight of the vertex distributed over all outgo-
ing (incoming) edges. Given an edge-weighted directed graph, the
problem now is to redefine each of the main steps of the layered
drawing paradigm considering edge weights and provide appropri-
ate solutions.

3.2.1 Cycle Removal

This phase is closely related to the Feedback Arc Set (FAS) prob-
lem. Given a directed graph, the problem is to find the minimum
size subset of edges such that when removed or reversed the graph
no longer contains a cycle. The decision version is one of Karp’s
21 problems and is NP-hard [18]. For the weighted version of the
problem the goal is to reverse a subset of edges such that the sum
of the weights of edges in the subset is minimum. Rather than re-
versing heavy edges involved in some number of cycles, it might
be more beneficial for visualization purposes to reverse more light
edges involved in fewer cycles; see Fig 2. Demetrescu et al. pro-
vide a two phase algorithm for the weighted FAS problem [10].
The first phase consists of finding a minimum weight edge in a
cycle, decrementing this weight from the weights of all the edges
in the cycle, removing all edges with weight zero and repeating
the whole process until no cycle remains. It is guaranteed that
this initial phase produces a result that is within a ratio bounded
by the length of the longest cycle in the graph from the optimum.
To achieve minimality the second phase goes through the reversed
edge set assigning their original directions to the edges if doing so
does not introduce any cycles. We implemented this algorithm as
it is simple and produces good results in practice. The only differ-
ence is that in our implementation the second phase goes through
the list of reversed edges after sorting them in decreasing weights
S0 as to achieve minimality first with heavy edges.

3.2.2 Layer Assignment

Each vertex is assigned to one of k layers l;,1 < ¢ < k in such
a way that for every edge (u,v) we have {(u) > I(v) where [(u)
indicates the layer number of u. To aid the succeeding steps, an

additional requirement is that [(u) is exactly one more than I(v)
for an edge (u,v). This is achieved by introducing dummy ver-
tices on edges that span more than two neighboring layers. Several
optimization criteria are suggested. Minimizing the height of the
drawing corresponds to producing a layout with minimum num-
ber of layers. Minimizing the width of the drawing corresponds
to minimizing the maximum number of vertices assigned to any
layer. Minimizing number of dummy vertices achieves a minimum
total edge length in the drawing. Several algorithms realizing one
or more of these criteria have been suggested. We employ a lay-
ering algorithm that is based on the Coffman-Graham algorithm of
[8] and the longest path with promotion heuristic of [21]. Our
modifications are oriented towards minimizing total weighted edge
lengths while providing a compact drawing area. We first compute
a lexicographical ordering 7 on the vertices of the graph. This or-
dering in a sense is a measure of the distance to a source vertex
with indegree zero. In the second phase, starting from the bottom
layer the algorithm assigns a layer to each vertex each time pick-
ing a new vertex with maximum 7(v). When v is assigned to a
layer and outdeg(v) is zero the incoming edges of v are appended
to a waiting list. If there is more than one candidate vertex for the
waiting list, we pick the one with the maximum sum of weights of
outgoing edges to be the next one in the list. In an attempt to reduce
the height of the output drawings we apply a promotion heuristic.
Going through the set of vertices in no particular order the gain of
promoting (moving up one layer) each vertex is tested. The pro-
motion of a vertex v may require a recursive promotion of u, if u
is directly above v. A promotion is realized if it decreases the sum
of weighted edge lengths and it satisfies a prespecified maximum
width. This process is repeated until no layer changes are realized.

3.2.3 Ordering within Layers

Once the layers are determined the next step is to determine the
order of the vertices within each layer. The goal is to minimize the
number of edge crossings in the drawing. This is usually achieved
with a layer-by-layer sweep technique. Starting from the first two
layers, the top layer is fixed and the bottom layer is ordered using
an algorithm that minimizes crossings. Next this is applied between
the second layer and the third this time keeping the second layer
fixed and ordering the third, and so on until all layers are swept.
The sweeping may continue in the reverse direction up and down
until a desired number of crossings or iterations is reached. For the
weighted version of this step, we employ the WOLF algorithm for
solving the subproblem of minimizing crossings in bipartite graphs
when one layer is fixed. The algorithm works on weighted bipar-
tite graphs and is a 3-approximation when considering the weighted
sum of crossings. In addition to this theoretical guarantee it is sim-
ple and is shown to work well in practice [6].

3.2.4 Coordinate Assignment

After the order of the nodes in each layer is determined, we need
to assign appropriate horizontal/vertical coordinates to each node.
The desired horizontal coordinates provide edges as straight as pos-
sible. We employ the method suggested in [4] as it provides linear
execution time and is easy to implement. This method generates at
most two edge bends per edge and tries to draw inner segments ver-
tically. There are two main steps involved. In the vertical alignment
step, the nodes are aligned to their median upper/lower neighbors.
In the horizontal compaction step, the aligned blocks of nodes are
assigned to classes providing a minimum seperation distance be-
tween each class of nodes. These two steps are executed four times
for each direction. After aligning these possible layouts, the actual



x-coordinate for each node is computed as the average median of
the four candidates.

For the vertical coordinate assignment, we set the vertical separa-
tion between a pair of layers proportional to the density of weighted
edges incident to vertices in the pair. This way, the layer corridor
dense with large edge weights shall be wider to highlight the im-
portance of that specific layer. On the other hand, the layer corri-
dor with less cumulative edge weights shall be narrower so that no
space is wasted in the y-dimension.

4. APPLICATION ON YEAST DATASET

For our visualization application we use datasets for the organ-
ism S.cerevisiae (Yeast). The source code of all the implementa-
tions, the experiments and more visualization applications are pub-
licly availableathttp://hacivat.khas.edu.tr/~cesim/
integratedviz.tar.gz. The PPI network is from [27] with
11884 interactions between 4393 genes. The biclustering results
are extracted partially using the Bicat [2] and the results of [12].
Finally we obtain 13 functional categories of each of the genes in
the dataset from [1].

In Figure 3, the bicluster graph in the central view has 21 ver-
tices which are the biclusters from the LEB algorithm [12]. There
are three graphs extracted from the peripheral view. At the PPI net-
work level in the peripheral view for B3 and Bsg, coloring of ver-
tices is not dominantly on behalf of any specific color. This implies
that the bicluster fails to collect genes from the same functional cat-
egory, a context-based sign that the biclusters under consideration
may not semantically be relevant. This is verified by the sizes of
the corresponding vertices in the bicluster graph. Furthermore the
corresponding graph of Bs on the peripheral view is sparse which
implies the protein interactions involving the genes in this biclus-
ter do not indicate a highly connected group. Because of the large
number of genes inside the biclusters B3 and Bs, their correspond-
ing vertices have large degrees at the central view. This makes them
more general gene subsets and in fact uncorrelated. Genes in Bo
actually maybe more correlated than those of B3 and Bg. B3 has
only three light incident edges in the central view. This may be a
clue to merge B3 with its more generic neighbors B15 or By that
have appropriate H-values. For instance, H-values of Bis and Bg
are similar and there are fairly dense genes from the category of
Cellular Organization in both.

A more detailed view of B> at the peripheral view is provided in
more detail in Figure 4. When we analyze this bicluster in more de-
tail, 16 of its vertices among 50 belong to the same functional cat-
egory, Cellular Organization. Extending this bicluster with similar
category genes might provide the ultimate bicluster as it is densely
connected with fairly heavy edges in the bicluster graph, a sign of
a hot spot for PPl interactions. Checking first the immediate neigh-
bors in the central view for such a possible extension would provide
useful. If the ultimate bicluster shows a dominant specific category
according to its gene results, it is easier to check the connections
of uncategorized genes just by checking relations and the H-value
changes.

A detailed peripheral view of Bg is provided in Figure 6. Bs
has orange circled genes colored pink which are Uncategorized.
Interestingly, the pink genes seem to have interactions with the blue
genes. This may be a clue that the pink uncategorized genes could
be related to Translation as their blue neighbors in peripheral view
are of that category.

Bs3 is presented in more detail in Figure 5. There are genes with
interactions to many different functionality genes. Green, blue, or-
ange, black circles all include at least a gene interacting with dif-

ferent colored vertices, that is different genes. This leads to another
prediction that cyan vertices inside the red circles maybe associated
with Stress and Defense rather than Cellular Organization. The
largest vertex in the central view is Bis. This is the best biclus-
ter in terms of H-value comparison. We do not show its details in
this figure but it mainly has the genes from the cyan and dark green
categories, the Cellular Organization and Genome Maintenance re-
spectively.

S. CONCLUSION

We provide a visualization model that integrates different sources
of biological data in the form of biclusters and protein interactions.
The important concept of reliability applicable to both types of
graphs is modelled using weighted graphs. The layout method em-
ployed in visualizations is based on the layered drawing paradigm.
Several modifications of the main steps of this paradigm are im-
plemented to handle the weight generalization. Future work in-
cludes extending the model with various other appropriate layout
paradigms.
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