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ABSTRACT 

TOWARDS A DYNAMIC SYSTEM IN CREDIT SCORING 

Süleyman Şahal 

Master of Science in Management Information Systems 

Advisor: Prof. Dr. Hasan Dağ 

January, 2017 

In credit scoring statistical methods like logistic regression have been successfully 

used for years. In the last two decades, several data mining algorithms have gained 

popularity and proved themselves to be useful in credit scoring. Most recent studies 

indicate that data mining methods are indeed good predictors of default. 

Additionally, ensemble models which combine single models have even better 

predictive capability. However, in most studies the rationale behind data 

transformation steps and selection criteria of single models while building ensemble 

models are unclear.  

In this study, it is aimed to construct a fully automated, comprehensive, and dynamic 

system which gives the ability to a credit analyst to make credit decisions without 

any human interaction, solely based on the data set. With this system, it is hoped not 

to miss any valuable data transformation step and it is assumed that each built-in 

model in RapidMiner is a possible candidate to be the best predictor. To this end, a 

model comparison engine has been designed in RapidMiner. This engine conducts 

almost every kind of data transformation on the data set and gives the opportunity to 

observe the effects of data transformations. The engine also trains every possible 

model on every possible transformed data. Therefore, the analyst can easily compare 

the performances of models. 

As the final phase, it is aimed to develop an objective method to select successful 

single models to build more successful ensemble models without any human 

interaction. However, research in this direction has not been able to achieve an 

objective method. Hence, to build ensemble models, six of the most successful single 

models are chosen manually and every possible combination of these models are fed 

to another engine: ensemble model building engine. This engine tries every 

combination of single models in ensemble modelling and provides the credit analyst 

with the ability to find the best possible combination of single models, and finally to 

reach the ultimate, most successful model that can later be used in predicting the 

creditworthiness of counterparties. 

Keywords: Credit Risk, Credit Scoring, Data Mining, Machine Learning, Ensemble 

Model, Dynamic System, Automated System, RapidMiner  
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ÖZET 

KREDİ SKORLAMADA DİNAMİK BİR SİSTEME DOĞRU  

Süleyman Şahal 

Yönetim Bilişim Sistemleri, Yüksek Lisans 

Danışman: Prof. Dr. Hasan Dağ 

Ocak, 2017 

Kredi skorlamasında, lojistik regresyon gibi istatistiksel yöntemler yıllarca başarılı 

bir şekilde kullanılmıştır. Son yirmi yılda, bazı veri madenciliği algoritmaları 

popülarite kazanmış ve kredi skorlamasında kullanışlı olduklarını kanıtlamışlardır. 

Güncel araştırmalar, veri madenciliği yöntemlerinin gerçekten de iyi tahmin ediciler 

olduklarını göstermektedir. Ek olarak, tekil modelleri birleştiren gruplama modelleri 

daha da iyi tahmin yeteneğine sahiptir. Bununla birlikte, çoğu araştırmada, veri 

dönüştürme adımlarının arkasındaki mantık ve gruplama modellerini oluşturmada 

tekil modellerin seçim kriterleri yeterince açık değildir. 

Bu çalışmada, bir kredi analistine yalnızca verilere dayanarak ve herhangi bir insan 

etkileşimi olmaksızın kredi kararları verme yeteneği kazandıracak, tamamen 

otomatik, kapsamlı ve dinamik bir sistem kurulması amaçlanmaktadır. Bu sistem ile 

herhangi bir değerli veri dönüşüm adımını kaçırmamak umut edilmekte ve 

RapidMiner'daki her yerleşik modelin en iyi tahminci olmaya aday olduğu 

varsayılmaktadır. Bu amaçla, RapidMiner'da bir model karşılaştırma motoru 

tasarlandı. Bu motor veri kümesi üzerinde hemen her tür veri dönüşümünü 

gerçekleştirmekte ve veri dönüşümlerinin etkilerini gözleme fırsatını vermektedir. 

Motor ayrıca mümkün olan her dönüştürülmüş veri üzerinde olası tüm modellerini de 

eğitir. Bu sayede, analist modellerin performanslarını kolayca karşılaştırabilmektedir. 

Son aşamada, insan etkileşimi olmaksızın daha başarılı gruplama modelleri 

oluşturmada başarılı tekil modelleri seçmek için nesnel bir yöntem geliştirilmesi 

amaçlanmaktadır. Fakat, bu doğrultudaki araştırmalar nesnel bir yönteme 

ulaşılmasını sağlayamadı. Bu nedenle, gruplama modelleri oluşturmak için, en 

başarılı tekil modellerin altısı manuel olarak seçildi ve bu modellerin olası 

kombinasyonları başka bir motora beslendi: gruplama modeli oluşturma motoru. Bu 

motor, gruplama modelinde tekil modellerin her kombinasyonunu denemekte ve 

kredi analistine tekil modellerin mümkün olan en iyi kombinasyonunu bulma ve 

sonuç olarak karşı tarafların kredi değerliliği hakkında tahminde bulunabilecek en 

mükemmel ve en başarılı modele ulaşma olanağı sağlamaktadır.  

Anahtar Kelimeler: Kredi Riski, Kredi Skorlama, Veri Madenciliği, Makine 

Öğrenme, Gruplama Modelleri, Dinamik Sistem, Otomatik Sistem, RapidMiner   
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1 INTRODUCTION 

The main task of banking industry is lending money to borrowers. Decision to lend 

or not fundamentally depends on the riskiness of the borrower. In other words, will 

the borrower pay his/her debt fully in due times? To answer this question, vast 

amount of information regarding loan applicant, be it a real person or a company, 

have been gathered for decades and statistical and data mining (machine learning1) 

techniques deployed on them. This broad process is called credit scoring and the 

outcome of it is usually a binary type decision variable (such as good/bad, 

approve/reject) calculated based on the estimated likelihood of a nonpayment on 

prompt time. The benefits and adverse consequences of credit scoring almost entirely 

reflect in the performance of the financial institution, the former as being profit and 

the latter as loss. Additionally, a good credit scoring system with minimal error will 

speed up decision making processes. So, measuring the riskiness of a borrower as 

accurate as possible has outmost importance. To contribute to this endeavor, 

state-of-the-art data mining methods are implemented and their accuracy rates are 

compared in this study. 

1.1 Study Focus 

The main inquiry of this study is threefold: The first task is the comparison of 

prediction effectiveness of contemporary data mining methods in credit scoring. The 

second successive task is choosing appropriate successful models among these to 

construct a more successful heterogeneous ensemble model. Third and finally, 

building two engines in RapidMiner environment that can be used on any kind of 

credit data. First of these two engines transforms the data and compares the 

                                                           
1 Although there are differences, within the context of credit scoring, data mining and machine 
learning concepts are used interchangeably throughout this study.  
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prediction performance of different models, and the second one tries different 

combinations of single successful models in order to build the final, more successful 

ensemble model.  

Data mining and credit scoring are already extensive subjects by themselves. Hence, 

to be able to focus on evaluation of data mining methods while staying within the 

boundaries of such a concise study, some basic assumptions have been made and 

some restrictions are placed.  

The first task in credit scoring is collecting data. The procedure of collecting data 

inherently involves domain knowledge of the experts in the field of credit scoring. 

That is, experts choose which data to record along with their form based on their 

experiences and priorities. Since this study is concentrated on the comparison of the 

capabilities of the data mining techniques, publicly available real world credit data 

sets have been chosen to investigate. The German and Australian credit data sets 

from University of California, Irvine (UCI) Machine Learning Repository are  

collections of real data comprised of 1,000 examples and 20 attributes (Hofmann 

n.d.) and 690 examples and 14 attributes respectively. These data sets have been 

widely used in similar studies and have become sort of a benchmark to judge 

whether new studies have significant improvements or not over the prevalent models. 

Examples in the data sets represent real people who had applied for loans and credit 

cards. Therefore, the data sets represent retail credit applications, not companies. 

Descriptive statistics of the data sets will be presented later in the study. 

1.2 Objectives of the Study 

The first objective is to detect the most successful data mining models in assessing 

creditworthiness of loan applicants. Together with finding successful models, 
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understanding the effects of data transformations on model accuracies is also one of 

the major objectives of this study. After finding effective models, the underlying 

reasons which might cause those specific models to be successful are scrutinized. 

Moreover, it is anticipated that ensemble models will yield better results. After 

conducting this experiment, it is also hoped to understand the contributions of 

ensemble models to single methods. Whether an objective method exists in selecting 

successful single models while building ensemble models is also one of the crucial 

points expected to be illuminated throughout this study. Finally, it is expected to 

develop a stable, accurate and precise credit scoring system which can efficiently be 

deployed to any kind of real world retail credit applications to help experts decide 

without much anxiety over the credit risk applicants might bear. 

1.3 Methodology 

Throughout this study a methodological approach has been strictly followed. Before 

delving into the research, a thorough scanning of existing studies has been 

conducted. 

1.3.1 Literature Review 

The first step was to review relevant literature where the effectiveness of various data 

mining models in the assessment of credit scoring has been investigated. Peer 

reviewed scientific journals, conference proceedings, books, theses, and dissertations 

have been scanned and approximately eighty sources are reviewed. A summary of 

reviewed source types is at Table 1.1. Contents and findings of these reviewed 

studies will be discussed in Section 2.3. 



4 

Table 1.1 Literature Review, Source Types 

Source Type Number 

Articles in Scientific Journals 54 

Books 7 

Theses & Dissertations 8 

Others ~10 

Total ~80 

1.3.2 Software 

In every data analysis, a researcher needs some programming tools. For some basic 

data manipulations Microsoft Excel is used. For the advanced data analytics part of 

this study, RapidMiner has been extensively used. RapidMiner is a free visual 

workflow environment where one can use predefined data mining models and 

develop his/her programming scripts2. 

1.3.3 Data Analysis 

Any kind of data analysis project should ideally encompass all or most of the 

following phases (Tufféry 2011): 

1. Identifying the objectives 

2. Listing relevant data  

3. Collecting the data 

4. Exploring the data 

5. Preprocessing (blending, cleansing) the data 

6. Transforming the data if necessary 

7. Training data mining models 

8. Tuning model criteria 

9. Validating models 

10. Deploy strategies consistent with model outcomes 

                                                           
2 For further information please visit https://RapidMiner.com.  

https://rapidminer.com/
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Since the focus of this study is the comparison the data mining models, the objective 

phase is already included in the project. To be able to compare the findings of this 

study, publicly available date sets have been chosen and they are already well 

organized real data. Thus, phases from 2 to 5 can be skipped. Remaining phases 

comprise the body of this study. 

1.4 Outline of the Study 

Chapter 2 presents the basics about credit scoring and data mining. Findings of the 

recent and relevant studies are also given here. Finally date sets used in this study are 

introduced. 

Chapter 3 establishes the foundation of this study. Necessary data transformation 

steps, aspects of model training and evaluation metrics are clarified. 

Chapter 4 presents the experimental setting and gives brief descriptions about data 

mining models.  
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2 BACKGROUND 

This chapter introduces the main research topic that is credit scoring and gives a brief 

introduction to the data mining field. Finally, the data sets are presented and former 

studies around this subject are evaluated. 

2.1 Credit Scoring 

After every application for a loan, customers are evaluated by their personal 

information and historical performance with the aim of estimating their 

creditworthiness (Han et al. 2013). This is where credit scoring comes into play. 

Thanks to the recent developments in cloud technology and big data, there is 

tremendous amount of data collected about people. The main aim of credit scoring is 

to analyze those data and distinguish good payers from bad ones,  utilizing 

characteristics such as account, purpose of loan, marital status etc. (Mues et al. 

2004).  

Although no single credit scoring model is perfect and they considerably fail to 

identify risky borrowers (Finlay 2011), it is the primary tool of lending institutions in 

making credit decisions. Scoring originally started based on subjective evaluations of 

experts. Later it was based on 5 Cs: character, capital, collateral, capacity, 

conditions. Then, statistical techniques emerged such as linear discriminant analysis, 

logistic regression. They had been applied successfully for some time, but the 

problem with those models is they usually require the data not to violate some 

distributional assumptions such as normality. In recent decades, many studies and 

applications supported the idea that new data mining techniques such as neural 

networks, support vector machines can be used as alternatives (Wang et al. 2011). In 

contrast to statistical methods they do not assume certain distributions. Credit scoring 

has been one of the most successful applications of data mining (Finlay 2011).  
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2.2 Data Mining 

As being an area intertwined with so many disciplines it is argued that data mining is 

not an actual scientific branch. Rather, it is a set of methods for exploring and 

analyzing data sets in an automatic way in order to extract certain unknown or 

hidden rules, patterns, associations among those data. Data mining has basically two 

functions: descriptive and predictive. Descriptive techniques are designed to bring 

out information that is present but buried, while predictive techniques are designed to 

extrapolate new information based on present information (Tufféry 2011). 

 

The diagram which is created for a data mining course by experts in SAS Institute 

back in 1998 demonstrates the complicated nature of data mining field. 

Extracting information from data set is an inductive process which means the models 

learn from the data. There are two common types of learning: unsupervised learning 

(learning without definite goals), supervised learning (learning with definite goals) 

(Kantardzic 2011). 

Figure 2.1 Data Mining Venn Diagram 

Source: (Mitchell-Guthrie 1998) 
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2.2.1 Unsupervised Learning 

Under this learning scheme there is no output or response variable and only the input 

or explanatory variables are provided to learner. It is expected from the learner to 

build the model on its own. Since there is no output variable and hence there is no 

relation to detect, the primary goal of unsupervised learning is to discover natural 

structure of the data set (Kantardzic 2011). The most common unsupervised learning 

method is called clustering. 

2.2.1.1 Clustering 

Cluster is a subset of data which are similar out of the whole data set. Clustering is 

the procedure to categorize each example in a data set into groups such that the 

members of each group are as similar as possible to one another (Sayad 2016). The 

chart Figure 2.2 is a demonstration of a clustering learner. The learner assigns every 

example in the data set to one of the two clusters. There are various models where 

the number of clusters set beforehand or left to optimization algorithms of learners.  

 
Figure 2.2 Clustering Example 
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2.2.2 Supervised Learning 

Unlike unsupervised learning, in supervised learning there is definite output variable. 

The main goal is to reveal the hidden mapping between input variables and the 

output variable (Brownlee 2016). Most of the data mining tasks fall into this 

category. Supervised learning can be further classified into two fields: regression and 

classification. 

2.2.2.1 Regression 

The data mining task becomes regression when the output variable has real values. In 

very general terms, regression is describing and revealing the relationship between 

the output variable and one or more input variables. More technically, regression 

attempts to explain variability in the output variable with respect to movements in the 

input variables (Brooks 2008). In its simplest form the relationship between output 

variable and one input variable can be depicted with a linear line as shown in the 

Figure 2.3 

 

2.2.2.2 Classification 

Classification learners are used to reveal the relation between the class of the output 

variable and input variables. Like clustering learners, classifiers also assign each 

Y

X

Figure 2.3 Example of Simple Linear Regression 
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example in a data set to a class. The difference is, in classification, classes are 

already defined. After revealing this relation, learner assigns new examples of which 

classes are not known to existing classes (Yazdani et al. 2014). Number of classes 

might be two or more. The special case is having two classes. It is also called binary 

output variable and this case is also the subject of this study. 

In credit scoring the output variable, which is creditworthiness of an entity, takes 

only one of the values, good or bad. For binary classification tasks, commonly used 

learners are decision trees, Naïve Bayes, k-nearest neighbor (KNN), artificial neural 

networks (ANN), support vector machines (SVM), logistic regression, linear 

discriminant analysis (LDA), random trees and forests, deep learning. Each of these 

learners will be performed and their relative successes are evaluated in following 

sections. 

2.3 Former Studies 

The financial industry utilizing credit scoring systems directly experience the results 

of their systems, as benefits or losses. Also, because of the central role of the banking 

industry in the national and the global economy, credit granting policies and systems 

are highly controlled by local authorities (like BRSA in Turkey) and by BASEL 

regulations as well. Because of these reasons, the whole industry together with 

scientists in associated fields try to reach the best model for decades. There are 

numerous studies only focusing on comparing of statistical and data mining 

algorithms. A selection of researches in which German and Australian credit data 

sets has been used is presented at Table 2.1. In addition to this selection, around six 

studies per year were published in 2010 and 2011 as well.  
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Table 2.1 Selection of Researches on Learner Comparison in Credit Scoring 

Research Reference # Learners 

Benchmarking state-of-the-art classification 

algorithms for credit scoring: An update of 

research 

(Lessmann et al. 2015) 41 

Combining cluster analysis with classifier 

ensembles to predict financial distress 
(Tsai 2014) 21 

Improving experimental studies about ensembles 

of classifiers for bankruptcy prediction and credit 

scoring 

(Abellán & Mantas 2014) 5 

Consumer credit risk: Individual probability 

estimates using machine learning 
(Kruppa et al. 2013) 5 

Two-level classifier ensembles for credit risk 

assessment 
(Marqués et al. 2012b) 17 

Exploring the behavior of base classifiers in 

credit scoring ensembles 
(Marqués et al. 2012a) 35 

Relevance vector machine based infinite decision 

agent ensemble learning for credit risk analysis 
(Li et al. 2012) 5 

Computational time reduction for credit scoring: 

An integrated approach based on support vector 

machine and stratified sampling method 

(Hens & Tiwari 2012) 4 

An experimental comparison of classification 

algorithms for imbalanced credit scoring data 

sets 

(Brown & Mues 2012) 9 

An empirical comparison of conventional 

techniques, neural networks and the three stage 

hybrid Adaptive Neuro Fuzzy Inference System 

(ANFIS) model for credit scoring analysis: The 

case of Turkish credit card data 

(Akkoç 2012) 4 

Although the data sets are definite and the same across these studies, data 

transformation steps, such as normalization, applied are numerous, but the 

underlying rationale is mostly unclear. That is, researchers either assume that the 

benefit of some data transformation steps are widely known and an explanation is not 

needed or they apply a specific transformation because the models require so. 

Because of these reasons a comprehensive approach is followed in this study and 

almost every kind of data transformations is applied on the data sets in order to be 

able to observe the effects of different transformations. 

Secondly, in most studies models compared are already limited, that is, they are 

already shortlisted out of a bigger model set. Yet, the underlying reason behind this 
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selection is unclear. That is why a comprehensive approach in model selection is 

followed also. Each 43 built-in model in RapidMiner is trained on the distinctly 

transformed data sets and the outcomes are evaluated. The details of these data 

transformations and model selection are explained in Section 4.1. 

Lastly, it is now clear that ensemble models (mostly weighted voting), which 

combine single models to increase the overall prediction success, are more successful 

(Lessmann et al. 2015). However, every ensemble model can possibly include a 

different combination of single models. The number of choices is practically 

uncountable. The rationale behind the selection of single models while building the 

ensemble model is mostly ambiguous among these studies. In other words, there is 

no objective and definite method which enables practitioners to find the optimum 

combination of single models to build ensemble model. This is one of the main 

inquires of this study. If we can find an objective method to select single models than 

it might be possible to build a totally automated and dynamic system which takes any 

kind of credit data sets and applies data transformations, tries every model available 

on them and finally build the most successful ensemble model. Yet, as will be 

explained in the final chapter, we failed to find an objective method and the selection 

of single models to build the most successful ensemble model still requires human 

interaction. 

2.4 Data Exploration 

As mentioned before the German credit data set belongs to real loan applicants and 

Australian credit data set belongs to credit card applications. German data has 1,000 

examples and 20 attributes without any missing values. Among 1,000 examples 300 

ones are bad credits. So, the ratio of good to bad credits is 7:3 which should not 

create an imbalanced data set problem. Australian data has 690 examples and 14 



13 

attributes, with some missing values. But missing values are replaced by means and 

modes of corresponding attributes. The ratio of good to bad credits is about 44:56 

which is very good. In Australian data set all attributes and values are converted to 

meaningless symbols to protect privacy. Types of attributes are presented at Table 

2.2 and Table 2.3. Detailed description of the data sets and value ranges of attributes 

are presented at Appendix A: Description of the German credit dataset and Appendix 

B: Description of the Australian credit dataset. 
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Table 2.2 German Credit Data Attributes 

No Attributes Short Name Type Value Range Mean/Mode 

1 status of existing checking account EXIST_AC Categorical {A11, A12, A13, A14} A14 

2 duration in month DURTN_MH Numerical [4,72] 20.90 

3 credit history CRD_HIST Categorical {A30, A31, A32, A33, A34} A32 

4 purpose PURPOSE Categorical {A40, A41, A42, A43, A44, A45, A46, A48, A49, A410} A43 

5 Credit amount CRD_AMNT Numerical [250,18424] 3271.26 

6 savings account/bonds SAV_ACCN Categorical {A61, A62, A63, A64, A65} A61 

7 present employment since EMPLOYMT Categorical {A71, A72, A73, A74, A75} A73 

8 installment rate in percentage of disposable income INS_RATE Numerical {1, 2, 3, 4} 2,97 

9 personal status and sex STAT_SEX Categorical {A91, A92, A93, A94} A93 

10 other debtors / guarantors GUARANTR Categorical {A101, A102, A103} A101 

11 present residence since RESIDENC Numerical {1, 2, 3, 4} 2,85 

12 property PROPERTY Categorical {A121, A122, A123, A124} A123 

13 age in years AGE_YEAR Numerical [19,75] 35.56 

14 other installment plans INS_PLAN Categorical {A141, A142, A143} A143 

15 housing HOUSING Categorical {A151, A152, A153} A152 

16 number of existing credits at this bank EXIST_CR Numerical {1, 2, 3, 4} 1,41 

17 job JOB Categorical {A171, A172, A173, A174} A173 

18 number of people being liable to provide maintenance for PEOP_LBL Numerical {1, 2} 1.16 

19 telephone TELEPHON Categorical {A191, A192} A191 

20 foreign worker FRN_WORK Categorical {A201, A202} A201 

Label  CRD_RISK Categorical {bad, good} good 
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Table 2.3 Australian Credit Data Attributes 

Attributes Type Value Range Mean/Mode 

A1 Categorical {0, 1} 1 

A2 Numerical [13.75,80.25] 31.57 

A3 Numerical [0,28] 4.76 

A4 Categorical {1, 2, 3} 2 

A5 Categorical {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} 8 

A6 Categorical {1, 2, 3, 4, 5, 6, 7, 8, 9} 4 

A7 Numerical [0,28.5] 2.22 

A8 Categorical {0, 1} 1 

A9 Categorical {0, 1} 0 

A10 Numerical [0,67] 2.40 

A11 Categorical {0, 1} 0 

A12 Categorical {1, 2, 3} 2 

A13 Numerical [0,2000] 184.01 

A14 Numerical [1,100001] 1018.39 

Label Categorical {bad, good} bad 
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3 PREDICTIVE MODELLING 

As discussed earlier data mining has basically two functions: description and 

prediction. Describing a data set usually means exploring its statistics, understanding 

distributional properties etc. Prediction, on the other hand, is related to the future or 

the unknown rather than what we have at hand. As any kind of data analysis project, 

predictive modelling, starts firstly with collection of data. After exploring the data if 

it seems necessary data preprocessing and data transformation is also performed. 

Afterwards, model is trained until reaching a stable classifier algorithm which can 

find the hidden pattern in the data set. Then comes validating the findings of the 

model with the facts. After successful completion of the validation step a model 

becomes ready to deploy, that is, to predict (Imanuel 2016). The structure of the 

overall predictive modelling is illustrated in Figure 3.1. 
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Figure 3.1 Predictive Modelling General Process 
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3.1 Data Transformation 

Transforming the data is often performed to improve the capabilities of data mining 

models in finding the patterns. The type of transformation required depends on the 

learning method (unsupervised, supervised etc.) and the data itself (Baesens et al. 

2009). Major data transformation methods are missing value imputation, 

normalization, discretization (binning, coarse categorization), dummy coding, and 

dimension reduction. 

3.1.1 Missing Value Imputation 

If there are some attributes in the data set which have missing values, this should be 

dealt first since models will fail to extract information from those examples. The 

simplest method would be taking out the attribute with missing values entirely. 

However, removal of an entire attribute together with its examples which carry 

information causes the learning process to be incomplete and biased. Instead of 

removing, missing values can be replaced with pseudo values in order to provide the 

learning algorithm with a full data set without any loss of information. The first 

method would be replacing missing values with the averages (or medians/modes 

depending on the data) of corresponding attributes. This method brings some 

benefits, but it is very risky also. If the number of missing values are relatively high, 

then replacement with average values can change the whole distribution of the 

attribute values and causes the algorithms to learn a different data set than the real 

one. Thus, less risky and precise methods are needed (Tufféry 2011). 

Remedy for this is replacing missing values with statistical approaches and it is 

called missing value imputation. Depending on the type of the data, there are a 

couple of accepted techniques to follow. Discussion of these techniques are beyond 
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this study. Throughout this study whenever it necessary imputation of missing values 

will be conducted with KNN model as the most widespread statistical solution. 

3.1.2 Normalization 

Some data mining methods, especially those that are based on the distance 

computation between examples in n-dimension need normalized data in order to 

diminish the effects of extreme values and handle different attributes at similar scale. 

Among normalization methods most widely used one is the normalization based on 

standard normal distribution, also called standardization. In this method, each value 

of an attribute is converted according to the equation 3.1, where 𝑋̅ is the average of 

the values of an attribute and 𝑆𝑋 is the standard deviation of those values.  

 𝑁𝑖 =
𝑋𝑖 − 𝑋̅

𝑆𝑋
 (3.1) 

After the conversion, the distributions of numerical attributes become similar to 

normal distribution, thus can be efficiently used by data mining methods which 

require normality assumptions. 

3.1.3 Discretization 

When the values of an attribute are in continuous numerical form, sometimes there 

are benefits of categorizing (binning) those values into finite set of values before the 

learning process. Though at first it seems losing information, discretization is 

especially useful in three cases. When missing values exist in the data set and 

imputation is conducted, it is a tricky situation. Imputation might impair the 

distribution of the true population. However, through discretization missing values 

can be categorized into a distinct set and evaluated accordingly. Second, the 

existence of extreme values affects the learning algorithms remarkably. For instance, 
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an extreme age value 110 may distort especially regression models. Instead of using 

this extreme value as it is, categorizing age values and putting this 110 into 

“>65 years old” class may solve the problem. Why 65? It comes from the domain 

knowledge of credit decision. Since the common retirement age is around 65 in most 

countries there is no harm in assuming that retired customers behave similarly and 

categorizing them into the same group. Finally, discretization improves the 

robustness of logistic regressions by reducing the possibility of overfitting (Tufféry 

2011). 

The crucial aspect of discretization is the final number of categories and the cut-off 

points of these categories. In the literature, three to six final categories are 

recommended (Mctiernan 2016). Cut-off points can be determined by domain 

knowledge as in the example above, or by fixing the number of categories, or by 

distributing the number of values evenly into the categories. Instead of choosing 

cut-off points, categories can be determined by automatic procedures. For instance, 

in this study discretization by entropy approach is followed where cut-off points are 

set so that the entropy is minimized in the categories. After applying this technique, 

the distribution of CRD_AMNT attribute has changed as shown in the Figure 3.2. 

The cut-off point 3913 has been automatically chosen which minimizes entropy of 

classes. 
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3.1.4 Dummy Coding 

Some data mining methods like neural networks and support vector machines require 

the data set to fully in numerical form. In order to utilize these models categorical 

(nominal) values are converted to numerical values in dummy coding. In this coding 

style, for every existing value of a categorical variable a new binary attribute is 

created and take the values of 0 or 1. For instance, in German credit data set, 

EXIST_AC attribute normally has the values in Table 3.1.a and for each value of this 

variable new attributes are created in Table 3.1.b. 

Table 3.1 Conversion of Categorical to Numerical Values 

EXIST_AC 

A11 

A12 

A13 

A14 
 

EXIST_AC = 

A11 

EXIST_AC = 

A12 

EXIST_AC = 

A13 

EXIST_AC = 

A14 

1 0 0 0 

0 1 0 0 

0 0 0 1 

... ... ... ... 
 

(a) (b) 

Figure 3.2 Discretization of CRD_AMNT Attribute 
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3.1.5 Dimension Reduction 

As will be discussed further in the study two of the most successful and widespread 

data mining methods in credit scoring are logistic regression and support vector 

machine. Both suffer from high number of dimensions of the data set. The higher the 

number of attributes in a data set the more possible the model suffers from 

multicollinearity. Also it will take so much more time for the model to learn (Han et 

al. 2013). To decrease the number of attributes in a data set two basic approaches can 

be followed: principal component analysis and stepwise feature selection. 

3.1.5.1 Principal Component Analysis (PCA) 

The basic idea of PCA is to reduce the dimension number of a data set where there 

are large number of interrelated variables, while preserving as much as possible of 

the variation. This reduction is achieved through creation of new attributes from 

existing ones, which are uncorrelated, independent and ordered in terms of their 

explanatory power (Tsai 2009). In this study, when PCA is conducted new attributes 

are kept as long as their total variance is under 0.95. That is, any attribute which 

explains so little variability in the target attribute excluded from the model. 

3.1.5.2 Stepwise Feature Selection 

In stepwise feature selection, there are basically two directions along which the 

selection process can be conducted: forward or backward. Backward selection 

(elimination) procedure starts with the most complex model, which is including all 

explanatory attributes. After learning the most complex model and logging its 

performance measure, remaining attributes are excluded from the learning procedure 

one by one. The performance of the model which has less explanatory variables is 

tested against the model which has more explanatory variables through F-test. If 

reducing the number of explanatory variables significantly improves the overall 
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performance than those attributes are kept out of the model. Until there is no 

significant improvement this procedure continues where the model has minimum 

number of attributes eventually.  

Forward selection is exactly the opposite of the backward selection. Attributes are 

added to the simplest model and larger models are tested against more simple ones. 

The number of attributes (20) of the data set of this study is relatively high, thus, 

forward selection will be much more time consuming. Thereby, during feature 

selection phase backward elimination approach will be followed. 

3.2 Training 

After exploring and making necessary transformations the data set becomes ready to 

be used in the training phase. In this phase a sample of examples is drawn from the 

population whose target values are known. The model tries to extract the hidden 

pattern between the target feature and the explanatory variables in this phase. After 

reaching a pattern the model is tested on a sample of examples unseen before whose 

target values are also known (Tufféry 2011). If the test results are promising the 

model may be deployed on new data to predict its target value.  

The main objective of the training procedure is not only to extract the pattern 

between output and input variables but also to produce generalizable models which 

can be performed on new unseen data for predicting purposes. In some cases, 

especially when the size of the training set is small and the complexity of the model 

is high, the model might capture the exact representation of this small training set 

and perfectly predict target values, but it might fail to correctly predict the target 

values of unseen examples. This phenomenon is one of the fundamental problems of 

model training and is called overfitting (Giudici & Figini 2009). 
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3.2.1 Overfitting Problem 

In other words, overfitting occurs when the model memorizes the pattern between the 

output and input variables even though this pattern does not exist in the whole 

population. Overfitting usually happens when the training data set is small and is 

especially observed with models decision trees and neural networks. When it 

happens the model typically fits to the examples too perfectly. It can easily be 

revealed by testing the model on unseen data. If there is significant discrepancy 

between the error rate of the training set and test set there is probably overfitting 

(Tufféry 2011). Graphical representation of an overfitting model can be observed at 

Figure 3.3. As can be seen, the right model perfectly fits to the training (existing) 

examples but it loses the ability to generalize. However, the left model has larger 

errors but it generalizes well. New unseen points will be closer to the left model.  

 

Another aspect of overfitting is error rate which corresponds to the complexity of the 

model in addition to the training size. In data mining, bias means error rate on the 

training data set and variance denotes how dispersed the model results on the test set. 

The more complex the model, i.e. the more perfectly it fits, the less bias it will have 

at the expense of losing generalizability because of the high variance. There is an 

optimal point where the model has acceptable bias and variance. Figure 3.4 

demonstrates this phenomenon. How can one find this optimal point? Although the 

Good Fit Overfit 

Figure 3.3 Fitting Examples of a Regression Model 
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true optimal point is hard to find there is a way to validate the generalizability of the 

model called cross validation (CV) or more specifically k-fold cross validation. 

 

3.2.2 K-fold Cross Validation (CV) 

As discussed in the previous part measuring only the error rate on the training set is 

not conclusive to estimate true model performance. What is required is to be able to 

measure the total error rate of the model. To achieve this the error rate of the model 

must be measured on new, unseen data, ideally more than once (Seni & Elder 2010). 

This is where cross-validation comes into play. “Cross-Validation is a statistical 

method of evaluating and comparing learning algorithms by dividing data into two 

segments: one used to learn or train a model and the other used to validate the 

model.” (Refaeilzadeh et al. 2009).  

K-fold cross validation is a special form of cross-validation where the whole data set 

is divided into k nonoverlapping parts (folds). Each of these k parts is used as test set 

while remaining k-1 sets are used for training. Therefore, every learnt model will be 

Figure 3.4 Bias-Variance Trade-Off 

Source: scott.fortmann-roe.com/docs/BiasVariance.html (Fortmann-Roe 2012) 
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tested on a different test. After performing training and testing k times the model is 

evaluated by the average error rate (or performance). The graphical representation of 

this procedure is illustrated in Figure 3.1. In the cross-validation rectangle each row 

(ten squares) represents the overall data set and corresponding one training and 

testing phase. Each orange square is left out as test set and remaining nine green 

squares are used as one whole training set. This process is iteratively repeated k 

times. In literature, k is usually set to 10. In this study this custom will be followed 

and whenever k-fold cross validation is performed it means 10-fold CV. 

Validation of predictive capabilities of a data mining model obviously requires 

standard measurement units. In the next part, performance measures that are used in 

the evaluation and comparisons of the models will be briefly explained. 

3.3 Measures of Performance 

In binary problems, models use mathematical functions to map input variables to one 

of the two classes of the output variable. Most of the time, models’ functions assign 

numerical values to examples possible to order and rank. These numerical outcomes 

are called confidence. They are basically probabilistic assessments and take values 

within the range [0,1]. Depending on the business strategy a threshold or cut-off 

point is chosen and examples are classified according to this threshold. Most of the 

time, 0.5 is chosen as threshold value. Mathematically,  

 𝑖𝑓 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑖 (𝑐𝑖) > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝜃) , 𝑎𝑠𝑠𝑖𝑔𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑙𝑎𝑠s (3.2) 

 𝑖𝑓 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑖 (𝑐𝑖) ≤ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝜃) , 𝑎𝑠𝑠𝑖𝑔𝑛 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑙𝑎𝑠s (3.3) 
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In the end, each example in the data set has both an actual class value and a predicted 

class value. The distribution of these values is represented in a two-by-two 

contingency table called confusion matrix. 

3.3.1 Confusion Matrix 

The number of examples classified by a binary classification algorithm can be 

depicted as in the Table 3.2. In credit scoring terminology, positive values denote 

bad credits (defaults), while negative values denote good credits (healthy). That bad 

credits take the value positive may seem counter intuitive at first, yet ‘positive’ 

signifies the focus of the data mining problem at hand.  

Table 3.2 Confusion Matrix 

  Actual Classes 

  Good Credit Bad Credit 

Predicted Classes 

Good Credit 
True Negatives 

(TN) 

False Negatives 

(FN) 

Bad Credit 
False Positives 

(FP) 

True Positives 

(TP) 

From this table a couple of metrics can be calculated each of which conveys distinct 

meaning with respect to the success of the model. Most widely used accuracy metrics 

are calculated as follows. 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = 𝑇𝑃𝑅 =
𝑇𝑃

𝐹𝑁 + 𝑇𝑃
 (3.4) 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = 𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (3.5) 

 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = 𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
= 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑡y (3.6) 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑃
=

𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙
 (3.7) 
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Sensitivity measures the proportion of positive examples, bad credits in credit 

scoring that are correctly identified. In credit scoring terms, this is the proportion of 

defaulted persons that are detected by the model. Specificity measures the proportion 

of negative cases that are correctly identified. In credit scoring terms, these are the 

examples of good credits correctly classified by the model. False positive rate 

represents the proportion of examples that are classified as default incorrectly. In 

statistical terms, it is called Type I error. Finally, accuracy measures the overall 

success of the model. It is the proportion of correctly classified cases, either default 

or not, to total cases. 

3.3.2 Accuracy, ROC & AUC 

Although accuracy measurement demonstrates how successful a model is in binary 

classification, the resultant distribution tabulated in the confusion matrix depends on 

the threshold chosen in the first place. Intuitively, 𝜃 is fixed at 0.5. But, strategically 

the selection of the threshold value depends on the cost misclassified cases bring 

about. For instance, in credit scoring scheme granting credit to a bad borrower 

(false negative) is worse than rejecting an applicant who is actually a good borrower 

(false positive). Therefore, threshold selection is very crucial and the effect of this 

selection on the overall accuracy of the model must be observed.  

Mathematically, threshold value can be anything in the range (0,1). Hence, the 

number of the distributions of different classifications is practically uncountable. 

There exists a graphical tool which solves this problem which is called receiver 

operating characteristic (ROC). The name comes from the field where this tool is 

first created. In data mining, ROC acronym has widespread usage. ROC graph is 

basically a collection of success rates of a model for every possible threshold values. 

It illustrates the trade-off between true positive rate (sensitivity) and false positive 
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rate (1-specificity). A typical ROC graph can be observed in the Figure 3.5. The 

perfect model flawlessly discriminates two classes. For instance, (0,1) point means 

the model catches all defaults while making no mistake in healthy examples as well. 

Random model has no discriminatory power at all. The model outcomes in between 

the perfect and random model discriminate at varying degrees depending on the 

threshold value. Along the ROC curve every possible success rate couples are shown 

for every threshold values (Khudnitskaya 2010).  

 

The nearer a ROC curve to the upper left corner the more successful it is in 

discriminating classes. Since visual comparison does not provide conclusive result, 

we need scalar accuracy values to compare. The solution for that is calculating the 

area under the ROC curve. It is called AUC and is probably most widely used 

performance metric in binary classification problems. AUC will be primary 

False Positive Rate (1-Specificity) 
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Figure 3.5 ROC Graph Example 
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measurement metric throughout this study also. AUC value makes class distribution 

based on different threshold values irrelevant. Since the ROC graph is drawn on a 

unit square the area under the hypothetical perfect model sums up to 1. The area 

under the random model is 0.5. Therefore, it is expected from any binary 

classification model to have at least 0.5 AUC and as closer as possible to 1 (Kraus 

2014). 

3.3.3 Pairwise T-Testing 

In order to evaluate performance outcomes of different models an accurate 

comparison system is also required. Because, one model outcome does not represent 

its true population mean and several trials will yield different results while 

converging the true performance of the model. So, if one performance outcome of a 

model is compared to another one the assessment might be wrong. To compare 

model outcomes consistently, t-test will be applied on AUC values. T-test is a 

statistical comparison technique which allows to test whether two groups of values 

comes from the same population. In other words, in credit scoring performance, t-test 

will allow us to distinguish only significantly successful data mining models. 
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4 EXPERIMENTATION 

The process of the experimentation involves four phases: making necessary data 

transformations to improve model accuracies, setting the software environment to let 

the models learn on the training data and logging the performance results, comparing 

the models to each other, and finally building the ensemble model. To complete the 

first three phases efficiently a reproducible program is created, which can handle 

almost any kind of data and make necessary transformations, called model 

comparison engine (MCE).  

4.1 Model Comparison Engine 

As discussed in the latest chapter in most cases data needs to be cleansed and 

transformed in order the models to fully utilize it. In this study, since some models 

require the data to be in numerical/categorical form and some has comparative 

advantages on some data types and we wanted to create an exhaustive comparison 

universe where each model will be able to have all necessary conditions to reach its 

true potential and to maximize its performance results.  

The first part of MCE checks the properties of the data set. If the data set has missing 

values in it, those missing values are replaced by missing value imputation technique 

described in section 3.1.1. However, at the end of this step the original data set which 

has missing values is not thrown away, rather two data sets are kept: (1) with missing 

values, (2) without missing values. The main reason to keep the original data set with 

missing values is to give the opportunity to the models which can handle missing 

values.  

Since there are models based on the distance between data points, like support vector 

machines which try to find optimal lines or surfaces which divides the data set in the 
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n-dimensional space, the scale of the numerical data, thus, normalization is also 

important. In the second step, all numerical values are normalized by the method 

explained in the section 3.1.2. Again, the data set which has nonnormalized 

numerical attributes is not neglected, it will be kept together with normalized data 

set. Until now, if the data set has required missing value imputation also, we will 

now have four different data sets. This is the central idea of model comparison 

engine. 

The next step is to create discrete categories out of numerical values. The underlying 

reason, method and possible benefits of discretization has been discussed in section 

3.1.3. After completing discretization, all categorical variables are converted to 

numerical variable in dummy coding form described in section 3.1.4. As a last step 

dimension reduction is performed on all the attributes, without making any 

distinction between attributes which exist in the original data set and attributes 

created afterwards. 

There are some steps which need more clarification. As discussed before, some 

models like support vector machines and neural networks require data set to be in 

numerical form. This was the main reason of dummy coding. Yet the sequential 

application of data transformations causes some meaningless data sets to emerge. For 

instance, a data set which is already in numerical form can be discretized and codded 

in dummy form afterwards. This obviously will cause data loss. Since designing the 

algorithm in RapidMiner accordingly is costly, all kinds of transformations applied 

regardless of their logical base. Corresponding results have less accuracy and 

therefore do no impair the general evaluation of the study. 
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After the data transformation is completed we might have 64 or less distinct data sets 

depending on the properties of the initial data set. Figure 4.1 illustrates the data 

transformation steps and illuminates in visual representation how the number of data 

sets increase exponentially. In this figure each rectangle represents a distinct data set 

from which models try to extract hidden pattern. 

 

The resultant data sets of this transformation phase are fed to the learning algorithms. 

Similar to the transformation steps, in this study we wanted to try as many models as 

possible on every distinct data sets. To this end, learning algorithms of almost any 

kind are listed and grouped under classifier families. Since detailed descriptions and 

explanation of underlying mapping functions of these models are beyond the scope 

of this study, larger classifier families will be explained briefly. 
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34 

4.2 Classifier Families 

As discussed earlier in this study for data analytics purposes RapidMiner is used as 

software. RapidMiner has 43 built-in single models ready to deploy with default 

parameters. Each of this model is included in model comparison engine with default 

settings and grouped under a classifier family. Models and their corresponding 

classifier families are listed in Table 4.1. 
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Table 4.1 RapidMiner Classifier Families & Models 

No Classifier Families Model Name 

1 Functions (Regressions) Gaussian Process 

2  Generalized Linear Model 

3  Linear Regression 

4  Local Polynomial Regression 

5  Polynomial Regression 

6  Relevance Vector Machine 

7  Seemingly Unrelated Regression 

8  Vector Linear Regression 

9 Support Vector Machines Fast Large Margin 

10  Hyper Hyper 

11  Support Vector Machine 

12  Support Vector Machine (Evolutionary) 

13  Support Vector Machine (LibSVM) 

14  Support Vector Machine (Linear) 

15  Support Vector Machine (PSO) 

16 Logistic Regressions Logistic Regression 

17  Logistic Regression (Evolutionary) 

18  Logistic Regression (SVM) 

19 Bayesian Classifiers Naive Bayes 

20  Naive Bayes (Kernel) 

21 Decision Trees CHAID 

22  Decision Stump 

23  Decision Tree 

24  Decision Tree (Multiway) 

25  Decision Tree (Weight-Based) 

26  Gradient Boosted Trees 

27  ID3 

28  Random Forest 

29  Random Tree 

30 Neural Networks AutoMLP 

31  Deep Learning 

32  Neural Net 

33  Perceptron 

34 Discriminant Analysis Linear Discriminant Analysis 

35  Quadratic Discriminant Analysis 

36  Regularized Discriminant Analysis 

37 Lazy Default Model 

38  k-NN 

39 Rules Rule Induction 

40  Single Rule Induction 

41  Single Rule Induction (Single Attribute) 

42  Subgroup Discovery 

43  Tree to Rules 
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So far, if each data transformation step is performed then there might be 64 distinct 

data sets. As the main strategy is trying as many data-model pairings as possible, 

each of these 64 data sets will be fed to each single model listed. Model comparison 

engine will try 2752 (43 ∗ 64) possible pairings during this phase and let the models 

learn the underlying pattern. The overall procedure lasts 20 minutes to 10 hours 

depending on the number of dimensions, number of examples and complexities of 

the models applicable. If the pairing causes an error, for instance when categorical 

variables are fed to support vector machine, MCE will log this error and pass the 

next trial. In the end, the performance values of every pairings which do not have any 

error will be logged and saved for comparison. In the coming parts, important 

classifier families will be briefly explained. 

4.2.1 Functions (Regressions) 

Data mining methods which belong to function or regression family were briefly 

reviewed in section 2.2.2.1. Regressions are basically used to relate output variable 

to input variables through a mathematical equation. This equation not only helps to 

predict target values of new input variables but also provides an understanding about 

the nature of the relationship between output and input variables. In its simplest form 

regression equation is linear and hence called linear regression. The equation below 

is a simple example of a linear regression.  

 𝑌 = 𝛽0 + ∑ 𝛽𝑖 ∗ 𝑋𝑖 + 𝜀𝑖 (4.1) 

Here, 𝑋𝑖 denotes the matrix of input variables, 𝛽𝑖 denotes vector of coefficients for input 

variables, 𝛽0 denotes constant coefficient and 𝜀𝑖 denotes error term. 𝛽0 and 𝛽𝑖 are calculated 

through an optimization method called ordinary least squares which minimizes the sum of 
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squared errors. Figure 2.1 depicts the line of this equation in its simplest form where there is 

only one input variable. 

4.2.2 Support Vector Machines (SVM) 

Compared to the other data mining classification methods, support vector machines 

(SVM) are newly developed in the nineties by Vladimir Vapnik. SVM is especially 

useful on linearly separable examples. When, however, data points are clustered in 

n-dimensional space there might be infinite number of linear boundaries which 

separate those clusters. What SVM does essentially is to find the optimal hyperplane 

that maximizes the width of the margin between observation clusters (Tufféry 2011). 

Figure 4.2 shows how the optimal hyperplane separates different classes by widest 

possible margin. 

 

There are a couple of advantages of using SVM over other data mining algorithms. 

First, training process is comparatively easy with even small number of parameters 

and the final model is not presented with a local optimum, unlike some other 

techniques. Second, SVM scales to high dimensional data relatively well. Some of 

the recent and most successful applications of SVM have been in image processing, 

Figure 4.2 Support Vector Machine Hyperplane 

Source: yottamine.com/machine-learning-svm (Yottamine Analytics 2013) 
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particularly hand written letter recognition and face recognition (Kantardzic 2011). 

One of the aspects of SVM which is often criticized is its opaque methodology 

(Harris 2015).  

4.2.3 Logistic Regressions 

As one of the oldest classification methods in statistics, logistic regression is the 

most widely used classification technique in credit scoring (Huang & Day 2013). Its 

popularity is not without reason. It can handle dependent variable with two or more 

values and independent variables could be numerical or categorical. The results of 

logistic regression are clear and interpretable, that is, results have practical meaning 

especially in credit scoring as probability of default. Finally, logistic regression is 

one of the most reliable classification methods (Tufféry 2011).  

Within the context of credit scoring the aim of using logistic regression is to detect 

whether counterparties (whether real people or companies) will pay their debts in 

time. The event of nonpayment or (depending on the problem setting) restructuring 

of the debt is denoted by positive (bad) class. Whereas, the event where everything 

goes normal and the borrower pays the debt promptly is denoted by negative (good) 

class. The fundamental equations of logistic regression are as follows: 

 Pr(𝑌 = "𝑏𝑎𝑑"|𝑋) =
𝑒𝛽0+∑ 𝛽𝑖∗𝑋𝑖𝑖

1 + 𝑒𝛽0+∑ 𝛽𝑖∗𝑋𝑖𝑖
 (4.2) 

 Pr(𝑌 = "𝑔𝑜𝑜𝑑"|𝑋) =
1

1 + 𝑒𝛽0+∑ 𝛽𝑖∗𝑋𝑖𝑖
 (4.3) 

In the first equation, what the logistic regression model produces the conditional 

probability of a nonpayment, given that some explanatory variables exist and their 

values are known, which are denoted by 𝑋. Figure 4.3 demonstrates geometrical 
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representation of a logistic regression equation, where the value logit (𝐿) along the 

horizontal axis is calculated by a linear equation of  𝑋 values, 𝐿 = 𝛽0 + ∑ 𝛽𝑖 ∗ 𝑋𝑖𝑖 . If 

the logit value is used in the fundamental equation instead of 𝑋 values, the main 

equation becomes  

 Pr(𝑌 = "𝑏𝑎𝑑"|𝑋) =
𝑒𝐿

1 + 𝑒𝐿
 (4.4) 

 

4.2.4 Bayesian Classifiers 

Bayesian classification method is also one of the simplest and most widely used 

probabilistic learning methods. What it learns from the training data is the 

conditional probability of each attribute 𝐴𝑖 where the class label 𝐶 is known. The 

strong major assumption is that all attributes are independent. The assumption of 

conditional independence of variable is very crucial in order for this method to 

produce robust results (Twala 2010). 

𝑃𝑟(𝑌 = "𝑏𝑎𝑑"|𝑋) =
𝑒𝛽0+∑ 𝛽𝑖∗𝑋𝑖𝑖

1 + 𝑒𝛽0+∑ 𝛽𝑖∗𝑋𝑖𝑖
 

Figure 4.3 Logistic Regression Example 
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4.2.5 Decision Trees 

Decision trees are arguably the most intuitive and popular data mining method 

among others. It provides explicit and easy rules for classification. These rules are 

easy both to implement on new examples and to present the findings to third parties. 

Decision trees handle some of the challenging problems of data mining very well 

also. It can operate on heterogeneous data. It is not affected by missing values and 

also non-linearity of input variables because it does not rely on the distributional 

assumptions (Tufféry 2011). 

Despite its easiness and popularity decision trees produce relatively poorer results 

than other data mining methods in credit scoring. This is mainly because of two 

reasons: (1) The noise and (2) the redundant variables in the data affect the 

performance of decision trees (Wang et al. 2012).  

Decision trees, as the name suggests, a tree-like top-down structure which has root, 

nodes, branches, and leaves. Each internal node represents a test on one attribute and 

each branch denotes the outcome of this test. The leaves (terminal nodes) represents 

either a pure class or a class distribution. The top node in the tree is the root node 

with the highest information gain. After the root node, among the remaining 

attributes the one with the highest information gain is chosen and test is performed 

on this node. The overall process continues until there is no remaining attribute on 

which example set can be partitioned (Tsai et al. 2014). A decision tree algorithm 

performed on the German credit data set is presented in Figure 4.4.  
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4.3 Ensemble Models 

Ensemble models combine single models into a model which is hoped to be more 

successful than its constituent models. The idea is that every model does not have the 

same error for a specific example (observation, data point) and they complement 

each other. Ensemble models have gained widespread usage since they are deemed 

the most profound development in data mining field in the last decade (Seni & Elder 

2010). Especially in credit scoring, where the predictive capability is more important 

than interpretability of the model, ensemble models provide significant gains over 

single models’ prediction accuracies. 

Ensemble models can be categorized into two broader classes: homogeneous 

ensemble classifiers and heterogeneous ensemble classifiers. Homogeneous 

ensemble classifiers combine the outcomes of the same base model. One of the most 

widely used such classifiers is bagging (bootstrap aggregating) where independent 

Figure 4.4 Decision Tree on German Credit Data 
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small samples is drawn from the whole data set with replacement and the base model 

is trained on each one of them. In the end, bagging method combines all predictions. 

Unlike bagging, in boosting algorithm, constituent models depend on each other. 

Every next iteration of the boosted algorithm learns from the mistakes of the 

previous one.  

Heterogeneous ensemble classifiers combine multiple different single models to 

create the final more successful model. Basically there are two heterogeneous 

models: stacking and voting. In stacking method outcomes of each base models are 

collected and together with existing examples (instances) a new data set is created. 

Usually logistic regression with regularization is learnt on this final data set. In 

voting scheme, the outcomes of single models for every example are compared and 

the final decision is made either by majority voting or weighted voting (Wang et al. 

2011). The most recent studies which compare accuracies of different ensemble 

models point to the weighted voting as the most successful ensemble model 

(Lessmann et al. 2015). In order to keep the focus of the study on finding the most 

successful models automatically and dynamically, ensemble models other than 

weighted voting have not been employed in this study. 

4.4 Weighted Voting 

In binary classification problems, the first outcome of the models is the confidence 

value which shows how confident the model is in predicting the class of an example. 

In credit scoring this confidence value is usually interpreted as the probability of 

default of the examined entity. In other words, the confidence value indicates how 

likely the counterparty fails to pay its debt on time. Weighted voting ensemble model 

takes the average of the class predictions of single models using their confidence 
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values as weights of the averaging. That way, it is expected to reach a more 

successful model.  

Yet, the question of which single models to be selected in building the ensemble 

model remains unanswered. Since there are 43 built-in models in RapidMiner the 

number of possible combinations which can be used in the ensemble model is  

8.812 = 243. The time and computational resources required to finish such a task is 

beyond the limit ordinary computers can handle. Until now, almost every kind of 

data transformation has been applied and each built-in model in RapidMiner is learnt 

on these transformed data sets and resulting accuracies are compared. The steps up to 

here are automatically conducted and dynamically adjusted without any human 

interaction. Since one of the main objectives of the study is completing the overall 

credit scoring system without any human interaction, an objective selection criterion 

is required to choose single models to be used in weighted voting. 

4.5 Objective Selection Criterion 

As discussed in previous sections the idea behind ensemble models is that single 

models have diverse inner functions and different input-output mappings. Therefore, 

when especially dissimilar but successful models are combined into an ensemble 

model, it is expected that they will complete each other well and the accuracy gain 

will be higher. To test whether this hypothesis correct or not the ten most successful 

models which are delivered by model comparison engine are gathered. Out of this 

selection, model sets consisting of two models are combined into the weighted voting 

ensemble model. Eventually there were 45 =  (10
2

) sets to be tested. All of these sets 
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are trained on German3 data set and the outcomes are sorted by confidence 

correlations of single models.  

The assumption was that less correlated models are dissimilar to each other and they 

complement each other better, thus the improvement in the accuracy over the single 

models will be higher. Improvement is defined as the difference between the 

ensemble AUC and maximum of single AUCs. As can be seen in Figure 4.5, the 

results are not supporting this hypothesis. Expectation was detecting a pattern in the 

improvement column linked with correlation column. Although model couples are 

sorted by their correlations there is no detectable pattern along the improvement 

column. It looks almost the result of a random distribution. Hence, we failed to find 

an objective selection criterion which will automatically select successful models of 

MCE and pass those models to the next phase where ensemble models are built. 

Therefore, credit scoring system will have two successive engines which are bonded 

through human interaction. The first engine was model comparison engine. The 

second engine is ensemble model building engine (EMBE). 

                                                           
3 The search for objective selection criterion has been conducted on Australian and some other data 
sets as well. The results are almost the same. 
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Base Model 1 Base Model 2 Correlation AUC1 AUC2 AUC Final Improvement

Model_6 Model_9 0,857 0,9360 0,9308 0,9369 0,0009

Model_8 Model_9 0,859 0,9308 0,9308 0,9392 0,0084

Model_9 Model_10 0,859 0,9308 0,9308 0,9307 -0,0001

Model_7 Model_9 0,874 0,9349 0,9308 0,9370 0,0021

Model_1 Model_8 0,890 0,9392 0,9308 0,9390 -0,0002

Model_1 Model_10 0,890 0,9392 0,9308 0,9337 -0,0055

Model_2 Model_8 0,892 0,9321 0,9308 0,9376 0,0055

Model_2 Model_10 0,892 0,9321 0,9308 0,9327 0,0005

Model_4 Model_9 0,892 0,9356 0,9308 0,9363 0,0007

Model_3 Model_9 0,893 0,9357 0,9308 0,9378 0,0021

Model_5 Model_9 0,895 0,9359 0,9308 0,9324 -0,0035

Model_1 Model_6 0,917 0,9392 0,9360 0,9382 -0,0010

Model_6 Model_8 0,918 0,9360 0,9308 0,9381 0,0021

Model_6 Model_10 0,918 0,9360 0,9308 0,9384 0,0024

Model_2 Model_9 0,919 0,9321 0,9308 0,9371 0,0050

Model_1 Model_7 0,921 0,9392 0,9349 0,9334 -0,0058

Model_1 Model_9 0,925 0,9392 0,9308 0,9397 0,0005

Model_4 Model_8 0,929 0,9356 0,9308 0,9357 0,0001

Model_4 Model_10 0,929 0,9356 0,9308 0,9346 -0,0011

Model_3 Model_8 0,932 0,9357 0,9308 0,9377 0,0020

Model_3 Model_10 0,932 0,9357 0,9308 0,9304 -0,0053

Model_1 Model_5 0,937 0,9392 0,9359 0,9340 -0,0052

Model_1 Model_4 0,941 0,9392 0,9356 0,9395 0,0003

Model_1 Model_3 0,942 0,9392 0,9357 0,9393 0,0001

Model_2 Model_7 0,948 0,9321 0,9349 0,9354 0,0005

Model_2 Model_6 0,950 0,9321 0,9360 0,9317 -0,0043

Model_5 Model_8 0,951 0,9359 0,9308 0,9371 0,0012

Model_5 Model_10 0,951 0,9359 0,9308 0,9301 -0,0058

Model_1 Model_2 0,954 0,9392 0,9321 0,9390 -0,0002

Model_7 Model_8 0,956 0,9349 0,9308 0,9362 0,0013

Model_7 Model_10 0,956 0,9349 0,9308 0,9345 -0,0004

Model_2 Model_5 0,968 0,9321 0,9359 0,9310 -0,0049

Model_2 Model_4 0,972 0,9321 0,9356 0,9339 -0,0017

Model_2 Model_3 0,972 0,9321 0,9357 0,9382 0,0025

Model_4 Model_7 0,976 0,9356 0,9349 0,9355 -0,0001

Model_5 Model_6 0,978 0,9359 0,9360 0,9377 0,0016

Model_3 Model_7 0,978 0,9357 0,9349 0,9377 0,0020

Model_4 Model_6 0,980 0,9356 0,9360 0,9347 -0,0013

Model_3 Model_6 0,981 0,9357 0,9360 0,9375 0,0015

Model_6 Model_7 0,984 0,9360 0,9349 0,9353 -0,0007

Model_5 Model_7 0,986 0,9359 0,9349 0,9383 0,0024

Model_4 Model_5 0,994 0,9356 0,9359 0,9332 -0,0027

Model_3 Model_5 0,995 0,9357 0,9359 0,9388 0,0029

Model_3 Model_4 1,000 0,9357 0,9356 0,9314 -0,0043

Model_8 Model_10 1,000 0,9308 0,9308 0,9321 0,0013

Figure 4.5 Improvements of Ensemble Models by Correlation 
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4.6 Ensemble Model Building Engine 

The search for an objective selection criterion did not produce positive results. The 

reason of this search was massive number of possible combinations (8.812) in 

ensemble modelling. To decrease the number of possible trials to manageable size, 6 

successful models out of 43 are selected manually by inspection. These 6 models are 

not selected solely based on their performance values, but rather chosen carefully 

from different model families to increase the complimentary powers of single 

models. 

Similar to the approach in the model comparison engine 57 (26 − (6
1
) − (6

0
) = 64 −

6 − 1) different combinations of these 6 successful models have been combined into 

weighted voting ensemble model and each one of 57 ensemble models is trained 

again on 64 distinct data sets. Eventually, there were 3648 = (57 ∗ 64) trials. 

Resultant performance measures are logged and compared. 
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5 RESULTS & CONCLUSION 

5.1 Comparison of Single Models 

As discussed earlier, model comparison engine produces every possible data-model 

pairing. For the German credit data, since the data set does not have any missing 

value, data transformation steps except missing value imputation have been 

performed. At the end, there were thirty-two (32) distinct transformed data sets. 

From these data sets forty-three (43) models are learnt. In total, 1,376 pairs have 

been tried. Among these trials, 621 pairings did not have errors and provided 

performance metrics. Out of these results the first twenty ones with highest 

performance results are presented in Table 5.1. The whole result table is presented in 

Appendix C: Performance Results of Data-Model Pairings on German credit data set. 

Although not statistically significant the first thing that stands out in this table is that 

top places are all occupied by support vector machine models. When we look closely 

the data sets when SVM models are successful all involve the transformation steps of 

discretization and numerical conversion. Numerical conversion is already 

compulsory for SVM models. Since SVM method is based on distance between data 

points, discretization might have helped to emphasize the different places of 

examples in space. In addition, normalization also contributes to the models based on 

distance measurements. Thus, the presence of normalization in the top places is also 

not a surprise. 

Figure 5.1 illustrates average AUC performance of all models across different data 

transformations. Again, the effect of discretization and numerical conversion is 

noteworthy. This can be regarded as a rule of thumb in future credit risk analysis. 

One other remarkable thing is the ranking of no transformation case. This implies 
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that ignoring data transformation, believing that the data is in good shape, simply 

does not work. 

Figure 5.2 shows maximum attained AUC values across data transformations. It is 

already clear from the table that these values are achieved by SVM models. 

Moreover, discretization and numerical conversion are still leading transformation 

types. 

Figure 5.3 illustrates the average AUC values of classifier families. It is clear that 

functions and Bayesian classifiers are more general tools than others. So, when 

underlying data structure and attribute types are not fully known one can easily apply 

linear regression or Naïve Bayes method. Despite their simplistic assumptions, they 

are still powerful tools. 

Figure 5.4 illustrates the maximum AUC values of classifier families. Although 

SVM model attains the highest performance value, the improvement is not 

statistically significant, but it is a fact hard to ignore. In second place, functions 

protect their place and logistic regression family is very close. This graph also shows 

that the widespread usage and reputation of logistic regressions is not by chance. 

Figure 5.5 illustrates average AUC values of every single model (to emphasize the 

discrepancies between models, figure is focused above 0.75 AUC and thus some 

models are not shown). Since there are many different data transformations this 

graph depicts how powerful a single model is in general. Unsurprisingly, logistic 

regression and generalized linear model4 are powerful methods in general. 

                                                           
4 which is pretty much the same thing as logistic regression within this context. 
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Figure 5.6 illustrates maximum AUC values of every single model (to emphasize the 

discrepancies between models, figure is focused above 0.795 AUC and thus some 

models are not shown). Unlike average comparison, here models have the 

opportunity to reach their full potential since many different data setting is available. 

Support Vector Machine (LibSVM) model has the highest AUC. Though it is not 

significant, SVM models seem promising especially when the model criteria and 

parameters are tuned and optimized to reach higher levels of success. Linear and 

logistic regression models again prove that their popularity is earned. 

Figure 5.7 presents the confusion matrices of the three most successful models on 

German credit data set. The overall accuracy rates follow the same order as in the 

AUC performances. Support vector machine seems to be the best model again. 

However, depending on the cost structure of the organization, linear regression and 

fast large margin model are also very good candidates since they have higher recall 

(sensitivities) for “bad” classes. If, for instance, an organization is exposed to more 

cost by extending credit to bad borrowers than rejecting credit applications of good 

borrowers, which is usually the case in real business life, than credit analysts should 

choose fast large margins over the other two models. This situation reveals again the 

fact that definition of the performance values must be aligned to the problem at hand. 

For the Australian credit data, since the data set does not have any missing value and 

all categorical values are coded in integer form, data transformation steps except 

missing value imputation and numerical encoding, have been performed. At the end, 

there were sixteen (16) distinct transformed data sets. From these data sets 

forty-three (43) models are learnt. In total, 688 pairs have been tried. Among these 

trials, 316 pairings did not have errors and provided performance metrics. Out of 
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these results the first twenty ones with highest performance results are presented in 

Table 5.2. 

When the performance values of transformation types and model families are 

compared on Australian data set outcomes are not notably different than the ones in 

German data set. However, when it comes to the single model comparison the first 

rows of Table 5.2 and Figure 5.8 give surprising results about Australian credit data 

set. Gradient Boosted Trees shows a remarkable performance, significantly higher 

than the second (deep learning) and third models. This success is probably 

attributable to the nature of the data set. Australian data set has numerical and 

categorical features, but its categorical variables are coded in integer values, thus can 

be used as ordinal values if they are in that form already. Because of the anonymity 

of Australian data set we cannot know for sure. Gradient Boosted Trees is in very 

simple terms empowered decision tree algorithms which learns from its mistakes and 

boosts the model. Decision trees are good at splitting ordinal values. 

In summary, two publicly available credit data sets have been evaluated with various 

data mining methods in this study. To this end, a model comparison engine is 

developed in RapidMiner environment and this engine is tuned as by-product for 

future uses as well. For the German data set, although SVM models bring small 

gains, traditional linear and logistic regressions seem very powerful and 

generalizable across different data sets. Moreover, in the case of German data set, 

discretization and numerical conversion appear to have positive effects. However, 

one should not easily conclude that researchers and/or risk analyst could prefer using 

already popular logistic regression models. As observed in the case of Australian 

data set, the nature of the Australian data set brings about an unconventional model, 
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Gradient Boosted Trees, to be successful by significant margin. In addition, 

discretization does not bring gain readily in Australian data case. It is maybe because 

the data is already well discretized or the nature of the data is not suitable for 

discretization. Credit risk decision is primarily based on the data collected. In the 

end, researchers or practitioners alike, should be cautious about the nature of the data 

and try to understand strong or weak aspects of the models. Conducting as many 

models as possible could help as a deductive approach as long as time or other 

resource permit. 
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Table 5.1 First 20 Performance Results of Data-Model Pairings on German credit data set 

Transformation Explanation Family Model Name # Attributes Time (ms) AUC AUC STDEV 

norm + disc + num + OS Support Vector Machines Support Vector Machine (LibSVM) 57 941 0,7978 0,0294 

disc + num + OS Support Vector Machines Support Vector Machine (LibSVM) 57 951 0,7978 0,0294 

norm + disc + num Support Vector Machines Support Vector Machine (LibSVM) 58 954 0,7978 0,0297 

disc + num Support Vector Machines Support Vector Machine (LibSVM) 58 957 0,7978 0,0297 

norm + disc + num + PCA + OS Functions Linear Regression 28 1391 0,7973 0,0291 

disc + num + PCA + OS Functions Linear Regression 28 1451 0,7973 0,0291 

norm + num + PCA Support Vector Machines Fast Large Margin 32 550 0,7963 0,0264 

disc + num + PCA + OS Functions Generalized Linear Model 28 264 0,7960 0,0263 

norm + disc + num + PCA + OS Functions Generalized Linear Model 28 270 0,7960 0,0263 

norm + disc + num + PCA + OS Logistic Regression Logistic Regression 28 270 0,7959 0,0262 

disc + num + PCA + OS Logistic Regression Logistic Regression 28 272 0,7959 0,0262 

norm + disc + num + PCA + OS Logistic Regression Logistic Regression (SVM) 28 1081 0,7959 0,0262 

disc + num + PCA + OS Logistic Regression Logistic Regression (SVM) 28 1083 0,7959 0,0262 

norm + disc + num + PCA + OS Support Vector Machines Fast Large Margin 28 179 0,7958 0,0284 

disc + num + PCA + OS Support Vector Machines Fast Large Margin 28 181 0,7958 0,0284 

norm + num + PCA Logistic Regression Logistic Regression 32 290 0,7957 0,0259 

norm + num + PCA Functions Generalized Linear Model 32 276 0,7957 0,0260 

norm + num + PCA Logistic Regression Logistic Regression (SVM) 32 1219 0,7955 0,0261 

norm + num + PCA Functions Linear Regression 32 1883 0,7944 0,0303 

norm + disc Bayesian Naive Bayes 15 36 0,7942 0,0220 
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Figure 5.1 Average AUC Values Across Data Transformations on German data 
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Figure 5.2 Maximum AUC Values Across Data Transformations on German data 
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Figure 5.3 Average AUC Values of Classifier Families on German data 
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Figure 5.4 Maximum AUC Values of Classifier Families on German data 
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Figure 5.5 Average AUC Values of Models on German data (focused values above 0.75) 
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Figure 5.6 Maximum AUC Values of Models on German data (focused values above 0.795) 

disc + num 

disc + num + PCA + OS 

norm + num + PCA 



59 

Support Vector Machine (LibSVM) 
 

Linear Regression 
 Fast Large Margin 

accuracy: 

76.40% 

true 

good 

true 

bad 

class 

precision 

 accuracy: 

74.00% 

true 

good 

true 

bad 

class 

precision 

 accuracy: 

72.60% 

true 

good 

true 

bad 

class 

precision 

pred. good 544 80 87.18%  pred. good 508 68 88.19%  pred. good 490 64 88.45% 

pred. bad 156 220 58.51%  pred. bad 192 232 54.72%  pred. bad 210 236 52.91% 

class recall 77.71% 73.33%   class recall 72.57% 77.33%   class recall 70.00% 78.67%  

Figure 5.7 Confusion Matrices of the Three Most Successful Models on German Data 
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Table 5.2 First 20 Performance Results of Data-Model Pairings on Australian credit data set 

Transformation Explanation Family Model Name # Attributes Time (ms) AUC AUC STDEV 

norm + OS Trees Gradient Boosted Trees 13 1338 0,9418 0,0341 

norm Trees Gradient Boosted Trees 14 1325 0,9405 0,0341 

no transformation Trees Gradient Boosted Trees 14 1364 0,9381 0,0314 

norm + OS Neural Nets Deep Learning 13 4211 0,9341 0,0196 

OS Logistic Regression Logistic Regression 13 212 0,9331 0,0241 

norm + OS Logistic Regression Logistic Regression 13 221 0,9331 0,0241 

norm + OS Support Vector Machines Fast Large Margin 13 175 0,9331 0,0253 

OS Functions Generalized Linear Model 13 209 0,9329 0,0243 

norm + OS Functions Generalized Linear Model 13 214 0,9329 0,0243 

OS Trees Gradient Boosted Trees 13 1356 0,9329 0,0330 

norm + OS Logistic Regression Logistic Regression (SVM) 13 325 0,9320 0,0250 

norm + disc Neural Nets Deep Learning 11 4286 0,9320 0,0288 

no transformation Logistic Regression Logistic Regression 14 223 0,9314 0,0238 

norm Logistic Regression Logistic Regression 14 224 0,9314 0,0238 

norm Support Vector Machines Fast Large Margin 14 201 0,9313 0,0262 

norm Functions Generalized Linear Model 14 216 0,9309 0,0242 

no transformation Functions Generalized Linear Model 14 307 0,9309 0,0242 

OS Logistic Regression Logistic Regression (SVM) 13 375 0,9308 0,0262 

norm + disc + OS Neural Nets Deep Learning 10 4290 0,9308 0,0296 

disc + OS Trees Gradient Boosted Trees 10 1008 0,9307 0,0320 
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Figure 5.8 Maximum AUC Values of Models on Australian data (focused values above 0.93) 

norm + OS 
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5.2 Finding the Best Ensemble Model 

It was shown in recent studies that ensemble models achieve better results than single 

models in credit scoring. Because of this reason, in this study it is aimed to construct 

a fully automatic and dynamic system which includes ensemble modelling as well. 

After failing to find an objective criterion to select successful single models, 6 

successful models are selected manually and fed to the ensemble model building 

engine. EMBE tried all 3648 combinations exhaustively in weighted voting. 

For German credit data set, after deducting erroneous trials, the resultant comparison 

table includes 1032 trials. The first striking result is that ensemble models do not 

bring significant gain over single model. The first five successful trials are listed in 

Table 5.3. In the fifth row, there is only one combined model, which means nothing 

but the single model itself. As can be observed even with bare eye, there is no 

significant difference in AUC values of weighted voting ensemble models over the 

single model. Therefore, one should not always expect a gain from ensemble 

modelling. In such cases where the improvement of AUC values is insignificant 

keeping the single model will be preferable since it is more interpretable and simple 

to implement. 

For Australian credit data set, the results are different and more promising. Again, 

after removing erroneous trials, the final comparison table includes 564 trials. The 

first five successful trials along with the most successful single model is presented in 

Table 5.4. The most important result here is that weighted voting ensemble model 

does bring improvement over single model. In the sixth row, the performance of the 

single gradient boosted trees5 is presented which was the best predictor among single 

                                                           
5 Although gradient boosted trees is counted among single models, it is basically boosting type 
homogeneous ensemble mode by itself which boosts decision tree algorithms by learning its 
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models. Even the fifth most successful weighted voting has significantly higher AUC 

than the single gradient boosted trees. From these results it can be confidently 

concluded that the exhaustive trials of EMBE generate significant improvements 

over single models and the engine is definitely working. 

 

                                                           
mistakes. In this study, when ensemble model is referred it means weighted voting which is a 
heterogeneous ensemble model that can combine different types of single models. Therefore, 
gradient boosted trees is handled as a single model. 
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Table 5.3 First 5 Performance Results of Weighted Model Combinations on German credit data set 

Combined Model 1 Combined Model 2 Combined Model 3 Combined Model 4 AUC AUC STDEV 

Support Vector Machine 

(LibSVM) 
Generalized Linear Model Logistic Regression Logistic Regression (SVM) 0.7996 0.0304 

   Logistic Regression (SVM) 0.7995 0.0304 

 Generalized Linear Model Logistic Regression Logistic Regression (SVM) 0.7995 0.0305 

  Logistic Regression Logistic Regression (SVM) 0.7994 0.0304 

 Generalized Linear Model   0.7994 0.0302 
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Table 5.4 First 5 Performance Results of Weighted Model Combinations on Australian credit data set 

Combined 

Model 1 

Combined 

Model 2 

Combined 

Model 3 

Combined 

Model 4 

Combined 

Model 5 

Combined 

Model 6 
AUC AUC STDEV 

Gradient 

Boosted Trees 
Deep Learning   

Logistic 

Regression 

(SVM) 

 0.9473 0.0207 

Gradient 

Boosted Trees 
 

Generalized 

Linear Model 
   0.9451 0.0236 

Gradient 

Boosted Trees 
Deep Learning  

Logistic 

Regression 
  0.9451 0.0197 

Gradient 

Boosted Trees 
    

Fast Large 

Margin 
0.9449 0.0234 

Gradient 

Boosted Trees 
Deep Learning 

Generalized 

Linear Model 
   0.9448 0.0202 

Gradient 

Boosted Trees 
     0.9392 0.0305 
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5.3 Final Words and Future Work 

Throughout this study the main objective was constructing totally automatic and 

dynamic system in RapidMiner which can take any kind of credit data and perform 

necessary data transformations and train all built-in models of RapidMiner. On top of 

that, it is also aimed to build automatically weighted voting ensemble models which 

combine successful single models to achieve better performance results in credit 

scoring. 

Since most of the related studies in this field do not give satisfactory explanations as 

to which data transformations are applied based on what, a comprehensive approach 

has been chosen and almost all kind of data transformations are performed and the 

resultant data sets are kept distinctly. After comparing and evaluating the effects of 

these transformations on model accuracies, it can be surely concluded that knowing 

the most optimal and required data transformation beforehand is rather difficult. 

Thus, trying almost every kind of transformation could give the researcher the ability 

not to miss the ideal data transformation steps. 

In similar studies researchers compare performances of shortlisted candidate models 

in credit scoring. The underlying rationale of these shortlists is mostly ambiguous. In 

this study, each 43 built-in model in RapidMiner is considered as s worthwhile 

candidate for being the best predictor in credit scoring. Accordingly, a model 

comparison engine is created in RapidMiner environment which is capable of 

training every model on every transformed data set. This engine proved itself to be 

beneficial. Because, considered the myriad data transformations, finding the most 

successful model is a difficult task. Thus, the comprehensive approach of the engine 

will help researchers reach the most successful model without the fear of omitting 

likely successful candidates. 
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As the recent comprehensive studies suggest the best predictors in credit scoring are 

ensemble models, particularly weighted voting. In this study, it is tried to find an 

objective selection criterion which will enable the ensemble model building engine to 

select successful single models and combine them automatically. By this way, the 

entire system could work without any human intervention. Unfortunately, the 

consequence was a failure. Thus, a human interaction is required to connect the two 

engines. After selecting and feeding every combination of these selected models into 

weighted voting, ensemble model building engine tried every possible pairing and 

achieved better performance results. Thus, after using model comparison engine, 

researchers or practitioners could manually select successful models from different 

model families and find the best combination of ensemble model. Hence, it will not 

be incorrect to conclude that ensemble model building engine will also help 

researchers substantially. 

If the manual gap between the model comparison engine and the ensemble model 

building engine could be filled with an objective method, then it would be possible 

for a credit analyst to feed the credit data into RapidMiner and find out which 

ensemble model has the best predictive capability on what kind of data 

transformation. In this study, selection is conducted based on correlation between 

single models and the outcome was a failure. Future work can be concentrated on 

this bridge between the two engines. That way, totally automatic and dynamic 

system working in RapidMiner could be constructed and credit decisions could be 

made without any human interaction at the best possible accuracy. 

 

  



68 

REFERENCES 

Abellán, J. & Mantas, C.J., 2014. Improving experimental studies about ensembles 

of classifiers for bankruptcy prediction and credit scoring. Expert Systems with 

Applications, 41(8), pp.3825–3830. Available at: 

http://linkinghub.elsevier.com/retrieve/pii/S0957417413009676. 

Akkoç, S., 2012. An empirical comparison of conventional techniques, neural 

networks and the three stage hybrid Adaptive Neuro Fuzzy Inference System 

(ANFIS) model for credit scoring analysis: The case of Turkish credit card data. 

European Journal of Operational Research, 222(1), pp.168–178. 

Baesens, B. et al., 2009. 50 Years of Data Mining and OR: Upcoming Trends and 

Challenges. The Journal of the Operational Research Society, 60, pp.s16–s23. 

Available at: http://www.jstor.org/stable/40206722. 

Brooks, C., 2008. Introductory Econometrics for Finance 2nd ed., Cambridge: 

Cambridge University Press. 

Brown, I. & Mues, C., 2012. An experimental comparison of classification 

algorithms for imbalanced credit scoring data sets. Expert Systems with 

Applications, 39(3), pp.3446–3453. Available at: 

http://dx.doi.org/10.1016/j.eswa.2011.09.033. 

Brownlee, J., 2016. Supervised and Unsupervised Machine Learning Algorithms - 

Machine Learning Mastery. Available at: 

http://machinelearningmastery.com/supervised-and-unsupervised-machine-

learning-algorithms/ [Accessed December 16, 2016]. 

Finlay, S., 2011. Multiple classifier architectures and their application to credit risk 



69 

assessment. European Journal of Operational Research, 210(2), pp.368–378. 

Available at: http://linkinghub.elsevier.com/retrieve/pii/S0377221710006272 

[Accessed December 12, 2016]. 

Fortmann-Roe, S., 2012. Understanding the Bias-Variance Tradeoff. Available at: 

http://scott.fortmann-roe.com/docs/BiasVariance.html [Accessed January 1, 

2017]. 

Giudici, P. & Figini, S., 2009. Applied Data Mining for Business and Industry 2nd 

ed., Chichester, UK: John Wiley & Sons, Ltd. Available at: 

http://doi.wiley.com/10.1002/9780470745830. 

Han, L., Han, L. & Zhao, H., 2013. Orthogonal support vector machine for credit 

scoring. Engineering Applications of Artificial Intelligence, 26(2), pp.848–862. 

Available at: http://dx.doi.org/10.1016/j.engappai.2012.10.005. 

Harris, T., 2015. Credit scoring using the clustered support vector machine. Expert 

Systems with Applications, 42(2), pp.741–750. Available at: 

http://dx.doi.org/10.1016/j.eswa.2014.08.029. 

Hens, A.B. & Tiwari, M.K., 2012. Computational time reduction for credit scoring: 

An integrated approach based on support vector machine and stratified sampling 

method. Expert Systems with Applications, 39(8), pp.6774–6781. Available at: 

http://dx.doi.org/10.1016/j.eswa.2011.12.057. 

Hofmann, H., UCI Machine Learning Repository: Statlog (German Credit Data) Data 

Set. Available at: 

https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data) 

[Accessed December 15, 2016]. 



70 

Huang, S.-C. & Day, M.-Y., 2013. A comparative study of data mining techniques 

for credit scoring in banking. In 2013 IEEE 14th International Conference on 

Information Reuse & Integration (IRI). IEEE, pp. 684–691. Available at: 

http://ieeexplore.ieee.org/document/6642534/. 

Imanuel, 2016. What is Predictive Modeling ? Predictive Analytics Today. Available 

at: http://www.predictiveanalyticstoday.com/predictive-modeling/ [Accessed 

December 17, 2016]. 

Kantardzic, M., 2011. DATA MINING Concepts, Models, Methods, and Algorithms 

2nd ed., Hoboken, New Jersey: IEEE PRESS A JOHN WILEY & SONS, INC. 

Khudnitskaya, A.S., 2010. Improved Credit Scoring with Multilevel Statistical 

Modelling. Technische Universität Dortmund. 

Kraus, A., 2014. Recent Methods from Statistics and Machine Learning for Credit 

Scoring. Ludwig-Maximilians-Universität. Available at: http://edoc.ub.uni-

muenchen.de/17143/1/Kraus_Anne.pdf. 

Kruppa, J. et al., 2013. Consumer credit risk: Individual probability estimates using 

machine learning. Expert Systems with Applications, 40(13), pp.5125–5131. 

Available at: http://dx.doi.org/10.1016/j.eswa.2013.03.019. 

Lessmann, S. et al., 2015. Benchmarking state-of-the-art classification algorithms for 

credit scoring: An update of research. European Journal of Operational 

Research, 247(1), pp.124–136. Available at: 

http://dx.doi.org/10.1016/j.ejor.2015.05.030. 

Li, S., Tsang, I.W. & Chaudhari, N.S., 2012. Relevance vector machine based 



71 

infinite decision agent ensemble learning for credit risk analysis. Expert Systems 

with Applications, 39(5), pp.4947–4953. Available at: 

http://dx.doi.org/10.1016/j.eswa.2011.10.022. 

Marqués, A.I., García, V. & Sánchez, J.S., 2012a. Exploring the behaviour of base 

classifiers in credit scoring ensembles. Expert Systems with Applications, 

39(11), pp.10244–10250. 

Marqués, A.I., García, V. & Sánchez, J.S., 2012b. Two-level classifier ensembles for 

credit risk assessment. Expert Systems with Applications, 39(12), pp.10916–

10922. 

Mctiernan, K., 2016. Investigation into the Predictive Capability of Macro-Economic 

Features in Modelling Credit Risk for Small Medium Enterprises. Dublin 

Institute of Technology. 

Mitchell-Guthrie, P., 1998. Looking backwards, looking forwards: SAS, data mining, 

and machine learning - Subconscious Musings. SAS Institute Inc. Available at: 

http://blogs.sas.com/content/subconsciousmusings/2014/08/22/looking-

backwards-looking-forwards-sas-data-mining-and-machine-learning/ [Accessed 

December 16, 2016]. 

Mues, C. et al., 2004. Decision diagrams in machine learning: an empirical study on 

real-life credit-risk data. Expert Systems with Applications, 27(2), pp.257–264. 

Available at: http://linkinghub.elsevier.com/retrieve/pii/S0957417404000120. 

Refaeilzadeh, P., Tang, L. & Liu, H., 2009. Cross-Validation L. LIU & M. T. ÖZSU, 

eds. Encyclopedia of Database Systems, pp.532–538. Available at: 

http://dx.doi.org/10.1007/978-0-387-39940-9_565. 



72 

Sayad, S., 2016. An Introduction to Data Mining Map. Available at: 

http://www.saedsayad.com/data_mining_map.htm [Accessed December 16, 

2016]. 

Seni, G. & Elder, J.F., 2010. Ensemble Methods in Data Mining: Improving 

Accuracy Through Combining Predictions R. Grossman, ed., Morgan & 

Claypool. 

Tsai, C.-F., 2009. Feature selection in bankruptcy prediction. Knowledge-Based 

Systems, 22(2), pp.120–127. Available at: 

http://www.sciencedirect.com/science/article/pii/S0950705108001536. 

Tsai, C.-F., Hsu, Y.-F. & Yen, D.C., 2014. A comparative study of classifier 

ensembles for bankruptcy prediction. Applied Soft Computing, 24, pp.977–984. 

Available at: http://dx.doi.org/10.1016/j.asoc.2014.08.047. 

Tsai, C.F., 2014. Combining cluster analysis with classifier ensembles to predict 

financial distress. Information Fusion, 16(1), pp.46–58. Available at: 

http://dx.doi.org/10.1016/j.inffus.2011.12.001. 

Tufféry, S., 2011. Data Mining and Statistics for Decision Making, Chichester, UK: 

John Wiley & Sons, Ltd. 

Twala, B., 2010. Multiple classifier application to credit risk assessment. Expert 

Systems with Applications, 37(4), pp.3326–3336. Available at: 

http://dx.doi.org/10.1016/j.eswa.2009.10.018. 

Wang, G. et al., 2011. A comparative assessment of ensemble learning for credit 

scoring. Expert Systems with Applications, 38(1), pp.223–230. Available at: 



73 

http://dx.doi.org/10.1016/j.eswa.2010.06.048. 

Wang, G. et al., 2012. Two credit scoring models based on dual strategy ensemble 

trees. Knowledge-Based Systems, 26, pp.61–68. Available at: 

http://dx.doi.org/10.1016/j.knosys.2011.06.020. 

Yazdani, Z., Sepehri, M.M. & Teimourpour, B., 2014. Selecting Best Features for 

Predicting Bank Loan Default. In Data Mining Applications with R. Elsevier, 

pp. 229–245. Available at: 

http://linkinghub.elsevier.com/retrieve/pii/B9780124115118000086. 

Yottamine Analytics, L., 2013. The Machine Learning Advantage. Yottamine 

Analytics, LLC. Available at: https://yottamine.com/machine-learning-svm 

[Accessed January 1, 2017]. 

 



74 

APPENDICES 

Appendix A: Description of the German credit dataset 

Description of the German credit dataset. 

 

1. Title: German Credit data 

 

2. Source Information 

 

Professor Dr. Hans Hofmann   

Institut f"ur Statistik und "Okonometrie   

Universit"at Hamburg   

FB Wirtschaftswissenschaften   

Von-Melle-Park 5     

2000 Hamburg 13  

 

3. Number of Instances:  1000 

 

Two datasets are provided.  the original dataset, in the form 

provided 

by Prof. Hofmann, contains categorical/symbolic attributes and 

is in the file "german.data".    

  

For algorithms that need numerical attributes, Strathclyde 

University  

produced the file "german.data-numeric".  This file has been 

edited  

and several indicator variables added to make it suitable for  

algorithms which cannot cope with categorical variables.   

Several 

attributes that are ordered categorical (such as attribute 17) 

have 

been coded as integer.    This was the form used by StatLog. 

 

 

6. Number of Attributes german: 20 (7 numerical, 13 categorical) 

   Number of Attributes german.numer: 24 (24 numerical) 

 

 

7.  Attribute description for german 

 

Attribute 1:  (qualitative) 

        Status of existing checking account 

               A11 :      ... <    0 DM 

        A12 : 0 <= ... <  200 DM 

        A13 :      ... >= 200 DM / 

       salary assignments for at least 1 year 

               A14 : no checking account 

 

Attribute 2:  (numerical) 

       Duration in month 

 

Attribute 3:  (qualitative) 

       Credit history 

       A30 : no credits taken/ 

      all credits paid back duly 

              A31 : all credits at this bank paid back duly 
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       A32 : existing credits paid back duly till now 

              A33 : delay in paying off in the past 

       A34 : critical account/ 

      other credits existing (not at this bank) 

 

Attribute 4:  (qualitative) 

       Purpose 

       A40 : car (new) 

       A41 : car (used) 

       A42 : furniture/equipment 

       A43 : radio/television 

       A44 : domestic appliances 

       A45 : repairs 

       A46 : education 

       A47 : (vacation - does not exist?) 

       A48 : retraining 

       A49 : business 

       A410 : others 

 

Attribute 5:  (numerical) 

       Credit amount 

 

Attibute 6:  (qualitative) 

       Savings account/bonds 

       A61 :          ... <  100 DM 

       A62 :   100 <= ... <  500 DM 

       A63 :   500 <= ... < 1000 DM 

       A64 :          .. >= 1000 DM 

              A65 :   unknown/ no savings account 

 

Attribute 7:  (qualitative) 

       Present employment since 

       A71 : unemployed 

       A72 :       ... < 1 year 

       A73 : 1  <= ... < 4 years   

       A74 : 4  <= ... < 7 years 

       A75 :       .. >= 7 years 

 

Attribute 8:  (numerical) 

       Installment rate in percentage of disposable income 

 

Attribute 9:  (qualitative) 

       Personal status and sex 

       A91 : male   : divorced/separated 

       A92 : female : divorced/separated/married 

              A93 : male   : single 

       A94 : male   : married/widowed 

       A95 : female : single 

 

Attribute 10: (qualitative) 

       Other debtors / guarantors 

       A101 : none 

       A102 : co-applicant 

       A103 : guarantor 

 

Attribute 11: (numerical) 

       Present residence since 
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Attribute 12: (qualitative) 

       Property 

       A121 : real estate 

       A122 : if not A121 : building society savings 

agreement/ 

       life insurance 

              A123 : if not A121/A122 : car or other, not in 

attribute 6 

       A124 : unknown / no property 

 

Attribute 13: (numerical) 

       Age in years 

 

Attribute 14: (qualitative) 

       Other installment plans  

       A141 : bank 

       A142 : stores 

       A143 : none 

 

Attribute 15: (qualitative) 

       Housing 

       A151 : rent 

       A152 : own 

       A153 : for free 

 

Attribute 16: (numerical) 

              Number of existing credits at this bank 

 

Attribute 17: (qualitative) 

       Job 

       A171 : unemployed/ unskilled  - non-resident 

       A172 : unskilled - resident 

       A173 : skilled employee / official 

       A174 : management/ self-employed/ 

       highly qualified employee/ officer 

 

Attribute 18: (numerical) 

       Number of people being liable to provide maintenance 

for 

 

Attribute 19: (qualitative) 

       Telephone 

       A191 : none 

       A192 : yes, registered under the customers name 

 

Attribute 20: (qualitative) 

       foreign worker 

       A201 : yes 

       A202 : no 

 

 

 

8.  Cost Matrix 

 

This dataset requires use of a cost matrix (see below) 

 

 

      1        2 
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---------------------------- 

  1   0        1 

----------------------- 

  2   5        0 

 

(1 = Good,  2 = Bad) 

 

the rows represent the actual classification and the columns 

the predicted classification. 

 

It is worse to class a customer as good when they are bad (5),  

than it is to class a customer as bad when they are good (1). 
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Appendix B: Description of the Australian credit dataset 

 Description of the Dataset: 

 

THIS CREDIT DATA ORIGINATES FROM QUINLAN (see below).    

 

1. Title: Australian Credit Approval 

 

2. Sources:  

    (confidential) 

    Submitted by quinlan@cs.su.oz.au 

 

3.  Past Usage: 

 

    See Quinlan, 

    * "Simplifying decision trees", Int J Man-Machine Studies 27, 

      Dec 1987, pp. 221-234. 

    * "C4.5: Programs for Machine Learning", Morgan Kaufmann, Oct 

1992 

   

4.  Relevant Information: 

 

    This file concerns credit card applications.  All attribute 

names 

    and values have been changed to meaningless symbols to 

protect 

    confidentiality of the data. 

   

    This dataset is interesting because there is a good mix of 

    attributes -- continuous, nominal with small numbers of 

    values, and nominal with larger numbers of values.  There 

    are also a few missing values. 

   

5.  Number of Instances: 690 

 

6.  Number of Attributes: 14 + class attribute 

 

7.  Attribute Information:   THERE ARE 6 NUMERICAL AND 8 

CATEGORICAL ATTRIBUTES. 

  

                             THE LABELS HAVE BEEN CHANGED FOR THE 

CONVENIENCE 

                             OF THE STATISTICAL ALGORITHMS.   FOR 

EXAMPLE, 

                             ATTRIBUTE 4 ORIGINALLY HAD 3 LABELS 

p,g,gg AND 

                             THESE HAVE BEEN CHANGED TO LABELS 

1,2,3. 

                              

 

    A1: 0,1    CATEGORICAL 

        a,b 

    A2: continuous. 

    A3: continuous. 

    A4: 1,2,3         CATEGORICAL 

        p,g,gg 

    A5:  1, 2,3,4,5, 6,7,8,9,10,11,12,13,14    CATEGORICAL 

         ff,d,i,k,j,aa,m,c,w, e, q, r,cc, x  
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    A6:  1, 2,3, 4,5,6,7,8,9    CATEGORICAL 

        ff,dd,j,bb,v,n,o,h,z  

 

    A7: continuous. 

    A8: 1, 0       CATEGORICAL 

        t, f. 

    A9: 1, 0     CATEGORICAL 

        t, f. 

    A10: continuous. 

    A11:  1, 0     CATEGORICAL 

          t, f. 

    A12:    1, 2, 3    CATEGORICAL 

            s, g, p  

    A13: continuous. 

    A14: continuous. 

    A15:   1,2 

           +,-         (class attribute) 

 

8.  Missing Attribute Values: 

    37 cases (5%) HAD one or more missing values.  The missing 

    values from particular attributes WERE: 

 

    A1:  12 

    A2:  12 

    A4:   6 

    A5:   6 

    A6:   9 

    A7:   9 

    A14: 13 

     

    THESE WERE REPLACED BY THE MODE OF THE ATTRIBUTE 

(CATEGORICAL) 

                               MEAN OF THE ATTRIBUTE (CONTINUOUS) 

                            

9.  Class Distribution 

   

    +: 307 (44.5%)    CLASS 2 

    -: 383 (55.5%)    CLASS 1 

 

 

10.  There is no cost matrix. 
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Appendix C: Performance Results of Data-Model Pairings on German credit data set 

Transformation Explanation Family Model Name # Attributes Time (ms) AUC AUC STDEV 

norm + disc + num + OS Support Vector Machines Support Vector Machine (LibSVM) 57 941 0,7978 0,0294 

disc + num + OS Support Vector Machines Support Vector Machine (LibSVM) 57 951 0,7978 0,0294 

norm + disc + num Support Vector Machines Support Vector Machine (LibSVM) 58 954 0,7978 0,0297 

disc + num Support Vector Machines Support Vector Machine (LibSVM) 58 957 0,7978 0,0297 

norm + disc + num + PCA + OS Functions Linear Regression 28 1391 0,7973 0,0291 

disc + num + PCA + OS Functions Linear Regression 28 1451 0,7973 0,0291 

norm + num + PCA Support Vector Machines Fast Large Margin 32 550 0,7963 0,0264 

disc + num + PCA + OS Functions Generalized Linear Model 28 264 0,7960 0,0263 

norm + disc + num + PCA + OS Functions Generalized Linear Model 28 270 0,7960 0,0263 

norm + disc + num + PCA + OS Logistic Regression Logistic Regression 28 270 0,7959 0,0262 

disc + num + PCA + OS Logistic Regression Logistic Regression 28 272 0,7959 0,0262 

norm + disc + num + PCA + OS Logistic Regression Logistic Regression (SVM) 28 1081 0,7959 0,0262 

disc + num + PCA + OS Logistic Regression Logistic Regression (SVM) 28 1083 0,7959 0,0262 

norm + disc + num + PCA + OS Support Vector Machines Fast Large Margin 28 179 0,7958 0,0284 

disc + num + PCA + OS Support Vector Machines Fast Large Margin 28 181 0,7958 0,0284 

norm + num + PCA Logistic Regression Logistic Regression 32 290 0,7957 0,0259 

norm + num + PCA Functions Generalized Linear Model 32 276 0,7957 0,0260 

norm + num + PCA Logistic Regression Logistic Regression (SVM) 32 1219 0,7955 0,0261 

norm + num + PCA Functions Linear Regression 32 1883 0,7944 0,0303 

norm + disc Bayesian Naive Bayes 15 36 0,7942 0,0220 

disc Bayesian Naive Bayes 15 38 0,7942 0,0220 

norm + disc Bayesian Naive Bayes (Kernel) 15 39 0,7942 0,0220 

disc Bayesian Naive Bayes (Kernel) 15 40 0,7942 0,0220 

norm + disc + num + PCA Functions Linear Regression 32 1876 0,7939 0,0293 
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Transformation Explanation Family Model Name # Attributes Time (ms) AUC AUC STDEV 

disc + num + PCA Functions Linear Regression 32 1894 0,7939 0,0293 

norm + num + PCA + OS Logistic Regression Logistic Regression 30 284 0,7939 0,0312 

norm + disc + num Support Vector Machines Support Vector Machine 58 2469 0,7939 0,0361 

norm + disc + num Support Vector Machines Support Vector Machine (Linear) 58 2469 0,7939 0,0361 

norm + disc + num Support Vector Machines Support Vector Machine (Evolutionary) 58 2483 0,7939 0,0361 

disc + num Support Vector Machines Support Vector Machine (Evolutionary) 58 2488 0,7939 0,0361 

disc + num Support Vector Machines Support Vector Machine 58 2523 0,7939 0,0361 

disc + num Support Vector Machines Support Vector Machine (Linear) 58 2584 0,7939 0,0361 

norm + num + PCA + OS Functions Generalized Linear Model 30 277 0,7938 0,0312 

norm + num + PCA + OS Logistic Regression Logistic Regression (SVM) 30 1152 0,7937 0,0314 

norm + num + PCA + OS Functions Linear Regression 30 1627 0,7933 0,0340 

norm + disc + num + PCA + OS Support Vector Machines Support Vector Machine (Linear) 28 2270 0,7932 0,0283 

norm + disc + num + PCA + OS Support Vector Machines Support Vector Machine (Evolutionary) 28 2282 0,7932 0,0283 

disc + num + PCA + OS Support Vector Machines Support Vector Machine 28 2290 0,7932 0,0283 

norm + disc + num + PCA + OS Support Vector Machines Support Vector Machine 28 2308 0,7932 0,0283 

disc + num + PCA + OS Support Vector Machines Support Vector Machine (Linear) 28 2367 0,7932 0,0283 

disc + num + PCA + OS Support Vector Machines Support Vector Machine (Evolutionary) 28 2908 0,7932 0,0283 

norm + num + PCA + OS Support Vector Machines Fast Large Margin 30 490 0,7931 0,0324 

norm + disc + num Functions Linear Regression 58 7776 0,7930 0,0311 

disc + num Functions Linear Regression 58 7851 0,7930 0,0311 

norm + disc + num + OS Support Vector Machines Support Vector Machine (Linear) 57 2321 0,7926 0,0360 

norm + disc + num + OS Support Vector Machines Support Vector Machine (Evolutionary) 57 2340 0,7926 0,0360 

norm + disc + num + OS Support Vector Machines Support Vector Machine 57 2354 0,7926 0,0360 

disc + num + OS Support Vector Machines Support Vector Machine (Linear) 57 2368 0,7926 0,0360 

disc + num + OS Support Vector Machines Support Vector Machine 57 2376 0,7926 0,0360 

disc + num + OS Support Vector Machines Support Vector Machine (Evolutionary) 57 2378 0,7926 0,0360 
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Transformation Explanation Family Model Name # Attributes Time (ms) AUC AUC STDEV 

norm + disc + num + OS Functions Generalized Linear Model 57 350 0,7924 0,0231 

disc + num + OS Functions Generalized Linear Model 57 354 0,7924 0,0231 

norm + disc + num Functions Generalized Linear Model 58 352 0,7923 0,0231 

disc + num Functions Generalized Linear Model 58 366 0,7923 0,0231 

norm + disc + num + PCA Logistic Regression Logistic Regression (SVM) 32 1223 0,7921 0,0278 

disc + num + PCA Logistic Regression Logistic Regression (SVM) 32 1258 0,7921 0,0278 

norm + disc + num + PCA Functions Generalized Linear Model 32 275 0,7921 0,0280 

disc + num + PCA Functions Generalized Linear Model 32 286 0,7921 0,0280 

num Support Vector Machines Support Vector Machine (Evolutionary) 61 3238 0,7921 0,0315 

num Support Vector Machines Support Vector Machine (Linear) 61 3269 0,7921 0,0315 

num Support Vector Machines Support Vector Machine 61 3350 0,7921 0,0315 

norm + disc + num + PCA Logistic Regression Logistic Regression 32 286 0,7920 0,0277 

disc + num + PCA Logistic Regression Logistic Regression 32 291 0,7920 0,0277 

disc + num + PCA Support Vector Machines Fast Large Margin 32 213 0,7920 0,0294 

norm + disc + num + PCA Support Vector Machines Fast Large Margin 32 215 0,7920 0,0294 

norm + num Support Vector Machines Fast Large Margin 61 1018 0,7920 0,0300 

OS Trees Gradient Boosted Trees 17 1737 0,7919 0,0376 

disc + OS Bayesian Naive Bayes 14 36 0,7916 0,0246 

norm + disc + OS Bayesian Naive Bayes 14 36 0,7916 0,0246 

disc + OS Bayesian Naive Bayes (Kernel) 14 37 0,7916 0,0246 

norm + disc + OS Bayesian Naive Bayes (Kernel) 14 37 0,7916 0,0246 

norm + num Functions Linear Regression 61 9048 0,7916 0,0308 

disc + num + PCA + OS Support Vector Machines Support Vector Machine (LibSVM) 28 680 0,7915 0,0273 

norm + disc + num + PCA + OS Support Vector Machines Support Vector Machine (LibSVM) 28 681 0,7915 0,0273 

num Functions Linear Regression 61 9836 0,7915 0,0289 

norm + OS Trees Gradient Boosted Trees 17 1820 0,7914 0,0340 
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Transformation Explanation Family Model Name # Attributes Time (ms) AUC AUC STDEV 

norm + num Functions Generalized Linear Model 61 374 0,7913 0,0223 

num Functions Generalized Linear Model 61 414 0,7913 0,0223 

norm + disc + num + OS Functions Linear Regression 57 7495 0,7913 0,0314 

disc + num + OS Functions Linear Regression 57 7582 0,7913 0,0314 

norm + disc + num Bayesian Naive Bayes (Kernel) 58 86 0,7911 0,0190 

disc + num Bayesian Naive Bayes (Kernel) 58 89 0,7911 0,0190 

norm + disc + num + OS Bayesian Naive Bayes (Kernel) 57 88 0,7911 0,0192 

disc + num + OS Bayesian Naive Bayes (Kernel) 57 95 0,7911 0,0192 

norm + num Support Vector Machines Support Vector Machine (Linear) 61 4293 0,7909 0,0322 

norm + num Support Vector Machines Support Vector Machine 61 4329 0,7909 0,0322 

norm + num Support Vector Machines Support Vector Machine (Evolutionary) 61 4335 0,7909 0,0322 

norm + disc + num + OS Logistic Regression Logistic Regression (SVM) 57 1392 0,7908 0,0280 

disc + num + OS Logistic Regression Logistic Regression (SVM) 57 1416 0,7908 0,0280 

norm + disc + num + PCA Support Vector Machines Support Vector Machine (LibSVM) 32 724 0,7907 0,0299 

disc + num + PCA Support Vector Machines Support Vector Machine (LibSVM) 32 744 0,7907 0,0299 

norm + num Neural Nets Deep Learning 61 8486 0,7907 0,0378 

norm + disc + num Logistic Regression Logistic Regression (SVM) 58 1396 0,7904 0,0287 

disc + num Logistic Regression Logistic Regression (SVM) 58 1402 0,7904 0,0287 

norm + OS Logistic Regression Logistic Regression 17 251 0,7902 0,0281 

OS Logistic Regression Logistic Regression 17 256 0,7902 0,0281 

norm Logistic Regression Logistic Regression 20 287 0,7901 0,0297 

no transformation Logistic Regression Logistic Regression 20 359 0,7901 0,0297 

norm + num Logistic Regression Logistic Regression 61 379 0,7901 0,0297 

num Logistic Regression Logistic Regression 61 409 0,7901 0,0297 

num + OS Support Vector Machines Support Vector Machine (Linear) 59 3658 0,7900 0,0282 

num + OS Support Vector Machines Support Vector Machine (Evolutionary) 59 3677 0,7900 0,0282 
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Transformation Explanation Family Model Name # Attributes Time (ms) AUC AUC STDEV 

num + OS Support Vector Machines Support Vector Machine 59 3724 0,7900 0,0282 

norm + disc + num + OS Support Vector Machines Fast Large Margin 57 465 0,7900 0,0346 

disc + num + OS Support Vector Machines Fast Large Margin 57 483 0,7900 0,0346 

num + OS Functions Generalized Linear Model 59 337 0,7899 0,0225 

norm + num + OS Functions Generalized Linear Model 59 348 0,7899 0,0225 

norm + disc + num Support Vector Machines Fast Large Margin 58 486 0,7899 0,0346 

disc + num Support Vector Machines Fast Large Margin 58 487 0,7899 0,0346 

norm + num + OS Support Vector Machines Support Vector Machine 59 5481 0,7898 0,0284 

norm + num + OS Support Vector Machines Support Vector Machine (Linear) 59 5497 0,7898 0,0284 

norm + num + OS Support Vector Machines Support Vector Machine (Evolutionary) 59 5512 0,7898 0,0284 

norm + num Support Vector Machines Support Vector Machine (LibSVM) 61 1006 0,7888 0,0210 

norm + OS Bayesian Naive Bayes 17 38 0,7887 0,0142 

OS Bayesian Naive Bayes 17 45 0,7887 0,0142 

norm + disc Neural Nets Deep Learning 15 5294 0,7883 0,0276 

norm + OS Neural Nets Deep Learning 17 5572 0,7883 0,0320 

norm + num Logistic Regression Logistic Regression (SVM) 61 1554 0,7882 0,0311 

num Logistic Regression Logistic Regression (SVM) 61 1738 0,7882 0,0311 

no transformation Trees Gradient Boosted Trees 20 1919 0,7882 0,0334 

norm + disc Logistic Regression Logistic Regression 15 251 0,7881 0,0334 

disc Logistic Regression Logistic Regression 15 261 0,7881 0,0334 

norm + disc + num Logistic Regression Logistic Regression 58 330 0,7881 0,0334 

norm + disc + num + OS Logistic Regression Logistic Regression 57 341 0,7881 0,0334 

disc + num Logistic Regression Logistic Regression 58 354 0,7881 0,0334 

disc + num + OS Logistic Regression Logistic Regression 57 357 0,7881 0,0334 

norm Bayesian Naive Bayes 20 39 0,7859 0,0087 

no transformation Bayesian Naive Bayes 20 54 0,7859 0,0087 
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Transformation Explanation Family Model Name # Attributes Time (ms) AUC AUC STDEV 

norm + num + PCA Support Vector Machines Support Vector Machine (LibSVM) 32 736 0,7854 0,0245 

num + OS Functions Linear Regression 59 8324 0,7850 0,0279 

norm Trees Gradient Boosted Trees 20 1854 0,7850 0,0302 

norm + num + PCA Support Vector Machines Support Vector Machine (Linear) 32 2111 0,7850 0,0302 

norm + num + PCA Support Vector Machines Support Vector Machine (Evolutionary) 32 2118 0,7850 0,0302 

norm + num + PCA Support Vector Machines Support Vector Machine 32 2122 0,7850 0,0302 

disc + OS Logistic Regression Logistic Regression 14 245 0,7849 0,0344 

norm + disc + OS Logistic Regression Logistic Regression 14 247 0,7849 0,0344 

norm + num + OS Support Vector Machines Support Vector Machine (LibSVM) 59 975 0,7841 0,0251 

norm + num + PCA + OS Support Vector Machines Support Vector Machine (Evolutionary) 30 1536 0,7841 0,0340 

norm + num + PCA + OS Support Vector Machines Support Vector Machine (Linear) 30 1544 0,7841 0,0340 

norm + num + PCA + OS Support Vector Machines Support Vector Machine 30 1568 0,7841 0,0340 

norm + num + OS Functions Linear Regression 59 8213 0,7839 0,0283 

num + OS Logistic Regression Logistic Regression 59 354 0,7839 0,0289 

norm + num + OS Logistic Regression Logistic Regression 59 373 0,7839 0,0289 

norm + num + OS Support Vector Machines Fast Large Margin 59 796 0,7837 0,0292 

norm + num + OS Logistic Regression Logistic Regression (SVM) 59 1457 0,7833 0,0289 

num + OS Logistic Regression Logistic Regression (SVM) 59 1481 0,7833 0,0289 

norm + disc + OS Neural Nets Deep Learning 14 5385 0,7833 0,0469 

norm + disc + num + PCA Support Vector Machines Support Vector Machine 32 1977 0,7828 0,0303 

norm + disc + num + PCA Support Vector Machines Support Vector Machine (Evolutionary) 32 1981 0,7828 0,0303 

norm + disc + num + PCA Support Vector Machines Support Vector Machine (Linear) 32 1991 0,7828 0,0303 

disc + num + PCA Support Vector Machines Support Vector Machine 32 2023 0,7828 0,0303 

disc + num + PCA Support Vector Machines Support Vector Machine (Linear) 32 2024 0,7828 0,0303 

disc + num + PCA Support Vector Machines Support Vector Machine (Evolutionary) 32 2051 0,7828 0,0303 

OS Neural Nets Deep Learning 17 5749 0,7827 0,0308 
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Transformation Explanation Family Model Name # Attributes Time (ms) AUC AUC STDEV 

norm + disc + OS Functions Generalized Linear Model 14 246 0,7816 0,0245 

norm + disc Functions Generalized Linear Model 15 250 0,7816 0,0245 

disc Functions Generalized Linear Model 15 251 0,7816 0,0245 

disc + OS Functions Generalized Linear Model 14 286 0,7816 0,0245 

norm Neural Nets Deep Learning 20 5646 0,7811 0,0361 

disc + OS Neural Nets Deep Learning 14 5376 0,7805 0,0324 

disc + num + PCA + OS Trees Gradient Boosted Trees 28 2497 0,7804 0,0202 

norm + disc + num + PCA + OS Trees Gradient Boosted Trees 28 2542 0,7804 0,0202 

norm + num + PCA + OS Support Vector Machines Support Vector Machine (LibSVM) 30 701 0,7800 0,0276 

norm Functions Generalized Linear Model 20 263 0,7790 0,0309 

no transformation Functions Generalized Linear Model 20 473 0,7790 0,0309 

no transformation Neural Nets Deep Learning 20 6423 0,7779 0,0341 

norm + OS Functions Generalized Linear Model 17 245 0,7777 0,0315 

OS Functions Generalized Linear Model 17 268 0,7777 0,0315 

disc Neural Nets Deep Learning 15 5374 0,7771 0,0261 

norm + disc + num + PCA Trees Gradient Boosted Trees 32 2614 0,7758 0,0187 

disc + num + PCA Trees Gradient Boosted Trees 32 2659 0,7758 0,0187 

norm + num + PCA + OS Bayesian Naive Bayes 30 42 0,7758 0,0360 

norm + num + PCA Bayesian Naive Bayes 32 42 0,7754 0,0359 

norm + num + PCA + OS Neural Nets Deep Learning 30 5855 0,7749 0,0432 

norm + num Trees Gradient Boosted Trees 61 2579 0,7742 0,0298 

norm + disc + num + PCA Neural Nets Deep Learning 32 5838 0,7733 0,0278 

disc + num + PCA Neural Nets Deep Learning 32 5974 0,7730 0,0435 

num Neural Nets Deep Learning 61 8277 0,7716 0,0266 

num Trees Gradient Boosted Trees 61 2532 0,7711 0,0431 

norm + num + OS Trees Gradient Boosted Trees 59 2445 0,7710 0,0335 
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Transformation Explanation Family Model Name # Attributes Time (ms) AUC AUC STDEV 

disc + num + PCA + OS Bayesian Naive Bayes 28 39 0,7704 0,0279 

norm + disc + num + PCA + OS Bayesian Naive Bayes 28 41 0,7704 0,0279 

norm + num + PCA Neural Nets Deep Learning 32 5926 0,7701 0,0314 

disc + OS Trees Gradient Boosted Trees 14 1524 0,7700 0,0354 

norm + disc + OS Trees Gradient Boosted Trees 14 1659 0,7700 0,0354 

disc + num Trees Gradient Boosted Trees 58 2280 0,7698 0,0301 

norm + disc + num Trees Gradient Boosted Trees 58 2397 0,7698 0,0301 

disc + num + OS Trees Gradient Boosted Trees 57 2256 0,7695 0,0299 

norm + disc + num + OS Trees Gradient Boosted Trees 57 2256 0,7695 0,0299 

disc Trees Gradient Boosted Trees 15 1548 0,7695 0,0376 

norm + disc Trees Gradient Boosted Trees 15 1568 0,7695 0,0376 

norm + disc + num Neural Nets Deep Learning 58 7845 0,7694 0,0385 

disc + num Neural Nets Deep Learning 58 7954 0,7689 0,0398 

num Bayesian Naive Bayes (Kernel) 61 107 0,7687 0,0194 

norm + disc + num + PCA + OS Neural Nets Deep Learning 28 5740 0,7681 0,0250 

disc + num + PCA + OS Neural Nets Deep Learning 28 5695 0,7660 0,0375 

disc + num + PCA Bayesian Naive Bayes 32 40 0,7654 0,0402 

norm + disc + num + PCA Bayesian Naive Bayes 32 42 0,7654 0,0402 

norm + num + OS Neural Nets Deep Learning 59 8000 0,7648 0,0371 

OS Bayesian Naive Bayes (Kernel) 17 64 0,7647 0,0225 

num + OS Neural Nets Deep Learning 59 8103 0,7642 0,0317 

num + OS Trees Gradient Boosted Trees 59 2365 0,7640 0,0335 

num + OS Support Vector Machines Fast Large Margin 59 1976 0,7623 0,0423 

norm + disc + num + OS Neural Nets Deep Learning 57 7726 0,7619 0,0386 

disc + num + OS Neural Nets AutoMLP 57 293554 0,7596 0,0334 

num + OS Bayesian Naive Bayes (Kernel) 59 105 0,7595 0,0281 
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Transformation Explanation Family Model Name # Attributes Time (ms) AUC AUC STDEV 

norm + disc + num Neural Nets Neural Net 58 115464 0,7593 0,0510 

no transformation Bayesian Naive Bayes (Kernel) 20 87 0,7588 0,0195 

num Neural Nets Neural Net 61 128963 0,7586 0,0551 

disc + num + OS Neural Nets Deep Learning 57 7807 0,7580 0,0254 

norm + disc + num + OS Neural Nets AutoMLP 57 321560 0,7546 0,0462 

norm + num + PCA + OS Trees Gradient Boosted Trees 30 2591 0,7545 0,0360 

num + OS Neural Nets Perceptron 59 118 0,7544 0,0324 

norm + disc + num Neural Nets AutoMLP 58 316215 0,7537 0,0388 

norm + num + PCA Trees Gradient Boosted Trees 32 2670 0,7526 0,0468 

norm + num + PCA + OS Neural Nets AutoMLP 30 264507 0,7508 0,0467 

norm + num + PCA Neural Nets Neural Net 32 42423 0,7503 0,0351 

num + OS Neural Nets Neural Net 59 121775 0,7497 0,0389 

norm + num + PCA Neural Nets AutoMLP 32 254176 0,7476 0,0210 

disc + num + PCA + OS Support Vector Machines Support Vector Machine (PSO) 28 7932 0,7475 0,0277 

disc + num + OS Neural Nets Neural Net 57 114673 0,7474 0,0569 

num Neural Nets AutoMLP 61 282337 0,7468 0,0285 

norm + num Neural Nets AutoMLP 61 323459 0,7464 0,0388 

norm + disc + num + OS Bayesian Naive Bayes 57 48 0,7458 0,0524 

disc + num + OS Bayesian Naive Bayes 57 49 0,7458 0,0524 

norm + disc + num + PCA + OS Support Vector Machines Support Vector Machine (PSO) 28 7798 0,7448 0,0265 

disc + num + PCA + OS Neural Nets AutoMLP 28 254954 0,7446 0,0306 

disc + num + PCA Support Vector Machines Support Vector Machine (PSO) 32 8501 0,7442 0,0310 

disc + num Bayesian Naive Bayes 58 47 0,7436 0,0550 

norm + disc + num Bayesian Naive Bayes 58 47 0,7436 0,0550 

disc Rules Rule Induction 15 311 0,7432 0,0385 

disc + num + PCA + OS Neural Nets Neural Net 28 34446 0,7430 0,0450 
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Transformation Explanation Family Model Name # Attributes Time (ms) AUC AUC STDEV 

norm + num Bayesian Naive Bayes 61 49 0,7425 0,0516 

num Bayesian Naive Bayes 61 59 0,7425 0,0516 

norm + num + PCA + OS Neural Nets Neural Net 30 39238 0,7415 0,0516 

disc + num + OS Support Vector Machines Support Vector Machine (PSO) 57 12146 0,7401 0,0267 

norm + disc + num + PCA + OS Neural Nets AutoMLP 28 273768 0,7400 0,0439 

num + OS Neural Nets AutoMLP 59 340390 0,7397 0,0229 

disc + num Neural Nets AutoMLP 58 342807 0,7387 0,0428 

norm + num Neural Nets Neural Net 61 130891 0,7382 0,0416 

norm + num + OS Neural Nets Neural Net 59 122051 0,7364 0,0479 

norm + num + OS Bayesian Naive Bayes 59 50 0,7361 0,0513 

num + OS Bayesian Naive Bayes 59 53 0,7361 0,0513 

norm + disc + num + OS Neural Nets Neural Net 57 114117 0,7355 0,0361 

norm + disc + num Support Vector Machines Support Vector Machine (PSO) 58 12134 0,7337 0,0318 

norm + disc + num + PCA Support Vector Machines Support Vector Machine (PSO) 32 8478 0,7335 0,0476 

disc + num Support Vector Machines Support Vector Machine (PSO) 58 12135 0,7329 0,0295 

norm + disc + num + PCA Neural Nets Neural Net 32 43619 0,7328 0,0448 

norm + disc + num + OS Support Vector Machines Support Vector Machine (PSO) 57 11950 0,7313 0,0351 

disc + num Neural Nets Neural Net 58 116487 0,7304 0,0299 

disc + num + PCA Neural Nets Neural Net 32 41873 0,7298 0,0361 

norm + num Bayesian Naive Bayes (Kernel) 61 103 0,7294 0,0371 

num + OS Support Vector Machines Support Vector Machine (LibSVM) 59 1088 0,7276 0,0286 

norm + disc Rules Rule Induction 15 340 0,7234 0,0498 

disc + num + PCA Neural Nets AutoMLP 32 252456 0,7231 0,0463 

norm + OS Bayesian Naive Bayes (Kernel) 17 48 0,7221 0,0361 

norm + num + OS Bayesian Naive Bayes (Kernel) 59 101 0,7217 0,0438 

norm + disc + num + PCA Neural Nets AutoMLP 32 276012 0,7216 0,0501 
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Transformation Explanation Family Model Name # Attributes Time (ms) AUC AUC STDEV 

norm + num + OS Neural Nets AutoMLP 59 345033 0,7212 0,0443 

disc + num + PCA Lazy k-NN 32 119 0,7191 0,0373 

norm + disc + num + PCA Lazy k-NN 32 120 0,7191 0,0373 

norm + disc + num + OS Neural Nets Perceptron 57 81 0,7185 0,0434 

disc + num + OS Neural Nets Perceptron 57 93 0,7185 0,0434 

disc + OS Rules Rule Induction 14 349 0,7167 0,0476 

norm + disc + num + PCA + OS Neural Nets Neural Net 28 34875 0,7162 0,0348 

norm + num Neural Nets Perceptron 61 93 0,7162 0,0388 

disc + num + OS Rules Rule Induction 57 2890 0,7141 0,0329 

norm + disc + num Neural Nets Perceptron 58 98 0,7139 0,0365 

disc + num Neural Nets Perceptron 58 99 0,7139 0,0365 

disc + num Rules Rule Induction 58 3002 0,7130 0,0544 

norm + disc + OS Rules Rule Induction 14 349 0,7115 0,0343 

disc + OS Lazy k-NN 14 139 0,7105 0,0375 

norm + disc + OS Lazy k-NN 14 269 0,7105 0,0375 

disc Lazy k-NN 15 152 0,7102 0,0408 

norm + disc + num Lazy k-NN 58 183 0,7102 0,0408 

disc + num Lazy k-NN 58 188 0,7102 0,0408 

norm + disc Lazy k-NN 15 198 0,7102 0,0408 

norm + num + OS Neural Nets Perceptron 59 89 0,7100 0,0413 

disc + num + PCA + OS Bayesian Naive Bayes (Kernel) 28 127 0,7099 0,0554 

norm + disc + num + PCA + OS Bayesian Naive Bayes (Kernel) 28 127 0,7099 0,0554 

norm Bayesian Naive Bayes (Kernel) 20 74 0,7086 0,0380 

norm Rules Rule Induction 20 671 0,7081 0,0373 

disc + num + PCA + OS Lazy k-NN 28 111 0,7079 0,0316 

norm + disc + num + PCA + OS Lazy k-NN 28 118 0,7079 0,0316 



91 
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norm + disc Trees Decision Stump 15 38 0,7079 0,0440 

norm + disc + OS Trees Decision Stump 14 39 0,7079 0,0440 

disc Trees Decision Stump 15 40 0,7079 0,0440 

disc + OS Trees Decision Stump 14 41 0,7079 0,0440 

norm + disc + num + OS Lazy k-NN 57 181 0,7077 0,0371 

disc + num + OS Lazy k-NN 57 185 0,7077 0,0371 

OS Rules Rule Induction 17 562 0,7049 0,0336 

norm + OS Rules Rule Induction 17 518 0,7037 0,0262 

norm + disc + num + PCA Bayesian Naive Bayes (Kernel) 32 140 0,7026 0,0622 

disc + num + PCA Bayesian Naive Bayes (Kernel) 32 146 0,7026 0,0622 

norm + num + OS Support Vector Machines Support Vector Machine (PSO) 59 12418 0,7019 0,0410 

norm + num Lazy k-NN 61 191 0,7005 0,0391 

norm + num + OS Lazy k-NN 59 188 0,6995 0,0378 

norm + num Support Vector Machines Support Vector Machine (PSO) 61 12729 0,6987 0,0365 

norm + disc + num Rules Rule Induction 58 2873 0,6973 0,0448 

num + OS Rules Rule Induction 59 4882 0,6970 0,0458 

norm + num + OS Rules Rule Induction 59 4106 0,6950 0,0378 

norm + num + PCA Support Vector Machines Support Vector Machine (PSO) 32 8462 0,6937 0,0393 

norm + num + PCA + OS Support Vector Machines Support Vector Machine (PSO) 30 8028 0,6924 0,0439 

norm + disc + num + OS Rules Rule Induction 57 2592 0,6921 0,0593 

no transformation Rules Rule Induction 20 824 0,6915 0,0625 

disc + num + PCA Neural Nets Perceptron 32 67 0,6908 0,0407 

norm + disc + num + PCA Neural Nets Perceptron 32 75 0,6908 0,0407 

disc + num + PCA + OS Neural Nets Perceptron 28 63 0,6905 0,0616 

norm + disc + num + PCA + OS Neural Nets Perceptron 28 71 0,6905 0,0616 

norm + num + PCA Bayesian Naive Bayes (Kernel) 32 142 0,6876 0,0688 
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norm + num + PCA + OS Lazy k-NN 30 115 0,6863 0,0280 

norm + OS Lazy k-NN 17 136 0,6860 0,0511 

norm + num + PCA Lazy k-NN 32 223 0,6851 0,0482 

norm + num + PCA + OS Bayesian Naive Bayes (Kernel) 30 143 0,6821 0,0720 

norm + num + PCA + OS Neural Nets Perceptron 30 71 0,6810 0,0447 

norm + num + PCA Neural Nets Perceptron 32 68 0,6805 0,0584 

norm + disc + num Trees Decision Stump 58 163 0,6719 0,0484 

norm + disc + num + OS Trees Decision Stump 57 165 0,6719 0,0484 

disc + num Trees Decision Stump 58 166 0,6719 0,0484 

disc + num + OS Trees Decision Stump 57 175 0,6719 0,0484 

norm Lazy k-NN 20 152 0,6699 0,0459 

disc + num + PCA + OS Rules Rule Induction 28 1281 0,6623 0,0670 

norm + disc + OS Trees Decision Tree (Weight-Based) 14 2381 0,6552 0,0646 

disc + OS Trees Decision Tree (Weight-Based) 14 2555 0,6552 0,0646 

norm + disc + OS Trees CHAID 14 2065 0,6543 0,0652 

disc + OS Trees CHAID 14 2083 0,6543 0,0652 

norm + disc Trees Decision Tree (Weight-Based) 15 2728 0,6518 0,0613 

disc Trees Decision Tree (Weight-Based) 15 2824 0,6518 0,0613 

num Rules Rule Induction 61 4705 0,6509 0,0507 

norm + disc Trees CHAID 15 2277 0,6509 0,0619 

disc Trees CHAID 15 2521 0,6509 0,0619 

norm + num Rules Rule Induction 61 4182 0,6455 0,0469 

norm + disc + num + PCA + OS Rules Rule Induction 28 1303 0,6445 0,0543 

norm + disc + num + PCA Rules Rule Induction 32 1492 0,6417 0,0725 

disc + num + PCA Rules Rule Induction 32 1418 0,6406 0,0498 

num + OS Support Vector Machines Support Vector Machine (PSO) 59 13838 0,6340 0,0707 
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disc + num + PCA + OS Logistic Regression Logistic Regression (Evolutionary) 28 25798 0,6328 0,0454 

norm + disc + num + PCA + OS Logistic Regression Logistic Regression (Evolutionary) 28 23737 0,6245 0,0401 

norm + num + PCA Rules Rule Induction 32 1715 0,6219 0,0554 

norm + disc + num + PCA Logistic Regression Logistic Regression (Evolutionary) 32 30154 0,6190 0,0602 

norm + num + PCA + OS Rules Rule Induction 30 1382 0,6190 0,0733 

disc + num + PCA Logistic Regression Logistic Regression (Evolutionary) 32 24860 0,6173 0,0540 

num + OS Lazy k-NN 59 192 0,6023 0,0586 

disc + OS Rules Single Rule Induction (Single Attribute) 14 62 0,5980 0,0522 

norm + disc + OS Rules Single Rule Induction (Single Attribute) 14 62 0,5980 0,0522 

disc Rules Single Rule Induction (Single Attribute) 15 65 0,5980 0,0522 

norm + disc Rules Single Rule Induction (Single Attribute) 15 65 0,5980 0,0522 

disc + OS Trees ID3 14 182 0,5947 0,0476 

norm + disc + OS Trees ID3 14 185 0,5947 0,0476 

disc Trees ID3 15 187 0,5923 0,0483 

norm + disc Trees ID3 15 195 0,5923 0,0483 

num + OS Rules Single Rule Induction (Single Attribute) 59 316 0,5881 0,0658 

norm + num + OS Rules Single Rule Induction (Single Attribute) 59 350 0,5881 0,0658 

disc + num + OS Logistic Regression Logistic Regression (Evolutionary) 57 31271 0,5840 0,0497 

norm Trees Random Tree 20 43 0,5829 0,1040 

norm + disc + num + OS Logistic Regression Logistic Regression (Evolutionary) 57 29820 0,5826 0,0524 

num Support Vector Machines Fast Large Margin 61 2240 0,5806 0,0786 

norm + disc + num + PCA + OS Trees Random Forest 28 354 0,5785 0,0775 

norm + disc + num + OS Rules Single Rule Induction (Single Attribute) 57 289 0,5781 0,0408 

disc + num Rules Single Rule Induction (Single Attribute) 58 290 0,5781 0,0408 

norm + disc + num Rules Single Rule Induction (Single Attribute) 58 290 0,5781 0,0408 

disc + num + OS Rules Single Rule Induction (Single Attribute) 57 291 0,5781 0,0408 
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num + PCA Bayesian Naive Bayes (Kernel) 1 37 0,5770 0,0511 

num + PCA + OS Bayesian Naive Bayes (Kernel) 1 40 0,5770 0,0511 

disc + num Logistic Regression Logistic Regression (Evolutionary) 58 28989 0,5768 0,0514 

num + PCA Bayesian Naive Bayes 1 34 0,5765 0,0380 

num + PCA + OS Bayesian Naive Bayes 1 35 0,5765 0,0380 

norm + disc + num Logistic Regression Logistic Regression (Evolutionary) 58 30095 0,5753 0,0549 

disc Trees Random Tree 15 38 0,5737 0,0960 

num Trees Random Forest 61 300 0,5655 0,0754 

norm + num + PCA + OS Logistic Regression Logistic Regression (Evolutionary) 30 24470 0,5642 0,0443 

num + PCA + OS Trees Gradient Boosted Trees 1 1026 0,5620 0,0633 

num + PCA Trees Gradient Boosted Trees 1 1095 0,5620 0,0633 

norm + num + PCA Logistic Regression Logistic Regression (Evolutionary) 32 24585 0,5617 0,0357 

norm + num + OS Logistic Regression Logistic Regression (Evolutionary) 59 28655 0,5610 0,0384 

norm + num Logistic Regression Logistic Regression (Evolutionary) 61 32345 0,5605 0,0358 

num + PCA + OS Neural Nets Deep Learning 1 4240 0,5584 0,0433 

disc + OS Trees Random Tree 14 39 0,5577 0,0940 

num Support Vector Machines Support Vector Machine (LibSVM) 61 2484 0,5574 0,0569 

num + OS Logistic Regression Logistic Regression (Evolutionary) 59 28040 0,5571 0,0485 

OS Trees Random Tree 17 52 0,5565 0,0919 

num + PCA + OS Rules Rule Induction 1 216 0,5550 0,0616 

num + PCA + OS Support Vector Machines Support Vector Machine (PSO) 1 7938 0,5535 0,0553 

disc + num + PCA + OS Trees Random Forest 28 363 0,5530 0,0742 

num + PCA + OS Functions Linear Regression 1 45 0,5529 0,0478 

num + PCA Functions Linear Regression 1 53 0,5529 0,0478 

num + PCA Logistic Regression Logistic Regression (SVM) 1 157 0,5529 0,0478 

num + PCA + OS Logistic Regression Logistic Regression (SVM) 1 157 0,5529 0,0478 
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num + PCA + OS Logistic Regression Logistic Regression 1 171 0,5529 0,0478 

num + PCA + OS Functions Generalized Linear Model 1 179 0,5529 0,0478 

num + PCA Functions Generalized Linear Model 1 196 0,5529 0,0478 

num + PCA Logistic Regression Logistic Regression 1 196 0,5529 0,0478 

num + PCA Neural Nets Neural Net 1 2776 0,5529 0,0478 

num + PCA + OS Neural Nets Neural Net 1 2778 0,5529 0,0478 

num + PCA + OS Neural Nets AutoMLP 1 212976 0,5529 0,0478 

num + PCA Neural Nets AutoMLP 1 215229 0,5529 0,0478 

num Lazy k-NN 61 196 0,5506 0,0499 

no transformation Lazy k-NN 20 200 0,5486 0,0514 

OS Lazy k-NN 17 146 0,5486 0,0566 

num + PCA Rules Rule Induction 1 312 0,5475 0,0807 

disc + num + OS Trees Random Forest 57 274 0,5469 0,0727 

num + PCA Support Vector Machines Support Vector Machine (PSO) 1 6759 0,5464 0,0361 

num + PCA Neural Nets Deep Learning 1 4190 0,5453 0,0410 

norm + num Trees Random Forest 61 283 0,5446 0,0684 

norm + OS Trees Random Tree 17 39 0,5446 0,0893 

norm + OS Rules Single Rule Induction (Single Attribute) 17 250 0,5445 0,0671 

OS Rules Single Rule Induction (Single Attribute) 17 268 0,5445 0,0671 

norm Rules Single Rule Induction (Single Attribute) 20 275 0,5445 0,0671 

no transformation Rules Single Rule Induction (Single Attribute) 20 352 0,5445 0,0671 

num Rules Single Rule Induction (Single Attribute) 61 550 0,5445 0,0671 

norm + num Rules Single Rule Induction (Single Attribute) 61 552 0,5445 0,0671 

norm + num + OS Trees Random Forest 59 286 0,5393 0,0789 

disc + num + PCA Trees Random Forest 32 405 0,5374 0,0417 

norm + disc Trees Random Tree 15 34 0,5373 0,0810 
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norm + num + PCA Trees Random Forest 32 403 0,5365 0,0387 

norm + num + PCA + OS Trees Random Forest 30 377 0,5324 0,0412 

num + PCA + OS Rules Single Rule Induction (Single Attribute) 1 780 0,5269 0,0492 

num + PCA Rules Single Rule Induction (Single Attribute) 1 884 0,5269 0,0492 

num + PCA Trees Random Forest 1 119 0,5268 0,0182 

num + PCA + OS Support Vector Machines Support Vector Machine (LibSVM) 1 1591 0,5265 0,0497 

num + PCA Support Vector Machines Support Vector Machine (LibSVM) 1 1634 0,5265 0,0497 

num + PCA Lazy k-NN 1 52 0,5241 0,0605 

num + PCA + OS Lazy k-NN 1 54 0,5241 0,0605 

num + PCA + OS Trees Random Forest 1 116 0,5235 0,0204 

norm + disc + OS Trees Random Tree 14 34 0,5230 0,0690 

num + PCA + OS Support Vector Machines Support Vector Machine (Linear) 1 244 0,5229 0,0664 

num + PCA Support Vector Machines Support Vector Machine (Evolutionary) 1 247 0,5229 0,0664 

num + PCA + OS Support Vector Machines Support Vector Machine (Evolutionary) 1 247 0,5229 0,0664 

num + PCA Support Vector Machines Support Vector Machine (Linear) 1 248 0,5229 0,0664 

num + PCA + OS Support Vector Machines Support Vector Machine 1 248 0,5229 0,0664 

num + PCA Support Vector Machines Support Vector Machine 1 258 0,5229 0,0664 

norm + num + OS Trees Decision Stump 59 171 0,5221 0,0664 

num + OS Trees Decision Stump 59 186 0,5221 0,0664 

norm + disc + num Trees Random Forest 58 269 0,5202 0,0576 

norm + disc + num + PCA Trees Random Forest 32 372 0,5185 0,0424 

norm Trees Random Forest 20 160 0,5124 0,0178 

OS Trees Random Forest 17 162 0,5108 0,0206 

norm + OS Trees Random Forest 17 140 0,5104 0,0105 

num + OS Trees Random Tree 59 52 0,5102 0,0307 

num Trees Random Tree 61 55 0,5102 0,0307 
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norm + disc + num + OS Trees Random Forest 57 271 0,5088 0,0331 

disc + num Trees Random Forest 58 279 0,5086 0,0227 

num Neural Nets Perceptron 61 163 0,5074 0,0222 

no transformation Trees Random Forest 20 177 0,5052 0,0138 

num + OS Trees Random Forest 59 285 0,5052 0,0158 

num + PCA Rules Tree to Rules 1 39 0,5002 0,0007 

num + PCA + OS Rules Tree to Rules 1 40 0,5002 0,0007 

num + PCA Trees Decision Tree 1 41 0,5002 0,0007 

num + PCA + OS Trees Decision Tree 1 41 0,5002 0,0007 

norm + disc + OS Lazy Default Model 14 32 0,5000 0,0000 

norm + disc + num + PCA Lazy Default Model 32 32 0,5000 0,0000 

disc + num + PCA + OS Lazy Default Model 28 33 0,5000 0,0000 

norm + OS Lazy Default Model 17 33 0,5000 0,0000 

num + PCA + OS Lazy Default Model 1 34 0,5000 0,0000 

norm Lazy Default Model 20 34 0,5000 0,0000 

norm + num + OS Lazy Default Model 59 34 0,5000 0,0000 

norm + disc Lazy Default Model 15 34 0,5000 0,0000 

norm + disc + OS Rules Tree to Rules 14 34 0,5000 0,0000 

norm + disc + num + PCA + OS Lazy Default Model 28 34 0,5000 0,0000 

disc + OS Trees Decision Tree 14 35 0,5000 0,0000 

disc + num Lazy Default Model 58 35 0,5000 0,0000 

norm + num Lazy Default Model 61 35 0,5000 0,0000 

norm + disc Trees Decision Tree 15 35 0,5000 0,0000 

norm + disc Rules Tree to Rules 15 35 0,5000 0,0000 

norm + disc + OS Trees Decision Tree 14 35 0,5000 0,0000 

norm + disc + num Lazy Default Model 58 35 0,5000 0,0000 
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num + PCA Lazy Default Model 1 36 0,5000 0,0000 

disc Trees Decision Tree 15 36 0,5000 0,0000 

disc Rules Tree to Rules 15 36 0,5000 0,0000 

disc + OS Lazy Default Model 14 36 0,5000 0,0000 

disc + num + OS Lazy Default Model 57 36 0,5000 0,0000 

norm + num + PCA Lazy Default Model 32 36 0,5000 0,0000 

num + PCA + OS Trees Random Tree 1 37 0,5000 0,0000 

disc + OS Rules Tree to Rules 14 37 0,5000 0,0000 

disc + num + PCA Lazy Default Model 32 37 0,5000 0,0000 

norm + disc + OS Trees Decision Tree (Multiway) 14 37 0,5000 0,0000 

norm + disc + num + OS Lazy Default Model 57 37 0,5000 0,0000 

num + PCA Discriminant Analysis Quadratic Discriminant Analysis 1 38 0,5000 0,0000 

norm + num + PCA + OS Lazy Default Model 30 38 0,5000 0,0000 

norm + disc Trees Decision Tree (Multiway) 15 38 0,5000 0,0000 

num + OS Lazy Default Model 59 39 0,5000 0,0000 

num + PCA Trees Random Tree 1 39 0,5000 0,0000 

num + PCA + OS Support Vector Machines Hyper Hyper 1 39 0,5000 0,0000 

num + PCA + OS Discriminant Analysis Linear Discriminant Analysis 1 39 0,5000 0,0000 

disc Lazy Default Model 15 39 0,5000 0,0000 

disc Trees Decision Tree (Multiway) 15 39 0,5000 0,0000 

disc + OS Trees Decision Tree (Multiway) 14 39 0,5000 0,0000 

num Lazy Default Model 61 40 0,5000 0,0000 

num + PCA + OS Discriminant Analysis Quadratic Discriminant Analysis 1 40 0,5000 0,0000 

OS Lazy Default Model 17 41 0,5000 0,0000 

num + PCA Trees Decision Stump 1 41 0,5000 0,0000 

num + PCA Support Vector Machines Hyper Hyper 1 41 0,5000 0,0000 
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num + PCA Discriminant Analysis Linear Discriminant Analysis 1 41 0,5000 0,0000 

num + PCA + OS Trees Decision Stump 1 41 0,5000 0,0000 

num + PCA + OS Discriminant Analysis Regularized Discriminant Analysis 1 41 0,5000 0,0000 

num + PCA Discriminant Analysis Regularized Discriminant Analysis 1 43 0,5000 0,0000 

norm + OS Trees Decision Stump 17 48 0,5000 0,0000 

norm + disc + num Trees Random Tree 58 48 0,5000 0,0000 

no transformation Trees Random Tree 20 49 0,5000 0,0000 

norm + num + OS Trees Random Tree 59 49 0,5000 0,0000 

norm + num Trees Random Tree 61 50 0,5000 0,0000 

no transformation Lazy Default Model 20 51 0,5000 0,0000 

disc + num Trees Random Tree 58 51 0,5000 0,0000 

norm + disc + num + OS Trees Random Tree 57 52 0,5000 0,0000 

disc + num + OS Trees Random Tree 57 53 0,5000 0,0000 

norm + num + PCA Trees Random Tree 32 58 0,5000 0,0000 

norm + num + PCA + OS Trees Random Tree 30 60 0,5000 0,0000 

norm + disc + num + PCA Trees Random Tree 32 61 0,5000 0,0000 

OS Trees Decision Stump 17 62 0,5000 0,0000 

num Support Vector Machines Hyper Hyper 61 65 0,5000 0,0000 

disc + num + PCA Trees Random Tree 32 65 0,5000 0,0000 

disc + num + PCA + OS Discriminant Analysis Linear Discriminant Analysis 28 66 0,5000 0,0000 

disc + num + PCA + OS Discriminant Analysis Quadratic Discriminant Analysis 28 67 0,5000 0,0000 

norm + num + PCA + OS Discriminant Analysis Linear Discriminant Analysis 30 69 0,5000 0,0000 

norm + disc + num + PCA + OS Trees Random Tree 28 69 0,5000 0,0000 

norm + num + PCA + OS Discriminant Analysis Quadratic Discriminant Analysis 30 71 0,5000 0,0000 

norm + disc + num + PCA + OS Discriminant Analysis Quadratic Discriminant Analysis 28 71 0,5000 0,0000 

disc + num + PCA Discriminant Analysis Quadratic Discriminant Analysis 32 72 0,5000 0,0000 
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norm + disc + num + PCA Discriminant Analysis Quadratic Discriminant Analysis 32 72 0,5000 0,0000 

disc + num + PCA Discriminant Analysis Linear Discriminant Analysis 32 73 0,5000 0,0000 

norm + num + PCA Discriminant Analysis Linear Discriminant Analysis 32 74 0,5000 0,0000 

norm + disc + num + PCA + OS Discriminant Analysis Linear Discriminant Analysis 28 74 0,5000 0,0000 

norm Trees Decision Stump 20 75 0,5000 0,0000 

norm + num + PCA Discriminant Analysis Quadratic Discriminant Analysis 32 75 0,5000 0,0000 

norm + disc + num + PCA Discriminant Analysis Linear Discriminant Analysis 32 76 0,5000 0,0000 

disc + num + PCA + OS Discriminant Analysis Regularized Discriminant Analysis 28 77 0,5000 0,0000 

norm + disc + num + OS Rules Tree to Rules 57 77 0,5000 0,0000 

disc + num Rules Tree to Rules 58 78 0,5000 0,0000 

norm + disc + num + OS Trees Decision Tree 57 78 0,5000 0,0000 

norm + disc + num Rules Tree to Rules 58 79 0,5000 0,0000 

disc + num + OS Trees Decision Tree 57 80 0,5000 0,0000 

norm + disc + num Trees Decision Tree 58 80 0,5000 0,0000 

disc + num Trees Decision Tree 58 81 0,5000 0,0000 

norm + num + OS Rules Tree to Rules 59 81 0,5000 0,0000 

norm + num + PCA + OS Discriminant Analysis Regularized Discriminant Analysis 30 82 0,5000 0,0000 

norm + num + OS Trees Decision Tree 59 83 0,5000 0,0000 

num + OS Trees Decision Tree 59 85 0,5000 0,0000 

num + OS Rules Tree to Rules 59 85 0,5000 0,0000 

no transformation Trees Decision Stump 20 86 0,5000 0,0000 

norm + disc + num + PCA Discriminant Analysis Regularized Discriminant Analysis 32 86 0,5000 0,0000 

norm + disc + num + PCA + OS Discriminant Analysis Regularized Discriminant Analysis 28 86 0,5000 0,0000 

disc + num + PCA Discriminant Analysis Regularized Discriminant Analysis 32 88 0,5000 0,0000 

norm + num + PCA Discriminant Analysis Regularized Discriminant Analysis 32 89 0,5000 0,0000 

disc + num + OS Rules Tree to Rules 57 95 0,5000 0,0000 
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norm + disc + OS Trees Random Forest 14 109 0,5000 0,0000 

disc + OS Trees Random Forest 14 110 0,5000 0,0000 

disc + num + PCA + OS Trees Random Tree 28 111 0,5000 0,0000 

disc Trees Random Forest 15 112 0,5000 0,0000 

norm + disc Trees Random Forest 15 114 0,5000 0,0000 

norm + disc + num Trees Decision Tree (Multiway) 58 121 0,5000 0,0000 

disc + num + OS Trees Decision Tree (Multiway) 57 122 0,5000 0,0000 

disc + num Trees Decision Tree (Multiway) 58 123 0,5000 0,0000 

norm + disc + num + OS Trees Decision Tree (Multiway) 57 123 0,5000 0,0000 

norm + disc + num + OS Discriminant Analysis Linear Discriminant Analysis 57 131 0,5000 0,0000 

norm + num + OS Trees Decision Tree (Multiway) 59 133 0,5000 0,0000 

disc + num + OS Discriminant Analysis Linear Discriminant Analysis 57 138 0,5000 0,0000 

norm + disc + num Discriminant Analysis Linear Discriminant Analysis 58 139 0,5000 0,0000 

norm + num + OS Discriminant Analysis Linear Discriminant Analysis 59 140 0,5000 0,0000 

disc + num Discriminant Analysis Linear Discriminant Analysis 58 141 0,5000 0,0000 

num + OS Trees Decision Tree (Multiway) 59 142 0,5000 0,0000 

num + OS Discriminant Analysis Linear Discriminant Analysis 59 145 0,5000 0,0000 

norm + num Discriminant Analysis Linear Discriminant Analysis 61 155 0,5000 0,0000 

disc + num + OS Discriminant Analysis Regularized Discriminant Analysis 57 172 0,5000 0,0000 

norm + disc + num + OS Discriminant Analysis Regularized Discriminant Analysis 57 174 0,5000 0,0000 

disc + num + PCA + OS Trees Decision Stump 28 177 0,5000 0,0000 

norm + disc + num Discriminant Analysis Regularized Discriminant Analysis 58 178 0,5000 0,0000 

disc + num Discriminant Analysis Regularized Discriminant Analysis 58 182 0,5000 0,0000 

norm + num + OS Discriminant Analysis Regularized Discriminant Analysis 59 182 0,5000 0,0000 

num + OS Discriminant Analysis Regularized Discriminant Analysis 59 183 0,5000 0,0000 

num Discriminant Analysis Linear Discriminant Analysis 61 184 0,5000 0,0000 
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norm + num Trees Decision Stump 61 184 0,5000 0,0000 

norm + disc + num + PCA + OS Trees Decision Stump 28 186 0,5000 0,0000 

norm + num + PCA + OS Trees Decision Stump 30 188 0,5000 0,0000 

num Trees Decision Stump 61 195 0,5000 0,0000 

norm + disc + num + PCA Trees Decision Stump 32 196 0,5000 0,0000 

norm + num + PCA Trees Decision Stump 32 197 0,5000 0,0000 

norm + num Discriminant Analysis Regularized Discriminant Analysis 61 207 0,5000 0,0000 

num Discriminant Analysis Regularized Discriminant Analysis 61 209 0,5000 0,0000 

disc + num + PCA Trees Decision Stump 32 238 0,5000 0,0000 

disc + num + PCA + OS Trees Decision Tree 28 419 0,5000 0,0000 

norm + disc + num + PCA + OS Rules Tree to Rules 28 420 0,5000 0,0000 

disc + num + PCA + OS Rules Tree to Rules 28 427 0,5000 0,0000 

norm + disc + num + PCA + OS Trees Decision Tree 28 428 0,5000 0,0000 

norm + disc + num + PCA Rules Tree to Rules 32 590 0,5000 0,0000 

norm + disc + num + PCA Trees Decision Tree 32 594 0,5000 0,0000 

disc + num + PCA Trees Decision Tree 32 599 0,5000 0,0000 

disc + num + PCA Rules Tree to Rules 32 602 0,5000 0,0000 

norm + num + PCA + OS Trees Decision Tree 30 856 0,5000 0,0000 

norm + num + PCA + OS Rules Tree to Rules 30 861 0,5000 0,0000 

norm + num + PCA Trees Decision Tree 32 983 0,5000 0,0000 

norm + num + PCA Rules Tree to Rules 32 988 0,5000 0,0000 

disc + OS Rules Subgroup Discovery 14 6534 0,5000 0,0000 

norm + disc + OS Rules Subgroup Discovery 14 6694 0,5000 0,0000 

norm + disc Rules Subgroup Discovery 15 7164 0,5000 0,0000 

disc Rules Subgroup Discovery 15 8472 0,5000 0,0000 

norm + num + PCA + OS Rules Single Rule Induction (Single Attribute) 30 17728 0,5000 0,0000 
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norm + num + PCA Rules Single Rule Induction (Single Attribute) 32 18851 0,5000 0,0000 

norm + OS Trees Decision Tree 17 44 0,4984 0,0049 

norm + OS Rules Tree to Rules 17 45 0,4984 0,0049 

OS Rules Tree to Rules 17 51 0,4984 0,0049 

norm Trees Decision Tree 20 51 0,4984 0,0049 

OS Trees Decision Tree 17 54 0,4984 0,0049 

no transformation Rules Tree to Rules 20 65 0,4984 0,0049 

norm Rules Tree to Rules 20 67 0,4984 0,0049 

no transformation Trees Decision Tree 20 74 0,4984 0,0049 

norm + num Trees Decision Tree 61 95 0,4984 0,0049 

num Trees Decision Tree 61 100 0,4984 0,0049 

num Rules Tree to Rules 61 100 0,4984 0,0049 

norm + num Rules Tree to Rules 61 100 0,4984 0,0049 

num Logistic Regression Logistic Regression (Evolutionary) 61 30425 0,4970 0,0104 

num + PCA Support Vector Machines Fast Large Margin 1 344 0,4880 0,0702 

num + PCA + OS Support Vector Machines Fast Large Margin 1 347 0,4880 0,0702 

num Support Vector Machines Support Vector Machine (PSO) 61 15733 0,4857 0,0223 

disc + num + PCA + OS Rules Single Rule Induction (Single Attribute) 28 9185 0,4802 0,0751 

norm + disc + num + PCA + OS Rules Single Rule Induction (Single Attribute) 28 9614 0,4802 0,0751 

norm + disc + num + PCA Rules Single Rule Induction (Single Attribute) 32 11007 0,4765 0,0733 

disc + num + PCA Rules Single Rule Induction (Single Attribute) 32 11191 0,4765 0,0733 

num + PCA Logistic Regression Logistic Regression (Evolutionary) 1 24891 0,4750 0,0551 

num + PCA + OS Logistic Regression Logistic Regression (Evolutionary) 1 24391 0,4735 0,0654 

num + PCA Neural Nets Perceptron 1 41 0,3245 0,1170 

num + PCA + OS Neural Nets Perceptron 1 41 0,3245 0,1170 

 




