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THE REST DIFFERENCE PROBLEM IN ROUND-ROBIN TOURNAMENTS

ABSTRACT

Fairness is a key consideration in designing tournament schedules. When two teams

play against each other, it is only fair to let them rest the same amount of time before

their game. In this study, we aim to reduce, if not eliminate, the difference between

the rest durations of opposing teams in each game of a round-robin tournament. The

rest difference problem proposed in this study constructs a timetable that determines

both the round and the matchday of each game such that the total rest difference

throughout the tournament is minimized. We provide a mixed-integer programming

formulation and a matheuristic algorithm that solve the problem. Moreover, we de-

velop a polynomial-time exact algorithm for some special cases of the problem. This

algorithm finds optimal schedules with zero total rest difference when the number of

teams is a positive-integer power of 2 and the number of games in each day is even.

Some theoretical results regarding tournaments with one-game matchdays are also

provided.

Keywords: sports scheduling, round-robin tournaments, rest difference,

heuristics
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LİG USULÜ TURNUVALARDA DİNLENME SÜRESİ FARKI PROBLEMİ

ÖZET

Adillik, turnuva çizelgelerinin tasarlanmasında dikkat edilmesi gereken önemli bir

husustur. İki takımın karşılaştığı bir maçta, müsabakadan önce takımların aynı

süre dinlenmelerini sağlamak adil bir çizelge için gereklidir. Bu çalışmada lig usulü

turnuvalarda herbir maçtaki takım çiftinin bir önceki maçlarından beri dinlendikleri

süreler arasındaki farkı azaltan (mümkünse ortadan kaldıran) turnuva çizelgelerinin

oluşturulması amaçlanmaktadır. Çalışmada önerilen dinlenme süresi farkı prob-

lemi, turnuva boyunca oluşan dinlenme süresi farklarının toplamını en aza indirecek

şekilde her maçın hangi turda ve hangi maç gününde oynanacağını belirleyen bir maç

takvimi oluşturmaktadır. Problemin çözümü için bir karma tamsayılı programlama

formülasyonu geliştirilmiş ve bir mat-sezgisel algoritması sunulmuştur. Ayrıca, prob-

lemin bazı özel durumları için polinom zamanlı bir kesin algoritma geliştirilmiştir.

Eğer takım sayısı 2’nin pozitif tamsayı kuvvetiyse ve her maç günündeki oyun

sayısı çift ise, bu algoritma toplam dinlenme süresi farkı sıfır olan maç takvimleri

üretebilmektedir. Çalışmada ayrıca bazı maç günlerine tek maç atanması gereken

problem örnekleri için teorik çıkarımlar verilmektedir.

Anahtar Sözcükler: spor çizelgeleme, lig usulü turnuvalar, dinlenme süresi

farkı, sezgisel algoritmalar
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1. INTRODUCTION

Sports scheduling (timetabling) has always been a challenging problem for tour-

nament organizers and a popular research topic for the practitioners of operations

research. In particular, round-robin is a popular format of sports competitions.

Round-robin scheduling focuses on scheduling problems to construct fair timetables

for round-robin tournaments compatible with several restrictions imposed by the or-

ganizers. In round-robin tournaments, every pair of teams plays each other a fixed

number of times during the competition. In single round-robin tournaments (SR-

RTs), each team plays each other team exactly once, while in double round-robin

tournaments (DRRTs), each team plays each other twice.

A round is a set of games in which every team plays at most one game. In time-

constrained (compact) round-robin tournaments, every team plays exactly one game

in each round and the games are scheduled to the minimum number of rounds nec-

essary for finishing all the games. In a compact SRRT, if the number of teams is n,

this minimum number happens to be n − 1. In contrast, time-relaxed round-robin

tournaments schedule the games to more than n−1 rounds due to reasons such as the

unavailability of teams or venues at some specific rounds. The survey by Rasmussen

and Trick (2008) provides a coherent explanation of the various notions and terminol-

ogy on round-robin scheduling. The fairness of a compact round-robin tournament

can be defined with respect to various criteria, such as minimizing breaks, travel

distances or rest differences, and balancing carryover effects or strength groups.

One of the most researched criteria is the minimization of breaks. A break occurs

when a team plays two consecutive home games or two consecutive away games.

The carry-over effect is also a well-researched criterion in sports literature. Assume

a team, say team x, plays two consecutive games against two opponents. Team x

may be affected positively (or negatively) after playing against the first opponent

1



due to the level of challenge in the game and may (or may not) play with its full

potential in the next game against the second opponent. In this situation, it is said

that the second opponent receives a carry-over effect from the first one. Minimization

of total distance traveled by teams is another well-known criterion. When a team

plays several consecutive away games without returning home, minimizing the total

distance traveled by a team becomes the top priority. Another criterion is related to

the strength groups, each of which contains teams of similar strength. When teams

are partitioned into several strength groups, it is preferable to schedule the teams

in such a way that avoids a team playing against the teams of the same group (e.g.,

extremely weak or extremely strong teams) in consecutive rounds.

Another criterion recently studied for round-robin tournaments is related to the

difference in rest durations between the pair of teams playing against each other in a

game, which is also the focus of this dissertation. In round-robin tournaments, when

two teams play against each other, it is only fair to let them rest the same amount of

time before their game. If the opposing teams are not rested equally before the game

against each other, the team with a longer rest time will have an advantage over

the less rested one. This is mainly because the less rested team is likely to be more

tired while the opposing team can play to its full potential. Therefore, tournament

organizers should try to minimize the difference in rest durations between opposing

teams in designing fair timetables. If a league timetable ignores this aspect, it is

often criticized by team managers whose teams have fewer days to rest than their

opponents.

As a recent example of this situation, Premier League team West Ham United

FC’s coach David Moyes made a complaint to the press just before their league

game against Tottenham Hotspur FC (Whetstone, 2020). Moyes emphasized that

they had rested one day less than Tottenham since their last league matches, and

commented that this situation was against them. West Ham lost that game 2-0.

In another example, Frank Lampard, the former manager of Chelsea FC, moaned

about Liverpool FC having two extra days to rest for Super Cup game against them

2



in the press conference aftermath of the game, which they lost on the serial penalties

(Sandford, 2019).

Durán (2021), a recent survey on sports scheduling, addresses the rest difference as

‘a topic that will no doubt arise in the future’. In our study, we aim to reduce, if

not eliminate, the difference between the rest durations of the opposing teams in

a game. To be more specific, we investigate the rest difference problem (RDP ) of

minimizing the sum of rest differences in the games of a compact SRRT, namely the

total rest difference (RD). In RDP, we determine the round and matchday of each

game so that the total rest difference is minimized. Although the thesis assumes the

tournament in consideration is a compact SRRT, the results can easily be generalized

for l-tuple round-robin tournaments where each team plays each other team l times.

In order to explain the rest difference problem, we provide an illustrative example

shown in Table 1.1. In this example, we consider an SRRT in which each one of the

n = 10 teams plays against all other teams exactly once. Thus, the tournament is

composed of 9 rounds, and each team plays exactly one game in each round. The

total number of games is n ·(n−1)/2 = 45. Assuming that each round is spread into

3 consecutive matchdays, the numbers of games distributed to the first, second, and

third matchdays are given to be 2, 2, and 1, respectively. It can be assumed that

each round immediately starts the next day after the last matchday of the previous

round. Thus, the tournament lasts for 27 days.

Table 1.1 An example of an RDP with 10 teams and 3 matchdays
Round Day1 Day2 Day3

1 1-10 2-9 3-8 4-7 5-6
2 10-2 7-5 8-4 9-3 1-6
3 1-4 5-3 6-2 7-10 8-9
4 2-3 8-6 9-5 10-4 1-7
5 4-5 10-8 2-7 3-6 1-9
6 1-5 6-4 7-3 8-2 9-10
7 1-8 9-7 10-6 2-5 3-4
8 4-2 1-3 5-10 6-9 7-8
9 1-2 3-10 4-9 5-8 6-7
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Table 1.1 provides a feasible timetable for this example. Table 1.2 illustrates the

rest durations of opposing teams in each game. One can observe that the opposing

teams do not rest for an equal number of days in most games. For example, before

the game between team 6 and team 2 in round 3, the teams have rested for 2 and

4 days, respectively. The rest difference of 2 days between the teams in this game

is considered as an unfairness that works against team 6. When we sum the rest

differences over all the games, the total rest difference RD in this tournament is

found to be 38. Indeed, it is possible to find an optimal timetable with RD = 16

for this example as it will be explained later.

Table 1.2 Rest durations (in days) for the timetable given in Table 1.1
Round Day1 Day2 Day3

1 - - - - -
2 3-3 2-1 3-3 4-3 5-3
3 1-2 3-2 2-4 4-4 4-4
4 2-3 1-2 2-4 3-4 5-4
5 2-2 2-3 4-2 4-4 3-4
6 1-3 2-3 3-3 4-3 3-5
7 3-2 1-2 2-4 3-4 4-5
8 1-2 3-1 3-3 3-4 5-5
9 3-3 3-2 4-3 3-2 4-3

In the thesis, we provide a mixed-integer programming formulation and a matheuris-

tic algorithm for solving the rest difference problem. Moreover, we develop a

polynomial-time exact algorithm for some special cases of the problem. This al-

gorithm finds optimal schedules with zero total rest difference when the number

of teams is a positive-integer power of 2 and the number of games in each day is

even. Furthermore, we present some theoretical results regarding tournaments with

one-game matchdays.

The structure of the study is organized as follows. The literature review related to

our topic is provided in Chapter 2. The formal description of the RDP and the

mixed-integer programming formulation of the problem are presented in Chapter

3. In Chapter 3, we also provide some theoretical results regarding tournaments

with one-game matchdays. The solution methodologies are explained in Chapter 4,
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including the description of the polynomial-time exact method and the matheuris-

tic algorithm. Our experimental results are reported in Chapter 5, followed by a

conclusion in Chapter 6.
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2. LITERATURE REVIEW

2.1 Sports Scheduling

Sports scheduling is the process of organizing games between multiple teams into

what is called a tournament. A tournament consists of a series of games in which

teams play against each other. A Round-Robin Tournament (RRT) is a popular

form of organizing sports competitions. In round-robin tournaments, every pair of

teams plays each other a fixed number of times during the competition. In Single

Round-Robin Tournaments (SRRTs), every team plays every other team exactly

once, while in Double Round-Robin Tournaments (DRRTs), every team plays every

other team twice. Rasmussen and Trick (2008) provide the definitions of the various

notions and terminology related to round-robin tournaments.

A round is a set of games in which every team plays at most one game. In time-

constrained (compact) round-robin tournaments, games are scheduled in a minimum

number of rounds necessary for finishing all the games. If the number of teams is

n, this minimum number happens to be n − 1 in SRRTs. Therefore, in a compact

SRRT with n teams, the tournament consists of n · (n − 1)/2 games arranged into

(n − 1) rounds. In contrast, a time-relaxed round-robin tournament is scheduled

in more than the necessary minimum rounds (i.e., more than (n − 1) rounds in an

SRRT) due to various reasons, such as the unavailability of teams or venues at some

specific rounds. In this study, we assume that the tournament in consideration is

a compact single round-robin tournament. In other words, the games should be

assigned to rounds such that each team plays exactly a single game in each round.

In the thesis, we name the schedule only providing the opponent of each team in

each round as the opponent schedule. The opponent schedule does not specify the

venue (i.e., the home team) and the matchday of the games. The home-away-pattern
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(HAP) for a team decides whether the team plays at home or away in its games

given by the opponent schedule. The HAP set, the set consisting of each team’s

HAP, determines in which venue (home or away) each team plays in each round.

The league fixture is the term we will use for the schedules that combines opponent

schedule with a compatible HAP set. It specifies the games to be played in each

round with the information of which team will be the home team in each game. In

the thesis, the term schedule or timetable is used to describe the league schedule

that combines the opponent schedule with the information of the matchdays when

the games are played. Thus, the rest difference problem in this study decided a

timetable (schedule) which minimizes the total rest difference (RD) value.

In DRRTs, the tournament is often split into two intervals. If each interval contains

an SRRT of the same teams, the tournament is said to be phased. Thus, in a phased

DRRT, no team plays against another team for the second time, before it has played

at least one match against all the other teams. There are different symmetry struc-

tures used in constructing phased DRRTs. In the mirrored structure, the opponents

in the second interval are identical to the opponents of the first interval. In the

inverted structure, the second interval is played in the reversed order of the first

interval. In the English structure, the opponents in the first time slot of the second

interval are the same as in the last time slot of the first interval, and the opponents

of the ith time slot of the second interval correspond with opponents of the (i− 1)th

time slot of the first interval. In the French structure, the opponents in the last time

slot of the second interval are the same as in the first time slot of the first interval.

For all other time slots, the opponents of the ith time slot in the second interval

are the same as in the (i+ 1)th time slot of the first interval (Van Bulck, Goossens,

Schönberger, & Guajardo, 2020). Finally, in the free-style structure, we do not fol-

low any rules, so the order of opponents in the second interval are independent of

the order of opponents in the first interval. Table 2.1 illustrates examples of these

symmetry structures.
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Table 2.1 Examples of symmetry structures used in DRRTs
First Interval Second Interval

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
Mirrored (1,2) (3,4) (5,6) (7,8) (9,10) (2,1) (4,3) (6,5) (8,7) (10,9)
Inverse (1,2) (3,4) (5,6) (7,8) (9,10) (10,9) (8,7) (6,5) (4,3) (2,1)
English (1,2) (3,4) (5,6) (7,8) (9,10) (10,9) (2,1) (4,3) (6,5) (8,7)
French (1,2) (3,4) (5,6) (7,8) (9,10) (4,3) (6,5) (8,7) (10,9) (2,1)

Free-style (1,2) (3,4) (5,6) (7,8) (9,10) (6,5) (2,1) (4,3) (8,7) (10,9)

A special type of opponent schedule for constructing round-robin tournaments is

known as canonical schedule. In the canonical schedule of an SRRT with even n

teams, the set of the games of round r is given by the following equation.

Gamesr = {[n, r]} ∪ {[r + k, r − k]; k = 1, . . . , n/2− 1} (2.1)

In this equation, terms r+k and r−k are expressed as mod(r+k, n−1) and mod(r−

k, n− 1), respectively. In other words, they can only get one of the values in the set

{1, 2, . . . , n}. For example, according to Equation 2.1, in a tournament with n = 8,

the games of the third round (Games3) turn out to be {[8, 3], [4, 2], [5, 1], [6, 7]}.

Canonical schedules are popular since they can guarantee a league fixture with the

theoretical lower bound of the break minimization problem (which is n − 2 for an

even number of teams n) if a proper HAP set is used (de Werra, 1981). This HAP

set can be identified with the following two rules.

• For each game [n, r], team r plays at home if r is even, and away if r is odd.

• For each game [r + k, r − k], team r + k plays at home if k is even, and away

if k is odd.

Another popular method for constructing canonical schedules is the circle method

(Çavdaroğlu & Atan, 2020; deWerra, 1981; Lambrechts, Ficker, Goossens, & Spieksma,

2018; Suksompong, 2016). The circle method works as follows. Suppose we apply

the method with n teams. For the first round, we line the teams up in two rows and

align each team in the first row with another team in the second. Thus, the games

of the first round are composed of the pairs of aligned teams. To generate the games

of the next round, the top-left team is fixed and the remaining teams are rotated
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one step clockwise. If we apply the rotation n − 2 times, an SRRT involving these

n teams is constructed (Suksompong, 2016). Figure 2.1 shows the visual represen-

tation of two rounds generated using the circle method for n = 8 teams. According

to the figure, the games of the initial round are {(8, 6), (4, 1), (3, 5), (7, 2)}. After

the rotation, the games of the next round are obtained as {(8, 1), (6, 5), (4, 2), (3, 7)}.

8     4      3      7

6     1      5      2

8     6      4      3

1     5      2      7

8     4      3      7

6     1      5      2

initial round rotation next round

Figure 2.1 A visual representation of the circle method

As of the year 2018, the professional football leagues of European countries such

as Turkey, Russia and Portugal were scheduled using the canonical schedule. The

canonical schedule was preferred in these countries because it can minimize the num-

ber of breaks. It may not have been preferred if additional criteria such as carryover

effect or rest differences had been taken into account. For example, as of 2018, some

countries such as England, Germany, France and Belgium were using customized

schedules instead of the canonical schedule in their professional football leagues

because of the criteria they considered beyond break minimization (D. Goossens,

2018).

2.2 Fairness Criteria

In sports scheduling, fairness issues are quite significant. Ensuring fairness between

teams is the main consideration in designing sports schedules. Several fairness crite-

ria are considered in developing sports schedules. For the compact round robin tour-

naments, the most popular fairness criteria are (i) minimizing breaks, (ii) balancing

carryover effects, (iii) balancing strength groups, (iv) minimizing travel distances,

and (v) minimizing rest differences. For a broad discussion of various fairness cri-

teria in sports scheduling, one may refer to Kendall, Knust, Ribeiro, and Urrutia

(2010) and Ribeiro (2012).
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2.2.1 Break minimization

Break Minimization is one of the most researched criteria in sports scheduling. When

a team plays a game in its venue, we say this team has a home game (H), and the

opposite team has an away game (A). The home-away-pattern (HAP) is the sequence

of home games and away games played by a single team. The break occurs when

the team plays two consecutive home games (HH) or away games (AA).

In order to illustrate the occurance of break in round-robin tournaments, Table 2.2

provides an illustrative opponent schedule for an SRRT with n = 6 teams. Each

row in the table shows the list of opponents of the corresponding team in 5 rounds

(weeks). Table 2.3 shows a HAP set which is compatible with the opponent schedule

presented in Table 2.2. For example, according to Table 2.3, team 1 has its first

game at home (H) while team 4 plays its game away (A) at the third round. Since

the consecutive home (HH) or consecutive away (AA) games in the HAP set ‘break’

the alternating home and away pattern, this phenomenon is named as break. In

Table 2.3, the break occurrences are shown by underlined H’s or A’s. When the

HAP set given in Table 2.3 is assigned to the opponent schedule of Table 2.2, a

league fixture having 6 breaks is obtained.

Table 2.2 An opponent schedule of a tournament with 6 teams
Rounds

1 2 3 4 5
1 2 3 4 5 6
2 1 4 5 6 3

Teams 3 5 1 6 4 2
4 6 2 1 3 5
5 3 6 2 1 4
6 4 5 3 2 1

An important point here is that the HAPs given in Table 2.3 has to be compatible

with the opponent schedule of Table 2.2. For example, since there is a game between

teams 3 and 5 in the first round, these teams cannot simultaneously play at home

(H) or away (A) in this round. Additionally, since every team has to play against

every other team in round-robin tournaments, it is impossible that two teams pos-
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Table 2.3 HAP for the opponent schedule shown in Table 2.2
Rounds

1 2 3 4 5
1 H A H A H
2 A H A H A

Teams 3 A H A H H
4 H A A A H
5 H A H H A
6 A H H A A

sess the same HAP. Therefore, one cannot arbitrarily decide the HAP of a team.

Namely, the HAP set of a league fixture has to be feasible with regard to the given

opponent schedule. The problem of deciding the HAP for each team for a given op-

ponent schedule (e.g., Table 2.2) in order to minimize the total breaks is known as

the timetable constrained break minimization problem (TC-BMP) in the literature.

Although the computational complexity of the TC-BMP is still an open research

question, it is conjectured that the problem is NP-hard (Elf, Jünger, & Rinaldi,

2003). On the other hand, the classic break minimization problem (BMP) tries to

minimize the total number of breaks under a series of hard constraints.

There exist numerous studies in the literature concerning break occurrences in

round-robin tournaments. de Werra (1981) was the first who did much pioneer-

ing work concerning breaks. The study proves that for an even number of teams n,

the minimum number of breaks is at least (n − 2), while with an odd n, one can

obtain a guaranteed schedule with no breaks. van ’t Hof, Post, and Briskorn (2010)

deal with a BMP which minimizes the number of breaks in an SRRT schedule with

an even number of clubs with two teams each, and where the teams of the same

club play against each other in the first round and never play at home simultane-

ously. Rasmussen and Trick (2007) investigate a BMP that tries to minimize the

total number of breaks in a DRRT with place and separation constraints. More-

over, Urrutia and Ribeiro (2006) investigate the relation between breaks and travel

distances in round-robin tournament scheduling problems.

In the literature, usually two different approaches have been used in designing sports

schedules considering classic break minimization problem (BMP). In the “First
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Schedule Then Break (FSTB)” approach, the games are determined first for each

round, ignoring any home or away requirements, i.e., only determining the oppo-

nent schedule. Afterward, the corresponding home–away patterns are developed for

each team, considering minimizing the number of breaks as much as possible. This

approach is appropriate when there are critical requirements in the schedule that

do not involve HAP, such as fixed-game assignments in the opponent schedule or

balancing carry-over effects (which will be discussed later in this section). Thus,

such requirements are met early in the schedule, and then the best HAP can be

developed. Trick (2001) develops schedules in cases where a fixed-game assignment

is the critical feature. He proposes a two-phase method, where the first phase is to

schedule the teams considering the critical requirement and ignoring any home and

way requirement, and the second phase involves assigning home and away teams.

The “First Break Then Schedule (FBTS)” approach is the opposite of the FSTB. It

starts with developing feasible home–away patterns, often with a minimum number

of breaks, then the opponent schedule compatible with the selected HAP set is

determined. For example, Nemhauser and Trick (1998) develop an approach for

constructing a schedule for a basketball competition where each school plays home

and away games with each other. They propose an algorithm consisting of three

main steps. First, they find a set of Home, Away, and Bye (HAB) patterns equal to

the number of teams. Second, they assign games to the pattern set to come up with

a league fixture. Finally, they find the final schedule by assigning the teams to the

patterns. However, in both approaches; FBTS and FSTB, tournament organizers

often aim to minimize the number of breaks as much as possible. In other words,

they aim to alternate home games and away games for each team as much as possible.

Literature concerning the timetable constrained break minimization problem (TC-

BMP) is also abundant. Régin (2001) proposes a constraint programming (CP)

model that solves the instances of TC-BMP up to size 20. Trick (2001) proposes

an integer programming (IP) model for TC-BMP extended with triangle valid in-

equalities. Elf et al. (2003) observe that an instance of TC-BMP can be transformed
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into an equivalent maximum cut instance. Miyashiro and Matsui (2005) prove that

finding a HAP set with exactly n− 2 breaks for a given opponent schedule or show-

ing that such a HAP set does not exist can be done in polynomial time. Miyashiro

and Matsui (2006) formulate the TC-BMP as the MAX-RES-CUT problem (a vari-

ations of maximum cut problem in which a given pairs of vertices are forced to be

on either the same side of the cut or on different sides of the cut) and the maxi-

mum 2-satisfiability problem. Applying Goemans and Williamson’s approximation

algorithm using semidefinite programming, they manage to generate solutions with

good approximation ratios for the instances of TC-BMP up to 40 teams. Post and

Woeginger (2006) show that the TC-BMP is NP-hard for a given partial opponent

schedule with no less than three rounds.

2.2.2 Balancing carryover effects

The carry-over effect is another well-researched criterion in the literature. Since

teams have different characteristics, some teams can benefit from the way the tour-

nament is scheduled. For example, if team k plays against a strong team, say team

i, in a game, it may be very tired after this game. This fatigue may affect team

k’s performance in the next coming game. Suppose team k will play its next game

with team j, in this case, we say team j receives a carry-over effect from team i,

as team k may be exhausted and easier to defeat. If team i is a weak team, then

team k’s morale may be boosted after its game against team i and it may result

in a more confident game against team j in the next round. In that case, team

j receives an adverse carry-over effect from team i. The number of times team j

receives a carry-over effect from team i in a tournament is defined as cij. In the

opponent schedules where the cij values are not evenly distributed among the team

pairs, some cij values, say cAB, will be high resulting in team B receiving too many

carry-over effects from team A.

To provide a visual description of how carryover effects can be accumulated between

some team pairs, Table 2.4 gives the cij values of the opponent schedule presented in
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Table 2.2 for n = 6. According to Table 2.4, team 4 receives a carry-over effect from

team 1 three times during the SRRT. The reason is that the teams playing against

team 1 in rounds 1, 4 and 5 (3 times in total) play against team 4 in the next rounds.

Note that the next round after round 5 is assumed to be round 1 due the circular

definition of carry-over effects by K. G. Russell (1980). Since every team has to re-

ceive (send) a carry-over effect from (to) a team in each of its n− 1 games, the sum

of the values in each column (row) must be n− 1 in Table 2.4. Since a team cannot

receive a carry-over effect from itself, all the diagonal values are expected to be zero.

Table 2.4 The coe values for the opponent schedule shown in Table 2.2
Teams

1 2 3 4 5 6
1 0 0 1 3 0 1
2 3 0 1 0 1 0

Teams 3 1 1 0 1 1 1
4 0 1 1 0 3 0
5 1 0 1 0 0 3
6 0 3 1 1 0 0

In a round-robin tournament, we measure how balanced the cij values are distributed

among team pairs by calculating the carry-over effects value (coe) given by
∑

ij c
2
ij

(K. G. Russell, 1980). For example, the coe value for the opponent schedule of Table

2.2 can be calculated as 60 by squaring and then summing the cij values in Table 2.4.

If every team receives exactly one carry-over effect from every other team, coe can

get the smallest possible value, which is n2 − n. The opponent schedule with a coe

value of n2 − n is called a balanced schedule since it guarantees the most balanced

distribution of cij values among team pairs. The carry-over effects minimization

problem first introduced by K. G. Russell (1980) aims to distribute the carry-over

effects among the team pairs in the most balanced way possible (i.e., it aims to min-

imize the coe value). A generally accepted polynomial-time solution method for the

problem have not been found yet, and the computational complexity of the problem

is still open.
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K. G. Russell (1980) investigates a balanced distribution of the cij values among

team pairs. The study shows that when the number of teams is a power of 2, a

balanced schedule can always be achieved. The paper also reports coe values for the

team numbers 6, 10, 12, 14, 18, and 20. Anderson (1999) finds balanced schedules

for the first time for n = 20 and 22. The procedure proposed by Anderson (1999)

also finds the best solutions known to date, except for n = 12, which is obtained by

Guedes and Ribeiro (2011). Table 2.5 shows the best coe values for several numbers

of teams with the studies first discovering them. The asterisk symbol (*) indicates

that the schedule is balanced.

Table 2.5 The best coe values in the literature for several numbers of teams
n coe Reference
6 60 K. G. Russell (1980)
8 56* K. G. Russell (1980)
10 108 Anderson (1999)
12 160 Guedes and Ribeiro (2011)
14 234 Anderson (1999)
16 240* K. G. Russell (1980)
18 340 Anderson (1999)
20 380* Anderson (1999)

Günneç and Demir (2019) study the carry-over effects minimization problem with

the restrictions on the maximum number of breaks per team. Lambrechts et al.

(2018) prove that round-robin tournaments generated by the circle method (i.e.,

canonical schedules) have a maximum carry-over effects value. Kidd (2010) applies

a tabu search to find starters that produce schedules with small carry-over effects

values. On the other hand, Guedes and Ribeiro (2011) investigate a weighted version

of the carry-over effects minimization problem, in which cij values have different

weights. They provide a heuristic for minimizing the weighted carry-over effects

value in round-robin tournaments.
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2.2.3 Balancing strength groups

For round-robin tournaments, in which the teams can be partitioned into |S| ≥ 2

strength groups, the organizers might be interested in designing schedules that avoid

teams playing against extremely weak or extremely strong opponents in consecutive

rounds. Two problems have been defined with respect to the strength groups. In

the first problem, so called the group-changing problem, the objective is to de-

sign an opponent schedule in which no team plays against two teams of the same

strength group in two consecutive rounds. In the second problem, so called the

group-balanced problem, the objective is to design an opponent schedule in which

no team plays more than once against teams of the same strength group within

|S| consecutive periods. Note that if a schedule is group-balanced, it must also be

group-changing by definition.

Figure 2.2 provides an illustrative example with |S| = 4 strength groups. SG1,

SG2, SG3 and SG4 can be interpreted as the strength groups of extremely weak,

weak, strong and extremely strong teams, respectively. The figure shows how the

opponent list of a team should look like when the schedule is (a) group-changing,

(b) group-balanced, and (c) neither group-changing nor group balancing. In Figure

2.2a, the team never plays against two teams of the same strength group in two

consecutive rounds. In Figure 2.2b, the team never plays more than once against

teams of the same strength group within 4 consecutive periods. Note that Figure

2.2a and 2.2b gives the opponent list of a single team. The aforementioned property

in Figure 2.2a (2.2b) should hold for every team’s opponent list in order to classify

the schedule as group-changing (group-balanced). In Figure 2.2c, the team plays

against teams of the same strength group in consecutive rounds (e.g., in rounds 1&2

and 4&5), so the schedule with such an opponent list for a team can neither be

group-changing nor group balancing.

Briskorn (2009) is the first study introducing the concepts of group-changing and

group-balanced schedules. For an even number of teams, the study discusses in
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SG3 SG1 SG4 SG2 SG3 SG1 SG4 SG2

SG2 SG1 SG2 SG3 SG2 SG4 SG1 SG4

SG1 SG1 SG4 SG2 SG2 SG3 SG3 SG1

(a) group-changing

(b) group-balancing

(c) neither group-balancing nor group-changing

1 2 3 4 5 6 7 8

Rounds

Figure 2.2 Group-changing and group-balanced schedules

which circumstances a group-changing schedule and a group-balanced schedule can

be constructed and in which cases they do not exist. For example, it is proven

that a group-balanced SRRT can be constructed if and only if |S| is even and

n/|S| is even. Briskorn and Knust (2010) construct group-balanced schedules based

on graph models for an odd number of teams. The study also constructs group-

changing schedules for an even number of teams and |S| = 3 groups. Additionally,

they investigate generalized problems with arbitrary group sizes. Zeng and Mizuno

(2013) blends the problems of strength groups with break minimization problem.

They propose a constructive method to show the existence of group-balanced SRRTs

with a minimum number of breaks, if |S| is a power of 2 with identical even group

sizes. It is also shown that group-changing SRRTs with a minimum number of

breaks can exist, if the number of teams n is a multiple of 4 and the union of some

groups contains exactly half of the teams.

2.2.4 Minimizing travel distances

Travel distances due to away games is a factor that impacts the teams’ performance.

Minimizing the travel distance is one of the fairness criteria frequently studied in the

literature. In national leagues of countries with large areas (e.g., Brazil, Argentina,

Chile, China) where the travel times are long, or in international tournaments where
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long distances between countries need to be traveled, minimizing the total distance

traveled has become an important goal in order to reduce travel costs and give

players more time to rest and train between consecutive games. Therefore, when a

team has to play two consecutive away games, this team usually travels directly from

the first game site to that of the second, without returning home. Thus, minimizing

the total distance traveled by all teams may positively impact their performance

and reduce traveling cost. Bean and Birge (1980) studied basketball games over

four seasons to analyze the effect of traveling on teams’ performance and league

cost. They found that the unnecessary number of airline miles traveled by teams

resulted in teams fatigue and dollar losses to the owners. Their proposed heuristic

algorithm succeeded in reducing the traveling distance while considering the league

constraints, which leads to reducing the traveling cost by 20.4%.

The Traveling Tournament Problem (TTP) aims to schedule a double round-robin

tournament, considering minimizing the total distance traveled by the teams. In

TTP, no two teams play against each other in two consecutive rounds. Furthermore,

the number of consecutive home games or consecutive away games in TTP has upper

and lower bounds for each team.

The Traveling Tournament Problem was first established by Easton, Nemhauser,

and Trick (2001). Kendall (2008) studies the minimization of total distance trav-

eled by 92 football league clubs over two complete fixtures in England. Kim (2019)

investigates the total travel distance in baseball league game scheduling, including

certain requirements relevant to baseball leagues. Furthermore, Thielen and West-

phal (2011) and Costa, Urrutia, and Ribeiro (2012) provide studies for minimizing

the total travel distance of teams.

2.2.5 Minimizing rest differences

The rest duration is the rest time between two consecutive games of a team. In

sports literature, there is a strong body of evidence regarding the impact of rest
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duration on teams’ performance. Steenland and Deddens (1997) studied 8,495 bas-

ketball games over eight seasons to analyze the effects of travel and rest on a team’s

performance. They find that longer time between consecutive games of a team im-

proved its performance, and the performance is affected negatively especially when

the team has only one day to rest. In contrast, the team’s peak performance occurs

when it has at least three days of rest. They conclude that the negative effects of

shorter duration between consecutive games occurred due to the lack of time for

physical recovery. Some researchers show the relation between congested fixtures

and high injury rates (Bengtsson, Ekstrand, & Hägglund, 2013; Scoppa, 2015).

Furthermore, Folgado, Duarte, Marques, and Sampaio (2015) investigate the ef-

fects of congested fixtures on teams’ performance in football. They find that the

tactical performance measured by players’ movement has decreased during these

games. They claim that this reduction was associated with fatigue and consequent

adaptation strategies. Some researchers show the effect of fatigue on teams’ perfor-

mance in football (Sanchez-Sanchez et al., 2019; Watanabe, Wicker, & Yan, 2017).

R. D. Goossens, Kempeneers, Koning, and Spieksma (2015) study the effect of fa-

tigue resulting from the previous game on players’ chances of winning the next game

in tennis. A recent study by Esteves, Mikolajec, Schelling, and Sampaio (2021) finds

that the likelihood of winning a game in basketball increases 38% from playing back-

to-back games to one day rest between games.

Some researchers dealing with sports scheduling focus on the individual rest duration

of a team between its consecutıve games. In this approach, the researchers try to

balance the rest duration over teams as much as possible. For example, Schönberger,

Mattfeld, and Kopfer (2004), Knust (2010), and Van Bulck, Goossens, and Spieksma

(2019) investigate the time-off between games involving the same team in time-

relaxed non-professional tournaments considering the team and venue availability

constraints. Van Bulck and Goossens (2020) propose two heuristics to handle the

problem of rest time and the difference of games played in time-relaxed timetables.

They developed a measure called aggregated rest time penalty which penalizes the
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timetable each time a team has rest days between two consecutive games less than

a certain number.

Knust (2008) focuses on minimizing the waiting times of teams playing in a single

round-robin tournament with only a single venue available. For any odd number of

teams, Knust constructs schedules that minimize the number of long waiting times

and the total waiting time simultaneously. D. Goossens, Yi, and Van Bulck (2020)

explore the trade-off between three fairness issues which are the consecutive home

games, the carryover effect, and the number of rest days each team has between

consecutive games. Van Bulck and Goossens (2020) examine whether a time-relaxed

SRRT can be scheduled given a game-off-day pattern or home-away pattern sets.

They aim to determine the minimal number of time slots the tournament can be

scheduled given an equal number of prefixed absences per team.

On the other hand, few researchers have focused on relative rest difference. In

this approach, the researchers minimize the difference in rest durations between the

opposing teams of a game to promote a fair tournament. For example, Suksompong

(2016) investigates the rest time in asynchronous round-robin tournaments. In these

tournaments, all games are played at different times, i.e., there is only one game in

each period (round). Furthermore, Suksompong (2016) investigates the rest time

through three different measures. These measures include the guaranteed rest time,

the games played difference index, and the rest difference index.

The rest difference index in Suksompong (2016) measures the maximum difference

in rest durations of two opposing teams in a schedule. The rest difference index

differentiates from the total rest difference (RD) considered in the thesis. Suk-

sompong (2016) looks at minimizing the maximum of rest differences, whereas we

are concerned with minimizing the sum of the rest differences of all games in this

study. Furthermore, Suksompong (2016) only considers time-relaxed asynchronous

round-robin tournaments, i.e. the RRTs where there is exactly one game in each

round.
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In our study, however, we consider various problem instances of compact RRTs in

which the number of games in each round are usually more than one.

The minimization of rest mismatches is a related fairness criterion introduced by

Atan and Çavdaroğlu (2018). A rest mismatch occurs when the opposing teams

have different rest times before their game. The rest mismatch problem (RMP)

involves assigning games of each round to p consecutive periods, such as days or

time slots of a day, in a way that rest mismatches in the tournament are avoided

as much as possible. Atan and Çavdaroğlu (2018) develop a heuristic algorithm for

the case of two matchdays in an SRRT. In this special case, the algorithm is capable

of finding an optimal schedule with zero mismatches when the number of teams is

a multiple of 8, and a schedule with four mismatches when the number of teams

is a multiple of 4 but not 8. It is worth mentioning that rest mismatch considered

in Atan and Çavdaroğlu (2018) and rest difference considered in this study differ

because the latter deals with not just the occurrence of a mismatch in rests but the

magnitude of the difference between them. Moreover, the algorithm presented in

Atan and Çavdaroğlu (2018) found solutions for only the cases where p = 2, while

in the RDP proposed here, we are interested in all possible values of p.

Last but not least, Çavdaroğlu and Atan (2020) investigate the rest difference prob-

lem for given opponent schedules, i.e. schedules in which games have already been

assigned to rounds. Therefore, their problem decides only the matchday of each

game. The study shows that the rest difference problem of a given schedule is

decomposable into optimizing the rounds separately, and that each decomposed

problem is an instance of the quadratic assignment problem. It also provides a

polynomial-time exact algorithm minimizing the total rest difference for opponent

schedules constructed by the circle method. Çavdaroğlu and Atan (2020) solve a

variation of RDP in which opponent schedule is given, while our study solves a

general RDP by constructing a timetable that determines both the round and the

matchday of each game.
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2.3 Methods of Sports Scheduling

Researchers follow different methods in designing sports schedules to ensure the

quality and fairness of the schedules. In this section, we discuss some of the most

widely used methods in sports scheduling. These methods are graphs, integer pro-

gramming, constraint programming, and heuristics.

2.3.1 Graphs

Round-robin tournaments have a strong relationship with graph theory. Graph the-

oretical approaches are used by researchers in designing sports schedules. According

to de Werra (1981), the relationship between graphs and tournaments can be pre-

sented by a complete graph Kn where n is an even number of teams. In such graphs,

each node denotes a team, and an edge connects any two nodes denotes the game

played by the two teams represented by the linked nodes.

Decomposition of a graph into factors (subgraphs) is called a one-factorization, as

each one-factor (subgraph) is a collection of non-adjacent edges. In round-robin tour-

naments, these factors (subgraphs) correspond to rounds, and each subgraph repre-

sents a different round. The oriented coloring is another topic related to scheduling

by graphs. In oriented coloring, the edges are colored by different colors to indicate

in which round each game will be played. Moreover, the orientation can be given to

each edge to represent the place of the game to be home or away. Figure 2.3 is an

example of a tournament represented by one-factorization of K4.

Figure 2.3 A tournament with n = 4 represented by one-factorization of K4

Source: Januario et al. (2016)

One of the graphical methods used in constructing round-robin tournaments is the

Vizing method. This method presents a framework for the construction of an ar-
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bitrary edge coloring of a complete graph Kn with n − 1 colors, where each one

of n teams corresponds to a vertex, each game between teams i and j to an edge

(i, j) of Kn, and each color to a distinct round (Januario, Urrutia, & Gerais-Brazil,

2012). Thus, edges with the same color are the games played during the same round,

and each arbitrary edge coloring of a complete graph Kn represents an opponent

schedule for an SRRT with n teams.

In sports literature, a rich line of researches exploits the link between graph theory

and sports scheduling in developing sports schedules. de Werra (1981) defines the

break in graphical perspective as two edges adjacent to the same node have the same

direction in two consecutive rounds, either out or into this node. de Werra (1981)

proves that in any oriented coloring, the minimum number of breaks is at least n−2.

Januario and Urrutia (2016) present their neighborhood structure in graph theory

terms and prove how this method increases the connectivity of the solution space.

They evaluate its performance using the weighted carry-over effects minimization

problem and the traveling tournament problem with predefined venues. Lewis and

Thompson (2011) propose three algorithms to show how heuristic-based graph color-

ing methods can construct valid compact round-robin schedules, in a way to achieve

the aim of producing initial feasible solutions to some scheduling problems in short

amounts of time.

2.3.2 Integer programming

Integer Programming (IP) is one of the most widely used methods in sports schedul-

ing. It is used to model and solve sports scheduling problems. Integer Programming

involves formulating an objective function and a set of constraints. The Objective

function could be minimization or maximization of some criteria, such as minimiza-

tion of breaks, coe, or rest mismatches. To solve sports scheduling problems, usually,

a solver is used. The solver is optimized to solve the variables based on the objective

function and constraints of the corresponding problem.
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Some RRT problems can be solved directly by applying IP solver to the model.

Still, in most cases, the problem is decomposed into stages to handle each stage

of the problem by IP or by other methods, such as heuristics or constraint pro-

gramming (Kendall et al., 2010). Briskorn, Drexl, and Spieksma (2010) provide

integer programming models where the problem, such as break minimization, is

decomposed into two subproblems to be solved sequentially. Furthermore, a rich

line of researchers have used the IP method in solving scheduling problems. Atan

and Çavdaroğlu (2018) developed an IP model for minimizing the number of rest

mismatches in SRRTs. Briskorn (2008), Rasmussen (2008), and D. Goossens and

Spieksma (2009) apply IP method for solving scheduling problems in football leagues.

Moreover, Irnich (2010), Easton, Nemhauser, and Trick (2003), and Rasmussen and

Trick (2006) apply the IP in traveling tournament problem. Briskorn and Drexl

(2009) provide IP models with constraints that consider external requirements, such

as security aspects and legal requirements, and constraints that consider some fair-

ness issues, such as break minimization. On the other hand, integer programming is

also a useful tool for assignment problems. For example, Duarte, Ribeiro, Urrutia,

and Haeusler (2006) apply IP in assigning referees to sports leagues.

2.3.3 Constraint programming

Constraint Programming (CP) is another type of modeling used in sports scheduling.

It differs from integer programming in that constraint programming is modeled by

sets of variables and constraints rather than objective function, and often it is faster.

In constraint programming, new constraints are derived, and variable values are fixed

by manipulating the original sets of constraints and variable domains (Kendall et

al., 2010).

Examples of applying CP in sports scheduling problems can be found in Régin

(2001), who investigates the minimization of breaks in sports scheduling using con-

straint programming. He proposes a CP model to prove that the minimum number of

breaks in sports schedules is n-2. Atan and Çavdaroğlu (2018) developed a CP model

24



for minimizing the number of rest mismatches in SRRTs. In addition, Rasmussen

and Trick (2009) apply constraint programming with other modeling approaches for

minimizing total travel distance. Furthermore, constraint programming is used for

sports scheduling problems in R. A. Russell and Urban (2006), Easton et al. (2003),

and Rasmussen and Trick (2006).

2.3.4 Heuristics

Most scheduling problems in sports are very hard in computational terms, such that

in some cases, there is no computation time known for their solution. Therefore, the

heuristic approach (or approximate algorithm) that provides sub-optimal solutions

in reasonable computation time is often used in sports scheduling. Examples of

using heuristics in sports scheduling problems can be found in Costa et al. (2012),

Burke, De Werra, Silva, and Raess (2004), and Atan and Çavdaroğlu (2018).

Metaheuristics are a high-level approach that utilizes simple heuristics to find ap-

proximate solutions to computationally hard optimization problems. For example,

tabu search (Van Bulck et al., 2019), simulated annealing (Anagnostopoulos, Michel,

Van Hentenryck, & Vergados, 2006), genetic algorithms (Schönberger et al., 2004),

and ant colonies (Uthus, Riddle, & Guesgen, 2009) are metaheuristics used in sports

scheduling.

Matheuristics combine the characteristics of metaheuristics and mathematical pro-

gramming techniques. Matheuristics are model-based heuristics that take advantage

of the mathematical programming solvers to tackle hard optimization problems. In

sports scheduling problems, matheuristics can exploit the features of the mathe-

matical model to optimize some parts of the problem while the remaining parts of

the problem are fixed. An example of employing matheuristics in sports scheduling

can be found in Chandrasekharan, Toffolo, and Wauters (2019). Chandrasekharan

et al. (2019) investigate the assignment of umpires to the games of a fixed double

round-robin tournament.
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Local search heuristics apply the concept of neighborhoods to move from one sched-

ule to a neighbor schedule. It involves iteratively investigating a solution neighbor-

hood, replacing the current solution with a better one within its neighborhood, and

terminating when no better solution can be found. The commonly used neighbor-

hood structures in round-robin tournaments are based on either swapping teams or

swapping rounds in the schedule. In sports literature, different neighborhood struc-

tures have been used in scheduling round-robin tournaments. These neighborhood

structures include Team Swap (TS), Round Swap (RS), Partial Team Swap (PTS),

and Partial Round Swap (PRS) (Anagnostopoulos et al., 2006; Costa et al., 2012;

Di Gaspero & Schaerf, 2007; Januario et al., 2016; Ribeiro & Urrutia, 2007). Figure

2.4 shows examples of these neighborhood structures.

Figure 2.4 Examples of neighborhood structures
Source: Januario and Urrutia (2016)

Figure 2.4 describes these neighborhood structures from a graphical perspective.

Team Swap (TS) is obtained by swapping two distinct vertices in the graph. Round

Swap (RS) is obtained by swapping two distinct colors in the graph. Partial Team

Swap (PTS) is obtained by swapping the colors of edges adjacent to two distinct

vertices v1 and v2 for all connected vertices w. Finally, Partial Round Swap (PRS)

is obtained by swapping two distinct colors in any cycle in the subgraph induced by

the edges colored with those colors.
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However, most of these neighborhood structures are limited in covering the solution

space. Recently, Januario and Urrutia (2016) introduced a new neighborhood struc-

ture called Teams and Rounds Swap (TARS) that increases the connectivity

of the solution space. A neighborhood is connected whenever there exists a path

in the transition graph that connects any two candidate solutions. TARS combines

the characteristics of PTS and PRS in order to generate neighbor schedules that

cannot be obtained using either of them. As in PTS, TARS considers vertices and

paths between them, but in TARS, a single path of length larger than two vertices

is constructed.

A move in TARS consists of two phases:

• Selection Phase (Decomposition of the graph): From a given sched-

ule (S), two distinct colors (c) and (d) and one vertex (v) are determined as

move parameters. The selection phase determines a set of subgraphs of S di-

vided into three classes η1 and ηtp, for t ∈ {2,3}, and 1 ≤ p ≤ pmax, where

pmax ≤ n/2 − 1, and it depends on the maximum length of the cd-path. The

cd-path is a path of length 2p that is alternatively colored with c and d colors.

The superscript t is used to identify the class of the subgraph which is used to

determine the changes in the color assignment of S during the change phase.

See Figure 2.5.

• Change Phase (Recombination): The color assignment of each subgraph

identified in the previous phase is modified according to its class. The change

phase occurs immediately after the selection phase. It returns a neighbor

solution with the best cost function for the problem under consideration among

those obtained through modifications introduced to the color assignment of the

subgraphs selected in the selection phase.

In Figure 2.5, the selection phase starts with creating the cd-path. The cd-path starts

from v1 ends with v2, and alternatively colored with c and d colors, starts with c, and
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Figure 2.5 The main two phases of TARS approach
Source: Januario and Urrutia (2016)

ends with d. We also set the vertex v in the middle of the cd-path. After creating

the cd-path, we start adding other vertices wj. We start with w1. If w1 = wend, then

the subgraph η1 is complete and ready to introduce the change phase. Otherwise,

we complete adding wj until we reach wend. After adding all vertices, we obtain

the subgraph η2p. In η2p, we color the edges adjacent to v1 and v2 with cj and cj−1,

respectively. After adding all wj, we remove the cd-path and obtain the subgraph

η3p. After this last step, both η2p and η3p are ready to be processed by the change

phase.

In the change phase, c and d colors of η1 are exchanged along the edges in order to

obtain a subgraph equivalent to the one in Figure 2.5. Similarly, in η2p, colors are

exchanged along the cd-path starting from v1 and ending at v2. We also exchange

the colors adjacent to (wj, v1) and (wj, v2). In η3p, colors exchanging starts from

wend ends with w1. Next, in η3p, we rotate fan(v1) and fan(v2) by shifting fan(v1)

backward and shifting fan(v2) forward, where fan(v1) and fan(v2) are the edges

adjacent to v1 and v2, respectively. See Figure 2.5.
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In order to perform a move in the TARS neighborhood structure, every subgraph η1,

η2p, and η3p obtained in the selection phase is used as an input in the change phase.

Note that all neighbor solutions created in the change phase are evaluated, and the

one with the best cost function value of the associated problem is returned.

In brief, TARS approach involves generating new schedules from a given schedule

(S). These new schedules are generated in an iterated manner. At each iteration,

TARS requires a team (v) and two distinct rounds (c) and (d). For each possible

combination of v, c, and d, new schedules are generated. After applying the TARS

operations for all (v, c, d) combinations, it is possible to further reduce the objective

function value because TARS operation can visit new neighborhood structures with

a higher level of connectivity in the solution space. For further details about TARS,

you can refer to Januario and Urrutia (2016).
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3. REST DIFFERENCE PROBLEM

3.1 Problem Definition

Suppose there is an SRRT with n (even) teams. Such a tournament consists of

n − 1 rounds with n/2 games in each round. These games are played in p consec-

utive matchdays. Let γd denote the number of games in matchday d ∈ {1, 2, ..., p}.

The rest difference is defined as the difference between rest periods the oppos-

ing teams had before their game against each other. The rest difference problem

RDP (n, p|γ1, · · · , γp) constructs a timetable that determines both the round and

matchday of each game such that the total rest difference RD throughout the tour-

nament is minimized. In this study, we occasionally use the notation RDP (n, p) to

denote the problem instances with n teams, p matchdays and any number of games

in the matchdays.

3.2 Mixed-integer Programming (MIP-RDP) Model

In this section, we provide a mixed-integer programming (MIP-RDP) model that

formulates the RDP (n, p|γ1, · · · , γp). The MIP-RDP model concurrently decides in

which round and matchday each game needs to be scheduled such that the total

rest difference is minimized. Below, the description of sets, parameters, and decision

variables are provided, followed by the formulation.

3.2.1 Sets

T : Teams, indexed by i, j ∈ {1, ..., n}.

G : Games, indexed by g, g
′
, g

′′ ∈ {1, ..., n · (n− 1)/2}.

R : Rounds, indexed by r ∈ {1, ..., n− 1}.

30



D : Matchdays, indexed by d ∈ {1, ..., p}.

3.2.2 Parameters

playg,i : 1 if team i plays in game g; 0 otherwise.

γd : Number of games to be played in matchday d of each round.

M : A sufficiently large number. It should be at least equal to the maximum

possible difference in rest periods between two teams (i.e. M ≥ p− 1).

3.2.3 Decision variables

z : Total rest difference.

xg,r,d : Game assignment variable. 1 if game g is assigned to matchday d of round

r; 0 otherwise.

yg,r : Round indicator variable. 1 if game g is played in round r; 0 otherwise.

fg : Rest difference variable. The number of days the first team in game g rested

less than its opponent.

sg : Rest difference variable. The number of days the second team in game g rested

less than its opponent.

3.2.4 Mathematical model for the RDP (MIP-RDP)

min z =
∑
g∈G

(fg + sg) (3.1)

subject to:

∑
r∈R

∑
d∈D

xg,r,d = 1 ∀g ∈ G (3.2)
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∑
g∈G:playg,i=1

∑
d∈D

xg,r,d = 1 ∀i ∈ T ,∀r ∈ R (3.3)

∑
g∈G

xg,r,d = γd ∀r ∈ R, ∀d ∈ D (3.4)

∑
d∈D

xg,r,d = yg,r ∀g ∈ G,∀r ∈ R (3.5)

∑
d∈D

d · xg′ ,r−1,d −
∑
d∈D

d · xg′′ ,r−1,d + sg − fg ≤ M · (1− yg,r) ∀{i, j ∈ T,

g, g
′
, g

′′ ∈ G : playg,i = playg,j = playg′ ,i = playg′′ ,j = 1},∀r ∈ R \ {1} (3.6)

xg,r,d ∈ {0, 1} ∀g ∈ G,∀r ∈ R, ∀d ∈ D (3.7)

yg,r ∈ {0, 1} ∀g ∈ G,∀r ∈ R (3.8)

fg,r, sg,r ≥ 0 ∀g ∈ G,∀r ∈ R (3.9)

The objective function minimizes the RD in the schedule. Constraints 3.2 declare

that each game must be assigned to a matchday of a round. Constraints 3.3 ensure

that each team plays exactly once in each round. Since the number of games in

each matchday is determined a priori, Constraints 3.4 set the number of games to

be played in each matchday. Constraints 3.5 determine in which round a game was

set to be played by the model. If game g (between teams i and j) is assigned to

round r, Constraints 3.6 identify the matchdays of team i and team j in the previous
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round r−1 and find the time difference of these matchdays. This difference is equal

to the rest difference between i and j in the corresponding game g. Constraints 3.7

through Constraints 3.9 give the types of decision variables.

3.3 Theoretical Results for the Problem with One-game Matchdays

In this section, we give some theoretical results regarding tournaments with one-

game matchdays (i.e., matchdays d where γd = 1) by first constructing a lower bound

(LB) for the total rest difference RD in such tournaments. Then, the LB is used

to show the optimality of certain schedules derived from other optimal schedules.

Let p1, p1 ≥ 0, denote the number of matchdays with only one game. As an

illustrative example, let us consider the RDP (8, 3|2, 1, 1) presented in Table 3.1

where p1 = 2. In the schedule, day 2 and day 3 are the “one-game” matchdays

as each includes only one game throughout the tournament. Consider game (1-4)

played in a one-game matchday (day 3) of round 3. Both teams 1 and 4 must play

with different opponents in round 4. There will be rest differences in both of these

games (games (2-4) and (1-3)) since teams 2 and 4 (and teams 1 and 3) have played

in different days of round 3. Thus, when we have one-game matchday(s) (i.e., when

p1 > 0), we can not avoid the rest difference (i.e., RD > 0).

Table 3.1 A schedule for the RDP (8, 3|2, 1, 1)
Round Day 1 Day 2 Day 3

1 3-6 4-5 2-8 1-7
2 2-7 3-5 1-8 4-6
3 5-7 6-8 2-3 1-4
4 2-4 6-7 1-3 5-8
5 3-8 4-7 2-6 1-5
6 1-6 2-5 7-8 3-4
7 3-7 4-8 1-2 5-6

Theorem 1. The rest difference in each round is at least p1+mod(p1, 2). Therefore,

(n− 2) · [p1 +mod(p1, 2)] is a lower bound for the RD value of an SRRT.

33



Proof. Let us first consider the case where p1 is even. When p1 = 0, we have a trivial

lower bound of 0. Assume that p1 > 0. Since the teams in a one-game matchday

(say day d) of a round (say round r) must play against two other teams (say t and

t′) in two other games (say in games g and g′) of the next round, the occurrence of a

rest difference is unavoidable in both g and g′. The magnitude of the rest difference

for g and g′ will be equal to 1, which is the smallest possible value, if t and t′ played

against each other in another one-game matchday (say day d∗) of round r and if d

and d∗ are consecutive matchdays. Thus, each pair of one-game matchdays in each

round causes an increase by at least 2 in the RD value. p1/2 pairs of one-game

matchdays in each round will then lead to an increase in the RD value by at least

p1. As the rest difference can occur in all the rounds except the first round, the total

rest difference in the tournament has to be at least (n− 2) · p1 when p1 is even.

Now let us consider the case where p1 is odd. (p1−1)/2 pairs of one-game matchdays

lead to an increase in the RD value by at least p1 − 1. The remaining two teams in

the one-game matchdays either play each other (say in game g∗) or play against two

other teams (say t and t′) in two other games (say in games g and g′) in the next

round. Since these remaining teams can not be paired with teams of consecutive

one-game matchdays, g∗ must have a rest difference of at least 2, or both g and

g′ must have a rest difference of at least 1. Thus, p1 one-game matchdays in each

round lead to an increase in the RD value by at least p1−1+2 = p1+1. As the rest

difference can occur in all the rounds except the first round, the total rest difference

in the tournament has to be at least (n− 2) · (p1 + 1) when p1 is odd. As a result,

when we have an RDP (n, p) with p1 one-game matchdays, the lower bound of the

total rest difference is LB = (n− 2) · [p1 +mod(p1, 2)].

The RDP (8, 3|2, 1, 1) given in Table 3.1 is an example where p1 is even. Table 3.2

provides a schedule for the RDP (10, 4|2, 1, 1, 1) where p1 is odd. The schedules

given in both tables have achieved an RD value equal to the lower bound presented

in Theorem 1.
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Table 3.2 A schedule for the RDP (10, 4|2, 1, 1, 1)
Round Day 1 Day 2 Day 3 Day 4

1 2-7 6-8 3-10 1-9 4-5
2 1-5 7-8 2-6 4-10 3-9
3 1-8 3-4 2-10 6-9 5-7
4 2-9 4-8 5-6 7-10 1-3
5 2-4 8-9 3-5 6-7 1-10
6 1-7 4-9 2-8 3-6 5-10
7 2-5 3-8 1-4 7-9 6-10
8 9-10 5-8 1-6 2-3 4-7
9 1-2 8-10 3-7 4-6 5-9

Special Case: In asynchronous round-robin tournaments, all matchdays in the

tournament schedule are one-game matchdays. Examples of this type of tourna-

ments are theRDP (10, 5|1, 1, 1, 1, 1), RDP (12, 6|1, 1, 1, 1, 1, 1), andRDP (16, 8|1, 1, 1,

1, 1, 1, 1, 1). In these tournaments, since p1 = n/2, the lower bound is LB =

(n− 2) · [n/2 +mod(n/2, 2)].

Theorem 2. Assume that we have an optimal schedule for an RDP (n, p) with

RD = LB. Further assume p1 is even and there exists a matchday d with γd > 2 in

the RDP (n, p). If matchday d is split into two consecutive days with γd − 1 and 1

games without changing the order of games, this new schedule remains optimal for

the RDP (n, p+ 1).

Proof. After splitting matchday d into two consecutive matchdays, assume match-

days d̄ and d′ with γd − 1 and 1 games, respectively, are generated with new RD

value z′. Suppose that there is a game (i′, j′) placed at one-game matchday d′ in

round r − 1, and there exist games (i′, j) and (i, j′) in the next round r. Thus,

teams i and j played on a day other than d′ in round r − 1 before the split, and

games (i′, j) and (i, j′) had some rest difference that was optimal (zero or other-

wise). The only new rest differences that can occur are due to the newly gen-

erated one-game day d′. Since both i′ and j′ playing in d′ of round r − 1 will

have to play teams from other days in round r, there can be new rest differences

arising from the games (i′, j) and (i, j′). This will increase the rest difference of

games (i′, j) and (i, j′) by at most 1, resulting in an increase of rest difference by
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at most 2 in the next round r. Thus, the new optimal solution z′ can be at most

LB+2·(n−2). Since splitting matchday d into two consecutive matchdays with γd−1

and 1 games increases p1 by 1 and p1+1 is odd, the new lower bound is calculated as

LB′ = (n−2)·[p1+1+mod(p1+1, 2)] = (n−2)·[p1+2] = LB+2·(n−2). Since the new

schedule’s RD value cannot be less than LB′ (i.e., z′ ≥ LB+2 · (n−2)), and the ad-

ditional rest differences due to the split is at most 2·(n−2) (i.e., z′ ≤ LB+2·(n−2)),

the new schedule should be optimal.

For example, we can use Theorem 2 to obtain the optimal schedule for theRDP (16, 3|

4, 3, 1) by splitting the second matchday in the optimal schedule of the RDP (16, 2|

4, 4) into two days with 3 and 1 games.

Theorem 3. Assume that we have an optimal schedule for an RDP (n, p) with

RD = LB. Further assume there exists a matchday d with γd = 2 games. If

matchday d is split into two consecutive one-game days without changing the order

of games, this new schedule remains optimal for the RDP (n, p+ 1).

Proof. When the optimal RD before the split was zero, all teams in the matches

of round r (r > 1) must have played on the same day in round r − 1. This means

that all teams which play on day d before the split also played among each other

throughout the tournament. Thus, when day d is split, the two games among these

teams will generate a rest difference of 2 per round, and the RD will increase by

2 ·(n−2). Since this is equal to the LB for a schedule with two one-game matchdays

(p1 = 2) per Theorem 1, the schedule is optimal. In the case when p1 > 0 and the

optimal RD is positive (i.e. not zero and equal to the LB), then all the teams

playing in days with more than one-game in them must again have played on the

same day in round r − 1 since all the existing rest differences must be due to the

one-game matchdays.

When day d with two games is split into consecutive one-game matchdays, games

in those days will generate an additional rest difference of 2 · (n − 2) bringing the
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RD value to LB + 2 · (n − 2). This value is the lower bound for the new schedule

with p1 + 2 one-game matchdays, and therefore, is also optimal.

In Chapter 5, we report several results where Theorem 3 is used to obtain the

optimal schedules for relevant instances of n = 8, 10, 12, and 16. For example, the

optimal schedule for the RDP (10, 4|2, 1, 1, 1) can be obtained by splitting the second

matchday in the optimal schedule of the RDP (10, 3|2, 2, 1) into two consecutive one-

game days.
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4. SOLUTION METHODOLOGIES

In this chapter, we discuss the methodologies which are used for the solution of

the RDP . We provide two methods for solving the rest difference problem. First,

a polynomial-time exact method that finds the optimal schedules for some special

instances of the RDP is described. Second, we present a matheuristic algorithm

that solves the general rest difference problem.

4.1 A Polynomial-time Exact Method for Some Special Cases of the

Problem

In this section, we propose a polynomial-time exact method which can be applied

to the RDP (n, p|γ1, · · · , γp) for n = 2k (n ≥ 8) where k ∈ Z+, and the number of

games in each period is divisible by 2, i.e. mod(γd, 2) = 0 ∀d ∈ D. The schedule

generated by this method guarantees that the total rest difference in the whole

tournament equals zero. Schedules generated by this algorithm for n = 2k (n ≥ 8)

where k ∈ Z+ also provide optimal schedules for cases with one-game matchdays

where the number of one-game matchdays are even due to Theorem 2 and Theorem

3.

The proposed method will be referred as Algorithm 1, and is conducted in three

steps. In the first step, we construct groupings of four teams distributed over n/4

days, which contain all possible combinations of four teams necessary to have an

SRRT where each team has to play with each other team. Consecutive groupings

are formed by swapping two teams from two different days with each other. Later,

we will show that the rest differences that occur after such a swap operation can

be eliminated. Second, we let the teams of each grouping play each other using

the circle method to generate the games of the next rounds before moving on to
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generating the games for the next set of groupings. In the third step, we eliminate

all rest differences by applying necessary game swaps between days of certain rounds.

Algorithm 1 Pseudocode of the polynomial-time exact method

1: function swap(Set T of team indices, List groupingBlockInfo)
2: if cardinality(T ) == 4 then
3: return T , groupingBlockInfo
4: else
5: Generate team sets of size n/2 as illustrated in Table 4.8:
6: T1 = {T [1], · · · , T [n/2]}
7: T2 = {T [n/2 + 1], · · · , T [n]}
8: T3 = {T [1], · · · , T [n/4], T [n/2 + 1], · · · , T [3n/4]}
9: T4 = {T [n/4 + 1], · · · , T [n/2], T [3n/4 + 1], · · · , T [n]}
10: T5 = {T [1], · · · , T [n/4], T [3n/4 + 1], · · · , T [n]}
11: T6 = {T [n/4 + 1], · · · , T [n/2], T [n/2 + 1], · · · , T [3n/4]}
12: end if
13: for block ∈ {1, · · · , 6} do
14: Append block to groupingBlockInfo

15: Call swap(Tblock,groupingBlockInfo)
16: end for
17: end function

18: function main(null)
19: Input the number of teams n = 2k (n ≥ 8) where k ∈ Z+

20: Set T = {1 → n} and p = n/4
21: Set groupingBlockInfo to an empty list
22: Call swap(T ,groupingBlockInfo) and generate all groupings neces-

sary for an SRRT
23: Using groupingBlockInfo, place the team groupings to their correct

round (ra, rb, etc.)
24: Generate all the games within each team grouping (day) using the circle

method, and build an SRRT
25: Eliminate the rest differences in the tournament by swapping the proper

games between pairs of groupings that have exchanged teams via swap op-
erations in their respective rounds

26: return 0
27: end function

4.1.1 Step 1: Construct the groupings

We construct the groupings as follows. Starting from the first round, split the

teams into groupings of four teams with consecutive teams in each one of the n/4
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groupings. Then assign the grouping (1,2,3,4) to the first day, the grouping (5,6,7,8)

to the second day, etc. until we reach the n/4th day, which includes the grouping

(n− 3, n− 2, n− 1, n). When the tournament schedule is constructed, we will let all

games of these groupings to be played before moving on to the games of the second

set of groupings (in this case in round 4). To generate the next set of groupings,

take two different days from the current set of groupings, and swap two teams from

each day with each other so that all pairs of teams will be grouped together with

different pairs of teams compared to the previous set of groupings.

In the same way, the next set of groupings is generated by team swaps applied to the

second set of groupings. Each time a new set of groupings is formed, there will be n/8

such swap operations. Keep generating new groupings via team swaps between two

different days until you exhaust all possible combinations adding up to n/2− 1 sets

of groupings. Table 4.1 shows the grouping construction for the RDP (16, 4|2, 2, 2, 2)

where the colored team pairs indicate the swap operations. Note that these group-

ings are just combinations of four teams and not the actual games played.

Table 4.1 Team groupings for n = 16 obtained via swap operations
Groupings Day 1 Day 2 Day 3 Day 4

ra 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
rb 1 2 5 6 3 4 7 8 9 10 13 14 11 12 15 16
rc 1 2 7 8 3 4 5 6 9 10 15 16 11 12 13 14
rd 1 2 9 10 3 4 11 12 5 6 13 14 7 8 15 16
re 1 2 11 12 3 4 9 10 5 6 15 16 7 8 13 14
rf 1 2 13 14 3 4 15 16 5 6 9 10 7 8 11 12
rg 1 2 15 16 3 4 13 14 5 6 11 12 7 8 9 10

4.1.2 Step 2: Generate the games

All games necessary to have an SRRT are generated in this step. Using the circle

method, we generate the games by letting the teams of the same grouping play

against each other on the same day until they finish all possible games among each

other. In the first round, in which teams have not faced each other before, one

can generate
(
4
2

)
= 6 games from each grouping. Considering two games per day,
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the games of the first three rounds can be constructed. Similarly, in the remaining

rounds, we let the teams of each grouping play each other on the same day until

they finish all possible games among each other using the circle method. Note that

two games of each grouping (games between the swapped teams) were played before.

The remaining four games of each grouping can be played in two rounds (an even

round and the next (odd) round). Applying the circle method, keep generating the

games for each couple of rounds by letting the teams of each grouping finish all the

games among each other. Table 4.2 shows the generated games for the first seven

rounds of the RDP (16, 4|2, 2, 2, 2) where the colored cells are the games that need

to be swapped to eliminate the rest differences.

Table 4.2 Generating the games for the first seven rounds of the
RDP (16, 4|2, 2, 2, 2)

Round Day 1 Day 2 Day 3 Day 4
ra 1 1-3 2-4 5-7 6-8 9-11 10-12 13-15 14-16

2 1-4 3-2 5-8 7-6 9-12 11-10 13-16 15-14
3 1-2 3-4 5-6 8-7 9-10 12-11 13-14 16-15

rb 4 1-5 2-6 3-7 4-8 9-13 10-14 11-15 12-16
5 1-6 2-5 3-8 4-7 9-14 10-13 11-16 12-15

rc 6 1-7 2-8 3-5 4-6 9-15 10-16 11-13 12-14
7 1-8 2-7 3-6 4-5 9-16 10-15 11-14 12-13

4.1.3 Step 3: Eliminate the rest differences

Due to the swap operations performed in constructing the groupings, teams that

played on different days in the odd rounds (except round 1) will have to play each

other in the even rounds (starting from round 4) which will result in rest differ-

ences. Observe that one can swap two games played in those odd rounds involving

the swapped teams when the groupings were formed (colored games in Table 4.2)

to get rid of these rest differences. For example, in Table 4.2, one can swap games

between teams 3-4 and 5-6, and games between teams 12-11 and 13-14 in round

rb−1 to get rid of the rest difference in round rb. The resulting RDP (16, 4|2, 2, 2, 2)

schedule after eliminating all the rest differences is shown in Table 4.3.
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Table 4.3 An optimal schedule of the RDP (16, 4|2, 2, 2, 2)
Round Day 1 Day 2 Day 3 Day 4

ra 1 1-3 2-4 5-7 6-8 9-11 10-12 13-15 14-16
2 1-4 3-2 5-8 7-6 9-12 11-10 13-16 15-14
3 1-2 5-6 3-4 8-7 9-10 13-14 12-11 16-15

rb 4 1-5 2-6 3-7 4-8 9-13 10-14 11-15 12-16
5 1-6 4-7 3-8 2-5 9-14 12-15 11-16 10-13

rc 6 1-7 2-8 3-5 4-6 9-15 10-16 11-13 12-14
7 1-8 9-16 3-6 11-14 2-7 10-15 4-5 12-13

rd 8 1-9 2-10 3-11 4-12 5-13 6-14 7-15 8-16
9 1-10 4-11 3-12 2-9 5-14 8-15 7-16 6-13

re 10 1-11 2-12 3-9 4-10 5-15 6-16 7-13 8-14
11 1-12 8-13 3-10 6-15 5-16 4-9 7-14 2-11

rf 12 1-13 2-14 3-15 4-16 5-9 6-10 7-11 8-12
13 1-14 4-15 3-16 2-13 5-10 8-11 7-12 6-9

rg 14 1-15 2-16 3-13 4-14 5-11 6-12 7-9 8-10
15 1-16 2-15 3-14 4-13 5-12 6-11 7-10 8-9

In Algorithm 1, the computational step having the highest complexity is given in

line 25. This step performs n/8 swaps in n/2 − 2 rounds. Therefore, the running

time complexity of Algorithm 1 is O(n2), which means the algorithm is polynomial

time.

Theorem 4. The method given by Algorithm 1 results in a schedule with zero RD

when n is a positive-integer power of 2 where n ≥ 8, and when the number of games

on each day is even.

Proof. Let’s say we have a tournament where there are only two games (with four

teams) on each day. Let those teams playing on the same day finish all the possible

games among each other. We now define certain swap operations that will help

constructing a schedule with zero total rest difference. Consider two different days,

and swap two teams from each day with each other so that they will face different

teams in the next round, say rb. Due to the swap operation, teams that played on

different days in round rb− 1 will have to play each other in round rb. Observe that

one can swap two games played in round rb − 1 involving the swapped teams (col-

ored grey in Table 4.4) to get rid of this rest difference (see Table 4.4). Notice that

this operation will work any time when teams from two different days are swapped
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between two different days in a round. In Table 4.4, the game between teams 3 and

4 should be swapped with the game between teams 5 and 6 to get rid of the rest

difference that will otherwise occur in round rb. In Table 4.4, it was assumed that

the teams playing in round ra have never faced each other before. Table 4.5 shows

a situation where the teams playing in a round that were not swapped have already

faced each other before a team swap operation. In Table 4.5, games between team

1 and team 2, team 3 and team 4, team 5 and team 6, and team 7 and team 8 were

assumed to have been played. Still, with a game swap in round rb − 1 (among the

greyed games) the rest difference in round rb can be eliminated.

Table 4.4 Eliminating rest differences of a swap operation
Round Day 1 Day 2
ra 1-3 2-4 5-7 6-8

1-4 3-2 5-8 7-6
rb − 1 1-2 3-4 5-6 8-7
rb 1-5 2-6 3-7 4-8

Table 4.5 Eliminating rest differences of a swap operation
Round Day 1 Day 2
ra 1-3 2-4 5-7 6-8

rb − 1 1-4 3-2 5-8 7-6
rb 1-5 2-6 3-7 4-8

Assume that n = 8 with two days where there are only two games on each day. When

n is less than 8, we cannot have a tournament with more than one day where all

days have two games each. Let’s build our tournament so that the whole tournament

consists of intermediate rounds (not consecutive) where the groupings (teams that

will play among each other) in those rounds have been determined by team swap

operations between two days only (such as in rounds ra and rb in Tables 4.4 and

4.5). The resulting groupings (not the actual games to be played) with 8 teams is

shown in Table 4.6. Teams playing on the same day will actually finish all the games

among each other in a fashion as explained in Tables 4.4 and 4.5. Thus, the whole

tournament can be built performing team swap operations between two different

days, and we already know that if that is possible then we have a way of getting rid

of the rest differences. In round rb, teams 3 and 4 are swapped with teams 5 and 6;
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and in round rc, teams 5 and 6 are swapped with teams 7 and 8. Those three (if the

number of teams is equal to n then the number of different groupings is n/2 − 1)

sets of groupings constitute all the possible team combinations necessary to have a

round-robin tournament with n = 8 teams where each team should play all other

teams once. The resulting schedule shown in Table 4.7 demonstrates that there will

be no rest differences using the prescribed swap operations when n = 8 after all

games are played.

Table 4.6 Team groupings for n = 8
Groupings Day 1 Day 2

ra 1 2 3 4 5 6 7 8
rb 1 2 5 6 3 4 7 8
rc 1 2 7 8 3 4 5 6

Table 4.7 Finished schedule for the RDP (8, 2|2, 2)
Round Day 1 Day 2
ra 1-3 2-4 5-7 6-8

1-4 3-2 5-8 7-6
1-2 5-6 3-4 8-7

rb 1-5 2-6 3-7 4-8
1-6 4-7 3-8 2-5

rc 1-7 2-8 3-5 4-6
1-8 2-7 3-6 4-5

Let’s now double n to 16. We are interested in obtaining a round-robin tournament

schedule with n/4 days in each round with two games on each day, i.e. there will be

four teams playing on each day. Teams are numbered from 1 to n. We can build the

team groupings so that initially teams from 1 to n/2, and n/2 + 1 to n are grouped

together forming two separate groups of size n/2. Let these sets of n/2 teams finish

the games among each other using swap operations. Then, let teams 1 to n/4 match

with teams n/2+1 to 3n/4, and teams n/4+1 to n/2 match with teams 3n/4+1 to

n forming two different sets of n/2 teams. This grouping can be achieved via swap

operations. In the round just before the matching, teams n/2 + 1 and n/2 + 2 are

grouped together either with teams 3n/4 + 1 and 3n/4 + 2, or with n − 1 and n.

On the other hand, n/2+ 3 and 3n/4 are grouped with the other pair among teams

from 3n/4 + 1 through n teams n/2 + 1 and n/2 + 2 are not grouped with. In the

other half’s grouping among teams from 1 to n/2, teams 1 and 2 are grouped either
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with n/4+ 1 and n/4+ 2, or with n/2− 1 and n/2; also teams 3 and 4 are grouped

together with the pair from n/4+1 to n/2 that teams 1 and 2 are not grouped with.

Thus, one can swap n/4 + 1 and n/4 + 2 with either n/2 + 1 and n/2 + 2, or with

n/2 + 3 and 3n/4; and also n/2 − 1 and n/2 with the the other pair from n/2 + 1

to 3n/4. After the matching, let the matched teams finish their remaining games

among each other (the way these teams are grouped is again determined via swap

operations).

Finally, let teams 1 to n/4 match with teams 3n/4 + 1 to n, and teams n/4 + 1 to

n/2 match with teams n/2 + 1 to 3n/4. This matching can also be achieved via

swap operations in a manner similar -albeit with different team indices- to the swap

operations done when teams 1 to n/4 were matched with teams n/2+1 to 3n/4, and

teams n/4 + 1 to n/2 were matched with teams 3n/4 + 1 to n. Once these groups,

each of size n/2, also finish their remaining games among each other (again via

swap operations) the tournament is complete because all teams have already played

against every other team. Table 4.1 shows the groupings when n = 16 whereas Table

4.3 shows the resulting optimal schedule when finished.

In a similar fashion, when n ≥ 32, groupings of teams can be obtained by creating

different sets of n/2 teams in three stages as shown in Table 4.8. The first column

in the table indicates the number of groupings that will result from the matchings

in the table. In the second and third stages there will be less groupings because

some teams were already grouped together (thus played against each other) before.

Since we already know how to form consecutive groups via swap operations for n/2

teams, and how then to schedule their games with zero rest difference, we can also

find a schedule with no rest differences whenever n is further doubled.

Above discussion shows that tournaments of zero RD with two games on each day

where the number of teams is a power of 2 can be generated. This also indicates

that rest differences in those schedules can be eliminated whenever the number of

games in all days is a multiple of 2 such as in the case of the RDP (16, 2|4, 4),
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Table 4.8 Building a schedule’s team groupings
1 1 n/4 n/4 + 1 n/2 n/2 + 1 3n/4 3n/4 + 1 n

BLOCK 1 BLOCK 2
n/4− 1 Groupings of {1, · · · , n/2} Groupings of {n/2 + 1, · · · , n}

BLOCK 3 BLOCK 4
+n/8 Groupings of {1, · · · , n/4, Groupings of {n/4 + 1, · · · , n/2,

n/2 + 1, · · · , 3n/4} 3n/4 + 1, · · · , n}
BLOCK 5 BLOCK 6

+n/8 Groupings of {1, · · · , n/4, Groupings of {n/4 + 1, · · · , n/2,
3n/4 + 1, · · · , n} n/2 + 1, · · · , 3n/4}

RDP (16, 2|6, 2), RDP (16, 3|4, 2, 2) and RDP (16, 3|2, 4, 2). In tournaments with n

teams where n is a power of 2 and where the number of games on each day is a

multiple of 2, one could first build a schedule with a zero RD for the RDP (n, n/4)

with two games on each day. Then, when days in that schedule are combined there

will be no rest differences in the resulting schedule as well because the games which

were part of the combined days had no rest differences before.

Thus, the algorithm will work for any instance of the RDP (n, p|γ1, · · · , γp) where the

team number can be expressed as a power 2, i.e. n = 2k (n ≥ 8) where k ∈ Z+, and

the number of games in each period is divisible by 2, i.e. γd mod 2 = 0 ∀d ∈ D.

Using the procedure discussed here, we can find the optimal solution for the instances

such as the RDP (16, 4) and RDP (32, 8). With the help of Theorem 2 and Theorem

3, these solutions can easily be used to derive optimal schedules for the instances

such as the RDP (16, 5 · · · 8) and RDP (32, 8 · · · 16). As an example, the optimal

schedule for the RDP (16, 6|2, 2, 1, 1, 1, 1) is provided in Table 4.9.

It can be noted that the order of games in this schedule is exactly the same with

the order of games in the schedule of Table 4.3 for the RDP (16, 4|2, 2, 2, 2). The

schedule is obtained by splitting day 3 and day 4 into two days in Table 4.3.
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Table 4.9 An optimal schedule (RD = 56) of the RDP (16, 6|2, 2, 1, 1, 1, 1)
Round Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

1 1-3 2-4 5-7 6-8 9-11 10-12 13-15 14-16
2 1-4 3-2 5-8 7-6 9-12 11-10 13-16 14-15
3 1-2 5-6 3-4 8-7 9-10 13-14 12-11 15-16
4 1-5 2-6 3-7 4-8 9-13 10-14 11-15 12-16
5 1-6 4-7 3-8 2-5 9-14 12-15 11-16 10-13
6 1-7 2-8 3-5 4-6 9-15 10-16 11-13 12-14
7 1-8 9-16 3-6 11-14 2-7 10-15 4-5 12-13
8 1-9 2-10 3-11 4-12 5-13 6-14 7-15 8-16
9 1-10 4-11 3-12 2-9 5-14 8-15 7-16 6-13
10 1-11 2-12 3-9 4-10 5-15 6-16 7-13 8-14
11 1-12 8-13 3-10 6-15 5-16 4-9 7-14 2-11
12 1-13 2-14 3-15 4-16 5-9 6-10 7-11 8-12
13 1-14 4-15 3-16 2-13 5-10 8-11 7-12 6-9
14 1-15 2-16 3-13 4-14 5-11 6-12 7-9 8-10
15 1-16 2-15 3-14 4-13 5-12 6-11 7-10 8-9

4.2 An ILS-based Matheuristic Algorithm for the Problem

In this section, we propose a matheuristic algorithm that solves theRDP (n, p|γ1, · · · ,

γp). In our matheuristic algorithm, we utilize some local neighborhood search tech-

niques to generate random opponent schedules in which the round of each game

is decided but the matchday is not. To improve the rest difference value for an

RDP (n, p|γ1, · · · , γp) instance, we apply these local searches iteratively and find

neighbor opponent schedules that can hopefully produce better rest difference val-

ues. For each generated opponent schedule, we optimally assign the games to the

matchdays using a MIP model. Finally, the schedule with the best RD value is re-

ported. In other words, the proposed matheuristic iteratively employ a MIP model

to optimize a subproblem while the remainder of the problem is fixed. The ILS-

based matheuristic is summarized in Algorithm 2. The algorithm relies on finding

an initial schedule with a ‘good’ RD (Step 1), and then further improving the RD

value using a recently introduced neighborhood structure (Step 2).
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Algorithm 2 Pseudocode of the ILS-based matheuristic algorithm

1: function findSchedule(n, p, γ1 · · · γp, λcrm, λvm, λtars)
2: Generate a round-robin schedule S for n teams using the circle method
3: for i ∈ {1, · · · , λcrm} do
4: Randomize the rounds of S to obtain opponent schedule Scrm

i

5: Find the minimum RD value (zcrmi ) for Scrm
i using MIP-GOS

6: end for
7: for j ∈ {1, · · · , λvm} do
8: Generate a random edge coloring for n teams using the Vizing

method to obtain opponent schedule Svm
j

9: Find the minimum RD value (zvmj ) for Svm
j using MIP-GOS

10: end for
11: Select the opponent schedule Sbest having z = min∀i,∀j{zcrmi , zvmj }
12: for k ∈ {1, · · · , λtars} do
13: Select an arbitrary combination of (v, c, d)
14: Apply the TARS neighborhood seach on Sbest using team v and

rounds c and d to obtain opponent schedule Sk

15: Find the minimum RD value (zk) for Sk using MIP-GOS

16: end for
17: Select the schedule S∗ having z∗ = min∀k{zk}
18: return z∗, S∗

19: end function

4.2.1 Step 1: Finding an initial schedule

Algorithm 2 starts by generating an initial opponent schedule S for an SRRT with n

teams using the circle method (line 2). In this initial opponent schedule, the games

of each round are identified without assigning the games into matchdays. In the next

step, the rounds of S are randomized λcrm times to generate neighbor schedules Scrm
i .

Since each opponent schedule is obtained by randomizing the rounds of S generated

by circle method, we call this approach circle-and-randomize. Next, for each Scrm
i ,

the games are assigned into matchdays using a mixed-integer programming model

(MIP-GOS) (lines 3-6). MIP-GOS is a modified version of MIP-RDP presented in Section

3.2.4 and solves the RDP (n, p|γ1, · · · , γp) for a given opponent schedule (GOS) (i.e.,

a given round assignment of games). In MIP-GOS, the main decision variable is xg,d

which indicates whether game g is assigned to matchday d. The variables fg and

sg are the rest difference variables and have the same description given in Section

3.2.3. The parameter playg,r,i is equal to 1 if game g is assigned to round r and
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team i plays in the game, 0 otherwise. The formulation of MIP-GOS is provided with

equations 4.1-4.6.

min z =
∑
g∈G

(fg + sg) (4.1)

subject to:

∑
d∈D

xg,d = 1 ∀g ∈ G (4.2)

∑
g∈G

xg,d = γd ∀d ∈ D (4.3)

∑
d∈D

d · xg′ ,d −
∑
d∈D

d · xg′′ ,d + fg − sg = 0 ∀{i, j ∈ T, g, g
′
, g

′′ ∈ G ∀r ∈ R \ {1}

: playg,r,i = playg,r,j = playg′ ,i,r−1 = playg′′ ,j,r−1 = 1} (4.4)

xg,d ∈ {0, 1} ∀g ∈ G,∀d ∈ D (4.5)

fg, sg ≥ 0 ∀g ∈ G (4.6)

In the formulation, the objective function 4.1 minimizes the total rest difference

for the given opponent schedule. Constraints 4.2 ensure every game is assigned to

exactly one matchday in the schedule. Constraints 4.3 set the number of games to be

played in each matchday. Constraints 4.4 define the value of variable fg (sg) as the

number of days the first (second) team in game g rested less than the second (first)

team. Constraints 4.5 and 4.6 give the types of decision variables. Unlike MIP-RDP,
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MIP-GOS does not decide which round each game should be assigned to. Therefore,

x variable does not possess an r index, and y variable is not needed anymore.

Moreover, due to the same reason, MIP-GOS does not require any constraints similar

to Constraints 3.3, 3.5 and 3.8 of MIP-RDP. Since MIP-GOS is only concerned with

the matchday assignment, it runs much faster than MIP-GOS in commercial solvers

as it will be demonstrated later in Chapter 5.

Januario et al. (2016) show that it is not possible to reach all opponent schedules by

only shuffling the rounds (i.e., circle-and-randomize approach) as the corresponding

edge colorings are still isomorphic to each other. Moreover, they show that any

arbitrary opponent schedule can be reached by using Vizing’s method. Therefore,

an iterative approach similar to the one described in lines 3-6 is also applied for a

set of opponent schedules generated by the Vizing method. Algorithm 2 generates a

total of λvm opponent schedules using the Vizing method, and solves MIP-GOS model

for each one of them (lines 7-10). The best schedule Sbest with the lowest RD value

resulting from both methods is selected to be used in Step 2 (line 11).

4.2.2 Step 2: Finding a schedule with an improved RD

We apply TARS operations presented in Section 2.3.4 to the best initial schedule

resulting from the first step (found by either the circle-and-randomize method or

the Vizing method) to further reduce the RD value. Inside TARS operations, we

use MIP-GOS to find the best neighbor schedule (lines 12-16). MIP-GOS assigns games

into matchdays to minimize the total rest difference value of each schedule. Finally,

TARS returns the schedule with the lowest total rest difference (lines 17-18).
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5. EXPERIMENTAL RESULTS

In our experimental analysis, we consider RDP (n, p|γ1, · · · , γp) instances that have

even n teams ranging from 8 to 20, and p matchdays ranging from 2 to n/2. The

reason for not exceeding 20 teams in our experiments is that the professional leagues

usually comprises no more than 20 teams, as can be seen in Table 5.1, which shows

the number of teams (as of the year 2021) in the top-tier football and basketball

leagues of five European countries.

Table 5.1 Team numbers in the top-tier sports leagues of five European countries
Country Football League Basketball League
England 20 13
Spain 20 18

Germany 18 18
Italy 20 17
France 20 16

For the sake of brevity, instead of considering all possible allocations of (γ1, · · · , γp),

we assume that the games are allocated to p matchdays evenly. If an even allocation

with equal number of games in each matchday is not possible, then the numbers of

games in the matchdays are assumed to be in descending order with minimal devia-

tion among matchdays (i.e. 0 ≤ γd−1−γd ≤ 1 ∀d). For example, in the RDP (12, 4),

the number of games in the matchdays would be (γ1, γ2, γ3, γ4) = (2, 2, 1, 1). One

can find all the instances considered in the first column of Table 5.2.

5.1 Experimental Results of MIP-RDP

All instances under consideration were run by MIP-RDP presented in Section 3.2.

MIP Solutions were obtained with GAMS using either Gurobi 9.1 solver (Gurobi

Optimization Inc., 2021) or CPLEX solver (IBM ILOG CPLEX, 2017). Note that
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these instances were solved by both solvers, but only the best solutions were re-

ported. All experimental runs were executed on an Intel Core i7-7600U CPU 2.9

GHz computer with 8GB of RAM. A time limit of 10 hours (36,000 seconds) was

used. The best MIP solutions found within the time limit are listed in the second

column of Table 5.2.

The gap percentages between the best MIP solutions and the LB are listed in the

third column of Table 5.2. Note that the solver could not find a lower bound greater

than zero for most instances in which there are no one-game matchdays. Therefore,

the percentages of the gap in those instances are 100%. For the instances with one-

game matchdays, i.e., where p1 > 0, the best MIP solutions were compared with the

LB presented in Section 3.3. The percentages of these instances are colored with

grey in Table 5.2.

The values marked with an asterisk (*) in Table 5.2 are guaranteed optimal values.

In all these instances, the results found equal exactly the LB presented in Section 3.3.

According to the table, MIP-RDP has found optimal solutions with zero rest difference

in few instances particularly when p values equal 2 such as in the RDP (8, 2|2, 2),

RDP (10, 2|3, 2), RDP (12, 2|3, 3), and RDP (16, 2|4, 4). On the other hand, in some

instances with relatively large n and p such as the RDP (18, 8|2, 1, 1, 1, 1, 1, 1, 1) and

RDP (20, 6|2, 2, 2, 2, 1, 1), MIP-RDP running on commercial solvers could not even

find a feasible solution within the time limit.

5.2 Experimental Results of the Matheuristic

The algorithm of the matheuristic (Algorithm 2) was coded using Python. Each one

of the λcrm (λvm, λtars) opponent schedules is solved by the MIP-GOS model. Gurobi

9.1 solver was employed in running MIP-GOS. MIP-GOS finds the optimal result in

less than 10 seconds for each given opponent schedule of the RDP (n, p|γ1, · · · , γp).

When implementing Algorithm 2, we generate λcrm = 1, 000 random permutations

of the rounds of the initial opponent schedule that is constructed using the circle
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Table 5.2 Results of MIP-RDP
RDP (n, p|γ1, · · · , γp) Best MIP solution (sec.) %Gap

(8, 2|2, 2) 0* (0.391) 0
(8, 3|2, 1, 1) 12* (36000) 0

(8, 4|1, 1, 1, 1) 24* (36000) 0
(10, 2|3, 2) 0* (238) 0

(10, 3|2, 2, 1) 20 (36000) 20
(10, 4|2, 1, 1, 1) 32* (36000) 0

(10, 5|1, 1, 1, 1, 1) 48* (36000) 0
(12, 2|3, 3) 0* (9183) 0

(12, 3|2, 2, 2) 6 (36000) 100
(12, 4|2, 2, 1, 1) 32 (36000) 38

(12, 5|2, 1, 1, 1, 1) 56 (36000) 29
(12, 6|1, 1, 1, 1, 1, 1) 80 (36000) 25

(14, 2|4, 3) 4 (36000) 100
(14, 3|3, 2, 2) 18 (36000) 100

(14, 4|2, 2, 2, 1) 52 (36000) 54
(14, 5|2, 2, 1, 1, 1) 80 (36000) 40

(14, 6|2, 1, 1, 1, 1, 1) 90 (36000) 20
(14, 7|1, 1, 1, 1, 1, 1, 1) 128 (36000) 25

(16, 2|4, 4) 0* (66.75) 0
(16, 3|3, 3, 2) 28 (36000) 100

(16, 4|2, 2, 2, 2) 44 (36000) 100
(16, 5|2, 2, 2, 1, 1) 84 (36000) 67

(16, 6|2, 2, 1, 1, 1, 1) 128 (36000) 56
(16, 7|2, 1, 1, 1, 1, 1, 1) 152 (36000) 45

(16, 8|1, 1, 1, 1, 1, 1, 1, 1) 180 (36000) 38
(18, 2|5, 4) 16 (36000) 100

(18, 3|3, 3, 3) 36 (36000) 100
(18, 4|3, 2, 2, 2) 54 (36000) 100

(18, 5|2, 2, 2, 2, 1) 118 (36000) 73
(18, 6|2, 2, 2, 1, 1, 1) 176 (36000) 64

(18, 7|2, 2, 1, 1, 1, 1, 1) 172 (36000) 44
(18, 8|2, 1, 1, 1, 1, 1, 1, 1) – (36000) -

(18, 9|1, 1, 1, 1, 1, 1, 1, 1, 1) – (36000) -
(20, 2|5, 5) 14 (36000) 100

(20, 3|4, 3, 3) 70 (36000) 100
(20, 4|3, 3, 2, 2) 108 (36000) 100

(20, 5|2, 2, 2, 2, 2) 166 (36000) 100
(20, 6|2, 2, 2, 2, 1, 1) 168 (36000) 79

(20, 7|2, 2, 2, 1, 1, 1, 1) 260 (36000) 72
(20, 8|2, 2, 1, 1, 1, 1, 1, 1) – (36000) -

(20, 9|2, 1, 1, 1, 1, 1, 1, 1, 1) – (36000) -
(20, 10|1, 1, 1, 1, 1, 1, 1, 1, 1, 1) – (36000) -
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method. We also generate λvm = 1, 000 arbitrary edge colorings using the Vizing

method.

As noted in Algorithm 2, instead of executing TARS operations for all possible

combinations of (v, c, d) where v ∈ T and c, d ∈ R, we prefer to run them for

λtars = 1, 000 randomized combinations. We have selected three arbitrary instances

of the rest difference problem to demonstrate why these values for λ parameters are

preferred. In Figure 5.1, by selecting λcrm, λvm and λtars values up to 1, 000, the best

RD value is plotted after each iteration for the instances (a) (16, 8|1, 1, 1, 1, 1, 1, 1, 1),

(b) (18, 6|2, 2, 2, 1, 1, 1) and (c) (20, 5|2, 2, 2, 2, 2). Indeed, at first, we ran all three

instances by letting λcrm = 10, 000 and λvm = 10, 000 and did not observe any ‘best

RD’ value better than the ones reported in the figure. Therefore, we have concluded

that the selection of λcrm and λcrm as 1000 would be adequate. It can be noted that

the initial best RD value at the start of the TARS operations is the lowest value

achieved by either the circle-and-randomize or the Vizing method.

An interesting outcome in the figure is that the best RD value stays the same for

all random permutations of the rounds in the circle-and-randomize method when

n = 18 and n = 20. On the other hand, an improvement can be achieved in the

optimal RD value (from 170 to 160) by randomizing the rounds when n = 16. As

a matter of fact, the circle-and-randomize method has resulted in an improvement

in the optimal RD value for only the cases n = 10 and n = 16. Randomizing the

rounds of an opponent schedule generated by the circle method does not change the

optimal RD value at all when n = 8, 12, 14, 18 and 20. TARS operations attain the

best RD values of 156, 114, 96 for (16, 8|1, 1, 1, 1, 1, 1, 1, 1), (18, 6|2, 2, 2, 1, 1, 1) and

(20, 5|2, 2, 2, 2, 2) in the 203rd, 7th and 566th iterations, respectively.

Moreover, we have executed TARS operations in these three instances for all pos-

sible combinations of (v, c, d) and found that the final best RD value occurs to be

154, 114 and 96. This means that even though we try all (v, c, d) combinations,

the improvement in the RD value is tiny in (16, 8|1, 1, 1, 1, 1, 1, 1, 1) and absent in
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Figure 5.1 Best RD values for each λcrm, λvm and λtars in the instances (a)
RDP (16, 8|1, 1, 1, 1, 1, 1, 1, 1), (b) RDP (18, 6|2, 2, 2, 1, 1, 1) and (c)

RDP (20, 5|2, 2, 2, 2, 2)
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(18, 6|2, 2, 2, 1, 1, 1) and (20, 5|2, 2, 2, 2, 2). Therefore, we preferred to restrict the

number of (v, c, d) combinations to 1, 000 to also save computational time.

Table 5.3 reports the best RD values found by MIP-GOS for the schedules generated

by the circle-and-randomize method, the Vizing method, and TARS operations in

the second, third and fourth columns, respectively. It can be observed that the

matheuristic method finds feasible solutions for all instances under consideration,

even for those not solved by MIP-RDP. Moreover, It finds optimal solutions for all

instances with n = 8 and n = 10, and for the instance RDP (12, 2|3, 3). The RD

values in these instances equal exactly the LB presented in Section 3.3.

On the other hand, for comparison purposes, we select a sample of DRP instances

to be solved by other neighborhood structures presented in Section 2.3.4. Table 5.4

reports the results of these neighborhood structures compared to TARS. It can be

observed that TARS outperforms all other neighborhood structures in all instances.

Moreover, instead of applying TARS operatıons on the best initial schedule gener-

ated, we applied TARS to all generated random opponent schedules for a sample

of RDP instances. To save computational time, the games of these schedules were

assigned into matchdays randomly, i.e., without using MIP-GOS. We also reduce the

value of RD by swapping two games with the highest RD value inside some rounds.

Table 5.5 reports the results of a sample of instances compared with matheuristic

results. It can be observed that our matheuristic (TARS with MIP-GOS) outperforms

TARS with random schedules.

5.3 Experimental Results of the Polynomial-time Exact Method

Table 5.6 summarizes the instances solved by our polynomial-time exact method

(combined with Theorem 3). It can be noted that this method has found optimal

schedules for all instances having n = 8 and n = 16 except the RDP (16, 3|3, 3, 2).

The reason why an optimal solution can not be attained for the RDP (16, 3|3, 3, 2) is

that it is not possible to obtain the game distribution (3, 3, 2) by applying Theorem
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Table 5.3 Results of the matheuristic
RDP (n, p|γ1, · · · , γp) Circle-and-randomize Vizing TARS

(8, 2|2, 2) 12 0* 0*
(8, 3|2, 1, 1) 24 12* 12*

(8, 4|1, 1, 1, 1) 36 24* 24*
(10, 2|3, 2) 4 2 0*

(10, 3|2, 2, 1) 20 18 16*
(10, 4|2, 1, 1, 1) 36 34 32*

(10, 5|1, 1, 1, 1, 1) 52 50 48*
(12, 2|3, 3) 20 10 0*

(12, 3|2, 2, 2) 40 24 6
(12, 4|2, 2, 1, 1) 60 44 28

(12, 5|2, 1, 1, 1, 1) 80 60 54
(12, 6|1, 1, 1, 1, 1, 1) 100 82 74

(14, 2|4, 3) 24 4 2
(14, 3|3, 2, 2) 48 22 12

(14, 4|2, 2, 2, 1) 72 46 40
(14, 5|2, 2, 1, 1, 1) 96 68 62

(14, 6|2, 1, 1, 1, 1, 1) 120 92 86
(14, 7|1, 1, 1, 1, 1, 1, 1) 144 120 112

(16, 2|4, 4) 28 16 0
(16, 3|3, 3, 2) 22 30 18

(16, 4|2, 2, 2, 2) 72 60 36
(16, 5|2, 2, 2, 1, 1) 98 86 76

(16, 6|2, 2, 1, 1, 1, 1) 104 110 100
(16, 7|2, 1, 1, 1, 1, 1, 1) 136 138 128

(16, 8|1, 1, 1, 1, 1, 1, 1, 1) 160 166 154
(18, 2|5, 4) 32 14 8

(18, 3|3, 3, 3) 64 44 30
(18, 4|3, 2, 2, 2) 96 60 44

(18, 5|2, 2, 2, 2, 1) 128 90 82
(18, 6|2, 2, 2, 1, 1, 1) 160 124 114

(18, 7|2, 2, 1, 1, 1, 1, 1) 192 156 144
(18, 8|2, 1, 1, 1, 1, 1, 1, 1) 224 186 176

(18, 9|1, 1, 1, 1, 1, 1, 1, 1, 1) 256 218 206
(20, 2|5, 5) 36 24 10

(20, 3|4, 3, 3) 72 44 32
(20, 4|3, 3, 2, 2) 108 72 58

(20, 5|2, 2, 2, 2, 2) 144 106 96
(20, 6|2, 2, 2, 2, 1, 1) 180 148 134

(20, 7|2, 2, 2, 1, 1, 1, 1) 216 172 162
(20, 8|2, 2, 1, 1, 1, 1, 1, 1) 252 206 194

(20, 9|2, 1, 1, 1, 1, 1, 1, 1, 1) 288 244 232
(20, 10|1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 324 274 262
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Table 5.4 A sample of instances solved by different neighborhood structures
RDP (n, p|γ1, · · · , γp) TARS RS PRS PTS

(10, 3|2, 2, 1) 16 (604) 18(9) 18(9) 18 (93)
(12, 4|2, 2, 1, 1) 28 (2703) 32(34) 32(69) 32 (383)

(14, 5|2, 2, 1, 1, 1) 62 (8404) 66(93) 64(112) 64 (3135)
(16, 7|2, 1, 1, 1, 1, 1, 1) 128 (59547) 130(397) 130(496) 130 (8185)

(18, 4|3, 2, 2, 2) 44 (38868) 48(249) 48(239) 48 (4515)
(20, 5|2, 2, 2, 2, 2) 96 (123653) 98(642) 98(598) 100 (17198)

Table 5.5 A sample of instances solved by TARS with two different approaches

RDP (n, p|γ1, · · · , γp)
TARS

with random schedules (sec.)
TARS

with MIP-GOS (sec.)
(8, 2|2, 2) 4 (2889) 0 (39)

(10, 3|2, 2, 1) 22 (6792) 16 (604)
(12, 3|2, 2, 2) 38 (24385) 6 (2488)

(18, 5|2, 2, 2, 2, 1) 182 (42427) 82 (48413)

3 on any other optimal schedule. Table 5.6 also reports the optimal results for

instances having n = 12. Atan and Çavdaroğlu (2018) had obtained an optimal

schedule with no rest mismatches for the rest mismatch problem RMP (12, 3|2, 2, 2)

via constraint programming. Starting from this schedule, which obviously also has

an RD of 0, optimal schedules for the RDP (12, 4|2, 2, 1, 1), RDP (12, 5|2, 1, 1, 1, 1),

and RDP (12, 6|1, 1, 1, 1, 1, 1) can be constructed by utilizing Theorem 3. An optimal

solution for the starting schedule of the RDP (12, 3|2, 2, 2) is provided in Appendix

A.

Table 5.6 Results of the exact method
RDP (n, p|γ1, · · · , γp) Exact Method

(8, 2|2, 2) 0*
(8, 3|2, 1, 1) 12*

(8, 4|1, 1, 1, 1) 24*
(12, 4|2, 2, 1, 1) 20*

(12, 5|2, 1, 1, 1, 1) 40*
(12, 6|1, 1, 1, 1, 1, 1) 60*

(16, 2|4, 4) 0*
(16, 4|2, 2, 2, 2) 0*

(16, 5|2, 2, 2, 1, 1) 28*
(16, 6|2, 2, 1, 1, 1, 1) 56*

(16, 7|2, 1, 1, 1, 1, 1, 1) 84*
(16, 8|1, 1, 1, 1, 1, 1, 1, 1) 112*
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5.4 Results Comparison

Table 5.7 summarizes the RD values found by MIP-RDP, the polynomial-time ex-

act method and the matheuristic algorithm in the third, fourth, and fifth columns,

respectively. The lower bound found by Theorem 1 is also provided for each in-

stance in the second column. The best solutions found for each instance are bolded,

and the values marked with an asterisk (*) are guaranteed optimal values. When

we apply the matheuristic algorithm to all instances under consideration, we either

could improve the results of MIP-RDP further or find feasible solutions for unsolved

instances. Thus, the proposed matheuristic outperforms MIP-RDP running on com-

mercial solvers. It can also be observed that the matheuristic method is more likely

to come up with much better results than MIP-RDP with increased values of n and p.

The polynomial-time exact method could find optimal solutions not found by other

methods particularly in instances with n = 12 and n = 16, such as (12, 4|2, 2, 1, 1)

and (16, 4|2, 2, 2, 2).

In Table 5.4, we list all optimal results found by our proposed methods. In all these

instances, the results found equal exactly the LB presented in Section 3.3, i.e., they

are proven to be optimal.
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Table 5.7 Results comparison
RDP (n, p|γ1, · · · , γp) LB MIP-RDP (sec.) Exact Method Matheuristic

(8, 2|2, 2) 0 0* (0.391) 0* 0*
(8, 3|2, 1, 1) 12 12* (36000) 12* 12*

(8, 4|1, 1, 1, 1) 24 24* (36000) 24* 24*
(10, 2|3, 2) 0 0* (238) – 0*

(10, 3|2, 2, 1) 16 20 (36000) – 16*
(10, 4|2, 1, 1, 1) 32 32* (36000) – 32*

(10, 5|1, 1, 1, 1, 1) 48 48* (36000) – 48*
(12, 2|3, 3) 0 0* (9183) – 0*

(12, 3|2, 2, 2) 0 6 (36000) – 6
(12, 4|2, 2, 1, 1) 20 32 (36000) 20* 28

(12, 5|2, 1, 1, 1, 1) 40 56 (36000) 40* 54
(12, 6|1, 1, 1, 1, 1, 1) 60 80 (36000) 60* 74

(14, 2|4, 3) 0 4 (36000) – 2
(14, 3|3, 2, 2) 0 18 (36000) – 12

(14, 4|2, 2, 2, 1) 24 52 (36000) – 40
(14, 5|2, 2, 1, 1, 1) 48 80 (36000) – 62

(14, 6|2, 1, 1, 1, 1, 1) 72 90 (36000) – 86
(14, 7|1, 1, 1, 1, 1, 1, 1) 96 128 (36000) – 112

(16, 2|4, 4) 0 0* (66.75) 0* 0*
(16, 3|3, 3, 2) 0 28 (36000) – 18

(16, 4|2, 2, 2, 2) 0 44 (36000) 0* 36
(16, 5|2, 2, 2, 1, 1) 28 84 (36000) 28* 76

(16, 6|2, 2, 1, 1, 1, 1) 56 128 (36000) 56* 100
(16, 7|2, 1, 1, 1, 1, 1, 1) 84 152 (36000) 84* 128

(16, 8|1, 1, 1, 1, 1, 1, 1, 1) 112 180 (36000) 112* 154
(18, 2|5, 4) 0 16 (36000) – 8

(18, 3|3, 3, 3) 0 36 (36000) – 30
(18, 4|3, 2, 2, 2) 0 54 (36000) – 44

(18, 5|2, 2, 2, 2, 1) 32 118 (36000) – 82
(18, 6|2, 2, 2, 1, 1, 1) 64 176 (36000) – 114

(18, 7|2, 2, 1, 1, 1, 1, 1) 96 172 (36000) – 144
(18, 8|2, 1, 1, 1, 1, 1, 1, 1) 128 – (36000) – 176

(18, 9|1, 1, 1, 1, 1, 1, 1, 1, 1) 160 – (36000) – 206
(20, 2|5, 5) 0 14 (36000) – 10

(20, 3|4, 3, 3) 0 70 (36000) – 32
(20, 4|3, 3, 2, 2) 0 108 (36000) – 58

(20, 5|2, 2, 2, 2, 2) 0 166 (36000) – 96
(20, 6|2, 2, 2, 2, 1, 1) 36 168 (36000) – 134

(20, 7|2, 2, 2, 1, 1, 1, 1) 72 260 (36000) – 162
(20, 8|2, 2, 1, 1, 1, 1, 1, 1) 108 – (36000) – 194

(20, 9|2, 1, 1, 1, 1, 1, 1, 1, 1) 144 – (36000) – 232
(20, 10|1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 180 – (36000) – 262
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Table 5.8 Proven optimal solutions
RDP (n, p|γ1, · · · , γp) RD Method

(8, 2|2, 2) 0 MIP-RDP, Exact Method, Matheuristic
(8, 3|2, 1, 1) 12 MIP-RDP, Exact Method, Matheuristic

(8, 4|1, 1, 1, 1) 24 MIP-RDP, Exact Method, Matheuristic
(10, 2|3, 2) 0 MIP-RDP, Matheuristic

(10, 3|2, 2, 1) 16 Matheuristic
(10, 4|2, 1, 1, 1) 32 MIP-RDP, Matheuristic

(10, 5|1, 1, 1, 1, 1) 48 MIP-RDP, Matheuristic
(12, 2|3, 3) 0 MIP-RDP, Matheuristic

(12, 3|2, 2, 2) 0 Constraint Programming (Atan & Çavdaroğlu, 2018)
(12, 4|2, 2, 1, 1) 20 Exact Method

(12, 5|2, 1, 1, 1, 1) 40 Exact Method
(12, 6|1, 1, 1, 1, 1, 1) 60 Exact Method

(16, 2|4, 4) 0 MIP-RDP, Exact Method, Matheuristic
(16, 4|2, 2, 2, 2) 0 Exact Method

(16, 5|2, 2, 2, 1, 1) 28 Exact Method
(16, 6|2, 2, 1, 1, 1, 1) 56 Exact Method

(16, 7|2, 1, 1, 1, 1, 1, 1) 84 Exact Method
(16, 8|1, 1, 1, 1, 1, 1, 1, 1) 112 Exact Method
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6. CONCLUSIONS

In this research, we studied the rest difference problem, where the goal is to construct

a timetable that determines both the round and the matchday of each game such

that the total rest difference throughout the tournament is minimized. A mixed-

integer programming formulation, as well as a matheuristic algorithm, were provided

to solve the rest difference problem. We found that the presented MIP-RDP with

commercial solvers finds optimal schedules for small RDP (n, p|γ1, · · · , γp) instances,

i.e., when n and p values are small. We also found that the matheuristic algorithm

outperforms the MIP-RDP running on commercial solvers as it is more likely to come

up with better results than MIP-RDP with increased values of n and p.

Furthermore, we developed a polynomial-time exact algorithm, which is guaranteed

to find a schedule of zero total rest difference when the number of teams is a positive-

integer power of 2, and when the number of games in each day is even. It was also

shown that a schedule with zero total rest difference found by this algorithm remains

optimal if a matchday is split into two consecutive matchdays, one of which is a one-

game matchday. Moreover, we provided some theoretical results for the RDP . A

theorem that sets a lower bound on the value of the RD, and two theorems that allow

to easily obtain optimal schedules for some instances from the optimal schedules of

the related instances were provided. Computational experiments for several problem

instances were executed, and the best schedules for all instances were provided for

reference.

We provide here some future directions for this line of research. As future work,

one may want to relax some assumptions considered in this study. For example, we

assumed that the number of games allocated to each matchday (γd values) is the

same in all of the rounds. However, in most round-robin tournaments, the number

of games in a matchday (say Saturday) does not have to be the same throughout
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the season. In the future, this assumption can be relaxed to define an RDP cor-

responding to round-robin tournaments in practice. On the other hand, as future

work, one can consider other fairness criteria such as minimizing the number of

breaks or balancing the coe value together with rest difference minimization, and

investigate how these criteria impact each other. Moreover, one can look at the rest

difference in time relaxed tournaments, in which the number of rounds is more than

the necessary minimum to finish all the games. In these tournaments, not all teams

necessarily play in each round, providing more options to increase the rest duration

of a team, which may result in increases or decreases in the rest differences among

the opposing teams.

Finally, during the experimental runs of the MIP-RDP model, we have noticed that

the Gurobi solver could never find a lower bound greater than zero for the RDP

instances in which there are no one-game matchdays, i.e., p1 = 0. The question of

whether there exists a solution with an RD = 0 in RDP instances with p1 = 0 is

still open, and points out a direction for future research.
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Elf, M., Jünger, M., & Rinaldi, G. (2003). Minimizing breaks by maximizing cuts.

Operations Research Letters , 31 (5), 343-349.

Esteves, P. T., Mikolajec, K., Schelling, X., & Sampaio, J. (2021). Basketball

performance is affected by the schedule congestion: NBA back-to-backs under

the microscope. European Journal of Sport Science, 21 (1), 26–35.

65



Folgado, H., Duarte, R., Marques, P., & Sampaio, J. (2015). The effects of congested

fixtures period on tactical and physical performance in elite football. Journal

of Sports Sciences , 33 (12), 1238–1247.

Goossens, D. (2018). Optimization in sports league scheduling: Experiences from

the Belgian pro league soccer. In G. H. Parlier, F. Liberatore, & M. De-

mange (Eds.), Operations research and enterprise systems (pp. 3–19). Cham:

Springer International Publishing.

Goossens, D., & Spieksma, F. (2009). Scheduling the Belgian soccer league. IN-

FORMS Journal on Applied Analytics , 39 (2), 109-118.

Goossens, D., Yi, X., & Van Bulck, D. (2020). Fairness trade-offs in sports

timetabling. In C. Ley & Y. Dominicy (Eds.), Science meets sports: When

statistics are more than numbers (pp. 213–244). Newcastle upon Tyne: Cam-

bridge Scholars Publishing.

Goossens, R. D., Kempeneers, J., Koning, H. R., & Spieksma, F. C. (2015). Win-

ning in straight sets helps in Grand Slam tennis. International Journal of

Performance Analysis in Sport , 15 (3), 1007–1021.

Guedes, A. C., & Ribeiro, C. C. (2011). A heuristic for minimizing weighted

carry-over effects in round robin tournaments. Journal of Scheduling , 14 (6),

655–667.
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APPENDIX A: REFERENCE SOLUTIONS

For reference purposes, we provide the best schedules found for all instances under

consideration, i.e., the problem instances given in Table 5.7. While labeling each

timetable, we use the expression an optimal schedule for the timetables with the

optimal RD value, and we use the expression the best schedule for the timetables

whose RD value is not guaranteed to be optimal.

Table A.1 An optimal schedule (RD = 0) of the RDP (8, 2|2, 2)
Round Day 1 Day 2

1 1-2 4-3 5-6 8-7
2 1-3 2-4 5-7 6-8
3 1-4 8-5 2-3 7-6
4 1-5 2-6 4-8 3-7
5 1-6 4-7 5-2 8-3
6 1-7 2-8 5-3 6-4
7 1-8 7-2 5-4 3-6

Table A.2 An optimal schedule (RD = 12) of the RDP (8, 3|2, 1, 1)
Round Day 1 Day 2 Day 3

1 1-2 4-3 5-6 8-7
2 1-3 2-4 5-7 6-8
3 1-4 8-5 2-3 7-6
4 1-5 2-6 4-8 3-7
5 1-6 4-7 5-2 8-3
6 1-7 2-8 5-3 6-4
7 1-8 7-2 5-4 3-6
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Table A.3 An optimal schedule (RD = 24) of the RDP (8, 4|1, 1, 1, 1)
Round Day 1 Day 2 Day 3 Day 4

1 1-2 4-3 5-6 8-7
2 1-3 2-4 5-7 6-8
3 1-4 8-5 2-3 7-6
4 1-5 2-6 4-8 3-7
5 1-6 4-7 5-2 8-3
6 1-7 2-8 5-3 6-4
7 1-8 7-2 5-4 3-6

Table A.4 An optimal schedule (RD = 0) of the RDP (10, 2|3, 2)
Round Day 1 Day 2

1 1-8 2-5 6-9 3-7 4-10
2 1-5 3-10 6-8 2-9 4-7
3 1-3 2-7 6-10 4-9 5-8
4 1-10 2-3 4-8 5-9 6-7
5 1-2 7-9 8-10 3-4 5-6
6 1-7 2-10 8-9 3-5 4-6
7 1-9 4-5 7-10 2-8 3-6
8 3-8 5-7 9-10 1-4 2-6
9 1-6 3-9 5-10 2-4 7-8

Table A.5 An optimal schedule (RD = 16) of the RDP (10, 3|2, 2, 1)
Round Day 1 Day 2 Day 3

1 2-7 6-8 3-10 1-9 4-5
2 1-5 7-8 2-6 4-10 3-9
3 1-8 3-4 2-10 6-9 5-7
4 2-9 4-8 5-6 7-10 1-3
5 2-4 8-9 3-5 6-7 1-10
6 1-7 4-9 2-8 3-6 5-10
7 2-5 3-8 1-4 7-9 6-10
8 9-10 5-8 1-6 2-3 4-7
9 1-2 8-10 3-7 4-6 5-9
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Table A.6 An optimal schedule (RD = 32) of the RDP (10, 4|2, 1, 1, 1)
Round Day 1 Day 2 Day 3 Day 4

1 2-7 6-8 3-10 1-9 4-5
2 1-5 7-8 2-6 4-10 3-9
3 1-8 3-4 2-10 6-9 5-7
4 2-9 4-8 5-6 7-10 1-3
5 2-4 8-9 3-5 6-7 1-10
6 1-7 4-9 2-8 3-6 5-10
7 2-5 3-8 1-4 7-9 6-10
8 9-10 5-8 1-6 2-3 4-7
9 1-2 8-10 3-7 4-6 5-9

Table A.7 An optimal schedule (RD = 48) of the RDP (10, 5|1, 1, 1, 1, 1)
Round Day 1 Day 2 Day 3 Day 4 Day 5

1 2-7 6-8 3-10 1-9 4-5
2 1-5 7-8 2-6 4-10 3-9
3 1-8 3-4 2-10 6-9 5-7
4 2-9 4-8 5-6 7-10 1-3
5 2-4 8-9 3-5 6-7 1-10
6 1-7 4-9 2-8 3-6 5-10
7 2-5 3-8 1-4 7-9 6-10
8 9-10 5-8 1-6 2-3 4-7
9 1-2 8-10 3-7 4-6 5-9

Table A.8 An optimal schedule (RD = 0) of the RDP (12, 2|3, 3)
Round Day 1 Day 2

1 1-8 4-11 5-7 2-10 3-12 6-9
2 1-11 4-5 9-12 2-3 6-10 7-8
3 1-4 2-6 5-9 3-8 7-10 11-12
4 3-10 4-6 8-12 1-9 2-5 7-11
5 2-7 3-4 9-11 1-5 6-12 8-10
6 2-11 3-9 5-8 1-6 4-7 10-12
7 2-9 4-10 8-11 1-12 3-5 6-7
8 1-7 2-8 3-6 4-9 5-12 10-11
9 1-2 3-7 4-12 5-11 6-8 9-10
10 1-3 5-10 6-11 2-4 7-12 8-9
11 2-12 3-11 7-9 1-10 4-8 5-6
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Table A.9 An optimal schedule (RD = 0) of the RDP (12, 3|2, 2, 2)
Round Day 1 Day 2 Day 3

1 1-2 3-4 5-6 7-8 9-10 11-12
2 1-3 10-12 5-7 2-4 9-11 6-8
3 2-7 6-11 4-5 1-10 8-9 3-12
4 6-7 4-10 1-5 8-12 3-9 2-11
5 3-11 6-10 4-7 1-12 2-9 5-8
6 10-11 1-7 4-12 5-9 3-6 2-8
7 2-6 3-8 7-10 5-12 4-9 1-11
8 6-8 1-4 2-3 7-12 9-11 5-10
9 5-11 3-7 4-6 1-8 9-10 2-12
10 3-5 2-10 7-11 4-8 9-12 1-6
11 1-9 3-10 7-8 6-12 2-5 4-11

Table A.10 An optimal schedule (RD = 20) of the RDP (12, 4|2, 2, 1, 1)
Round Day 1 Day 2 Day 3 Day 4

1 1-2 3-4 5-6 7-8 9-10 11-12
2 1-3 10-12 5-7 2-4 9-11 6-8
3 2-7 6-11 4-5 1-10 8-9 3-12
4 6-7 4-10 1-5 8-12 3-9 2-11
5 3-11 6-10 4-7 1-12 2-9 5-8
6 10-11 1-7 4-12 5-9 3-6 2-8
7 2-6 3-8 7-10 5-12 4-9 1-11
8 6-8 1-4 2-3 7-12 9-11 5-10
9 5-11 3-7 4-6 1-8 9-10 2-12
10 3-5 2-10 7-11 4-8 9-12 1-6
11 1-9 3-10 7-8 6-12 2-5 4-11

Table A.11 An optimal schedule (RD = 40) of the RDP (12, 5|2, 1, 1, 1, 1)
Round Day 1 Day 2 Day 3 Day 4 Day 5

1 1-2 3-4 5-6 7-8 9-10 11-12
2 1-3 10-12 5-7 2-4 9-11 6-8
3 2-7 6-11 4-5 1-10 8-9 3-12
4 6-7 4-10 1-5 8-12 3-9 2-11
5 3-11 6-10 4-7 1-12 2-9 5-8
6 10-11 1-7 4-12 5-9 3-6 2-8
7 2-6 3-8 7-10 5-12 4-9 1-11
8 6-8 1-4 2-3 7-12 9-11 5-10
9 5-11 3-7 4-6 1-8 9-10 2-12
10 3-5 2-10 7-11 4-8 9-12 1-6
11 1-9 3-10 7-8 6-12 2-5 4-11
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Table A.12 An optimal schedule (RD = 60) of the RDP (12, 6|1, 1, 1, 1, 1, 1)
Round Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

1 1-2 3-4 5-6 7-8 9-10 11-12
2 1-3 10-12 5-7 2-4 9-11 6-8
3 2-7 6-11 4-5 1-10 8-9 3-12
4 6-7 4-10 1-5 8-12 3-9 2-11
5 3-11 6-10 4-7 1-12 2-9 5-8
6 10-11 1-7 4-12 5-9 3-6 2-8
7 2-6 3-8 7-10 5-12 4-9 1-11
8 6-8 1-4 2-3 7-12 9-11 5-10
9 5-11 3-7 4-6 1-8 9-10 2-12
10 3-5 2-10 7-11 4-8 9-12 1-6
11 1-9 3-10 7-8 6-12 2-5 4-11

Table A.13 The best schedule (RD = 2) of the RDP (14, 2|4, 3)
Round Day 1 Day 2

1 1-12 4-8 5-10 11-2 3-6 7-9 13-14
2 1-4 5-8 14-6 12-7 2-10 11-3 9-13
3 1-6 3-13 2-9 12-8 7-5 11-10 4-14
4 3-12 4-7 5-11 10-14 1-9 2-8 6-13
5 1-13 9-8 7-11 12-5 2-6 14-3 10-4
6 3-10 7-13 5-9 4-6 1-8 2-14 12-11
7 1-14 3-5 6-9 12-2 4-13 8-11 10-7
8 5-6 7-8 10-13 12-14 1-2 3-9 4-11
9 1-11 3-2 7-14 13-5 4-9 8-10 6-12
10 2-13 4-12 6-8 7-3 1-5 9-10 11-14
11 1-10 11-9 6-7 12-13 2-4 3-8 5-14
12 6-10 14-8 11-13 12-9 1-7 3-4 5-2
13 4-5 6-11 2-7 8-13 1-3 9-14 10-12
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Table A.14 The best schedule (RD = 12) of the RDP (14, 3|3, 2, 2)
Round Day 1 Day 2 Day 3

1 5-11 7-13 6-8 9-14 12-10 1-3 4-2
2 1-2 3-4 5-13 8-11 10-9 6-7 12-14
3 1-4 8-9 10-11 13-3 5-2 6-12 7-14
4 3-5 6-14 13-10 4-11 9-7 1-8 2-12
5 9-13 8-2 11-7 3-6 5-10 1-12 4-14
6 2-6 3-10 8-13 4-12 11-9 1-14 7-5
7 1-7 2-13 3-8 4-9 5-14 6-10 11-12
8 1-9 2-7 4-13 5-6 10-14 3-11 8-12
9 2-10 7-3 11-14 4-8 12-13 1-5 6-9
10 11-13 9-2 3-14 5-8 7-12 6-4 1-10
11 1-6 2-11 13-14 4-10 8-7 3-9 5-12
12 4-7 10-8 9-5 2-14 12-3 1-13 11-6
13 1-11 2-3 4-5 6-13 7-10 8-14 9-12

Table A.15 The best schedule (RD = 40) of the RDP (14, 4|2, 2, 2, 1)
Round Day 1 Day 2 Day 3 Day 4

1 3-6 8-13 4-5 10-14 1-7 9-11 2-12
2 14-5 8-3 2-7 11-12 13-6 9-1 4-10
3 9-6 2-11 3-14 8-5 7-12 10-13 1-4
4 3-5 12-13 11-6 10-1 2-9 8-14 4-7
5 2-6 8-10 4-14 12-5 1-11 9-7 3-13
6 1-5 2-8 4-12 10-6 7-11 13-14 3-9
7 3-11 10-12 1-8 6-4 7-13 9-14 2-5
8 2-14 11-4 1-13 10-3 5-7 9-12 6-8
9 1-3 2-4 8-12 11-14 5-10 9-13 6-7
10 9-10 11-13 1-2 5-6 7-8 12-14 3-4
11 2-13 11-10 4-8 5-9 3-12 7-14 1-6
12 2-10 7-3 1-12 6-14 4-13 11-5 8-9
13 1-14 2-3 4-9 5-13 6-12 7-10 8-11
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Table A.16 The best schedule (RD = 62) of the RDP (14, 5|2, 2, 1, 1, 1)
Round Day 1 Day 2 Day 3 Day 4 Day 5

1 11-13 12-14 3-7 5-8 2-4 6-9 1-10
2 2-12 10-9 4-7 8-13 1-6 3-5 11-14
3 1-14 6-3 2-13 10-7 5-11 9-12 4-8
4 1-7 4-9 8-12 13-10 5-6 2-11 3-14
5 1-4 8-10 13-12 5-14 7-9 2-6 3-11
6 1-8 9-11 4-10 5-12 13-14 6-7 2-3
7 4-12 6-14 1-9 13-3 5-10 8-11 2-7
8 2-8 5-9 4-14 11-7 1-13 6-10 3-12
9 4-11 6-13 2-5 7-14 8-9 3-10 1-12
10 1-2 3-9 14-8 13-4 5-7 10-12 6-11
11 6-12 11-10 2-14 13-9 7-8 1-3 4-5
12 3-4 6-8 2-9 10-14 11-12 7-13 1-5
13 1-11 2-10 3-8 4-6 5-13 7-12 9-14

Table A.17 The best schedule (RD = 86) of the RDP (14, 6|2, 1, 1, 1, 1, 1)
Round Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

1 5-6 7-14 2-12 11-13 1-4 9-10 3-8
2 1-13 9-3 4-14 6-7 2-11 8-10 5-12
3 5-10 8-12 2-7 4-13 3-14 1-9 6-11
4 1-6 13-14 7-8 3-4 10-12 2-5 9-11
5 2-9 7-10 1-8 6-14 4-12 3-13 5-11
6 3-5 4-11 6-8 1-14 7-9 2-10 12-13
7 3-6 7-12 1-10 4-5 8-11 2-13 9-14
8 6-10 9-13 3-12 2-14 4-8 1-5 7-11
9 2-8 6-13 4-7 1-11 3-10 9-12 5-14
10 5-9 8-13 12-14 10-11 4-6 1-2 3-7
11 2-3 4-10 11-14 8-9 6-12 1-7 5-13
12 2-4 6-9 10-14 5-8 7-13 1-12 3-11
13 1-3 2-6 4-9 5-7 8-14 10-13 11-12
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Table A.18 The best schedule (RD = 112) of the RDP (14, 7|1, 1, 1, 1, 1, 1, 1)
Round Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

1 4-11 10-14 6-8 9-12 7-13 1-3 2-5
2 4-10 3-5 11-14 6-12 2-13 8-9 1-7
3 7-9 2-4 6-11 3-10 12-13 1-8 5-14
4 4-8 3-11 6-7 10-13 1-5 12-14 2-9
5 1-10 9-14 3-7 8-11 5-13 2-12 4-6
6 5-8 7-10 11-13 4-12 1-9 3-14 2-6
7 11-12 5-10 1-2 7-8 3-9 4-13 6-14
8 13-14 2-8 1-12 10-11 6-9 5-7 3-4
9 5-9 2-11 4-7 10-12 3-6 8-13 1-14
10 3-12 2-7 9-11 4-5 8-14 1-13 6-10
11 2-3 8-10 4-14 9-13 1-6 7-12 5-11
12 1-4 9-10 7-11 2-14 3-8 5-12 6-13
13 1-11 2-10 3-13 4-9 5-6 7-14 8-12

Table A.19 An optimal schedule (RD = 0) of the RDP (16, 2|4, 4)
Round Day 1 Day 2

1 1-3 2-4 5-7 6-8 9-11 10-12 13-15 14-16
2 1-4 3-2 5-8 7-6 9-12 11-10 13-16 14-15
3 1-2 5-6 3-4 8-7 9-10 13-14 12-11 15-16
4 1-5 2-6 3-7 4-8 9-13 10-14 11-15 12-16
5 1-6 4-7 3-8 2-5 9-14 12-15 11-16 10-13
6 1-7 2-8 3-5 4-6 9-15 10-16 11-13 12-14
7 1-8 9-16 3-6 11-14 2-7 10-15 4-5 12-13
8 1-9 2-10 3-11 4-12 5-13 6-14 7-15 8-16
9 1-10 4-11 3-12 2-9 5-14 8-15 7-16 6-13
10 1-11 2-12 3-9 4-10 5-15 6-16 7-13 8-14
11 1-12 8-13 3-10 6-15 5-16 4-9 7-14 2-11
12 1-13 2-14 3-15 4-16 5-9 6-10 7-11 8-12
13 1-14 4-15 3-16 2-13 5-10 8-11 7-12 6-9
14 1-15 2-16 3-13 4-14 5-11 6-12 7-9 8-10
15 1-16 2-15 3-14 4-13 5-12 6-11 7-10 8-9

78



Table A.20 The best schedule (RD = 18) of the RDP (16, 3|3, 3, 2)
Round Day 1 Day 2 Day 3

1 3-4 6-7 10-15 1-5 2-8 11-14 13-12 9-16
2 2-5 4-6 7-15 13-9 12-16 14-8 1-11 10-3
3 1-3 12-9 6-15 2-4 5-16 14-7 8-13 11-10
4 13-5 8-10 3-15 2-16 7-11 12-6 1-9 4-14
5 2-6 7-16 12-11 3-5 8-15 13-10 1-4 9-14
6 3-7 5-8 4-9 2-11 10-12 13-15 1-14 6-16
7 7-5 2-10 12-15 3-9 8-4 13-14 1-6 11-16
8 3-14 6-11 13-4 12-5 8-9 1-16 2-15 10-7
9 3-6 13-11 8-16 4-5 14-10 9-15 1-12 7-2
10 1-2 5-14 11-8 6-13 9-10 12-7 3-16 15-4
11 2-14 7-9 12-4 5-11 10-6 15-16 1-8 3-13
12 1-13 16-10 4-7 2-9 11-15 14-12 3-8 6-5
13 1-7 4-10 13-16 3-11 9-5 14-15 2-12 8-6
14 2-3 7-13 12-8 4-16 9-11 14-6 1-10 5-15
15 1-15 2-13 3-12 4-11 5-10 6-9 7-8 14-16

Table A.21 An optimal schedule (RD = 0) of the RDP (16, 4|2, 2, 2, 2)
Round Day 1 Day 2 Day 3 Day 4

1 1-3 2-4 5-7 6-8 9-11 10-12 13-15 14-16
2 1-4 3-2 5-8 7-6 9-12 11-10 13-16 14-15
3 1-2 5-6 3-4 8-7 9-10 13-14 12-11 15-16
4 1-5 2-6 3-7 4-8 9-13 10-14 11-15 12-16
5 1-6 4-7 3-8 2-5 9-14 12-15 11-16 10-13
6 1-7 2-8 3-5 4-6 9-15 10-16 11-13 12-14
7 1-8 9-16 3-6 11-14 2-7 10-15 4-5 12-13
8 1-9 2-10 3-11 4-12 5-13 6-14 7-15 8-16
9 1-10 4-11 3-12 2-9 5-14 8-15 7-16 6-13
10 1-11 2-12 3-9 4-10 5-15 6-16 7-13 8-14
11 1-12 8-13 3-10 6-15 5-16 4-9 7-14 2-11
12 1-13 2-14 3-15 4-16 5-9 6-10 7-11 8-12
13 1-14 4-15 3-16 2-13 5-10 8-11 7-12 6-9
14 1-15 2-16 3-13 4-14 5-11 6-12 7-9 8-10
15 1-16 2-15 3-14 4-13 5-12 6-11 7-10 8-9
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Table A.22 An optimal schedule (RD = 28) of the RDP (16, 5|2, 2, 2, 1, 1)
Round Day 1 Day 2 Day 3 Day 4 Day 5

1 1-3 2-4 5-7 6-8 9-11 10-12 13-15 14-16
2 1-4 3-2 5-8 7-6 9-12 11-10 13-16 14-15
3 1-2 5-6 3-4 8-7 9-10 13-14 12-11 15-16
4 1-5 2-6 3-7 4-8 9-13 10-14 11-15 12-16
5 1-6 4-7 3-8 2-5 9-14 12-15 11-16 10-13
6 1-7 2-8 3-5 4-6 9-15 10-16 11-13 12-14
7 1-8 9-16 3-6 11-14 2-7 10-15 4-5 12-13
8 1-9 2-10 3-11 4-12 5-13 6-14 7-15 8-16
9 1-10 4-11 3-12 2-9 5-14 8-15 7-16 6-13
10 1-11 2-12 3-9 4-10 5-15 6-16 7-13 8-14
11 1-12 8-13 3-10 6-15 5-16 4-9 7-14 2-11
12 1-13 2-14 3-15 4-16 5-9 6-10 7-11 8-12
13 1-14 4-15 3-16 2-13 5-10 8-11 7-12 6-9
14 1-15 2-16 3-13 4-14 5-11 6-12 7-9 8-10
15 1-16 2-15 3-14 4-13 5-12 6-11 7-10 8-9

Table A.23 An optimal schedule (RD = 56) of the RDP (16, 6|2, 2, 1, 1, 1, 1)
Round Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

1 1-3 2-4 5-7 6-8 9-11 10-12 13-15 14-16
2 1-4 3-2 5-8 7-6 9-12 11-10 13-16 14-15
3 1-2 5-6 3-4 8-7 9-10 13-14 12-11 15-16
4 1-5 2-6 3-7 4-8 9-13 10-14 11-15 12-16
5 1-6 4-7 3-8 2-5 9-14 12-15 11-16 10-13
6 1-7 2-8 3-5 4-6 9-15 10-16 11-13 12-14
7 1-8 9-16 3-6 11-14 2-7 10-15 4-5 12-13
8 1-9 2-10 3-11 4-12 5-13 6-14 7-15 8-16
9 1-10 4-11 3-12 2-9 5-14 8-15 7-16 6-13
10 1-11 2-12 3-9 4-10 5-15 6-16 7-13 8-14
11 1-12 8-13 3-10 6-15 5-16 4-9 7-14 2-11
12 1-13 2-14 3-15 4-16 5-9 6-10 7-11 8-12
13 1-14 4-15 3-16 2-13 5-10 8-11 7-12 6-9
14 1-15 2-16 3-13 4-14 5-11 6-12 7-9 8-10
15 1-16 2-15 3-14 4-13 5-12 6-11 7-10 8-9
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Table A.24 An optimal schedule (RD = 84) of the RDP (16, 7|2, 1, 1, 1, 1, 1, 1)
Round Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

1 1-3 2-4 5-7 6-8 9-11 10-12 13-15 14-16
2 1-4 3-2 5-8 7-6 9-12 11-10 13-16 14-15
3 1-2 5-6 3-4 8-7 9-10 13-14 12-11 15-16
4 1-5 2-6 3-7 4-8 9-13 10-14 11-15 12-16
5 1-6 4-7 3-8 2-5 9-14 12-15 11-16 10-13
6 1-7 2-8 3-5 4-6 9-15 10-16 11-13 12-14
7 1-8 9-16 3-6 11-14 2-7 10-15 4-5 12-13
8 1-9 2-10 3-11 4-12 5-13 6-14 7-15 8-16
9 1-10 4-11 3-12 2-9 5-14 8-15 7-16 6-13
10 1-11 2-12 3-9 4-10 5-15 6-16 7-13 8-14
11 1-12 8-13 3-10 6-15 5-16 4-9 7-14 2-11
12 1-13 2-14 3-15 4-16 5-9 6-10 7-11 8-12
13 1-14 4-15 3-16 2-13 5-10 8-11 7-12 6-9
14 1-15 2-16 3-13 4-14 5-11 6-12 7-9 8-10
15 1-16 2-15 3-14 4-13 5-12 6-11 7-10 8-9

Table A.25 An optimal schedule (RD = 112) of the RDP (16, 8|1, 1, 1, 1, 1, 1, 1, 1)
Round Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8

1 1-3 2-4 5-7 6-8 9-11 10-12 13-15 14-16
2 1-4 3-2 5-8 7-6 9-12 11-10 13-16 14-15
3 1-2 5-6 3-4 8-7 9-10 13-14 12-11 15-16
4 1-5 2-6 3-7 4-8 9-13 10-14 11-15 12-16
5 1-6 4-7 3-8 2-5 9-14 12-15 11-16 10-13
6 1-7 2-8 3-5 4-6 9-15 10-16 11-13 12-14
7 1-8 9-16 3-6 11-14 2-7 10-15 4-5 12-13
8 1-9 2-10 3-11 4-12 5-13 6-14 7-15 8-16
9 1-10 4-11 3-12 2-9 5-14 8-15 7-16 6-13
10 1-11 2-12 3-9 4-10 5-15 6-16 7-13 8-14
11 1-12 8-13 3-10 6-15 5-16 4-9 7-14 2-11
12 1-13 2-14 3-15 4-16 5-9 6-10 7-11 8-12
13 1-14 4-15 3-16 2-13 5-10 8-11 7-12 6-9
14 1-15 2-16 3-13 4-14 5-11 6-12 7-9 8-10
15 1-16 2-15 3-14 4-13 5-12 6-11 7-10 8-9
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Table A.26 The best schedule (RD = 8) of the RDP (18, 2|5, 4)
Round Day 1 Day 2

1 6-3 12-16 2-9 10-4 7-17 1-8 5-13 11-15 14-18
2 1-14 17-5 6-4 9-7 3-10 2-12 16-8 13-15 11-18
3 16-11 7-6 12-15 13-18 17-4 1-9 2-5 8-3 10-14
4 13-6 14-3 8-11 9-5 15-17 1-10 4-16 2-7 12-18
5 1-4 12-7 6-8 11-5 14-17 16-10 9-15 13-3 2-18
6 13-9 5-8 6-12 4-14 15-18 1-17 11-7 16-3 10-2
7 1-7 5-15 10-11 8-13 14-12 2-16 4-18 9-6 17-3
8 1-5 12-11 2-3 9-4 7-14 6-18 10-13 17-16 15-8
9 1-12 4-5 18-8 2-14 16-6 3-7 9-11 17-13 15-10
10 4-15 6-14 12-17 7-13 16-5 1-18 3-11 9-10 8-2
11 1-3 4-12 8-10 17-6 9-18 2-11 7-5 13-16 15-14
12 12-9 16-7 8-4 5-14 3-18 1-6 17-10 11-13 15-2
13 3-4 5-12 17-11 10-6 7-18 1-15 16-9 8-14 2-13
14 1-2 4-7 6-11 13-14 15-16 3-12 8-9 10-5 17-18
15 1-11 14-16 9-3 13-4 5-18 2-6 7-15 10-12 8-17
16 2-17 4-11 6-15 9-14 5-3 1-13 8-12 10-7 16-18
17 1-16 2-4 3-15 5-6 7-8 9-17 10-18 11-14 12-13

Table A.27 The best schedule (RD = 30) of the RDP (18, 3|3, 3, 3)
Round Day 1 Day 2 Day 3

1 2-8 16-3 6-18 1-7 10-12 14-15 4-17 13-11 9-5
2 1-15 8-16 4-9 3-6 5-11 10-14 2-18 17-13 12-7
3 12-18 11-14 17-7 4-15 9-16 6-10 1-8 3-5 2-13
4 1-5 11-12 14-17 18-9 10-13 16-6 2-15 4-7 8-3
5 12-5 2-7 9-6 1-14 11-17 16-15 3-13 18-10 4-8
6 2-17 6-7 13-4 9-12 1-11 8-15 16-10 5-14 3-18
7 2-4 5-16 13-6 3-10 9-11 14-18 8-7 1-12 15-17
8 3-14 16-13 4-6 1-17 11-18 8-12 2-5 7-15 10-9
9 2-10 16-7 3-4 5-17 8-11 12-6 1-18 13-14 15-9
10 11-15 16-12 13-18 4-14 6-17 5-8 1-9 10-7 2-3
11 4-5 7-13 8-18 6-14 12-15 11-16 1-2 3-9 10-17
12 3-17 8-9 15-6 2-16 12-14 4-18 13-5 1-10 11-7
13 1-13 17-9 6-8 3-15 12-4 16-18 2-11 5-10 7-14
14 3-12 10-11 8-17 5-7 9-13 15-18 1-6 14-2 4-16
15 7-9 6-2 3-11 17-12 13-15 5-18 1-4 8-10 14-16
16 6-11 4-10 5-15 14-8 9-2 13-12 7-3 1-16 17-18
17 1-3 2-12 4-11 5-6 7-18 9-14 10-15 17-16 8-13
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Table A.28 The best schedule (RD = 44) of the RDP (18, 4|3, 2, 2, 2)
Round Day 1 Day 2 Day 3 Day 4

1 5-18 12-16 14-11 2-15 8-17 1-4 3-7 6-13 10-9
2 1-7 4-3 14-18 2-17 9-6 5-12 10-13 8-15 11-16
3 5-13 9-12 10-8 1-3 4-14 2-6 15-16 7-18 17-11
4 2-9 7-11 12-13 3-14 10-5 1-15 8-4 6-16 17-18
5 4-6 15-17 16-18 10-14 13-11 1-8 5-9 2-7 3-12
6 4-17 13-14 15-9 1-5 10-16 6-18 12-7 2-3 8-11
7 4-15 6-7 14-5 1-16 13-9 2-8 12-18 3-11 10-17
8 2-16 10-11 9-18 4-5 7-15 6-14 12-8 1-13 3-17
9 5-8 18-11 16-7 1-17 13-3 2-10 9-4 6-12 14-15
10 5-7 12-15 13-17 1-11 10-6 3-9 8-18 2-4 14-16
11 5-15 11-6 12-17 7-13 9-14 3-8 4-16 1-10 2-18
12 3-16 6-15 5-17 7-9 8-14 1-2 11-12 4-13 10-18
13 3-15 10-4 13-18 5-16 6-17 2-12 11-9 1-14 8-7
14 8-16 13-15 9-17 1-12 4-18 2-11 7-14 3-10 6-5
15 2-14 11-5 15-17 8-13 9-16 1-18 6-3 4-12 10-7
16 2-5 3-18 16-13 1-6 8-9 10-12 14-17 4-7 11-15
17 1-9 2-13 3-5 4-11 6-8 7-17 10-15 12-14 16-18

Table A.29 The best schedule (RD = 82) of the RDP (18, 5|2, 2, 2, 2, 1)
Round Day 1 Day 2 Day 3 Day 4 Day 5

1 11-14 13-16 2-12 9-15 1-7 6-18 4-10 8-17 3-5
2 11-13 14-16 3-7 9-12 1-18 15-2 4-8 6-17 5-10
3 6-15 12-16 1-5 13-14 4-17 11-7 3-9 8-10 2-18
4 2-9 7-17 3-8 12-13 1-15 10-18 4-11 6-16 5-14
5 2-7 5-16 1-11 4-14 3-12 10-15 6-13 8-18 9-17
6 1-14 12-10 7-16 13-8 6-9 11-15 3-4 17-18 2-5
7 8-9 15-16 7-13 12-14 2-4 3-17 5-18 11-6 1-10
8 5-17 10-6 1-4 11-18 2-3 8-16 7-12 13-15 9-14
9 2-16 10-17 1-8 7-14 3-11 12-15 4-18 13-9 5-6
10 10-16 13-18 2-14 11-17 3-15 9-5 1-12 8-7 4-6
11 4-9 10-13 6-7 14-15 1-3 16-18 2-17 11-5 8-12
12 1-16 12-17 2-11 6-14 3-18 10-9 4-13 8-5 7-15
13 8-15 14-18 1-17 9-7 3-10 4-16 2-6 11-12 5-13
14 8-14 11-10 1-9 2-13 4-5 6-12 3-16 15-17 7-18
15 1-13 6-3 2-8 9-11 10-14 16-17 4-7 5-12 15-18
16 3-13 14-17 4-15 7-5 1-6 2-10 9-16 12-18 8-11
17 1-2 3-14 4-12 5-15 6-8 7-10 9-18 11-16 13-17
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Table A.30 The best schedule (RD = 114) of the RDP (18, 6|2, 2, 2, 1, 1, 1)
Round Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

1 4-13 12-8 1-2 7-16 9-15 17-18 6-11 3-5 10-14
2 12-13 15-16 5-10 11-17 3-14 6-4 1-7 2-8 9-18
3 5-14 8-18 7-9 13-15 1-3 12-16 4-11 2-6 10-17
4 1-12 4-3 5-9 7-13 2-17 10-6 8-15 11-16 14-18
5 6-17 13-9 2-15 14-11 5-12 10-8 1-4 3-7 16-18
6 6-9 7-18 3-10 12-15 1-16 13-17 8-14 2-11 4-5
7 6-18 11-8 2-5 4-17 1-13 10-7 3-15 9-12 14-16
8 6-8 7-15 2-4 5-13 3-17 16-9 12-14 11-18 1-10
9 2-13 8-4 3-16 15-6 9-14 10-18 1-11 12-17 5-7
10 1-18 13-8 3-6 9-10 4-14 11-15 2-16 7-12 5-17
11 4-15 7-17 1-8 3-9 2-12 6-14 13-18 5-16 10-11
12 1-6 5-11 3-8 15-17 2-9 12-18 4-7 13-14 10-16
13 2-10 7-14 1-15 8-17 9-11 13-16 5-6 4-12 3-18
14 3-12 11-13 1-17 16-6 2-14 10-15 7-8 4-9 5-18
15 1-5 8-9 2-7 3-11 6-13 12-10 16-17 4-18 14-15
16 6-12 11-7 1-9 14-17 2-3 15-18 10-13 5-8 4-16
17 1-14 2-18 3-13 4-10 5-15 6-7 8-16 9-17 11-12

Table A.31 The best schedule (RD = 144) of the RDP (18, 7|2, 2, 1, 1, 1, 1, 1)
Round Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

1 1-5 11-16 9-10 13-18 3-15 4-14 7-12 8-17 2-6
2 4-13 7-6 2-8 10-15 1-16 9-18 3-14 5-11 12-17
3 1-9 2-15 5-17 13-7 11-18 12-14 10-16 4-6 3-8
4 2-9 16-17 3-6 10-12 4-8 7-18 5-15 11-14 1-13
5 2-16 10-3 8-18 17-9 7-14 1-11 6-15 4-12 5-13
6 10-14 16-18 2-3 12-13 11-15 8-9 1-6 4-5 7-17
7 2-17 6-5 10-11 12-16 1-8 14-18 4-7 9-15 3-13
8 4-15 12-11 6-17 16-8 1-14 3-7 9-13 5-18 2-10
9 8-14 12-15 2-18 13-10 3-5 6-16 1-4 7-9 11-17
10 8-12 10-18 6-9 14-15 5-16 2-13 3-4 1-17 7-11
11 3-11 9-12 2-5 6-14 13-16 1-7 15-18 4-17 8-10
12 1-2 3-12 4-18 17-10 7-16 8-15 5-14 6-13 9-11
13 6-11 8-13 2-12 10-4 17-18 1-3 9-14 15-16 5-7
14 3-17 16-14 6-8 11-13 7-15 12-18 2-4 5-9 1-10
15 3-16 9-4 13-15 14-17 5-10 2-7 8-11 6-18 1-12
16 13-14 15-17 2-11 4-16 1-18 3-9 7-10 6-12 5-8
17 1-15 2-14 3-18 4-11 5-12 6-10 7-8 9-16 13-17
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Table A.32 The best schedule (RD = 176) of the RDP (18, 8|2, 1, 1, 1, 1, 1, 1, 1)
Round Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8

1 3-16 13-6 5-18 2-17 4-7 1-9 10-15 8-12 11-14
2 9-10 13-16 3-7 2-4 5-17 15-18 1-6 8-14 11-12
3 1-15 7-2 4-5 6-8 3-17 11-18 12-14 10-13 9-16
4 1-2 10-16 3-8 5-7 4-11 9-17 13-14 12-18 6-15
5 9-13 12-15 6-14 3-7 11-17 4-18 2-16 1-5 8-10
6 3-11 6-12 9-14 2-18 13-15 1-10 7-17 4-16 5-8
7 2-14 5-16 4-8 3-12 13-18 9-15 1-7 10-17 6-11
8 2-8 15-16 9-18 6-7 5-14 3-13 4-12 1-17 10-11
9 7-14 16-18 2-15 3-5 1-11 8-9 12-17 4-13 6-10
10 10-12 13-17 14-18 4-6 3-9 5-15 1-8 7-16 2-11
11 1-4 3-15 10-18 14-17 7-11 8-16 12-13 2-5 6-9
12 7-8 12-16 11-13 4-15 17-18 10-14 1-3 2-6 5-9
13 5-6 11-16 1-14 15-18 3-10 2-9 7-12 4-17 8-13
14 5-11 9-12 7-13 14-15 1-16 6-18 8-17 3-4 2-10
15 8-18 15-11 7-9 4-10 14-16 1-13 5-12 2-3 6-17
16 4-14 11-9 3-6 16-17 8-15 2-12 1-18 5-13 7-10
17 1-12 2-13 3-14 4-9 6-16 7-18 8-11 15-17 5-10

Table A.33 The best schedule (RD = 206) of the RDP (18, 9|1, 1, 1, 1, 1, 1, 1, 1, 1)
Round Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9

1 7-11 4-18 5-10 6-17 8-13 14-15 2-9 12-16 1-3
2 10-17 8-14 2-12 3-16 4-7 9-15 5-11 1-13 6-18
3 4-16 1-6 9-11 2-8 5-15 3-7 14-17 13-18 10-12
4 6-11 12-14 3-15 9-16 10-13 5-8 17-18 1-4 2-7
5 5-17 16-15 2-4 11-12 1-7 13-14 8-18 3-6 9-10
6 5-16 1-18 8-10 6-14 2-11 4-12 3-9 7-13 15-17
7 3-11 9-12 13-15 4-8 6-10 2-14 5-18 1-16 7-17
8 3-12 8-11 2-5 1-17 7-14 10-15 4-6 16-18 9-13
9 4-15 7-10 5-12 9-18 13-16 11-17 1-14 2-6 3-8
10 2-3 15-18 6-8 16-17 11-14 4-10 1-9 5-7 12-13
11 4-14 10-11 3-18 7-9 5-13 8-17 1-12 6-16 2-15
12 2-16 1-5 10-14 3-13 4-11 12-17 7-18 8-9 6-15
13 4-17 6-9 11-13 1-2 10-16 8-15 3-5 14-18 7-12
14 11-16 1-15 7-8 12-18 2-17 3-10 6-13 4-9 5-14
15 4-13 3-17 5-6 7-16 9-14 1-10 8-12 2-18 11-15
16 6-7 12-15 14-16 1-8 11-18 3-4 5-9 13-17 2-10
17 1-11 2-13 3-14 4-5 6-12 7-15 8-16 9-17 10-18
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Table A.34 The best schedule (RD = 10) of the RDP (20, 2|5, 5)
Round Day 1 Day 2

1 1-19 6-16 4-8 12-11 13-9 2-20 5-18 7-14 15-17 10-3
2 2-15 18-17 12-4 16-11 9-19 1-6 20-3 13-8 10-7 14-5
3 2-11 6-20 4-15 16-19 18-9 1-3 5-13 14-10 8-7 12-17
4 4-16 7-12 15-9 11-6 19-20 1-5 3-14 8-10 13-17 2-18
5 11-9 10-18 3-13 15-16 12-20 1-2 4-7 8-5 17-14 6-19
6 1-8 3-15 18-12 9-20 10-16 2-5 4-17 13-11 7-19 6-14
7 4-5 10-12 11-19 20-16 13-14 1-9 3-8 7-6 18-15 17-2
8 1-15 6-18 17-3 16-13 10-19 2-7 11-4 8-9 5-20 14-12
9 1-10 11-5 4-2 6-13 16-17 3-18 8-12 9-14 20-7 19-15
10 1-11 8-20 4-13 19-18 12-9 2-10 5-16 7-3 14-15 6-17
11 16-7 9-4 13-18 15-10 14-20 1-12 3-6 5-17 19-2 8-11
12 3-5 9-10 11-17 19-12 18-14 1-4 2-6 7-15 16-8 13-20
13 5-19 17-10 11-18 15-8 13-7 1-20 6-12 3-9 4-14 16-2
14 2-3 9-6 7-18 13-19 4-20 1-14 8-17 16-12 5-10 11-15
15 1-16 7-9 10-11 3-19 17-20 2-13 5-6 15-12 4-18 8-14
16 1-7 14-2 9-16 3-11 17-19 4-6 5-12 10-20 13-15 18-8
17 1-17 7-11 13-12 10-4 18-20 2-9 5-15 16-3 8-6 14-19
18 1-18 20-11 13-10 14-16 6-15 2-12 9-5 7-17 4-3 8-19
19 1-13 2-8 3-12 4-19 5-7 6-10 9-17 11-14 15-20 16-18

Table A.35 The best schedule (RD = 32) of the RDP (20, 3|4, 3, 3)
Round Day 1 Day 2 Day 3

1 3-13 6-17 9-5 14-7 2-18 19-16 4-15 1-20 10-11 12-8
2 3-6 4-18 16-15 9-7 2-19 17-14 12-10 1-11 13-5 8-20
3 2-3 7-16 11-20 10-14 4-12 9-15 13-17 1-5 6-18 8-19
4 3-14 5-19 11-4 17-12 1-6 8-18 15-13 2-7 9-10 16-20
5 3-12 11-17 8-5 16-10 1-13 18-15 14-19 2-9 20-7 4-6
6 1-15 17-8 7-6 13-19 3-10 5-12 4-9 2-14 11-16 18-20
7 4-13 7-8 10-5 14-16 1-3 2-20 17-15 6-19 11-18 12-9
8 3-15 11-19 8-16 18-12 6-9 10-13 17-20 1-2 4-7 5-14
9 6-10 19-18 14-13 9-20 2-12 5-4 16-17 1-7 3-8 11-15
10 1-17 10-20 5-2 19-9 3-4 7-11 14-18 6-13 15-8 12-16
11 2-10 16-6 7-18 17-19 1-9 15-12 5-20 3-11 14-4 13-8
12 14-8 6-5 12-1 16-18 3-9 13-11 4-20 2-17 19-15 7-10
13 7-17 4-8 9-11 5-18 2-15 12-13 10-19 20-3 6-14 16-1
14 1-14 8-11 20-6 15-10 2-13 16-3 9-18 4-17 19-12 5-7
15 3-18 7-12 11-14 17-5 19-4 6-8 10-1 2-16 20-15 9-13
16 3-17 9-16 19-7 13-20 5-11 6-15 14-12 1-18 4-2 10-8
17 7-13 17-9 14-15 10-18 3-19 12-20 5-16 1-4 2-8 6-11
18 2-6 5-3 7-15 12-11 1-8 9-14 19-20 17-10 13-18 4-16
19 1-19 2-11 3-7 4-10 5-15 6-12 8-9 13-16 14-20 17-18
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Table A.36 The best schedule (RD = 58) of the RDP (20, 4|3, 3, 2, 2)
Round Day 1 Day 2 Day 3 Day 4

1 7-11 20-16 18-12 4-19 6-17 9-5 1-14 13-2 3-15 10-8
2 3-8 13-5 6-19 4-9 7-18 12-20 1-2 11-16 10-15 14-17
3 1-16 12-17 8-13 2-9 7-4 18-20 5-6 14-15 3-19 11-10
4 1-8 6-15 11-19 3-10 17-13 5-18 7-14 12-16 2-4 9-20
5 6-11 8-15 13-18 10-5 9-12 2-14 4-20 16-7 1-19 17-3
6 4-16 18-15 5-14 6-13 10-9 19-20 2-12 7-3 1-17 11-8
7 3-12 13-14 15-19 2-7 5-4 8-17 6-9 16-18 1-11 10-20
8 5-3 20-11 19-2 9-16 13-15 14-12 1-10 6-18 4-8 7-17
9 1-6 3-16 8-7 4-10 9-13 14-18 5-11 12-19 2-20 17-15
10 3-13 11-12 4-14 8-5 6-16 15-2 9-18 10-19 1-7 17-20
11 1-20 9-7 15-12 3-14 18-10 4-6 2-5 17-19 13-11 8-16
12 2-11 6-14 3-18 7-10 8-19 15-20 4-12 13-16 1-9 5-17
13 2-18 12-13 16-10 1-5 19-7 15-4 9-17 14-11 3-6 8-20
14 20-3 11-17 16-2 14-9 7-12 5-19 1-15 4-18 6-8 10-13
15 3-11 12-5 9-15 1-4 8-18 17-2 16-14 13-19 6-10 7-20
16 1-12 11-4 17-18 5-15 14-10 16-19 6-7 13-20 2-8 3-9
17 7-13 15-11 8-9 1-18 19-14 2-3 4-17 16-5 6-20 12-10
18 2-10 7-15 16-17 14-8 6-12 5-20 9-11 18-19 1-3 4-13
19 1-13 2-6 3-4 5-7 8-12 9-19 10-17 11-18 14-20 15-16

Table A.37 The best schedule (RD = 96) of the RDP (20, 5|2, 2, 2, 2, 2)
Round Day 1 Day 2 Day 3 Day 4 Day 5

1 6-19 17-10 1-5 3-11 13-16 14-18 2-12 7-20 4-9 8-15
2 6-16 14-7 13-18 15-20 2-5 8-9 1-11 4-12 3-10 17-19
3 9-20 19-10 11-12 13-15 1-4 2-18 5-8 7-6 3-17 16-14
4 2-10 19-20 5-6 9-11 4-7 12-15 14-17 16-18 1-13 8-3
5 2-19 11-5 4-18 9-6 3-13 7-15 8-17 14-12 1-16 10-20
6 6-18 17-15 4-11 5-19 7-12 16-20 2-13 8-14 1-10 9-3
7 6-17 12-20 2-11 10-9 13-14 16-19 1-8 15-18 3-7 5-4
8 5-18 8-19 3-4 9-13 11-14 17-20 7-16 12-10 1-15 6-2
9 7-11 13-17 3-19 16-12 4-10 14-20 2-15 9-5 1-6 8-18
10 2-9 3-16 6-8 11-17 1-18 4-20 5-15 14-10 7-13 12-19
11 1-20 3-2 4-17 7-19 9-18 13-12 6-11 10-15 5-14 8-16
12 2-20 16-5 1-3 7-17 8-10 12-18 9-14 11-15 4-19 13-6
13 13-19 18-17 2-16 12-8 4-6 10-11 5-7 9-15 1-14 3-20
14 2-8 7-10 11-13 18-19 3-14 5-20 4-15 16-17 1-9 6-12
15 1-17 12-9 2-7 4-16 5-10 8-13 6-20 19-14 3-15 11-18
16 3-18 11-20 6-14 8-7 2-4 9-17 10-16 15-19 1-12 5-13
17 1-19 9-7 10-13 18-20 8-11 15-16 3-6 5-12 2-17 14-4
18 4-8 13-20 1-7 10-18 2-14 6-15 3-12 5-17 9-19 16-11
19 1-2 3-5 4-13 6-10 7-18 8-20 9-16 11-19 12-17 14-15
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Table A.38 The best schedule (RD = 134) of the RDP (20, 6|2, 2, 2, 2, 1, 1)
Round Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

1 1-5 6-17 3-4 18-19 8-12 15-20 2-9 7-11 10-14 13-16
2 1-6 5-12 7-9 15-18 2-16 14-13 4-19 11-10 8-20 3-17
3 2-18 6-5 1-12 7-13 10-16 14-19 3-20 15-9 4-11 8-17
4 6-12 16-19 3-9 8-11 10-13 17-20 2-14 5-18 1-7 4-15
5 8-18 17-16 6-9 12-19 1-13 4-14 7-15 10-20 3-11 2-5
6 3-13 12-17 5-11 10-15 1-4 14-20 8-16 9-18 6-19 2-7
7 5-14 16-18 1-11 7-19 8-9 10-17 2-6 4-20 13-15 3-12
8 1-19 10-8 6-20 15-12 4-13 14-16 2-3 5-9 7-18 11-17
9 2-11 17-18 1-10 6-13 3-15 14-9 4-16 12-20 5-7 8-19
10 7-8 9-10 1-15 16-20 3-14 13-18 2-17 12-4 5-19 6-11
11 5-13 8-15 7-10 14-17 3-18 6-4 1-20 19-11 2-12 9-16
12 5-15 14-8 6-10 12-16 4-18 11-9 1-3 7-17 13-20 2-19
13 4-9 10-12 3-7 13-19 2-20 18-11 1-17 15-14 5-8 6-16
14 2-15 10-18 9-12 13-17 3-19 11-20 1-14 5-16 4-7 6-8
15 4-8 5-20 1-16 15-11 2-10 6-3 9-13 17-19 7-14 12-18
16 7-12 11-16 9-17 19-20 3-10 6-15 2-13 5-4 1-8 14-18
17 3-5 15-17 6-14 7-16 8-13 12-11 1-18 4-2 9-20 10-19
18 11-13 12-14 4-10 5-17 6-7 18-20 1-2 3-8 9-19 15-16
19 1-9 2-8 3-16 4-17 5-10 6-18 7-20 11-14 12-13 15-19

Table A.39 The best schedule (RD = 162) of the RDP (20, 7|2, 2, 2, 1, 1, 1, 1)
Round Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

1 5-19 13-10 1-3 6-14 7-11 8-20 2-12 17-18 4-9 15-16
2 1-10 9-17 2-18 6-3 11-20 19-14 4-15 5-13 7-8 12-16
3 10-17 15-19 1-9 12-13 2-11 8-5 6-18 4-20 7-16 3-14
4 1-11 7-14 8-12 17-19 5-20 13-9 2-6 3-18 10-15 4-16
5 3-16 8-17 4-10 12-20 5-9 11-14 15-18 1-7 2-19 6-13
6 1-18 16-8 9-11 13-15 6-19 10-20 4-5 3-12 14-17 2-7
7 12-17 19-20 3-7 5-10 2-14 8-18 1-16 9-15 11-13 4-6
8 11-16 17-20 4-13 10-18 2-3 12-19 6-9 8-14 5-7 1-15
9 2-8 11-17 4-12 18-19 13-20 15-14 1-5 10-16 3-9 6-7
10 7-9 13-14 3-10 15-11 2-17 4-18 12-15 8-19 1-20 6-16
11 9-14 12-18 1-8 10-11 2-5 7-13 15-17 6-20 16-19 3-4
12 6-11 10-8 9-18 17-16 1-14 3-20 7-12 5-15 2-13 4-19
13 3-17 15-7 5-12 10-9 8-11 13-19 1-6 16-18 2-4 14-20
14 3-15 11-19 6-8 9-12 1-13 4-14 5-17 2-16 18-20 7-10
15 6-15 12-11 3-19 9-8 1-4 2-10 5-14 7-18 16-20 13-17
16 1-2 6-12 4-17 7-20 8-15 13-16 9-19 10-14 5-18 3-11
17 3-5 9-16 2-20 15-11 1-12 14-18 8-13 4-7 10-19 6-17
18 1-17 7-19 2-9 15-20 3-13 8-4 11-18 12-14 5-16 6-10
19 1-19 2-15 3-8 4-11 5-6 7-17 9-20 10-12 13-18 14-16
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Table A.40 The best schedule (RD = 194) of the RDP (20, 8|2, 2, 1, 1, 1, 1, 1, 1)
Round Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8

1 3-17 7-6 1-2 5-19 4-14 16-18 9-15 13-20 10-12 8-11
2 1-6 12-20 4-18 15-13 3-5 9-11 8-10 16-19 2-14 7-17
3 2-17 13-18 3-9 11-19 1-12 8-14 6-20 7-16 5-10 4-15
4 11-12 13-17 6-16 15-10 1-3 4-8 2-18 9-19 14-20 5-7
5 3-16 10-6 1-13 8-7 12-15 14-19 11-17 5-20 9-18 2-4
6 1-8 10-16 11-15 18-20 3-7 6-14 17-19 4-9 2-5 12-13
7 2-12 4-19 5-13 7-14 9-17 1-10 8-16 11-20 15-18 3-6
8 4-13 11-16 2-10 9-7 5-14 8-20 1-17 12-19 6-15 3-18
9 5-17 8-19 3-15 14-10 2-7 13-16 9-20 1-18 6-12 4-11
10 3-14 13-9 4-6 5-8 12-18 7-20 10-19 1-11 15-17 2-16
11 3-12 10-18 2-11 9-14 4-20 16-17 5-6 1-15 8-13 7-19
12 7-13 11-18 2-9 4-12 3-10 16-20 1-5 15-19 14-17 6-8
13 16-5 12-9 7-18 17-8 4-10 6-19 11-13 1-14 2-3 15-20
14 6-11 8-18 3-19 14-13 4-7 5-9 1-20 10-17 12-16 2-15
15 4-5 6-18 1-9 13-19 7-10 15-16 2-20 11-14 3-8 12-17
16 2-19 12-8 1-4 14-16 7-15 17-20 3-11 5-18 6-13 9-10
17 2-8 6-9 3-20 13-10 1-19 17-18 4-16 7-12 5-11 14-15
18 1-16 9-8 5-15 14-12 7-11 18-19 10-20 2-6 3-13 4-17
19 1-7 2-13 3-4 5-12 6-17 8-15 9-16 10-11 14-18 19-20

Table A.41 The best schedule (RD = 232) of the RDP (20, 9|2, 1, 1, 1, 1, 1, 1, 1, 1)
Round Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9

1 6-9 14-15 1-20 7-18 5-19 12-13 10-16 3-4 11-17 2-8
2 4-10 18-20 5-13 6-15 12-19 2-11 1-7 3-17 8-16 9-14
3 1-3 10-18 8-14 15-19 9-16 6-13 2-4 7-11 12-17 5-20
4 1-10 7-4 8-19 9-11 3-15 12-20 2-13 6-16 5-17 14-18
5 6-20 10-8 7-19 5-14 1-4 11-13 3-9 17-18 2-16 12-15
6 6-8 7-14 1-5 12-16 15-17 11-19 4-18 9-13 10-20 2-3
7 13-18 17-19 7-12 6-14 3-10 11-15 1-8 4-9 5-16 2-20
8 2-5 13-14 10-15 1-12 18-19 4-16 7-17 9-20 8-11 3-6
9 1-16 11-20 5-15 3-8 7-9 12-18 6-17 4-19 2-14 10-13
10 1-6 10-14 3-7 13-19 8-15 4-17 2-18 9-12 16-20 5-11
11 4-8 7-6 5-9 2-12 10-19 11-16 1-14 17-20 3-13 15-18
12 4-5 13-20 3-18 6-12 7-8 10-11 1-15 14-17 16-19 2-9
13 5-18 16-14 3-20 7-15 9-19 2-10 6-11 4-13 1-17 8-12
14 7-20 17-8 5-10 11-12 1-13 16-18 9-15 2-19 3-14 4-6
15 8-20 16-15 7-13 4-14 3-19 5-12 10-17 9-18 1-11 2-6
16 6-10 14-19 4-12 15-20 7-16 8-13 3-5 9-17 11-18 1-2
17 6-19 14-20 10-12 5-7 1-18 8-9 2-17 4-15 3-11 13-16
18 5-6 8-18 13-17 3-16 12-14 4-11 2-15 19-20 1-9 7-10
19 1-19 2-7 3-12 4-20 5-8 6-18 9-10 11-14 13-15 16-17
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Table A.42 The best schedule (RD = 262) of the
RDP (20, 10|1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

Round Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10
1 14-19 12-20 11-16 13-15 1-2 10-18 5-9 3-4 6-17 7-8
2 2-16 19-20 5-10 12-14 3-6 11-15 8-9 1-13 4-18 7-17
3 13-17 1-15 6-14 9-18 8-11 2-20 3-12 5-19 10-16 4-7
4 9-14 3-7 5-16 15-18 6-13 2-12 4-10 1-17 8-19 11-20
5 3-14 13-18 6-12 4-16 11-19 1-10 8-20 2-17 5-15 7-9
6 12-16 8-17 4-6 10-19 7-15 1-11 3-13 9-20 14-18 2-5
7 6-11 10-15 13-20 17-19 1-7 2-14 3-9 5-18 4-12 8-16
8 14-16 6-20 7-13 10-11 1-19 4-8 2-9 12-18 3-5 15-17
9 2-18 3-15 16-19 6-7 9-12 4-11 10-13 1-8 14-20 5-17
10 10-12 14-17 5-11 7-19 6-16 4-9 3-18 1-20 8-13 2-15
11 16-17 8-15 7-11 5-12 1-4 3-20 18-19 6-9 10-14 2-13
12 13-14 4-20 15-16 9-19 2-10 5-7 1-3 8-12 6-18 11-17
13 4-14 15-19 9-13 12-17 16-20 1-5 6-8 2-7 3-10 11-18
14 1-16 3-11 9-17 12-13 4-19 7-10 2-6 5-8 14-15 18-20
15 5-6 7-14 15-20 13-19 11-12 1-9 3-16 8-18 2-4 10-17
16 11-13 9-16 5-14 1-18 6-15 12-19 7-20 4-17 8-10 2-3
17 1-14 7-12 2-8 9-11 16-18 4-15 5-13 6-19 10-20 3-17
18 6-10 9-15 1-12 3-19 2-11 8-14 13-16 7-18 4-5 17-20
19 1-6 2-19 3-8 4-13 5-20 7-16 9-10 11-14 12-15 17-18
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