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MULTI-SENSOR INDOOR POSITIONING

ABSTRACT

In this study, multi-sensor indoor positioning methods, which fuse the tri-laterated

position data of the target are considered. The lateration is based on the dis-

tances that are obtained using the signal strengths received from different Wi-Fi

access points. A new method, which is based on federated Kalman filtering (FKF)

and makes use of the fingerprint data, namely, federated Kalman filter with skipped

covariance updating (FKF-SCU) is proposed for indoor positioning. After that chal-

lenging issue of FKF, information sharing coefficient assignment is studied and two

online adaptation methods based on received signal strength indication (RSSI) and

distance information gathered from APs are proposed. Lastly, FKF-SCU structure

is combined with adaptive FKF configuration. The data collected on two different

test beds are used to compare the performance of the proposed positioning methods

to those of the regular federated and centralized filters. It is shown on the test data

that these algorithms improve the position accuracy and provide fault tolerance

whenever signal reception is interrupted from an access point.

Keywords: Indoor positioning, federated Kalman filter, sensor fusion,

fault tolerance
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KAPALI MEKANDA ÇOK SENSÖRLÜ KONUMLANDIRMA

ÖZET

Bu çalışmada, hedefin üçgenlenmiş konum bilgilerini birleştiren, çoklu sensörlü ka-

palı alanda konumlandırma metodlarına yer verilmiştir. Üçgenleme işlemi Wi-

Fi erişim noktalarından alınan sinyal gücünün çevrimi ile elde edilen mesafe bil-

gileri ile gerçekleştirilmiştir. Yeni bir yöntem olarak, Federe Kalman Filtresine

(FKF) dayanan ve parmak izi verilerini kullanan, Federe Kalman Filtresi-Kovaryans

Güncellemesi Atlama (FKF-KGA) yöntemi sunulmuştur. Sonrasında FKF yapısında

zorlu konulardan biri olan, bilgi paylaşım katsayısı atama problemi için iki yeni

uyarlanabilir yöntem sunulmuştur. Bu yöntemler erişim noktalarından elde edilen,

alınan sinyal gücü göstergesi ve mesafe bilgilerine dayanarak geliştirilmiştir. Son

olarak, FKF-KGA yapısı uyarlanabilir bilgi paylaşım katsayı yöntemleri ile birleş-

tirilmiştir. İki farklı kapalın alanda toplanan gerçek veriler, sunulan federe filtre

yapıları ile standart federe ve merkezileştirilmiş süzgeç yapılarının performanslarını

karşılaştırmak için kullanılmıştır. Test verileri ile gerçeklenen benzetimler sonunda,

sunulan yöntemlerin konum doğruluğu ve erişim noktasında sinyal kaybı durumun-

daki hata toleransında iyileşme sağladığı gözlenmiştir.

Anahtar sözcükler: Kapalı alanda konumlandırma, federe Kalman filtresi,

sensör füzyonu, hataya toleranslık
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1. INTRODUCTION

1.1 Navigation and Positioning

The purpose of navigation is to direct the movement of a vehicle to a given destina-

tion. Navigation problems can be classified according to the location of the target

under two contexts, namely, as outdoor and indoor. If the target is moving outdoors,

its positioning or navigation is done easily via different kinds of Global Navigational

Satellite Systems (GNSS). There are four different GNSS in use all over the world,

which are Global Positioning System (GPS) operated by the USA, Global Navi-

gation Satellite System (GLONASS) operated by Russia, European GNSS Galileo,

and China’s GNSS BeiDou. Among these GNSS technologies, GPS is the widely

used system and thanks to advances in GPS, such applications for outdoor purposes

became abundant. For the localization of the target holding a GPS embedded de-

vice, mainly two information are needed. The first one is the distance between GPS

devices and GPS satellites. The second one is the position of GPS satellites. When

these two pieces of information is available, the target location can be obtained using

lateration methods [1].

However, in some situations, GPS signals may not be available for localization. A

car traveling through a tunnel is a good example for this case. Once there is no use of

GPS due to the inadequacy or complete loss of satellite signals, alternative systems

are needed to get accurate position information [2]. Generally, an Inertial Navigation

System (INS) is the choice to keep the system to provide position information in the

absence of a GPS signal. Integration of INS and GPS also provides improvement in

overall system accuracy and reliability that could not be attained just using only one

of them. Hence, when a set of states (position, velocity, etc.) can be estimated via

more than one sensor, not only accuracy increases but also reliability of the system

improves [3].
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Figure 1.1 Fault detection via system comparison

1.2 Fault Tolerance

In every system, the occurrence of a fault is an inevitable situation. Therefore,

a vital part of system design criteria is system reaction in case of a fault. Fault

tolerance means the ability of a system to go on operating within acceptable limits

despite the occurrence of a fault. Fault tolerance is achieved as a combination of

fault detection and isolation mechanisms, and remedies overcoming these faults. It

is useful to understand if everything is fine or something has gone wrong with the

operation of a system. Detecting the existence of fault correctly at an appropriate

time is called fault detection and diagnosis. This step is the most important step

for fault-tolerant system. Because undetected faults may cause severe problems.

In literature, fault detection and diagnosis is also named as fault detection and

isolation or fault detection and identification. But in this study, we will use fault

detection and identification. A fault detection system compares system attitude with

nominal behavior and if a deviation occurs from what is expected, it is detected and

the detection system alerts. After detection of the fault, there are generally three

identification methods; model-based, knowledge-based and model-free (empirical or

signal processing) methods [4, 5]. In this study, the model-based method shown in

Figure 1.1 will be used to compare the output of the actual system with the nominal

system data. Fingerprint data will be our nominal system data. [6].
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On the other hand, we can classify faults according to their occurrence with respect

to time. While designing a fault-tolerant system we need to consider the occurrence

of faults related to time given in Figure 1.2. Because, it may occur intermittently,

abruptly or incipiently [6]. Among these models, we used the abrupt signal loss as

a faulty scenario. In this scenario, signal loss occurs at one of the Access Points

(APs) and one could not get information from the failed AP for a while.

After detection and identification of the fault, re-configuration of the faulty system

may achieve the overall system to be fault-tolerant by preventing the error prop-

agation to other subsystems. This can be provided by combining the information

obtained from different sensors that estimate common states (position, velocity etc.)

of the system. By that way, not only system ambiguity is decreased, but also robust-

ness and fault tolerance is increased [7]. Such a fault tolerance can be obtained, for

example, using an INS/GPS combination. If in some situations (e.g., car traveling

through a tunnel) GPS signals get lost, a navigation application can continue to

provide positioning information by using the inertial sensor of the mobile device in

the absence of GPS signals [2]. In this study, a similar fault scenario is applied to as-

sess the fault tolerance performance of the proposed multi-sensor indoor positioning

method.

Figure 1.2 Time-dependency of faults: (a) intermittent, (b) abrupt, (c) incipient

3



1.3 Indoor Positioning

For both, military and nonmilitary applications, GPS is the essential source to get

position information. But, since the construction of buildings with concrete walls

act as an obstacle for GPS signals so that these signals lose strength in penetrating

beyond the walls. Therefore, due to the low signal quality of GPS signals indoors,

they are not usable for indoor applications. Hence, an alternative sensor that can be

used for indoor area application is needed; and many studies focused on designing

systems that are as reliable as GPS is for outdoor applications [8, 9, 10, 11, 12, 13].

There are many alternative sensors to be used as information sources for indoor

environment applications such as Wi-Fi, BLE, beacons, RFID, UWB etc., and dif-

ferent methods to process these information to facilitate positioning such as Time

of Arrival (TOA), Time Difference of Arrival (TDOA), Received Signal Strength

Indication (RSSI) etc [14]. Among these methods RSSI is used widely for localiza-

tion. In a line of sight situation, it may provide good results while calculating the

distance between the signal source and target. But in real world, there are many

factors affecting the propagation of RSSI signals at indoor environments. Therefore,

RSSI measurements are not reliable to use for localization directly [15, 16]. Hence,

extra tools are needed to facilitate positioning by using RSSI.

Given the reliability problem of RSSI signals, fault tolerant indoor positioning sys-

tem is aimed to provide a reliable accuracy performance by using RSSI measure-

ments of APs. Even though Kalman Filtering and its variants are widely used for

combining different sensor measurements at outdoor localization and navigation ap-

plications, none of the existing methods or sensors appear as to be favored against

others for the indoor case [17, 18, 19]. A method that can be applied as widely

as GNSS for outdoor environment is still an open area for research. Considering

its effective and dominant usage in outdoor applications, Kalman filtering and its

derivatives can be seen as a promising means towards this aim.

4



1.4 Data Fusion

The process of measurement data integration is called as data fusion [20] and can

find applications in many areas [3, 21, 22]. Regardless of the source, where the

data comes from, Kalman Filtering which is originally proposed in [23] is one of the

most commonly used tools in outdoor positioning systems and can also be applied

for data fusion. Different variants of Kalman Filter, such as extended, unscented,

decentralized and federated filters can find applications for positioning purposes.

In early applications, Kalman Filter is used for astronautical guidance systems and

became a part of the Apollo project on board guidance. In mid 1960’s Kalman filter

solved for an aviation company the data fusion problem of radar and inertial sensor

information to obtain aircraft trajectory estimate. After that time, it has become

an indispensable part of the modern navigation systems [2] .

Different sensor information can be fused mainly with, centralized filtering or de-

centralized filtering structures [24]. In centralized structure, sensor measurements

are combined at one step and in one filter for the required output. Whereas, in

decentralized structure the sensor measurements are fused in two steps. At the

first step, sensor measurements are filtered by different sensor-dedicated sub-filters.

Then, solutions gathered from these sub-filters are combined in another filtering

component, which produces the global result. In [25, 26], these filtering configura-

tions are compared for indoor environment. Results of this study presents that more

accurate positioning can be obtained with a multi-sensor configuration as compared

to single-sensor one. Moreover, promising results are obtained from decentralized

structure.

A centralized structure that is applied for data fusion is the Centralized Kalman

Filter (CKF). CKF is simple to apply with its one-step data processing and highly

accurate output can be obtained with very small information loss. Nevertheless, the

computational load increases for high-dimensional state vectors.
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Moreover, if a fault occurs at one of the sensors, the performance degradation rise

by the time and badly effects the general system performance [27, 28].

Therefore, in view of this disadvantage of CKF, a two-stage data-processing de-

centralized filtering structure can be proposed. In a Decentralized Kalman Filter

(DKF), parallel working sensor-dedicated independent local filters (LFs) provide lo-

cally optimal solutions and these results are combined in a master filter to get the

globally optimal solution. Main advantage of this structure is that the failure of

one of the sensors, whose data are processed in a parallel way, does not cause a

total failure at the overall system output, but only some performance degradation

may occur [29, 30, 31, 24]. However, despite the great attention DKF has received,

it also could not provide a fault-tolerant performance as desired [31]. This fact

motivated the introduction of federated filtering configurations to surmount theo-

retical restrictions and constraints in applications of CKF and DKF. In [32] and [33],

an information-sharing methodology complying with conversation of information is

applied to DKF. This structure is called Federated Kalman Filter (FKF).

In the literature, there are some indoor positioning studies aiming to fuse information

gathered from the sensors by using a centralized filtering structure [34, 35, 36, 37]

and very few studies considering FKF structure [38, 39]. But, none of them take

into account fault tolerance issues.

1.5 Literature review

Indoor positioning systems has drawn great attention in recent years. Different kinds

of methods are used to localize the target position. These methods have pros and

cons by themselves; but the main purpose is to find accurate position of the user.

Microsoft organized Indoor Localization Competition in 2014 and [17] published

the results, experiences and lessons gathered. At that competition, 22 different

solutions are put in test. As a result, there is no technology or a combination of

technologies that gives satisfied performance as GPS provides for outdoors, yet.
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Therefore, we can say that Indoor Localisation Problem is still not solved and needs

more investigation. Another important result of that competition is that there is

not a single solution working perfectly in all indoor environments. Hence, the best

solution for indoor positioning might be a hybrid one, which can adapt itself to

different kinds of situations. In that study, 22 different indoor localization studies

were evaluated. As a result, it is shown that Wi-Fi based approaches can achieve

accuracy below 1m.

In [14], a comprehensive overview of the systems and techniques used for indoor

localization was provided. The authors focused their analyses on widely-used trian-

gulation, scene analysis, and proximity methods. They also discussed a commonly-

used IPS method, fingerprinting, in detail. They simulated many methods and

compared performances according to accuracy, precision, complexity, scalability, ro-

bustness and cost. As future work, it is emphasized that hybrid algorithms are

needed. Furthermore, wireless sensors used together with other technologies such as

optical (e.g., IR), inertial, dc electromagnetic and ultrasonic for indoor location is

another trend.

In [40] IPS on a special topic as IPS for Pedestrians were reviewed. There are

many technological advances making systems applicable. Sensors and processing

nodes used in IPS design became smaller and these improvements in size of sensors

helped the designer to focus on Pedestrian Dead Reckoning (PDR) systems. In

this study, techniques for step detection, characterisation, inertial navigation and

step-and-heading-based dead-reckoning are reviewed and compared.

The Personal Network (PN) concept is provided in [8]. PNs are designed to form one

network in distinct locations. PNs’ design is based on the requirements of the users

and PNs evaluate the users’ technological devices by providing connections between

each other. This paper provides an extensive survey of many IPSs, which include

both commercial products and research solutions. These systems are assessed in
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scope of cost, accuracy performance, robustness, complexity, commercial availability,

and limitations.

In [41] many papers were reviewed and a survey of the mathematical methods

used for position estimation in IPS is provided. Their study focused especially

on methods used with radio frequency signals. They analysed the techniques in four

groups: Geometry-based methods, minimization of cost functions, fingerprinting,

and Bayesian techniques. They also evaluated each technique according to the ap-

plicability, requirements, and immunity to non-line-of-sight (NLOS) propagation of

the signals.

Another IPS method, “Optical Positioning”, is studied in [42]. Receive and transmit

sensors of the optical communication get many improvements both for accuracy and

size. Their dimensions became smaller and their data transmission rates increased

by technological advances. After that many people started studying optical sensor

for indoor positioning. Mautz and Tilch summarized 26 different approaches and

provided the key parameters of the optical systems. As a summary, high accuracy

performance of optical indoor positioning approaches is emphasized which is between

a couple of µm and dm. At the end of the study to improve performance of the

optical positioning system data fusion with other sensors is suggested.

In [43] rising interest in the indoor positioning system design were emphasized.

This study is especially on indoor wireless tracking of mobile nodes, which esti-

mates a series of correlated locations of mobile nodes. Also, there are many studies

and applications using Visible Light Communication as information source. Philips

company has already completed 17 case studies that were put into use in Italy,

France, Belgium, Netherlands, Dubai, South Africa etc. Philips published white

paper about their study and take attention usage of LEDs in indoor positioning and

indoor location services.

In [44], an Indoor Visible Light Communication Positioning System by using a dif-

ferent technique named RF Carrier Allocation is introduced. They have reached a
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few centimeters of positioning accuracy. Details of their study and simulation results

can be seen in [44].

A survey on Visible Light Positioning studies can be found in [45]. They compared

17 different studies according to their technology, backbone network, cost, driver

and accuracy. Among the discussed techniques, Spatial Division Multiple Access is

the most capable technology thanks to its low complexity and usage of smartphones

own cameras. On the other hand, there are some challenging issues about VLP such

as the refresh rate of camera, the processing time of the images effecting the position

update and avoidance of flicker occurrence. Until now we have talked about many

different techniques using different information sources. By using just one system

to get position information of the target may not provide good accuracy in every

environment. Therefore, to get better accuracy data fusion must be used. There

are many studies to enhance the performance by combining the data of two or more

IPS systems.

In [19], an improved BLE (Bluetooth Low Energy) indoor localization with data

fusion based on Kalman Filtering was designed. In this study, BLE beacon set is

used as an information source and different mobile devices are used to design a

highly accurate indoor positioning system. Performance of the designed system is

compared with other indoor positioning technologies. Main objective of this study

was chosen as examining how accurate the proposed method is, as well as inter-

action of the obstacles to localization and direction of the mobile system antenna.

To obtain a more accurate positioning information, a hybrid method, which fuses

dead reckoning and trilateration methods via Kalman filter, was studied. By that

fusion, the pros and cons of the individual methods were shown. In their study,

they declared that constraints of trilateration and dead reckoning methods can be

overcome with proposed hybrid method. Simulation results showed a positioning

error performance of less than one meter. Moreover, the proposed method is found

to be fault tolerant in case of a failure at the localization mechanism.
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In [46] an indoor positioning method based on Probabilistic RFID Map and Kalman

Filtering was proposed. Multilateration is used to estimate location of unknown

RFID tag. The proposed algorithm is independent from the readers position in-

formation which provides practical usage. After many simulations, they achieved

accurate localization. But the only disadvantage of that algorithm is requiring many

RSS measure samples to achieve good accuracy.

In [47] the aim was to design a fault tolerant positioning system to enhance relia-

bility instead of accuracy in fault-free conditions. They introduced different fault

models and investigated fault tolerance performance of positioning methods they

have used. They evaluated the performance as the percentage of corrupted signal

strength measurements increases. By these models, they tried to catch the effect of

fails or attacks and described how to simulate them using real test data at the end

they analyzed the distance solutions in KNN method, discussed alternative solutions

and studied the performance in the occurrence of faults.

A Fault Tolerant IPS based on fingerprint method was proposed by [48]. They used

Subtract on Negative Add on Positive (SNAP) algorithm in their study and tried

to enhance accuracy and fault tolerance performance. SNAP algorithm is simply

based on the idea that if an AP is detected, then the user is more likely to reside

in the locations inside the Region of Convergence (ROC) that have similar RSS

values to the observed RSS value. There is a modified version of SNAP algorithm

named SNAPz algorithm also focuses on neighboring or remaning zones of detected

AP’s. If an AP is detected with certain RSS value, the target may be located with

higher probability in the zone where the reference locations have RSS values or with

some probability with neigboring zone or with low probability in the remaining

zones. They used different kind of fault models mostly causing from APs during

their work. As a result, they got an improvement in both positioning accuracy and

fault tolerance.
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In [49], fault tolerant indoor localization using Wi-Fi was studied. It is assumed

that there is not a relationship between the occurrence of faults/failures at Access

Points. This assumption is a limitation on the faults. For example, power failures

affect all the APs at the same time but this situation is not considered. In order

to detect faults Wi-Fi enabled devices are deployed at various positions to monitor

status of APs.

As can be seen from the studies presented, there are many methods used to design

IPS. Earlier studies were mostly about getting position information with high ac-

curacy. But more recently, it was realized that accurate position information does

not make sense by itself. Because indoor experimental areas are different almost for

each study. Then, an indoor localization system cannot be generalized for public

use like GPS for outdoor. Hence IPS design by using two or more sensor became a

vital issue to make systems more reliable, adaptive and fault tolerant. Still, more

effort is needed in designing fault tolerant IPS, which is the focus of this thesis.

1.6 Outline and Original Contributions

In this study, different sensor fusion methods based on Kalman Filter are proposed

for indoor positioning. Following the introduction, localization methods used for

indoor environments are given in Chapter 2. Signals follow a path while radiating

in an environment. Parameters of the signal propagation model differs at each envi-

ronment and these parameter values directly effect the positioning performance. In

literature, they are treated as experimentally obtained values; but they are used as

constant values regarding the general structure of the environment such as obstruc-

tion in the building, line-of-sight area etc. Considering the different nature of each

environment for accurate localization, in Section 2.7 of this study, signal propagation

model parameters are estimated with a least squares approach for each AP. Even

if the signal propagation is modelled and the parameters are estimated, distance

information converted from received signal power, namely, RSSI cannot be used as

is for positioning applications. Hence, extra tools are needed to process RSSI data.
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On the other hand, better accuracy can be achieved by a fusion of data gathered

from different sensors. In this thesis, Kalman filter is used for these operations.

General information about the Kalman filter and its steps are given in Chapter 3.

Data fusion methods used for indoor positioning is stated at Chapter 4. Fault

tolerance is one of the design criteria for outdoor positioning systems. But it is

still not a widely studied issue in indoor positioning. With this motivation, a fault

tolerant indoor positioning method, namely, Federated Kalman Filter with Skipped

Covariance Updating (FKF-SCU) algorithm is proposed and details of this algorithm

is given in Section 4.4.

Moreover in Section 4.5, another contribution is given as proposing two adaptation

methods for FKF information sharing coefficients. In FKF, assigning information

sharing coefficients with their appropriate values is a challenging topic. To solve

this problem for indoor environment, proposed adaptation methods are used for the

simulations with collected data in indoor area without any faulty scenario. Better

positioning results are obtained with proposed adaptation methods as compared to

equal information sharing.

Finally, in Section 4.6, information coefficient adaptation methods are used with

FKF-SCU by considering the faulty scenario. It is seen that these two proposed

methods can work cooperatively. On the other hand, fault tolerant indoor position-

ing system with adaptive information structure provided slightly better results than

a structure with equal information sharing.

Initially, performances of traditional CKF and FKF are compared to asses multi-

sensor structure for indoor area by using generated data. Proposed methods given

at Chapter 2 are assessed with different sets both with generated synthetic data

and data, which were originally collected at two different real indoor environment.

Simulation results given in Section 5.1 showed that multi-sensor structures provide

better performance than the system using only one sensor measurement.
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After simulations with synthetic data, in Section 5.3 fault detection and fault tol-

erance issues are considered as one of the main contribution of this study. During

simulations a faulty scenario is generated for collected real data at two different

indoor environments. Fault tolerance performance of FKF and CFK is assessed and

Federated Kalman Filter with Skipped Covariance Updating, namely, FKF-SCU al-

gorithm is proposed. Moreover good results are obtained with proposed FKF-SCU

algorithm.

After all simulations, it is deduced that proposed methods provide improvements in

the sense of fault tolerance and positioning accuracy. Moreover these methods can

be used with already deployed access points and do not require server to process

data. Finally, Chapter 6 concludes this thesis and proposes some future areas for

research.
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2. INDOOR POSITIONING METHODS

2.1 Introduction

Indoor positioning received great attention in recent years. Its application areas

also widened in parallel to that increase of popularity. Huge buildings, hospitals,

shopping malls, airports, warehouses are some of the places that are used for indoor

localization applications. There are different methods that can be used to localize

or track a target in an indoor environment. In this section, definitions of the prox-

imity, triangulation, fingerprint and dead-reckoning methods, which are commonly

employed for indoor localization and are classified in Figure 2.1. These methods

evaluate data gathered from sensors such as bluetooth beacons, Wi-Fi access points,

Radio Frequency Identification (RFID) tags or badges, etc., to get information of

the target via RF, ultrasound, infra-red signal or visible light [13, 50, 51, 52, 53]. In

the sequel, all such sensor will be referred as access points (AP).

2.2 Proximity

Proximity is regarded as the simplest method to obtain information about the target

location [43]. Namely, the position of the target is determined as the known position

of the AP, which is detecting the target. It is possible that the target is detected by

more than one access points. In that case, its position is matched to the AP having

the strongest signal. This technique does not require any time synchronization

among access points; but provides low position accuracy [54]. In [55], this method

is used with RFID tags for an IoT study, while a proximity detection system is

proposed in [56] by using acoustic signals.
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Figure 2.1 Indoor positioning methods

2.3 Triangulation

The triangulation is a localization method, in which the geometric properties of

triangles are used to localize the target. In order to get position data of the target

we can either use angle or distance measurements from the sensors. Finding a

position by using the relative angles of sensors as seen from the target is called

angulation. On the other hand, the method based on the distances between access

points and target is called lateration [57].
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2.3.1 Angulation

The Angle-of-Arrival (AOA) measurements are also known as the direction of arrival

or bearing measurements in literature [14]. In the AOA technique, angle of received

signal is estimated from at least two sources. Then, from the intersection of the

angle line for each signal source location is found. In two dimensional case, two

AOA’s are sufficient to find the location. But, directivity of the antenna, multipath

propagation and shadowing may severely effect accuracy of the position estimate.

Hence, LOS is needed for accurate measurement [1, 54].

2.3.2 Lateration

Lateration method uses distance information between the target (i.e., the mobile

device) and sensors to locate the target as shown in Figure 2.2. The distance in-

formation can be obtained by different techniques, such as Time of Arrival (TOA),

Time Difference of Arrival (TDOA), Round Trip of Flight (RTOF) and Received

Signal Strength (RSS).

2.3.3 Time of arrival

This method estimates the distance by measuring the travel time of the signal be-

tween transmitter and receiver. The speed of light is then used to convert the

time-difference information to the distance information. The distance to at least

three signal sources can then be used to find the location of the target as the inter-

section point of the circles centered at the signal sources and having radii equal to

these distances, respectively. Time synchronization between the transmitters and

the receiver is required for the accuracy of this method [1, 20].
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Figure 2.2 Lateration method

2.3.4 Time difference of arrival

Time Difference of Arrival (TDOA) enhances the accuracy of TOA. If an accurate

time synchronization is not provided between transmitters and receivers, distance

information will not be accurate in TOA [1]. TDOA does not need synchronization

between transmitter and receiver. However, synchronization between transmitters

is needed. Position is calculated with the time difference of arrival of a signal sent

by at least three transmitters and received by the target [54].

2.3.5 Round-trip time of flight

Round-Trip Time of Flight method use the travel time of a signal from source to

target and turning back. Distance calculation is the similar to TOA, but does not

require synchronization between the devices as in TOA [58].
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2.3.6 Received signal strength

Received Signal Strength indication (RSSI) is a measure of the RF energy received

and is closely related to the distance between the transmitter and the receiver.

In RSS-based algorithms, the target that is to be tracked measures the strength

of signals received from the transmitters. Then, these signal strengths are used

to estimate the distance between the transmitters and receivers. By this way, the

receiver can estimate its position with respect to the transmitter nodes. This method

does not require time synchronization between target and transmitters.Therefore,

RSS-based algorithms are widely used in indoor positioning [59, 60, 61, 62, 63]. A

propagation model relating RSS to the distance is presented in Section 2.6.

2.4 Fingerprinting

As mentioned above, multipath phenomenon drastically effects the accuracy of RSS-

based algorithms. Location of a target can also be obtained via fingerprinting tech-

nique, which consists of an offline training phase, and an online localization phase.

The database of reference positions is built in the training phase by storing the

received signal strength from deployed access points. The location of the target is

estimated by matching the location data to the training data [13, 64]. Practical

difficulty of this method is that creating a fingerprint database requires huge effort

and cost related to measurements, calibration, site planning, etc. Furthermore, the

collected fingerprints need to be updated whenever a new item is added or removed

in area. As a result, this technique may not be suitable for every indoor environment

[1].

2.5 Dead Reckoning

Dead reckoning (DR) systems use sensors on the target to estimate its position with

respect to known initial position. For example, in [19], an accelerometer is used for

step detection and a magnetometer is used for heading estimation of the target to
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calculate dead reckoning location in a hybrid system. Because of their cumulatively

increasing error characteristics, DR techniques are used in conjunction with other

methods to obtain hybrid systems.

From the definitions of techniques given above, we can infer that to get location

information of the target, there are mainly two steps. First, signal measurements

must be made to determine quantities such as signal strength, angle information

or time data, etc. Then, target location is calculated by using these quantities

gathered at first step. If proximity method is applied, measurements can be made

at or outside the target. It is also possible to measure angle of arrival both at target

and sensor. TOA, TDOA and RTOF are all time-based methods; however, they

differ on where the localization can be performed. Measurement can be made both

at target or access points if TOA technique is used. On the other hand, positioning

calculation is only possible at the target, for TDOA. Lastly, it is also possible to make

these calculations at target with RTOF-capable Wi-Fi access points. In this study

proximity, triangulation and fingerprinting methods are used at different steps of

proposed configurations. Main positioning calculations are performed with distance

based lateration method of triangulation. To do this, RSS is used to get distance

information. On the other hand, one of the FKF information sharing coefficient

adaptation is based on proximity method and fingerprint method is used to estimate

parameters of signal propagation model and to define fault detection rule.

2.6 Indoor Positioning Using RSSI

In this study, lateration-method kind of triangulation is used among indoor posi-

tioning methods shown in Figure 2.1. Lateration method is based on the distance

between target and AP. Distance information is calculated with RSS measurements.

RSS measurements can be easily gathered from already deployed information sources

via open source software without requiring extra hardware and easily converted to

distance. Another important reason choosing that method is that there is no need

time synchronization between sensors and target.
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In this section, conversion of RSS measurements to distance information will be

described. Following collection of RSSI data, the range between the access points

and the target can be determined by using these RSSI measurements. Then, these

distance information are used for a lateration to localize the target. If three infor-

mation sources are used, this process is called tri-lateration; in case of more than

three sources, it is called multi-lateration.

The two-dimensional position vector of the target can be denoted as x = [x y]T

and location of the deployed access points can be denoted as xi = [xi yi]
T (i =

1, 2, . . . , N). Then the squared-distances of the target from the access points can be

calculated with the equations given as [1],

d21 = (x− x1)
T (x− x1)

d22 = (x− x2)
T (x− x2)

... (2.1)

d2N = (x− xN)T (x− xN).

If there are more than two APs in an indoor environment, for N > 2, the position

of the target can be calculated from this set of equations by subtracting the first

equation from the others.

d21 − d22 = −2xT1 x + xT1 x1 + 2xT2 x− xT2 x2

d21 − d23 = −2xT1 x + xT1 x1 + 2xT3 x− xT3 x3

... (2.2)

d21 − d2N = −2xT1 x + xT1 x1 + 2xTNx− xTNxN .

Then, by rearranging equations in (2.2),
2xT2 − 2xT1

2xT3 − 2xT1
...

2xTN − 2xT1

x =


d21 − d22 + xT2 x2 − xT1 x1

d21 − d23 + xT3 x3 − xT1 x1

...

d21 − d2N + xTNxN − xT1 x1

 . (2.3)
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the resulting N − 1 equations can be written as [18]

Cx = D, (2.4)

where

C = 2


(x2 − x1)

T

(x3 − x1)
T

...

(xN − x1)
T

 and D =


d21 − d22 + xT2 x2 − xT1 x1

d21 − d23 + xT3 x3 − xT1 x1

...

d21 − d2N + xTNxN − xT1 x1

 . (2.5)

Therefore, the target position is obtained as

x = (CTC)−1CTD. (2.6)

One can get the position of the target via Equation (2.6) on condition that C is of full

column rank. For N > 3, the position vector x can be obtained by multi-lateration.

Also, the localization can be done via tri-lateration by employing different methods

such as taking the mean of tri-lateration measurements or considering best three

RSSI measurements [19].

On the other hand, the distance between the target and APs can be computed with

reference to the received signal strength. By denoting the received and transmitted

signal powers as Rr and Rt, respectively, one can relate received signal power to

distance d to the transmitting AP as

Rr(d) = Rt ·
(

1

d

)np
, (2.7)

where np is the path loss exponent that reflects the rate, at which the RSS decreases

with distance, as well as representing the multi-path effect [18]. Further, let us

denote the reference signal power at a reference distance d0 from the transmitter by

R0. In other words,

R0 = Rt ·
(

1

d0

)np
(2.8)

Hence, one can express, the received signal power for line-of-sight environment as

Rr(d) = R0 ·
(
d0
d

)np
(2.9)
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Figure 2.3 Error sources in indoor signal reception

or

10 logRr(d) = 10 logR0 − 10np log

(
d

d0

)
. (2.10)

However, propagation of received signal is not always line of sight. Because of the

structure of indoor environment, walls,objects etc. signal propagation is effected.

Then signal may reflect, scatter of diffract as shown in Figure 2.3. Hence in order to

get reliable distance data, these disturbances must be considered and appropriate

signal propagation model must be defined.

Defining Pr = 10 logRr and P0 = 10 logR0 as received and reference signal powers

measured in dBm, and representing the effect of fading by Xσ, a zero-mean Gaussian

random variable with standard deviation σ, a log-normal shadow model [65, 66, 67]

for the received power can be written as

Pr = P0 − 10np log

(
d

d0

)
+Xσ, (2.11)

which is a commonly used propagation model for indoor environments. Note that

for the line-of sight test beds or environments Xσ is accepted as zero.

For a unity reference distance, (2.11) further simplifies to

Pr = P0 − 10np log(d) +Xσ (2.12)
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and the distance between the target and an AP can be computed as

d = 10(P0−Pr+Xσ)/(10np) (2.13)

once the parameters P0, np and Xσ are determined. The path loss parameter is 2,

i.e., the power is inversely proportional to the square of the distance, for free space.

Nevertheless, it may vary substantially according to the environment as shown in

Table 2.1. One can also estimate the path loss component via (2.12) for a specific

environment by collecting the reference power, received power and distance data

using

np =
P0 − Pr +Xσ

10 log(d)
. (2.14)

The parameter Xσ is accepted as zero for targets, which are in the line of sight.

However, for non-line-of-sight cases, this parameter is generally determined by ex-

perimentally. As a result more precise values of Xσ and np parameters need to be

gathered for better positioning accuracies.

2.7 Estimation of Model Parameters

Lateration is one of the widely used distance-based positioning method and we need

to know estimated or exact distance between the signal source AP and target to

be localized. In indoor environments, RSSI measurements gathered from APs can

be converted to distance information by using (2.13). Here P0 and Pr are reference

and received signal powers obtained from signal source but np and Xσ are unknown

parameters. Moreover, these parameters are not constant for every environment and

can vary significantly regarding to the target location. In [19, 68], Xσ and np are

defined as values pertaining to entire area, which have to be obtained experimentally.

In this study, least squares method is used to estimate these parameters. Moreover,

they are calculated separately for each AP, instead of considering an average value

for np, which is assumed to be valid for whole localization environment.

To obtain a least-square estimates np and Xσ, let us rewrite (2.12) as

P0 − Pr = 10np log(d)−Xσ (2.15)
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Table 2.1 Path Loss Exponents for Different Environments

Environment Path Loss Exponent

Free Space 2

Urban Area Cellular Radio 2.7-3.5

Line-of-Sight in Building 1.6-1.8

Obstruction in Building 4-6

or

y = ϕϕϕT θθθ (2.16)

with

y = P0 − Pr, ϕϕϕ =

10 log(d)

−1

 , θθθ =

np
Xσ

 (2.17)

If P0 and measurement data for Pr (Pri, i = 1, . . . , n) are available for different

distances di, collecting them in a matrix form, one can estimate np and Xσ as

np
Xσ

 = (∆∆∆T∆∆∆)−1∆∆∆T


P0 − Pr1
P0 − Pr2

...

P0 − Prn

 , (2.18)

where

∆∆∆ =


10 log(d1) −1

10 log(d2) −1
...

...

10 log(dn) −1

 . (2.19)

Once these parameters are estimated, the distance between the target and APs can

be calculated using (2.13).

2.8 Conclusion

In this chapter, main algorithms used for indoor positioning are described. Pros

and cons of these algorithms are also given. After that, the algorithm, which will
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be used for localization of the target is detailed. If there is connection with wireless

APs deployed in indoor environment, it is easy to read RSS information of these

APs namely RSSI with open source mobile phone applications or software. These

RSSI readings are very useful to get distance information between target and APs

and infere which AP is closest and which one is farthest to the target. From that

RSSI measurements distance between Wi-Fi and target can be calculated via (2.13).

However, indoor environment is really complex for radio signal propagation if there

is not a line-of-sight situation. Because of the disturbing effects of people, walls,

objects located in indoor environment, signal reliability decreases. Therefore, an

appropriate propagation model must be defined by considering the disturbances.

Moreover, parameters in the (2.13), that is extracted from the propagation model in

(2.11), plays vital role for the accuracy quality of the distance information. These

parameters differ for each environment as given at Table 2.1 and can be calculated

via (2.14) that is Xσ = 0 for line of sight situation. However, most of the time the

indoor environment is at non-line of sight situation. In scope of these reasons, a least

square method based model parameter estimation method is proposed. However,

this is not enough to use RSSI measurements solely to get position information.

Therefore, we need additional filtering to improve accuracy of position information.
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3. KALMAN FILTER AND ITS VARIATIONS

3.1 Introduction

There are many methods used for both outdoor and indoor navigation. These meth-

ods do not have same performance and they have their advantages and disadvan-

tages. Outdoor navigation has two important sensors GPS and INS. We have GPS

sensor in our smartphones, which we can enable and track our position anytime if

situations are good enough to communicate with GPS satellites. Our smartphones

also have MEMS, accelerometer and gyroscope. Kalman Filter is the main method

used to obtain location information from these sensors. Most of the navigation sys-

tems (nearly all of them) use Kalman Filter. Traditional Kalman Filter has different

variants such as extended, unscented, decentralized and federated etc. For outdoor

navigation Kalman Filter is the most dominant method but for indoor positioning

there is not a mostly used method and sensor yet. Hence, one of the main aims of

the studies about indoor positioning is to design a widely used system like GPS for

outdoor navigation. Still, there is not a unique system or method that we can apply

for every indoor place. Studies lasting more than ten years about indoor positioning

show that to achieve more accurate and more reliable solution we need to fuse in-

formation gathered from sensors to get position information [14, 19, 34, 35, 36, 38].

The aim of data fusion is to get more accurate information than that is already gath-

ered from any individual data source, using a combination of data obtained from

various sources. By that way, uncertainty in measured data can be also decreased

by utilizing the complementary properties of different data sources.

26



3.2 Kalman Filter Equations

The Kalman filter is a highly effective and adjustable tool for combining noisy

sensor outputs to get a state estimation of system, which may have ambiguity in

its dynamics. Rudolph Kalman introduced his famous filter in 1960 and practically

implemented it for the first time for integrating an inertial navigator with airborne

radar. Nowadays, there are many methods used for navigation; but nearly all of

them are variants of Kalman filter [2].

In order to apply Kalman Filter first we need to have system and measurement

models as given below

x(k + 1) = Φ(k) x(k) + w(k) (3.1)

z(k) = H(k) x(k) + v(k) (3.2)

Here Φ(k) denotes system matrix and x(k) is the state vector. H(k) denotes system

matrix and z(k) is the measurement vector, whereas w(k) defines a zero mean white

system noise with covariance matrix Q and v(k) is white measurement noise with

zero mean and covariance matrix R. The system and measurement noises, v(k) and

w(k), are assumed to be uncorrelated and

Q = E[w(k)wT (k)],w(k) ∼ N(0,Q) (3.3)

R = E[v(k)vT (k)],v(k) ∼ N(0,R) (3.4)

E[w(k)vT (k)] = 0 (3.5)

After defining system and measurement models, Kalman Filter process is conducted

in two steps, prediction and update, which can be expressed as follows [28]:

Prediction (Time Update):

x̂(k|k − 1) = Φ(k − 1)x̂(k − 1|k − 1) (3.6)

P(k|k − 1) = Φ(k − 1)P(k − 1|k − 1)Φ(k − 1)T + Q(k − 1) (3.7)
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Update (Measurement Update):

K(k) = P(k|k − 1)HT (k)[H(k)P(k|k − 1)HT (k) + R(k)]−1 (3.8)

x̂(k|k) = x̂(k|k − 1) + K(k)[z(k)−H(k)x̂(k|k − 1)] (3.9)

P(k|k) = [P−1(k|k − 1) + H(k)R−1(k)HT (k)]−1 (3.10)

In first step of the Kalman Filtering structure x̂(k|k−1) defines best estimate based

on information till step k−1 and in second step filtered estimate of x(k) is provided

with x̂(k|k) by taking into account measurements.

In (3.9), the predicted state estimate x̂(k|k−1) gathered via (3.6) and the measured

data obtained from the system is used to compute the filtered estimate x̂(k|k) so

as to minimize the mean-square estimation error. Then, this filtered estimate is

used to compute the predicted estimate x̂(k|k− 1) of the next step as in (3.6). The

matrix K(k) is the so-called Kalman gain and P(k|k − 1) and P(k|k) are the error

covariance matrices of the predicted and filtered estimates, which are defined as

P(k|k − 1) = E
{

[x(k)− x̂(k|k − 1)][x(k)− x̂(k|k − 1)]T
}

(3.11)

and

P(k|k) = E
{

[x(k)− x̂(k|k)][x(k)− x̂(k|k)]T
}
, (3.12)

respectively.

The Kalman filter is a two-step process as shown in (3.6)-(3.10) . The “predic-

tion” step is also called as “Time Update” step in other studies. This step updates

the estimate and estimation uncertainty, considering the effects of uncertain sys-

tem dynamics over the times between measurements. The “Measurement Update”

step is also called “correction step”. This step updates the estimate itself and the

covariance matrix of estimation uncertainty, based on measurement information.

Here Kalman gain weights measurement residual or namely innovation e(k) given in

(3.13) and weighted measurement residual is combined with predicted state estimate

for calculation of new state estimate.

e(k) = z(k)−H(k)x̂(k|k − 1) (3.13)
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Innovation e(k) has measurement prediction covariance as given below

S(k) = E
{

[z(k)−H(k)x̂(k|k − 1)][z(k)−H(k)x̂(k|k − 1)]T
}

(3.14)

and

S(k) = H(k)P(k|k − 1)HT (k) + R(k), (3.15)

By considering (3.8) and (3.15) together Kalman gain can be written again as

K(k) = P(k|k − 1)HT (k)[S(k)]−1 (3.16)

From this relationship one can deduce that Kalman gain K(k) is large in case of

inaccurate prediction and small in case of inaccurate measurement.

3.3 Alternative Kalman Filter Configurations

When measurements for estimated states of the system are gathered from different

sensors, there are also different filtering configurations to combine these measure-

ments to get system output. Sensors can be configured mainly with centralized and

decentralized structure. If the sensor measurements are combined via one Kalman

filter with one dynamic model at one step, it is called centralized Kalman filter

(CKF). On the other hand, it is also possible to combine multi-sensor informa-

tion at two stages. In first stage data processing is conducted at each local sensor

dedicated Kalman filters. After that local solutions are combined by a master fil-

ter. This structure is called decentralized Kalman filter (DKF) [30]. CKF and

DKF are both provide good accuracies but none of them have superiority on fault

tolerance. DKF is proposed especially to eliminate faul tolerance disadvantage of

CKF. But couldn’t achieve expected performance. Then in [32] a new decentralized

Kalman filter structure with information sharing approach is proposed as federated

Kalman filter (FKF). The term information generally denotes to global state vector

and inverse of covariance matrix,namely information matrix, obtained at main filter

output. Main difference of FKF is its information sharing property and different

FKF configurations are also provided according to the information sharing strategy,
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which are zero-reset feedback, partial fusion feedback, full fusion feedback and no-

reset feedback. In full fusion feedback mode, global estimate and covariance matrix

solution obtained at overall system output is fedback to local filters. Therefore per-

formance improvement can be seen at less accurate local filter solution as a result

of this global solution reset. With this resetting, full fusion feedback provides most

accurate estimates among other configuration. In no-reset feedback mode, overall

system solution is not fedback to local filters and each local filters work indepen-

dently having accuracies closer to their general level. Among these four configura-

tions no-reset feedback structure is proposed as having lowest accuracy but most

fault-tolerant configuration [32, 69]. Another important issue in federated Kalman

filter is how to share information among local filters. Information is shared accord-

ing to the sharing coefficients and that coefficients must sum to unity in accordance

with conversation of information. But there is not a definite rule to assign values

for sharing. As a result, appropriate coefficients must be defined so as to enhance

performance of configurations mentioned above.

3.4 Conclusion

In this chapter, a widely used estimation algorithm for navigation and positioning

applications, namely, Kalman Filter is detailed with its equations. Ever since its

been introduced, it became a basic tool to solve navigation and positioning problems.

However, the usage of Kalman Filter is not restricted to its original representation.

By the time different variants are proposed regarding to the requirements of the sys-

tems. It can provide estimate with single sensor measurement but main application

area is fusing information gathered from different sensors. Then in next section,

different Kalman Filtering structures used for indoor positioning will be given.
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4. DATA FUSION FOR INDOOR POSITIONING

4.1 Introduction

Kalman Filter is used in many positioning and navigation applications for outdoor

environments. Nevertheless, that popularity is not same for indoor environment.

On the other hand, for outdoor navigation, Kalman Filter is the most dominant

method. But, for indoor positioning, none of the existing methods and sensors

appear as to be favoured against others. Hence, one of the main aim of the studies

about the indoor positioning is to design a widely used system like GPS for outdoor

navigation. After reviewing many studies, we have seen that there is not a unique

system or method that we can apply for every indoor place. Instead, we can use a

method that combines the systems already occurring in indoor locations.

In this section, we describe proposed methods, which are applied for localization of

the target and algorithms that implement this method on the gathered information.

Target localization is based on the RSSI information coming from APs; a technique

widely used for indoor environments [59, 60, 61, 62, 63]. An important issue here

is the reliability of the RSSI signals. This issue is studied in [15] and it is deduced

that RSSI can easily be disturbed and, therefore, cannot be used as they are, for

calculating target location in an indoor environment. So, we need extra measures

to enhance positioning accuracy.

4.2 Centralized Kalman Filter

Once we have at least two systems that can provide data, the information gathered

from these systems can be easily fused by combining them in a single vector form

and using Kalman Filter algorithm. When there are measurements from N sensors,
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Figure 4.1 Centralized Kalman filter structure

(3.2) can be rewritten as

zi(k) = Hi(k) x(k) + vi(k), i = 1, 2, . . . , N. (4.1)

Here, zi denotes measurement information from different sensors and Hi is the

measurement matrix. A filter combining these measurements in single vector mea-

surement structure and performing Kalman Filter steps in (3.6)–(3.10) is known as

centralized filter. General representation of CKF is as shown in Figure 4.1. Its im-

plementation is simple and it yields low data loss. However, its computational load

increases as the dimension of the state vector becomes higher. Moreover, a fault

that arise in one of the sensors will degrade the overall system output. Although

abruptly occurring high-level faults may be easily detected, faults, which increase

gradually in time may go undetected. The detection of such faults may be delayed

and, until the detection, data coming from the faulty sensor will still be accepted

for the computation of the system output [28].

4.3 Federated Kalman Filter

CKF has a simple structure with high accuracy but it has drawbacks especially

at fault tolerance. Then, around 1980’s a two-stage data processing decentralized

filtering structure received great attention. But, many studies showed that DKF
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Figure 4.2 Federated Kalman filter resetting structure

structure decreased the computational load of CKF but could not provide desired

fault tolerance performance.

After that, in order to overcome such drawbacks of CKF and DKF, Carlson proposed

the Federated Kalman Filtering method in [32, 33]. Contrary to CKF, in FKF

measurement information are not combined in a single vector. In FKF, related to

its federated structure, each sensor has dedicated local Kalman Filters at which the

state estimation is performed by processing data from each sensor separately. After

completion of local estimations, these estimates are fused to get a global estimate, as

shown in Figure 4.2. The “information-sharing” methodology was applied to DKF

and provided the effective Federated Kalman Filter (FKF) basically in three steps.

İn FKF, initially the total system information is shared among the LFs regarding

to information sharing coefficients. These information are generally process noise,

initial condition and/or common measurement information [31]. After information

sharing, Kalman filter time-update and measurement-update steps in (3.6)–(3.10)

are performed for each LF. Finally, these updated LF output information are com-

bined in a master filter to obtain a global estimate and its covariance matrix.
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During FKF process, the output estimation x̂g is shared with LFs and the system

noise matrix Qg and estimation covariance matrix Pg is divided between LFs. That

information division is applied according to the sharing coefficients, which should

satify the conservation of information principle by adding up to unity [31, 32, 33].

Information sharing principle for N local sensors can be expressed as

N∑
i=1

βi = 1. (4.2)

In a federated filter, firstly, information sharing is done as

P−1i (k − 1|k − 1) = βi P
−1
g (k − 1|k − 1) (4.3)

Q−1i = βi Q
−1
g (4.4)

x̂i(k − 1|k − 1) = x̂g(k − 1|k − 1) (4.5)

for i = 1, 2, . . . , N . After resetting the local systems by these information, Kalman

Filtering equations are applied for them. Therefore, predictions and updates of LFs

are done as

x̂i(k|k − 1) = Φ(k − 1)x̂i(k − 1|k − 1) (4.6)

Pi(k|k − 1) = Φ(k − 1)Pi(k − 1|k − 1)ΦT (k − 1) + Qi(k − 1) (4.7)

Ki(k) = Pi(k|k − 1)HT
i (k)

×[Hi(k)Pi(k|k − 1)HT
i (k) + Ri(k)]−1 (4.8)

x̂i(k|k) = x̂i(k|k − 1) + Ki(k)[zi(k)−Hi(k)x̂i(k|k − 1)] (4.9)

Pi(k|k) = [P−1i (k|k − 1) + HT
i (k)R−1i (k)Hi(k)]−1. (4.10)

for i = 1, 2, . . . , N . Finally, local updates are combined to get the global solution

using

P−1g (k|k) =
N∑
i=1

P−1i (k|k) (4.11)

x̂g(k|k) = Pg(k|k)[
N∑
i=1

P−1i (k|k)x̂i(k|k)]. (4.12)

Relationship between local and global filters can be seen at equations (4.11) and

(4.12). Here, first local optimal estimates are obtained from the outputs of local

34



filters. Secondly, these local optimal results are combined at the master filter and

best global result is obtained. Then, global results are shared among LFs to continue

with the next filtering step [32].

4.4 Federated Kalman Filter with Skipped Covariance Updating

As mentioned above, FKF combines fault tolerant advantage of decentralized struc-

ture with information sharing principle. Moreover, the global estimate computed

via (4.11) and (4.12) resets the estimates of LFs with (4.5).

Estimation accuracy performance of the LFs can be improved with this resetting

operation even if individual estimations may still have less accuracy as compared

to the global estimate [69]. Resetting may seem very useful in normal operation of

the system. But, this resetting operation may badly effect the system performance

in case of a faulty situation. If a fault occurs at one of the sensors, not only the

global estimate is affected by the LF processing the faulty sensor; but also the

estimate performance of all other LFs degrade because of the resetting operation.

Moreover, the degradation will persistently spread to the future estimates even if

the faulty sensor returns to its normal operation mode. In order to overcome a long

term performance degradation in the global estimate because of a faulty sensor,

we propose to skip the covariance matrix update of the LFs in (4.10) and fuse the

information coming from the LFs by

P−1g (k|k) =
N∑
i=1

P−1i (k|k − 1) (4.13)

x̂g(k|k) = Pg(k|k)[
N∑
i=1

P−1i (k|k − 1)x̂i(k|k)]. (4.14)

instead of (4.11) and (4.12). In other words, the fusion step is applied using the

predicted covariance matrices and not the filtered ones. Since we choose a small β,

which is close to zero for resetting, small amount of the system noise and estimation

error covariance Qg and Pg are shared to the related local filter in view of (4.3)

and (4.4). After that, predicted covariance is calculated with these matrices, which

attains a large value, and hence, its inverse being small. On the other hand, because

35



of the small magnitude of P−1i (k|k − 1), filtered covariance matrice is dominated

by HT
i (k)R−1i (k)Hi(k). Moreover, we cannot give less weight to the faulty local

estimates at (4.12) as desired to suppress its effect to global estimate. Hence, we

skip the computation of the filtered covariance and fuse local estimates using the

predicted covariances. Obviously, whenever a fault is detected, βi’s in (4.3) and

(4.4) can be adapted so as to weight the faulty AP minimally, too.

Additionally, once offline RSSI measurements namely fingerprints of the target en-

vironment are already collected, faults occurring at sensors can be detected by using

statistical properties, such as mean (µ) and standard deviation (σ) of these finger-

print values. On the other hand, if fingerprints of the environment are not available,

an experimentally determined constant threshold can be used for fault detection

purposes.

The complete algorithm that uses a federated Kalman filter with skipped covariance

updating (FKF-SCU) is depicted in Figure 4.3.

4.5 Adaptation of Information Sharing Coefficients

It is possible to enhance LFs accuracy performance by feeding back the global result

with resetting structure of the FKF. But, a fault at any of the local sensors may

lead to adverse effects in the overall performance of the system. Different filtering

structures such as no-reset, fusion-reset, zero-reset and filter-rescale modes, which

vary in their schemes of information sharing are proposed in [69]. In no-reset mode

estimate, outputs of local filters are not reset with the global estimate output of

the master filter. The no-reset configuration of federated filter is advantageous in

scope of fault tolerance among other configurations. Hence, we also used no-reset

configuration of the federated filter to asses performance of this structure.

Information sharing coefficients are the main difference of FKF from, both, CKF

and the decentralized filter. Information sharing coefficients directly effect local filter

accuracy and fault tolerance performance of the overall system. Since there is not
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Figure 4.3 Fault tolerant positioning algorithm using FKF-SCU

a definite rule in literature to assign information sharing coefficients, at this point

we need to stress that the challenge in FKF design is the selection of a suitable set

of information sharing coefficients. The only thing known about these coefficients is

that if βi = 1/N (i = 1, . . . , N), i.e. local estimates are fused equally weighted, FKF

performs as good as CKF [32]. For indoor environments, any a priori knowledge

about the target positioning area may be used to determine the values of the βi’s

in order to improve the positioning performance. Moreover, online adaptation of

these coefficients may be also possible using the RSSI data and can be combined

with a no-reset structure as shown in Figure 4.4. Below, we propose two approaches
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Figure 4.4 No-Reset adaptive federated Kalman filter

based on RSSI readings and distance information gathered from RSSI readings for

adaptive assignment of the information-sharing coefficients.

We used the distance-based lateration method among indoor positioning methods

given in Figure 2.1 and assume that RSSI information is gathered from N access

points. To increase reliability of lateration results, the position data are obtained by

multi-lateration via a set of N − 1 APs around the target. That means, each multi-

lateration set will not take into account only one of the RSSI readings. Let us denote

the received power from the j-th AP as Prj and, according to (2.13), the distance

that corresponds to this signal power as dj. Also, consider three predetermined

values βl, βm and βh so that 0 < βl < βm < βh < 1 and

βl + (N − 2)βm + βh = 1. (4.15)

To assign these values as the information sharing coefficients, we propose two meth-

ods, , namely, using an adaptation based on RSSI quality or on distance.
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4.5.1 Adaptation based on RSSI quality

RSSI value of an AP is inversely proportional to the distance. Hence, it is expected

to get RSSI with lowest power from farthest AP and highest power from closest one.

First method is based on this rule. Let

q = arg min
1≤j≤N

{Prj} (4.16)

r = arg max
1≤j≤N

{Prj} (4.17)

In other words, q-th AP provides signal with worst quality and the best signal quality

is received from the r-th one. After getting closest and farthest APs from signal

power level, the information sharing coefficients βi (i = 1, . . . , N) are assigned as

follows:

If zi is a location measurement based on {Prj}j 6=q, then βi = βh.

Else if zi is a location measurement based on {Prj}j 6=r, then βi = βl.

Else βi = βm.

In other words, the information sharing coefficient of a location measurement that is

obtained by excluding the highest received power, is assigned with the lowest value

(βl) and the coefficient of the one that is obtained by excluding the lowest RSSI is

set to the highest value (βh). The outputs of other local filters are weighted equally

so as to satisfy (4.2).

4.5.2 Adaptation based on distance

One can get distance of the APs by using RSSI measurements via (2.13). Then, an

alternative adaptation method is proposed in terms of the calculated distances of

the APs. Similar to (4.16) and (4.17), let us consider

u = arg max
1≤j≤N

{dj} (4.18)

v = arg min
1≤j≤N

{dj} (4.19)
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Note that the APs that appear closest and farthest may differ from those that give

the lowest and highest RSSI readings, respectively, since the estimated values of the

parameters Xσ and np via (2.18), which are used in (2.13) to calculate distance may

differ among the APs. The information-sharing coefficients of the federated Kalman

filter will be assigned as:

If zi is multi-laterated from {dj}j 6=u, then βi = βh.

Else if zi is multi-laterated from {dj}j 6=v, then βi = βl.

Else βi = βm.

The βl, βm and βm coefficients can be chosen by considering the expected noise

levels of the access points. For the case of four access points, it is possible to get

four tri-lateration solutions. If one of these tri-laterated solution is very poor and

rest of the results are relatively better (that means the signals from three AP are

more noisy than the other less noisy one), one can prefer to assign smaller and closer

values to βl and βm, and define βh, higher. At another case one of the APs may not

be able good results with respect to other three APs. Then, it might be better to

choose βl as small as possible and give closer weights to βm, βh.

4.6 Adaptation of Information Sharing Coefficients with FKF-SCU struc-

ture

At the FKF-SCU structure detailed in section 4.4 there is not an information sharing

mechanism and equal information sharing strategy is applied for no-faulty situation.

In this section, another indoor localization method is proposed with combination

of FKF-SCU structure and information sharing coefficient adaption. For normal

operation of the system, information sharing coefficient adaptation is applied either

considering RSSI quality or distance information as given in Section 4.5. Whenever

a fault is detected, at that faulty step covariance update skipping is applied and

information coefficients are set to a minimum value regarding to the combination of

laterations including faulty AP. Hence, we can say that information sharing coeffi-
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cients are adaptive throughout the whole process like in Section 4.5, and additionally,

there will be a tolerance to sensor faults. The complete algorithm that uses combi-

nation of adaptive information sharing coefficients with FKF-SCU is represented in

Figure 4.5.

Figure 4.5 Fault tolerant positioning algorithm with adaptive FKF-SCU

4.7 Conclusions

In this chapter, localization methods used for indoor environment are shown. CKF

and FKF are regular methods for outdoor positioning applications and these reg-

ular methods are applied for indoor positioning in this study. New methods for

fault tolerant and adaptive indoor positioninge are also given. These methods are
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based on FKF and take place main contribution of the study. As first contribution

skipped covariance update structure is proposed with motivation of the fault toler-

ant structure of FKF. Secondly, more important contribution as online adaptation

methods for information sharing coefficients are proposed. Lastly these two new

structures are combined for an adaptive fault tolerant positioning method. At next

chapter simulations are performed with these methods by using both synthetic and

real environment data.
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5. TEST AND SIMULATION RESULTS

In order to test performance of sensor fusion methods given above, simulations are

performed both with generated synthetic data and collected real environment data.

Initially performances of CKF, FKF and Single Kalman Filter (SKF) are compared

in scope of multi-sensor positioning. After that real data is collected at two different

locations. Faulty situation is also considered to not only asses positioning accuracy

but also fault tolerance performances. Then different methods are performed and

results are discussed. For all simulations the dynamic model of a target moving on

a two-dimensional coordinate space with a constant velocity is used [70].It is also

assumed that the velocity of the model is updated via the information gathered from

inertial sensors of the target device. Let us denote the x-coordinates of the position

and the velocity of the target at instant k as px(k) and vx(k), respectively. whereas

the y-coordinates of its position and velocity are py(k) and vy(k).
px(k)

vx(k)

py(k)

vy(k)

 =


1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1




px(k − 1)

vx(k − 1)

py(k − 1)

vy(k − 1)

+


wp,x(k)

wv,x(k)

wp,y(k)

wv,y(k)

 (5.1)

px(k)

py(k)

 =

1 0 0 0

0 0 1 0



px(k)

vx(k)

py(k)

vy(k)

+

vp,x(k)

vp,y(k)

 (5.2)

For all simulations, the output is the position of the target that is tracked with known

initial position and for different sections of the trajectory, similar models are used.

There are many different methods to find the position of the target in an indoor

environment as described in Section 2. In this study, we get the location information

from lateration calculations. Note that we need to know distances between target
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and APs to apply the lateration method to obtain the position data of the target.

When more than three sensors are used it is called multi-lateration, and if there are

three sources it is called tri-lateration as shown in Figure 2.2. The distances used for

lateration are calculated via RSSI measurements which is a measure of RF energy

received at the target. Note that, in general, if data is available from n APs, they

can be r-laterated in

C(n, r) =
n!

r!(n− r)!
(5.3)

different ways, where C denotes combinations. In our simulations we used four APs.

Since four RSSI are readings are available at each measurement point, C(4, 3) = 4

combinations of them are available for tri-laterations. Then, the position values

obtained as the result of these tri-laterations can be used as inputs to federated or

centralized Kalman filters.

5.1 Simulations with generated data

Data generation for simulations is started with defining the indoor area dimensions

and locations of APs. In our model, we have four different access points located at

[0, 10; 0, 0; 15, 0; 15, 10]. To get more realistic data in order to asses performance of

FKF first of all actual distances of target from APs are calculated and then from

these distance informations actual RSSI values are gathered. After that additive

white gaussian noises with three different levels Xσ = 1, 2, 3 dBm are generated so

as to simulate disturbances acting on RSSI measurements and added to actual RSSI

values by using the propagation model shown below

Pr = P0 − 10np log(d) +Xσ (5.4)

One can compute the distance between the target and an AP as

d = 10(P0−Pr+Xσ)/(10np) (5.5)

and all parameters must be known for distance calculation. Here, P0 values are

used as −52.75, −57.69, −56.93, −58.96, respectively, for each AP and the path

loss exponent np is taken as 2.18 [18].
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Figure 5.1 Position of access points & target movement for Trajectory-1

Assuming that we get only one position information, SKF simulations are performed

with first three AP’s trilateration measurements and lowest measurement noise. All

results are recorded considering both x and y axis and shown at Table 5.1. When

we compare the results, SKF shows worser performance than both FKF and CKF

at all axes with all noise levels. On the other hand, CKF and FKF provides similar

results as expected regarding to federated filter theory proposed in [32].

Table 5.2 shows us the results of the second trajectory. MSE values given here are

not calculated considering full trajectory, since the trajectory is rather challenging.

Values are calculated for defined intervals which are given in parentheses. Comparing

the results for the second trajectory, it is seen that the performances of FKF and

CKF are similar. But, SKF performs better than the other filters in some intervals.
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Table 5.1 MSE values of position estimates (m) for trajectory-1 with
Xσ = 1, 2, 3dBm

dBm Axis SKF CKF FKF LF1 LF2 LF3 LF4

1
X 1.1936 0.7485 0.7442 1.6529 1.3414 1.2444 1.1792

Y 2.5698 1.8496 1.8034 3.7864 3.0642 2.6147 2.3999

2
X 2.4453 1.5970 1.5867 3.4965 2.8885 2.6364 2.4014

Y 5.4945 3.9623 3.8545 8.1113 6.5714 5.3617 5.0626

3
X 3.8562 2.5101 2.4912 5.6048 4.5846 4.1622 3.7555

Y 8.7517 6.3529 6.1828 13.0518 10.5327 8.6538 8.1211

After many simulations, considering FKF and SKF performances it is inferred that

fusing more than one information provides better result. As stated before FKF is

known with its fault tolerant performance. Hence faulty scenario is generated so

as to asses FKF performance for faulty situations. To assess fault tolerance per-

formance of the system a scenario is generated at second trajectory and blunders

are applied directly to the position information calculated by trilateration. Another

faulty scenario is created by assigning zero dBm values at some instants, assuming

that there is no information from APs because of a voltage problem or shut-down

status, etc. Then, positioning system cannot get information from APs for localiza-

tion. During these scenarios 1 dBm and 3 dBm Xσ are also used to generate more

realistic simulations. As a disturbance effect 2 m positioning information is added

5th and 15th steps of trajectory and 25-29th step is fixed to 0 m. The results for

this scenario are given in Table 5.3. MSE values are calculated with information

for two steps after occurrence/end of blunders. Hence, we take in consideration the

values of the steps between 6 − 8, 16 − 18 and 30 − 32 to make a decision for the

fault tolerant performance of filters.

Table 5.3 shows us a summary of simulation results for faulty situation. This table

clearly show us, while applying faults all three different type of filters performance

degrades. Results are calculated considering the intervals given in parenthesis and

performance of CKF and FKF are again similar, as expected from the federated
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Figure 5.2 Position of access points target movement for Trajectory-2

filter theory [32]. General performance of SKF simulations seems closer to FKF and

CKF but it shows worser performance than other filters except in two intervals, that

is, x(6− 8) and y(30− 32). Performance of FKF may not be satisfactory when we

take fault tolerance into consideration. But, it must be emphasized that we kept

information-sharing coefficients identical for local filters throughout the simulations.

5.2 Test Set-up for Real Data Collection

Simulations performed with the generated data provided promising results about

performance of multi-sensor fusion structure for indoor positioning. Then, to ex-

tend the study using real-environment data and test the indoor performances of

centralized and federated filtering techniques, measurement data is collected and
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Table 5.2 MSE values of position estimates (m) for trajectory-2 with
Xσ = 1, 2, 3dBm

dBm Filter X X X Y Y Y

Type (15-24) (31-40) (46-55) (15-24) (31-40) (46-55)

SKF 1.0952 1.3907 1.8340 3.6808 0.4221 3.9423

1 CKF 0.6969 0.7493 0.9052 2.249 0.5741 2.4720

FKF 0.7190 0.7375 0.9115 2.113 0.6341 2.3334

SKF 2.0092 2.6481 3.5225 7.5605 0.8419 8.2142

2 CKF 1.3344 1.4841 1.8529 4.5262 1.2338 5.3733

FKF 1.3570 1.4868 1.8389 4.2648 1.3410 5.0768

SKF 2.8766 4.0233 5.7905 11.2447 1.3150 13.8878

3 CKF 2.0588 2.3411 2.9609 7.4064 1.9110 8.7648

FKF 2.0832 2.3320 2.9170 6.9232 2.0853 8.2800

RSSI measurements are stored via NetSurveyor program running on a Lenovo Idea-

pad FLEX 4 laptop, which has an Intel Dual Band Wireless-AC 8260 Wi-Fi adaptor.

Measurements are collected in two different-sized test beds in indoor areas which are

denoted as TB1 and TB2 below. Size of first test bed (TB1) is 20 m2 are (4 m×5 m

and size of second test bed (TB2) is 46.77 m2 (4.95 m × 9.45m). These test beds

were set up at Kadir Has University, Istanbul, Turkey. Wireless access points are

located at corners of the test bed and markers are placed at every 50 cm and 45 cm

in TB1 and TB2 respectively. Measurements are carried out on the grid shown in

Figures 5.3 and 5.4 and collected data is provided at [71, 72].
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Table 5.3 MSE values of position estimates (m) for faulty situation Xσ = 1, 3dBm

dBm Filter X X X Y Y Y

Type (6-8) (16-18) (30-32) (6-8) (16-18) (30-32)

SKF 0.2952 1.1905 2.1111 5.3371 1.4968 0.4728

1 CKF 0.3792 0.9976 1.3265 3.3175 0.9774 0.7387

FKF 0.3832 1.028 1.3446 3.1178 0.9954 0.7824

SKF 0.7336 3.6937 5.022 17.1248 4.8783 0.6586

3 CKF 1.0942 3.0999 3.5976 10.7145 3.2371 2.2109

FKF 1.1295 3.2508 3.625 10.1594 3.2507 2.4841

Figure 5.3 TB1 and measurement points
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Figure 5.4 TB2 and measurement points

At each measurement point, RSSI data is collected for 1 min with a sampling interval

of 250 ms. This collected data is divided in two parts so that 50% is used as training

data and 50% as test data. While training data is used for parameter calculations,

simulations are performed with test data. Collected RSSI measurements are shuffled

in 50 different ways to avoid any bias due to the selection of training data.

Collected training data is also compared with RSSI values gathered via estimated

model at each measurement point. Initially, parameters of the environment are

estimated with (2.18) and known real distances of measurement points for each AP.

After that estimated RSSI values are calculated with (2.12). Change of RSSI power

level with respect to distance is shown in Figures 5.5 and 5.6. Due to propagation

nature of radio signals, power of RSSI decreases when the target move away from
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Figure 5.5 RSSI measurements for TB1

the AP. The quality of signal increases when the distance between target and AP

decreases.

In each case, anomalies at test data with respect to training data can be detected

by comparing the maximum of RSSI values of the test data to the minimum of the

fingerprint data. Alternatively, one can monitor a deviation (predefined in terms of

the standard deviation of the training RSSI data, σ) from its mean. In this study,

we used 1σ and 3σ thresholds for detecting the faulty APs. All results given below

are averaged values of 50 simulation runs.

In Chapter 2, reliability of RSSI data to be used for positioning purposes is men-

tioned. To support this issue, position information are calculated via tri-lateration
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Figure 5.6 RSSI measurements for TB2

and multi-lateration considering all measurements of TB1 and TB2. The averaged

mean square error performances are given at Table 5.4, where ‘Trilat(i, j, k)’ denotes

a tri-lateration based on three access points labeled as i, j, k and ‘Multilat’ stands

for a lateration that uses the data from all four APs. Even the lowest error for

tri-laterations (1.78 m and 3.45m for AP’s 1, 3 and 4) is considerably large for an

indoor environment.

Table 5.4 Average Mean-Square Errors in Lateration Positioning (meters)

Multilat Trilat(1,2,3) Trilat(1,2,4) Trilat(1,3,4) Trilat(2,3,4)

TB1 1.62 2.57 2.11 1.78 2.43

TB2 3.87 5.29 5.36 3.45 3.61
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Moreover, in order to analyze how RSSI data varies in indoor environment, more

than 50 values are collected for each AP from one meter distance. Figure 5.2 shows

minimum, maximum and average values for each AP. A histogram of RSSI values

is given in Figure 5.2, which depicts the distribution of 1m-RSSI measurements.

Average of all 1m measurements, which is plotted in Figure 5.2 is −33.1835 dBm

and the RSSI values lay around −30 dBm. As a result, lateration positioning errors

and distribution of RSSI values show us that we cannot trust RSSI results without

processing them.

The dynamic model of the target moving on a two dimensional space with a constant

velocity is used again for real data simulations [70] whose system and measurement

equations are given by (5.1) and (5.2).

The process and measurement noise matrices that are obtained by simulation and

used for all simulations are

AP1 AP2 AP3 AP4

Access Point

-55

-50

-45

-40

-35

-30

-25

-20

R
S

S
I 

(d
B

m
)

max

min

avg each APs

avg all APs

(a) Minimum and maximum values (b) Histogram
Figure 5.7 RSSI measurements at 1m distance from the APs
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Q1 =


0.005 0 0 0

0 0.0005 0 0

0 0 0.0005 0

0 0 0 0.005

 (5.6)

Q2 =


0.005 0 0 0

0 0.0001 0 0

0 0 0.005 0

0 0 0 0.0001

 (5.7)

and

R1 =

4 0

0 4

 (5.8)

R2 =

16 0

0 16

 (5.9)

To convert RSSI values to distances to get range from the access points, the param-

eters P0,np an Xσ in (2.13) must be determined.

The reference signal power P0 of each AP are gathered by taking the average of 50

measurements collected at 1m distance from each AP. Reference signal power values

of each AP are shown in Table 5.5. Other two parameters, the path loss exponent

and the fading parameter are estimated using (2.18). To estimate these parameters,

received signal is used and power with the highest RSSI values of collected data

at each measurement point in the training data is chosen for estimation.Estimated

parameters are shown in Table 5.6.

54



Table 5.5 Reference Signal Powers (dBm)

AP 1 AP 2 AP 3 AP 4

TB1 −39.71 −35.32 −31.02 −34.05

TB2 −33.76 −38.00 −27.61 −28.72

Table 5.6 Path Loss Exponents and Fading Parameters

AP 1 AP 2 AP 3 AP 4

TB1
np 2.11 1.46 1.56 1.96

Xσ 12.65 10.79 12.70 2.11

TB2
np 1.54 1.83 2.37 2.09

Xσ 8.21 10.54 18.49 1.22

5.3 Fault Tolerant Positioning Algorithm and Test Results

After collecting RSSI measurements at two different test beds, simulations are per-

formed with FKF and CKF for no-fault and faulty situation. Moreover FKF-SCU

performance is also evaluated for faulty situation. These three cases are described

below.

1. CKF and FKF (no-fault scenario): In first case collected raw data is used for

the simulations with FKF and CKF. Equal information sharing coefficients are

chosen for FKF structure and they are kept constant for whole process. Equal

coefficients mean in other words, all local estimates contribute to the global

estimate equally (βi = 1/4 for i = 1, . . . 4). Afterwards FKF and CKF are

applied without any change at their structure as described in (4.3)–(4.12) and

(3.6)–(3.10) respectively.

2. CKF and FKF (fault scenario): In second case fault scenario is created differ-

ent from first case. As faulty scenario, it is assumed that AP1 is shut down

for five seconds. Therefore RSSI data cannot be gathered for five consecutive

measurement steps. Again equal information sharing coefficients are chosen

for FKF, there is no change at FKF and CKF structure that are used for

localization as in case 1.
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3. FKF-SCU (fault scenario): In the last case,fault scenario described in second

case is applied. Whenever a fault is detected at one of the APs, information

fusion is carried out using (4.13) and (4.14) as described in Section 4.4. More-

over, information sharing coefficients are initialized with equal values but at

faulty steps the information sharing coefficients of the LFs processing the tri-

laterations involving the faulty AP are set to a minimum, i.e., very close to

zero. So, considering the resetting step (4.3) and proposed skipping step (4.14)

in FKF-SCU structure, the LF estimates, which process this faulty measure-

ment are not effective in the global estimate computation at the information

fusing stage.

Position estimation performances of CKF and FKF filters for the first case in which

there is no faulty situation are given in Table 5.7.For TB1, an average MSE error be-

low 1m is achieved for both filtering structures. On the other hand in TB2, because

of the increased distance between APs and general area of the indoor environment,

average MSE error also increased which is below 2m for both filtering structures.

Due to equal information sharing and resetting mode of FKF,simulation results for

CKF and FKF are equal as expected [69].

Table 5.7 Average Mean Square Estimation Errors of CKF and FKF for the
no-fault scenario (m)

TB1 TB2

CKF FKF CKF FKF

Minimum 0.13 0.13 0.25 0.25

Maximum 2.21 2.21 7.39 7.39

Average 0.74 0.74 1.67 1.67

In the second case CKF and FKF structures remain same as in first case. But,

for this case a signal loss scenario created as faulty situation and it is assumed

that the signal is not obtained from AP1 between the 13th and 17th steps (totally

five seconds, which means five steps). At signal loss steps RSSI measurements are

recorded as −100dBm for computational purposes. Simulation results of this case
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are shown in Table 5.8 and estimation errors is shown in Figure 5.8 for TB1 and

TB2. Effect of the fault can be clearly seen in Figure 5.8. With the beginning of

faulty step the estimation errors of FKF and CKF increase to a magnitude of 105m.

Moreover the errors stay above 104m for a long period of time after the faulty AP

starts its normal operation. In TB2 estimation error increase to a magnitude of

107m. Even the error behaviour of TB2 is worse than TB1, it can be deduced from

the results that none of the filtering structure can recover the system output in case

of a faulty situation.

Table 5.8 Average Mean Square Estimation errors of CKF and FKF for the fault
scenario (m)

TB1 TB2

CKF FKF CKF FKF

Minimum 0.29 0.29 1.22 1.22

Maximum 7.66 · 105 7.66 · 105 6.97 · 107 6.97 · 107

Average 1.16 · 105 1.16 · 105 2.05 · 107 2.05 · 107

In the last case, simulations are performed in a fault scenario as described in second

case. A detection rule is proposed to detect faults and FKF-SCU algorithm is

applied as detailed in Section-4.4. Training data that refers to 50% of the RSSI

measurements are accepted as the fingerprint data which means that it is nominal

measurements of the test environment. Remaining 50% of the RSSI measurements

are kept as test data and it is used as measurement information input to estimate

location of the target. In order to detect occurrence of a possible faulty and identify

the faulty access point, test data is compared with the environmental fingerprint

data at each step. Comparison of the test data and the fingerprint data is performed

according to the following fault detection rule:

Detection rule: If the difference between the mean of the fingerprint data and the

maximum RSSI value of any access point is larger than the detection threshold,

then declare this AP as faulty.
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Figure 5.8 CKF and FKF estimation errors

As it is seen at detection rule, we need to have statistical data of fingerprint data to

use that rule. Hence standard deviation and mean values of fingerprint data are also

stored so as to apply detection rule. Since received power deviates at each point,

among test data only maximum RSSI values which means the best received power

of each point are considered.

When we have a look at the performance of the FKF-SCU in Figure 5.8-5.9, drastic

improvement can be easily seen. Estimation error performances gathered with FKF-

SCU simulations are shown in Table 5.9 for three different detection thresholds,

namely, 1σ, 2σ and 3σ. It is obvious that even applying the faulty scenario the

FKF-SCU provides similar performance to the no-fault scenario at both two test

beds. Performances of different thresholds are similar with slight differences. Since

covariance update is skipped more frequently when smaller thresholds are chosen and

more RSSI values are likely to be classified as faulty, lowest threshold 1σ performs

a bit worse with respect to the highest threshold 3σ. As a result, the average

estimation error also increases. Even though there is small differences between

the performances, the relevance of choice for the detection threshold and distances

between APs can be seen in Table 5.9. Estimation error performance for TB1 is

around 0.75m and smaller than 1m. In TB2 estimation error is around 1.68m and

smaller than 2m with proposed method, whereas in [18] an average error of 1.3m

is achieved for indoor environment with 6mx6m dimensions and average errors not
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Figure 5.9 FKF-SCU estimation errors

less than 1.6m are obtained by the teams, which competed in the infrastructure-free

category in [17].

Table 5.9 Average Mean Square Estimation errors of FKF-SCU for fault scenario
(m)

TB1 TB2

1σ 2σ 3σ 1σ 2σ 3σ

Minimum 0.14 0.13 0.14 0.31 0.29 0.29

Maximum 2.23 2.11 2.18 4.91 5.08 5.15

Average 0.76 0.74 0.73 1.68 1.67 1.68

It can be understood from these results that whenever RSSI measurements cannot

be gathered from an access point, estimation performance can be substantially en-

hanced by adapting the filter parameters. At this point another issue is to have the

RSSI fingerprint data of the target localization environment to define and apply a

fault detection rule.

The cumulative distribution functions (CDF) of the average estimation error for

three cases are shown at Figure 5.10. For TB1, the error is low, i.e. below 1m

during 75% of the time with similar results for all scenarios. On the other hand,

the estimation error in TB2 is higher than the results gathered in TB1. In TB2

estimation errors rise to 2 m and 2.4 m 75% of the time under no-fault and fault
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Figure 5.10 Cumulative distribution function of estimation errors

conditions, respectively. However, the error in TB2 is below 1 m around 40% of the

time for no-fault and fault cases. TB1 and TB2 are two different indoor locations

with different dimensions and ranges between APS. Main reason of the performance

difference between the test beds is that due to RF nature of RSSI propagation, the

RSSI values drastically decrease as the distance between the target and the APs

increases. For second case, since average estimation errors of CKF and FKF is

around 105m as shown above, the CDFs corresponding to these cases are omitted.

5.4 Simulations with Adaptation of Information Sharing Coefficients and

Test Results

At first simulations a faulty scenario is generated and performance of CKF,FKF and

proposed FKF-SCU is compared. During these simulations information sharing coef-

ficients of FKF and FKF-SCU are chosen equal. Hence effect of different information

sharing coefficients is not fully assessed yet. For this purpose two adaptation method

described in Section 4.5 is applied for the collected data in TB2. Average estimation

errors for different information sharing coefficients used with the two adaptation ap-

proaches in FKF-No reset structure are given in Tables 5.10-5.12. The equal sharing

of information sharing coefficients (βi = 0.25 for i = 1, . . . , 4) refers to no-adaptation

case and its performance is compared with the performance of adaptive coefficients.

The performance difference between adaptive and non-adaptive FKF is evaluated

60



in terms of percentage to give a clear understanding of performance enhancement

provided by online information sharing adjustment. Different information sharing

coefficient sets are used during simulations and results of three of them are shown in

Tables 5.10-5.12. It is clearly seen that all three set of adaptive coefficients provide

performance improvement. When compared between each other increasing highest

coefficient βh enhances the estimation error performance. These results show that

online adjustment of the information-sharing coefficients can provide considerably

higher estimation performance for a suitable selection of βh, βm and βl.

Table 5.10 Average Mean-Square Errors (m) (βl = 0.1, βm = 0.25, βh = 0.4)

Adaptation βi = 0.25 ∀i Adaptive FKF Improvement (%)

RSSI-based 1.70 1.69 0.53

Distance-based 1.70 1.63 3.67

Table 5.11 Average Mean-Square Errors (m) (βl = 0.1, βm = 0.15, βh = 0.6)

Adaptation βi = 0.25 ∀i Adaptive FKF Improvement (%)

RSSI-based 1.70 1.61 4.95

Distance-based 1.70 1.48 12.56

Table 5.12 Average Mean-Square Errors (m) (βl = 0.05, βm = 0.075, βh = 0.8)

Adaptation βi = 0.25 ∀i Adaptive FKF Improvement (%)

RSSI-based 1.70 1.48 12.68

Distance-based 1.70 1.39 18.29

As can be seen from Tables 5.10-5.12, simulations performed with the adaptive

coefficients based on the distance between the target and APs provided better results

than directly using the RSSI levels. Main reason for this performance difference is

that the proximity of the target to APs inferred by using RSSI value can be adjusted

by considering different propagation parameters for each APs.

The estimated cumulative distribution functions (CDF) of average estimation errors

that are shown in Figures (5.11-5.13) for different information-sharing coefficient sets

also proves the performance improvement provided by information sharing coefficient

adaptation.
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Figure 5.11 Error CDF of equal sharing and adaptation with βl = 0.1, βm = 0.25,
βh = 0.4

The advantage of adaptation based on the distance information with respect to the

adaptation based on RSSI can be seen in CDF figures. Improvement with different

βh, βm and βl levels can also be seen in these figures. When βh = 0.4 and βl is

kept as in equal sharing, the average error for adaptations based on RSSI quality

and distance are below 1m during 40% of the time. The average error is below 2m

during 73% of the time for adaptation based on RSSI quality and 75% of the time

for adaptation based on the distance. The performance of these values are similar

to the performance of equal information sharing. When adaptation is performed

with βh = 0.6 the estimation performance of both methods seems better. For

no-adaptation and RSSI-based adaptation, the estimated probability of the error is

below 1m during 40% of the time. On the other hand the performance of adaptation

with distance being below 1m is 49% of the time. Furthermore, when βh is increased

to 0.8, the estimated probabilities of errors being being below 1m, reach 46% and

50% for RSSI-based and distance-based approaches, respectively.

62



0 1 2 3 4 5 6 7 8 9 10 11 12 13

error (m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Equal sharing

RSSI Based

Distance Based

Figure 5.12 Error CDF of equal sharing and adaptation with βl = 0.10, βm
= 0.15, βh = 0.6

As a result, we can say that the adaptation based on RSSI quality and no-adaption

provides similar perfomance for the errors below 2m. On the other hand, better

CDF performance is seen for the adaptation based on distance. Here there is an

exception for the case where βh = 0.4. In [18], 1.3 m average error is achieved at

6m× 6m sized test bed and 1.6 m average error is obtained as the best localization

performance among competing teams in the infrastructure-free category in[17].

5.5 Simulations with Adaptation of Information Sharing Coefficients with

FKF-SCU structure

For this simulations, the algorithm proposed by combination of the FKF-SCU struc-

ture for faulty situation and information sharing adaptation both with RSSI quality

and distance information is used. Simulations are performed with the data collected

at TB2. Again 50% of data is used as training data so as to estimate parameters of

(2.13) and localization is performed with remaining 50% of data with faulty scenario
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Figure 5.13 Error CDF of equal sharing and adaptation with βl = 0.05, βm
= 0.075, βh = 0.8

described at Section 5.3. During these simulations, FKF is applied with no-reset

mode.But whenever a fault is detected faulty estimates are resetted with global esti-

mate to recover the system. In Section 5.3 detection rule is proposed with statistical

properties of fingerprint data. Two different threshold levels 1σ and 3σ are used with

three different information sharing coefficient sets for the simulations for adaptive

information sharing and equal (no-adaptation) information sharing. Average mean-

square errors gathered from simulation results are shown in Table 5.13-5.18. When

these results are compared with the results at Tables 5.10-5.12, there is not a signif-

icant performance improvement at average mean-square error. However simulation

results show that, adaptive and equal information sharing provides similar perfor-

mance and there is not a performance degradation even for faulty situation case.

Even the results are not at expected level, most important issue is that proposed

methods on Section 4.4 and Section 4.5 can be applied together.
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Table 5.13 Average Mean-Square Errors (m) (βl = 0.1, βm = 0.25, βh = 0.4, 1σ)

Adaptation βi = 0.25 ∀i Adaptive FKF Improvement (%)

RSSI-based 1.80 1.68 7.06

Distance-based 1.80 1.77 1.78

Table 5.14 Average Mean-Square Errors (m) (βl = 0.1, βm = 0.25, βh = 0.4, 3σ)

Adaptation βi = 0.25 ∀i Adaptive FKF Improvement (%)

RSSI-based 1.80 1.68 6.99

Distance-based 1.80 1.78 1.01

At first coefficient set, RSSI-based approach provided significantly better result with

respect to distance-based adaptation. Furthermore coefficient of healthy measure-

ment combination is increased and improvement also increased as expected. Superi-

ority of RSSI-based adaptation approach continued after second information sharing

coefficient set. Among all simulations 1.65m average estimation error performance

is obtained and the improvement level reached 8.05% level at most in simulations

with third coefficient set and 1σ threshold. As a result we can say that both of the

adaptation approaches provided better results with all coefficient sets and threshold

levels. The estimated cumulative distribution functions (CDF) of average estima-

Table 5.15 Average Mean-Square Errors (m) (βl = 0.1, βm = 0.15, βh = 0.6, 1σ)

Adaptation βi = 0.25 ∀i Adaptive FKF Improvement (%)

RSSI-based 1.8083 1.66 7.65

Distance-based 1.8083 1.68 7.05

Table 5.16 Average Mean-Square Errors (m) (βl = 0.1, βm = 0.15, βh = 0.6, 3σ)

Adaptation βi = 0.25 ∀i Adaptive FKF Improvement (%)

RSSI-based 1.80 1.68 6.83

Distance-based 1.80 1.69 6.39

tion errors are shown in Figure 5.14-5.17 for different information-sharing coefficient

sets and thresholds. For all cases, the estimated probability of the error is below 1m

during around 40% of the time and below 2m is between 60%-70% of the time.
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Figure 5.14 Error CDF of RSSI quality based adaptation with 1σ-FKF-SCU

Figure 5.15 Error CDF of RSSI quality based adaptation with 3σ-FKF-SCU
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Figure 5.16 Error CDF of distance based adaptation with 1σ-FKF-SCU

Figure 5.17 Error CDF of distance based adaptation with 3σ-FKF-SCU
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Table 5.17 Average Mean-Square Errors (m) (βl = 0.05, βm = 0.075, βh = 0.8,
1σ)

Adaptation βi = 0.25 ∀i Adaptive FKF Improvement (%)

RSSI-based 1.80 1.65 8.05

Distance-based 1.80 1.66 7.27

Table 5.18 Average Mean-Square Errors (m) (βl = 0.05, βm = 0.075, βh = 0.8,
3σ)

Adaptation βi = 0.25 ∀i Adaptive FKF Improvement (%)

RSSI-based 1.80 1.66 7.43

Distance-based 1.80 1.68 6.82

The estimated cumulative distribution functions (CDF) of average estimation errors

RSSI and distance based adaptation approaches are given together in Figure 5.18-

5.20 for different information-sharing coefficient sets and thresholds.

5.6 Conclusion

At this chapter set up of two test beds and simulation results of the data fusion

methods applied for indoor localization at these test beds are provided. Perfor-

mance of proposed data fusion methods is compared both with traditional CKF and

among each other. During performance evaluation fault tolerance performance is

also considered which is not a common issue for other studies in literature. Pro-

posed fault detection rule proved the fault tolerance property of FKF and provided

almost same results achieved at no-fault situation at TB1 and TB2. After that two

proposed information sharing adaptation methods are assessed with the data col-

lected at TB2. Faulty situation is not considered for this case and better results are

gathered with adaptive information sharing coefficients. Lastly FKF-SCU struc-

ture is applied with two information sharing adaptation approaches. As a result

simulations with all coefficient sets and thresholds provided good results.
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Figure 5.18 Error CDF of RSSI vs Distance based adaptation for βh = 0.4

Figure 5.19 Error CDF of RSSI vs Distance based adaptation for βh = 0.6
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Figure 5.20 Error CDF of RSSI vs Distance based adaptation for βh = 0.8
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6. CONCLUSION

In this study three different positioning methods for indoor environment are studied.

These methods are based on well known position estimation algorithm Kalman filter.

Moreover federated Kalman filtering ,one of the alternative Kalman filter configura-

tions, is chosen as sensor fusion structure because of its fault tolerance performance

at outdoor positioning applications. At first method a fault tolerant FKF structure is

proposed, at which the update of filtered covariance matrix is skipped whenever sen-

sor faults are detected. In the sequel, adaptation of information sharing coefficients

is aimed and an adaptive FKF structure is proposed in the no-reset configuration for

no-fault situation. Here two adaptation approaches are given for online adjustment

of the coefficients. These approaches are based on RSSI readings obtained from APs

and the distances gathered via conversion of these RSSI readings. The algorithms

are tested on the data obtained from test beds prepared with four access points.

The proposed algorithms can drastically improve the localization error performance

as compared to a simple lateration using the RSSI data directly or regular CKF

and FKF structures. As a result at most 18.29% estimation error improvement is

achieved with distance based adaptation approach when βh = 0.8. It should be also

noted that the proposed approaches can easily be applied in any indoor environment

with already deployed access points without additional infrastructure requirements.

Lastly another algorithm is proposed by combining fault tolerant configuration and

adaptive structure approach. This algorithm is also tested on the real data used

for previous methods and at most 8.05% estimation error improvement is achieved

with distance based adaptation approach when βh = 0.8. On the other hand it is

shown that the combination of two different structure worked without performance

degradation.
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In indoor environment each location has its own path loss characteristics. The

measurements collected on the site are used for the calculations of parameter of signal

propagation model. We also proposed using of least squares method to estimate

the path loss exponent and the multi-path noise parameter for each access point

separately. These parameters are calculated with fingerprint (off-line) data and not

need to be updated if it is not necessary. Additionally, there is no need to use a

localization server to process that data as proposed in [73].

At early stages of the study it is observed that both CKF and FKF cannot tolerate

a fault and cannot recover even after the faulty AP starts operating normally. The

remedy to this problem is shown to be the federated Kalman filter with skipped

covariance updating (FKF-SCU), which provides fault tolerance and rapid system

recovery in the presence of a fault via detection of temporary faults (signal interrup-

tions) of the APs. The fault detection method is based on the fingerprint data of

the localization environment. Nonetheless, it is also possible to adopt other meth-

ods to determine the detection threshold when fingerprint data is not available. On

the other hand, prior knowledge about geometry of the localization environment

can be also another option to enhance position estimation performance by ignoring

the estimates belongs to the outside of the localization area. Assigning the infor-

mation sharing coefficients to a minimum value , when the estimates from certain

local filters become unreliable, is another factor in improving the performance of

FKF-SCU. This switching mechanism also en-lighted us to further the studies for

other adaptation techniques to take advantage of that property of FKF.

Then another important contribution is provided with the approaches for adaptation

of information sharing coefficients. Two different adaptation strategy significantly

improved the positioning error performance when compared with equal information

sharing strategy. Furthermore, better results are obtained with the approach that

makes use of distances gathered via the conversion of RSSI data than adapting the

coefficients directly with the raw RSSI data. After getting performance enhancement

both with fault tolerance and adaptive configuration, both of these configurations
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are combined in a new configuration. As a result an adaptive fault tolerant system

is provided for localization applications. The simulation results obtained with this

system showed that there is still gap for the improvement of information sharing

coefficient adaptation mechanism. At this point machine learning algorithms such

as genetic algorithm and fuzzy logic for online adaptation is thought to be useful by

monitoring the change in innovation and its covariance of each local filter given at

(3.13) and (3.15) respectively. Moreover proposed algorithms can be used for indoor

environments deployed with sensors such as BLE, UWB etc. On the other hand,

as proof of concept of this study, it is possible to use these methods in a mobile

application that can provide online positioning information.
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[19] J. Röbesaat, P. Zhang, M. Abdelaal, and O. Theel, “An improved ble indoor lo-
calization with kalman-based fusion: An experimental study,” Sensors, vol. 17,
no. 5, p. 951, 2017.

[20] L. Yan, B. Liu, and D. Zhou, “Asynchronous multirate multisensor information
fusion algorithm,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 43, no. 3, pp. 1135–1146, 2007.

[21] J. Dong, D. Zhuang, Y. Huang, and J. Fu, “Advances in multi-sensor data
fusion: Algorithms and applications,” Sensors, vol. 9, no. 10, pp. 7771–7784,
2009.

[22] C. Harris, A. Bailey, and T. Dodd, “Multi-sensor data fusion in defence and
aerospace,” The Aeronautical Journal, vol. 102, no. 1015, pp. 229–244, 1998.

75



[23] R. E. Kalman, “A new approach to linear filtering and prediction problems,”
Transaction of the ASME—Journal of Basic Engineering, pp. 35–45, 1960.

[24] I. Skog and P. Handel, “In-car positioning and navigation technologies—a sur-
vey,” IEEE Transactions on Intelligent Transportation Systems, vol. 10, no. 1,
pp. 4–21, 2009.

[25] T. Aybakan and F. Kerestecioğlu, “Indoor positioning using federated kalman
filter,” in 2018 3rd International Conference on Computer Science and Engi-
neering (UBMK). IEEE, 2018, pp. 483–488.
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