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AN ENSEMBLE OF PRE-TRAINED TRANSFORMER MODELS FOR

IMBALANCED MULTICLASS MALWARE CLASSIFICATION

ABSTRACT

Classification of malware families is crucial for a comprehensive understanding of

how they can infect devices, computers, or systems. Hence, malware identification

enables security researchers and incident responders to take precautions against

malware and accelerate mitigation. API call sequences made by malware are widely

utilized features by machine and deep learning models for malware classification

as these sequences represent the behavior of malware. However, traditional ma-

chine and deep learning models remain incapable of capturing sequence relation-

ships among API calls. Unlike traditional machine and deep learning models, the

transformer-based models process the sequences in whole and learn relationships

among API calls due to multi-head attention mechanisms and positional embed-

dings. Our experiments demonstrate that the transformer model with one trans-

former block layer surpass the performance of the widely used base architecture,

LSTM. Moreover, BERT or CANINE, the pre-trained transformer models, out-

performs in classifying highly imbalanced malware families according to evaluation

metrics: F1-score and AUC score. Furthermore, our proposed bagging-based ran-

dom transformer forest (RTF) model, an ensemble of BERT or CANINE, reaches

the state-of-the-art evaluation scores on the three out of four datasets, specifically it

captures a state-of-the-art F1-score of 0.6149 on one of the commonly used bench-

mark dataset.

Keywords: Transformer, Tokenization-free, API Calls, Imbalanced, Multiclass,

BERT, CANINE, Ensemble, Malware Classification
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DENGESİZ SINIF DAĞILIMINA SAHİP ÇOK SINIFLI KÖTÜCÜL

YAZILIMLARIN SINIFLANDIRILMASINDA ÖNCEDEN EĞİTİLMİŞ

DÖNÜŞTÜRÜCÜ MODELLERİNİN TOPLULUĞU

ÖZET

Kötü amaçlı yazılım ailelerinin sınıflandırılması, bu yazılımların cihazlara, bilgisa-

yarlara veya sistemlere bulaştıktan sonra nasıl bir sürecin gerçekleşebileceğinin kap-

samlı bir şekilde anlaşılabilmesi için çok önemlidir. Böylece, kötü amaçlı yazılım-

ların belirlenmesi, siber güvenlik araştırmacılarının ve olay müdahele ekiplerinin

kötü amaçlı yazılımlara karşı önlem almalarını ve olası hasarları asgari düzeyde tut-

malarını sağlar. Kötü amaçlı yazılımlar tarafından yapılan API çağrı dizileri, kötü

amaçlı yazılımların davranışını temsil ettiğinden, makine ve derin öğrenme mod-

elleri tarafından kötü amaçlı yazılım sınıflandırması için yaygın olarak kullanılan

özniteliklerdir ancak geleneksel makine ve derin öğrenme modelleri, API çağrıları

arasındaki ilişkileri tespit etmekte yetersiz kalmaktadır. Geleneksel makine ve de-

rin öğrenme modellerinin aksine, dönüştürücü tabanlı modeller, API çağrı dizilerini

bir bütün olarak işleyip, çok başlı dikkat mekanizmaları ve konumsal gömmeler

sayesinde API çağrıları arasındaki ilişkileri öğrenebilmektedir. Yaptığımız deneyler,

bir dönüştürücü blok katmanına sahip bir dönüştürücü modelinin, yaygın olarak kul-

lanılan ve temel bir mimari olan LSTM modelinin performansından üstün geldiğini

göstermektedir. Önceden eğitilmiş dönüştürücü modellerinden BERT veya CA-

NINE ise, yüksek derecede dengesiz bir sınıf dağılımına sahip kötü amaçlı yazılım

ailelerinin sınıflandırılmasında F1 puanına ve AUC puanına göre daha iyi bir per-

formans göstermektedir. Bizim önerdiğimiz, rastgele örnekleme toplama tekniğine

dayalı, BERT veya CANINE modellerinin topluluk modeli olan RTF, değerlendirme

metrikleri bazında, dört veri setinin üçünde en yüksek skorları elde etmektedir. Aynı

zamanda yaygın olarak kullanılan veri setlerinden birinde RTF modeli 0,6149’luk lit-

eratürdeki en yüksek F1 puanına ulaşmaktadır.
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1. INTRODUCTION

In recent times, with our dependence on information technologies, the Internet has

been widely used by people of all ages. Those who want to quickly meet their daily

needs such as online banking, online shopping, health, and transportation-related

transactions cause an enormous increase in internet usage as well. This exponential

growth of the usage of Internet plays a significant role in making life easier. On the

other hand, this situation poses a severe threat as cyber attacks increase drastically

in parallel with the growth of the Internet. Among these cyber attacks, malicious

software (malware) is the primary weapon for attackers to conduct their malicious

activities against a victim’s machine such as computer, smartphone, or computer

networks in order to disrupt system’s functions and gain unauthorized access (Jang-

Jaccard and Nepal, 2014; Aslan and Samet, 2020).

Cybercriminals use several ways to spread malware, such as phishing e-mails with

malicious links and attachments, text messages, and malicious advertisements etc.

According to the state of e-mail security report, 61% of organizations were exposed

to e-mail-based ransomware in 2020, with an increase of 10% compared to the previ-

ous year (Mimecast, 2021). The average amount spent to recover from a ransomware

attack, when factors such as downtime, device, human, and network costs are in-

cluded, is about $1.85 million (Sophos, 2021). According to another cyber threat

report, 5.6 billion malware attacks were carried out in 2020 (SonicWall, 2021).

In lieu all of these findings, one can safely claim that excessive malware, without

considering the identification/classification methods, affects many victims destruc-

tively. Since the numbers of malicious software and the damages they cause to the

institutions are increasing every day, it is crucial to map malware behavior that

can be provided by malware family identification so that security researchers and

incident responders can speed up the recognition and mitigation processes.
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There are two main approaches used the most to detect malware. One of them

is the signature-based malware detection method. The signatures, sequences of

bytes, created using static, dynamic, or hybrid methods are uniquely located in

the database. Whether a given file is malware or not is determined by looking

at the unique signature of this file from a predefined database (Shijo and Salim,

2015). Although signature-based methods are the most generally utilized procedure

in antivirus programming, since the only predefined list of known malware variants

are kept, they are not able to catch previously unidentified malware (Ucci et al.,

2019).

The other main malware detection approach is behavior-based method, which ex-

amines the behavior and characteristics of a given file and then decides whether the

related file is malware, and if it is a malware, then the approach also defines the mal-

ware family the file belongs to. Although the effort and time spent and the storage

complexity are much more, the unknown attacks can be detected and classified by

using behavior-based methodologies better contrary to the signature-based methods

(Gibert et al., 2020).

According to the report, among detected malware, 268,362 of them have never been

seen before in 2020, with a rise of 74% from the preceding year (SonicWall, 2021).

Considering the increasing number of unseen malware over the years, performing a

behavior-based approach is more reasonable. This report indicates the significance

of developing more innovative and effective malware defense mechanisms to detect

and classify unknown malware.

The effectiveness of the malware defense mechanism is directly associated with the

right choice of behavioral features exploited from malware. Several features can be

extracted from malware due to its diverse nature. Obtaining adequate features is

time-consuming for a model. This situation can make learning difficult for a model if

some of the features used are non-distinctive (Jindal et al., 2019). In our study, API

call sequences are leveraged to classify malware families since these sequences repre-

2



sent behavioral patterns for each sample. Considering API call sequences, machine

learning becomes the primary choice to capture sequence relationships between the

sequence elements for malware classification.

Different machine learning algorithms have been used in the literature for malware

detection and classification so far (Komatwar and Kokare, 2021; Ucci et al., 2019).

Considering the sequence, traditional machine learning models may not be suffi-

cient as the order of the API calls must be preserved. During training, the relations

among API calls must be taken into account to successfully predict the malware fam-

ilies of unseen API call sequences. The current deep learning based models, mainly

pre-trained transformer models outperform traditional machine learning based ap-

proaches for sequential text classification (Li et al., 2020; Minaee et al., 2021).

In this thesis, we have answered the following research questions respectively:

RQ.1: What are the suitable classification metrics for imbalanced datasets
in multiclass malware classification?

RQ.2: What are the appropriate base models for multiclass malware clas-
sification based on API call sequences?

RQ.3: What are the effects of pre-processing on API call sequences to the
model results?

RQ.4: What are the effects of tokenizer-based (word piece) pre-trained
transformer model (e.g. BERT) and tokenizer-free transformer model (e.g.
CANINE) to our model results?

RQ.5: What is the effect of ensemble of pre-trained transformer models,
BERT and CANINE, which is based on bagging for imbalanced multiclass mal-
ware classification?

Our main contributions through this study, in the light of the answers to our research

questions, can be summarized as follows:

• Noticing inconsistent evaluation results due to a logical error in the code of a

published article (Schofield, 2021).
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• To the best of our knowledge, we have used the pre-trained CANINE trans-

former model for the first time in the field of malware in this study.

• Again, to the best of our knowledge, a bagging-based ensemble of pre-trained

transformer models has been used for the first time in malware classification.

• Our proposed model Random Transformer Forest (RTF), has surpassed the

state-of-the-art results obtained in the malware classification.

• We have achieved a state-of-the-art result on one of the well-known API call

dataset in the literature (Catak and Yazı, 2019) with our proposed RTF model.

This thesis is structured as follows: Chapter 2 presents the related work. The

description of the datasets, base models, pre-trained models, and our proposed model

are presented in Chapter 3. The test results are discussed and compared with the

related studies in Chapter 4. Chapter 5 presents the papers that contribute to the

thesis and lastly, the conclusion and future work are given in Chapter 6.
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2. RELATED WORK

Cybercriminals leverage malware to exploit any device or system to steal sensitive

data and hence cause enormous problems for victims. Analyzing and classifying

incoming malware helps us define the problem and understand how to recover from

the damage as quickly as possible.

There are two techniques most commonly used in malware analysis, static analysis

and dynamic analysis. Static analysis is a process of malware analysis that analyzes

the given malware without running it. Unlike static analysis, a given malware file

is executed in an isolated environment to avoid harming the computer system in

dynamic analysis.

Malware developers may implement various techniques to evade detection mecha-

nisms such as code obfuscation, dynamic code loading, polymorphism, and metamor-

phism. For instance, the MD5 hash based detection method can be easily bypassed

by malware authors with the methods mentioned above. As these methods cause

the binary of the file to change, they also cause a change in the hash of the file.

While the hash of the malicious file is changed and the file is defined as benign, the

behavior of the file, thus its effect, remains unchanged (Ucci et al., 2019).

Since dynamic analysis requires the execution of a given sample to be monitored and

observed in an isolated environment, malware even written with code obfuscation

techniques hardly eludes dynamic analysis contrary to static analysis. This identified

situation provides dynamic analysis to be more robust than static analysis (Or-Meir

et al., 2019).

Performing dynamic analysis requires more time than static analysis and organiza-

tions are dealing with millions of attacks carried out in a day. These shortcomings
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provide an excellent opportunity for machine learning to collaborate with dynamic

and static analysis since machine learning can handle large volumes of data (Fraley

and Cannady, 2017).

In the malware detection and classification process, understanding malware behav-

ior is one of the substantial parts of detecting and classifying malware. API calls

are obtained by tracing the sequences of calls by way of calling operating system

services such as creating a file and allocation of virtual memory by malware samples.

Since API call sequences generate specific behavioral patterns and hence represent

malware families, they can be considered as one of the most distinguished features

among malware families (Ding et al., 2018; Fujino et al., 2015).

Related studies, base models for malware analysis using API calls and transformer-

based models on sequence problems will be examined respectively in the rest of

Chapter 2.

2.1 Base Models for Malware Analysis using API Calls

Ki et al. (2015) used DNA sequence alignment algorithms, Multiple Sequence Align-

ment (MSA), and Longest Common Subsequence (LCS) to extract the most crit-

ical API call sequence patterns among different malware families and generate a

signature-based malware detection mechanism to determine whether a program is

a malware or not based on these extracted patterns. The API call sequences deter-

mined by the MSA and LCS algorithms can be misleading for the model if sequences

get more extended than a preset API call sequence length.

Sundarkumar et al. (2015) proposed a model using text mining and topic modeling

for feature extraction and selection processes based on API call sequences. Machine

Learning based Group Method of Data Handling (GMDH) method, traditional ma-

chine learning models, Random Forest (RF), Decision Tree (DT), Support Vector

Machine (SVM), and Multilayer Perceptron (MLP) are compared on two different

datasets. Although DT and SVM models outperformed the results, and they suggest
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DT for malware detection expert system, the size of the datasets are inadequate to

rely on the models.

Kolosnjaji et al. (2016) integrated Convolutional Neural Network (CNN) and Re-

current Neural Network (RNN) layer into one neural network architecture. With

this model, they have achieved the accuracy score of 89.4%, the precision score of

85.6%, and the recall score of 89.4% to classify malware families. Newly generated

subsequences of original API call sequences are given to the model as an input. For

each API call sequence, if the same API call is repeated more than two times in a

row, only two consecutive identical API calls are included in the resulting sequence.

Since their corpus contains only 60 different API calls, they did not set any bound-

aries. Otherwise, they may have to set a predetermined length to avoid tracking

loops and make the model less complex.

Tobiyama et al. (2016) applied two stages of Deep Neural Networks for the malware

detection process. The proposed model CNN is used to classify feature images

extracted with Long Short-Term Memory (LSTM) model using API calls. Although

the authors achieved an Area Under Curve (AUC) score of 96%, since the size of

the dataset is relatively small, the score may be misleading.

Mathew and Kumara (2018) leveraged N-gram and Term Frequency–Inverse Doc-

ument Frequency (TF–IDF) for feature extraction and selection, respectively. The

proposed LSTM model is used for binary classification, benign or malware, using

API call sequences. The authors reached a 92% accuracy score on unknown test

API call sequences.

Xiao et al. (2019) trained two different LSTM networks on system call sequences

for both malware and benign Android applications, respectively. The new sequence

has been classified by comparing two similarity scores obtained from two different

LSTM networks. The LSTM model has been compared with two n-gram models,

MALINE and BMSCS, based on accuracy, precision, recall, and False Positive Rate

(FPR). They have shown that the LSTM model outperformed MALINE and BMSCS
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models.

Catak et al. (2020) tried several models from LSTM to traditional machine learning

models, RF, DT, SVM, and K-Nearest Neighbour (KNN), on a dataset containing

7,107 samples of API call sequences generated by them. In multiclass classification,

they have achieved the highest F1-score of 47% using the single-layer LSTM model

compared to the two-tier LSTM and common machine learning models.

Li and Zheng (2021) generated new API call sequences by applying data pre-

processing steps to benchmark dataset (Catak and Yazı, 2019). If any unique API

call repeated more than once in the sequence, they kept only one and removed the

continuously same API. Similarly, they removed continuously same sub sequences

when the length of sub sequences are two or three. They have proposed two different

models, LSTM and Gated Recurrent Unit (GRU) models, which are based on RNN

architecture. They have significantly increased their precision, recall, and F1-score

after data pre-processing.

Oliveira and Sassi (2019) prepared new API call sequences and kept only 100 non-

consecutive sequences to avoid repeating API calls loop, similar to feature pre-

processing method applied in (Kolosnjaji et al., 2016). They achieved similar AUC

score and F1-score results compared to LSTM with their proposed model, which is

based on Deep Graph Convolutional Neural Networks (DGCNNs).

LSTM model is widely used as the underlying architecture for malware detection

and classification based on API calls, as seen in the above mentioned studies.

2.2 Transformer-Based Models on Sequence Problems

Erciyes and Görür (2021) used several deep learning models from mostly used tra-

ditional deep learning methods such as CNN, RNN, LSTM, GRU, and BiLSTM

with GLOVE and fastText embedding to pre-trained transformer models for multi-

class text classification. For their experiment, they utilized the highly imbalanced
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RCV1-v2 dataset, which contains 800,000 news stories. They have shown that trans-

former models outperformed traditional deep learning models based on F1-score for

multiclass text classification.

Paul and Saha (2020) used the BERT model for the cyber-bullying detection task.

The proposed model has been tested on three different datasets taken from Twit-

ter, Wikipedia, and FormSpring. Compared to common machine learning models,

SVM and Logistic Regression (LR), and deep-learning based models, CNN, RNN +

LSTM, and Bidirectional LSTM (BiLSTM), they have achieved higher F1-scores.

Alvares (2021) generated word embeddings for each opcode of malware samples by

using Word2Vec and BERT. They classified malware with different classifiers such

as LR, SVM, and MLP to see the effect of different word embeddings. They have

achieved higher results using BERT for word embeddings with the same set of input

parameters and the same set of classifiers based on classification accuracy among

five unique malware families distributed almost balanced.

Nassar and Hubballi (2021) proposed transformer-based architecture for detection

and classification of malware using opcode sequences of windows executable files.

The proposed transformer model has achieved better results compared to Gradient

Boosting Method (GBM) and BiLSTM based on accuracy, precision, recall, and

F1-score evaluation metrics.

Xu et al. (2021) proposed a pre-trained transformer model, Malbert, which is pre-

trained on 15,000 malware and 15,000 benign samples (Ki et al., 2015) first to learn

the relationships among API calls. This pre-trained transformer model and existing

pre-trained transformer model, Bert-base-uncased are fine-tuned on two different

datasets for the malware detection process. Pre-trained transformer models have

achieved higher results compared to LSTM model and traditional machine learning

models based on mostly used evaluation metrics, such as accuracy, precision, recall,

and F1-score.
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McDonnell et al. (2021) proposed a model, called CyberBert which uses bidirectional

transformer architecture for two different tasks, session-based recommendation, and

malware classification based on API calls. Compared to the LSTM model and

transformer-encoder, a unidirectional model, they have achieved higher F1-scores

for binary and multiclass classification with CyberBert.

Oak et al. (2019) leveraged pre-trained BERT transformer model for malware de-

tection, malware, and benign, on Android operating system API calls called by the

application. The set of experiments made by the study shows BERT model obtained

state-of-the-art results compared to the LSTM model on sequence classification.

Recent surveys (Qiu et al., 2020; Minaee et al., 2021) with the studies mentioned

above clearly show that current transformer-based models, mainly pre-trained trans-

former models fine-tuned on downstream tasks, outperformed traditional machine

and deep learning models on sequence classification.
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3. METHODOLOGY

In the methodology chapter, firstly, the datasets used in experiments are introduced.

Secondly, the most suitable evaluation metrics for highly imbalanced datasets are

specified. Then, base model structures, the effect of the pre-processing method,

pre-trained transformer models, CANINE and BERT, and the proposed RTF model

architectures are explained.

3.1 Datasets

To verify how effectively a model classifies malware, it is necessary to test the model

on different malware datasets. Since malware constantly evolves, working on an up-

to-date malware dataset is required to assess the effectiveness of proposed models.

Comparing several models on a single dataset containing outdated malware samples

and highlighting one model might not be reliable. Thus, four different datasets

containing API call sequences of malware samples and their corresponding malware

families are utilized to evaluate the models used in this study.

3.1.1 Catak

This study obtained sequences of Windows Operating System API calls within the

Cuckoo Sandbox isolated environment for each malware file. Malware family labels

were determined using unique hash codes of each malware on the Virus Total website.

In total, 7,107 samples, which contain hash codes of malware, Windows operating

system API call sequences, and their malware family classes, were created (Catak

and Yazı, 2019).
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3.1.2 Oliveira

42,797 malware and 1,079 benign API call sequences were obtained via Cuckoo

Sandbox for dynamic malware analysis. Instead of using whole API call sequences,

the first 100 non-consecutive API call sequences were extracted from the parent

processes to reduce complexity and detect the malicious pattern as quickly as pos-

sible. The generated dataset containing hashcodes, label (malware or benign), and

100 non-consecutive API Calls for each sample has been used for binary malware

classification (Oliveira and Sassi, 2019).

Since we are working on a multiclass classification problem, malware families of

42,797 malware samples are determined through virus total. Out of 42,797 malware

samples, 2,081 were labeled as "unknown" by virus total. Several malware families

hold a small number of malware samples, less than 100. These malware samples

are removed since they could be misleading for the models. Thus, the dataset in

question has been turned into a multiclass classification case. The compiled dataset

used in our study consists of 40,566 malware samples with their API call sequences

and malware families.

3.1.3 VirusShare

Unique hash codes represent malware samples obtained from Virus Share. Each

unique hash code in text files is passed to Virus Total to learn their corresponding

malware families. Python module named PEfile is leveraged to extract API calls

from each malware sample. Lastly, malware families having less than 100 samples

are removed. Thus, 13,849 malware samples with their corresponding API call

sequences and malware families are obtained (Düzgün et al., 2021).
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3.1.4 VirusSample

Malware samples taken by Virus Sample are kept with their unique hash code text

files. Corresponding malware families and API calls are obtained from Virus Total

site and PEfile module, respectively, as in Virus Share. Finally, malware families

having less than 100 are removed from the dataset. Therefore, 9,732 malware sam-

ples with their corresponding API call sequences and malware families are obtained

(Düzgün et al., 2021). Since the malware samples in this dataset consist of the most

up-to-date data based on API calls, we also find an opportunity to test our models

on recent malware samples. Table 3.1 shows the total samples of malware families

for each dataset and Figure 3.1 shows a malware sample in the VirusShare dataset

to gain a general insight into datasets.

Table 3.1 Distribution of malware families.

Malware Family Oliveira VirusShare Catak VirusSample

Trojan 31,979 8,919 1,001 6,153

Virus 102 2,490 1,001 2,367

Adware 5,444 908 379 222

Backdoor 135 510 1,001 447

Downloader 1,948 218 1,001 N/A

Worms N/A 524 1,001 441

Agent 220 165 N/A 102

Ransomware 404 115 N/A N/A

Dropper 118 N/A 891 N/A

Riskware 216 N/A N/A N/A

Spyware N/A N/A 832 N/A

Total 40,566 13,849 7,107 9,732

Figure 3.1 A malware sample in VirusShare dataset
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3.2 RQ.1-) What are the suitable classification metrics for imbalanced

datasets in multiclass malware classification?

The degree of imbalance may vary within different domains. One of these domains

is malware, as specific malware families are used chiefly in particular periods for

cyber attacks.

According to the report released by Malwarebytes: The total number of Trojan

detected by Malwarebytes is almost 26 times higher than the total number of Worm

in 2018. The total number of Riskware detected by Riskware tools in 2019 was

6,632,817, with a decrease of 35% compared to the previous year. In another chart

containing the number of detection of malware families by months, it is seen that

the number of Trojan attacks increased dramatically at the beginning of 2019, with

the spread of the Emotet, one of the advanced Trojan campaign in that period

(Malwarebytes Labs, 2020).

These situations demonstrate that there could be significant differences in the dis-

tribution of malware families according to years or even months. Therefore, when

the collected malware is classified according to their families, the distribution will

vary according to the malware type prevailing at the time of collection and hence

lead to imbalance.

For these reasons, almost all of the datasets belonging to malware have an imbal-

anced class distribution in the literature. Thus, we are required to leverage the most

suitable metrics to evaluate our classification performance on imbalanced datasets.

The datasets leveraged in our study have highly imbalanced class distribution as

expected and shown in Table 3.1.

Evaluation metrics are one of the crucial steps to assess model performance. An

incorrectly chosen evaluation metric can make a poor performance algorithm seems

effective. The metrics used to evaluate a model performance may vary for bal-

anced and imbalanced datasets. For instance, using accuracy metric for a balanced
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dataset may provide an objective evaluation, yet may not be the right choice for

an imbalanced dataset as it has a bias against the majority class. Taking malware

classification for example. Assume there are six different classes in the dataset, and

95% of the samples belong to Trojan. In this case, a dummy model that predicts all

samples in the test data as Trojan will achieve an accuracy score of 95% even though

it does not predict any other classes correctly. It may not always be correct to use

the most widely preferred evaluation metric without examining the distribution of

classes in the dataset for the reasons mentioned above.

Recently, researchers have started to use Matthew’s Correlation Coefficient (MCC)

to evaluate model performance on imbalanced datasets. Although this metric was

previously used mostly in biomedical research, it has now been used in many areas,

including malware classifications (Kim et al., 2021; Jahromi et al., 2020) yet accord-

ing to the experimental results to investigate the behavior of MCC metric, MCC

is not suitable for directly applying on imbalanced datasets (Zhu, 2020). Empirical

research conducted on 54 imbalanced datasets demonstrates that the AUC score is

more discriminating than MCC (Halimu et al., 2019). Most frequently used metrics

to assess model performance for multiclass classification tasks have been shown to

be inadequate on imbalanced datasets such as Precision, Recall, MCC, Confusion

Entropy (CEN), Classes Average Accuracy (AvAcc), and Class Balanced Accuracy

(CBA) (Branco et al., 2017).

Although the choice of right metrics is still an open issue, following the searches

to find the most suitable metrics used for multiclass classification on imbalanced

datasets, we have used AUC, which is a summary of probability curve, Receiver

Operating Characteristic (ROC), based on FPR and True Positive Rate (TPR), as

an evaluation metric. On the other hand, F1-score has been used to be comparable

with studies conducted on one of the well-known datasets in the literature (Catak

et al., 2020).

The equation (3.1) and (3.2) define the recall and precision metrics respectively. The
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equation (3.3) defines F1-score in terms of precision and recall. Also, the equation

(3.3) contains the explicit form of the formula in terms of True Positive (TP), False

Negative (FN), and False Positive (FP).

Recall =
TP

TP + FN
(3.1)

Precision =
TP

TP + FP
(3.2)

F1score =
2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(3.3)

3.3 Base Models

LSTM and One-layer Transformer Block Based Transformer architecture are lever-

aged as base models for malware classification based on RQ.2. For the rest of the

thesis, One-layer Transformer Block Based Transformer architecture is referred to

as Transformer model.

3.3.1 LSTM-Based Malware Classification

Recurrent Neural Networks (RNNs) have a structure that uses recurrent relation,

which is a situation of performing the same step, processing current output depends

on the previously computed hidden state, for each element of a sequence repeatedly.

In these structures, information is retained through the previous hidden state, and

hence processing continues in time steps. The recursion between sequence elements

hinders parallelization during the training phase and consequently causes a longer

run time for training.

LSTM can learn relatively long-term dependencies compared to other RNNs because

it provides deeper processing of hidden states through specific units. This situation

causes an increase in the number of parameters used for training. Besides, since
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LSTM has a recursive structure like other RNNs inherently and hence can not be

trained in parallel, the training period may take relatively longer compared to other

RNNs (Hochreiter and Schmidhuber, 1997).

Since our purpose is to classify malware families, fully connected layer output that

captured the information from the LSTM networks, is given to the softmax layer

for multiclass classification.

The standard LSTM network is preferred as one of the base models for comparison

since it has been used widely as a base network and performed successfully for several

malware classification problems using API call sequences (Berman et al., 2019).

3.3.2 Transformer Model

Transformer model is a recently used network architecture that designed to overcome

the deficiencies of sequence-to-sequence neural network approaches such as LSTM

and RNN for the sequence modeling and transduction problems in 2017 (Vaswani

et al., 2017).

Since transformer-based architectures avoid recursion, they can overcome the paral-

lelization problem that both the LSTM and other RNNs suffer from. In traditional

sequence-to-sequence architectures the information coming from the previously hid-

den state is processed recursively to capture dependencies. On the contrary, since

the transformer models refrain from recurrence and convolution, positional encod-

ings are used to preserve the order of the sequence and provide position-related

information of the tokens in the sequence. Transformer models leverage the atten-

tion mechanism to caption and preserve long-term dependencies for the sequences

processed as a whole. Positional information is retained with attention layers in-

stead of the recurrent and convolutional layers in transformer model (Vaswani et al.,

2017). Figure 3.2 shows the Transformer model architecture utilized in this study.
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Figure 3.2 Transformer model architecture.

3.4 Pre-processing Method on Datasets

Each API call sequence is pre-processed, similar to the steps taken part in (Li and

Zheng, 2021). Pre-processing part consists of 3 main steps.

In the first step, for any API call in a sequence that repeated more than one time

in a row, the continuously same API calls are removed from the sequence. This pre-

processing step generates a new sequence that does not consist of the consecutive

same API call. In the second and third steps respectively, repetitive binary and
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triple sub-sequences are removed from the new sequence created by the first step.

The following Figure 3.3 shows the pre-processing step outputs respectively based

on randomly given sequences.

Figure 3.3 The outputs of pre-processing steps.

These pre-processing steps have not been applied to the Oliveira dataset as this

dataset has already given pre-processed and limited to the 100 non-consecutive API

calls only. On the other hand, although the pre-processing steps have been applied

to the VirusSample and VirusShare datasets as well, only one sample out of 9,732

samples for VirusSample dataset and only two samples out of 13,849 samples for

VirusShare dataset are affected. Of these affected samples, only two or three API

calls are affected. Thus, we have continued with the original API call sequences

of VirusSample and VirusShare datasets. After performing pre-processing steps on

Catak dataset, only 11 API call sequences remained constant. The effect of the pre-

processing steps on the Catak dataset can easily be seen by the Figure 3.4 shown

below.
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Figure 3.4 The effect of pre-processing on Catak dataset.

After pre-processing steps, the number of samples where the length of the API call

sequences is less than 200 has increased more than twice, and the number of samples

where the length of the API call sequences is more than 200 has decreased more than

twice. These changes clearly show the effect of pre-processing steps on the Catak

dataset. Finally, after performing all the pre-processing steps to the Catak set only,

the effect of the pre-processing is examined with model performances.

3.5 CANINE and BERT

Large-scale pre-trained models have recently become very popular in the field of

artificial intelligence. Due to the model previously trained on large-scale data, cap-

tured information can be used for specific tasks that utilize the pre-trained model by

fine-tuning (Han et al., 2021). This study utilizes two different pre-trained models

architectures, BERT and CANINE.
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3.5.1 BERT

BERT, Bidirectional Encoder Representations from Transformers, is a language

model that uses transformer architecture which is pre-trained on Wikipedia and

Book Corpus of unlabelled text (Devlin et al., 2018).

BERT preserves the semantic content thanks to the masked language modeling

(MLM) and next sentence prediction (NSP) unsupervised tasks, which enables to

generate deep bidirectional representations while pre-training. BERT uses Word-

piece tokenization to create a token vocabulary that consists of learned representa-

tions of the words. Figure 3.5 shows BERT architecture in details.

3.5.2 CANINE

CANINE, Character Architecture with No tokenization In Neural Encoders, is a

tokenizer-free pre-trained encoder model that is designed to overcome the shortcom-

ings of the tokenization process such as word-piece and sentence-piece tokenization

(Clark et al., 2021). For example, a pre-trained model that uses specific tokenization

may not be convenient for specialized domains. Boukkouri et al. (2020) showed that

word-piece tokenization based pre-training strategy is not well-suited compared to

character-piece when fine-tuned on medical data.

Similar to BERT (Devlin et al., 2018), CANINE is pre-trained on the MLM and

NSP tasks as well. Unlike commonly used pre-trained models, CANINE uses neural

encoders that encode the sequence of characters or optionally sub-words are used

as a soft inductive bias without doing explicit tokenization on input data. The

CANINE structure is shown in Figure 3.6.
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Figure 3.5 BERT architecture.
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Figure 3.6 CANINE architecture.
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In general, the BERT model is widely used by many studies for malware classifi-

cation, as shown in the Related Work. We have assumed that the tokenization-free

strategy used by the CANINE model might be well-suited for API calls since an API

call such as ’ldrloaddll’ may not be appropriate for word-tokenization. Therefore,

we have included the CANINE model in our study.

Thus, BERT, and two different CANINE models, CANINE-C (Pre-trained with

autoregressive character loss), and CANINE-S (Pre-trained with subword loss) pre-

trained transformer models are leveraged regarding the RQ.4.

3.6 Proposed Model: Random Transformer Forest (RTF)

There are several important studies that show the success of using different en-

semble types of pre-trained transformer models such as stacking and majority vot-

ing of heterogeneous pre-trained transformer models on varying downstream tasks.

(Marcinczuk, 2021; Morio et al., 2020; Malla and Alphonse, 2021). Unlike these

type of ensemble models, Random Transformer Forest (RTF) is a bagging-based

ensemble model inspired from the Random Forest (RF) machine learning model

(Breiman, 2001). Similar to RF, using an ensemble of pre-trained transformer mod-

els is assumed to increase classification performance on highly imbalanced malware

datasets rather than using a single pre-trained transformer model (Çayır et al., 2021;

Kobayashi et al., 2021).

The training phase requires creating N different training subsets by using the boot-

strap sampling method from the original training set. The malware class distribution

coming from the original training set must be preserved in the resampling step due

to the highly imbalanced class distribution. After the resampling step, each train-

ing subset is used to fine-tune the pre-trained transformer model. Each pre-trained

transformer model has the same structure. Therefore base estimators are homoge-

neous.

In the testing phase, each fine-tuned transformer model takes a given malware API
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call sequence, and the class probabilities of each fine-tuned transformer model are

aggregated by taking the average. For the majority voting, the final prediction is

accepted as the malware family, which takes the highest probability coming from

the aggregation part. Figure 3.7 shows the structure of RTF model.

Figure 3.7 The proposed RTF model architecture.

25



4. EXPERIMENT AND RESULTS

All conducted experiments will be clarified respectively regarding the predetermined

Research Questions except RQ.1 which is elaborated in Methodology part.

4.1 RQ.2-) What are the appropriate base models for multiclass malware

classification based on API call sequences?

In this part of the study, Transformer and LSTM model are leveraged as base ar-

chitectures for comparison on four datasets.

All datasets used to evaluate the base model performances are divided into three

parts, training, validation, and testing. 20% of the original datasets are allocated

for testing. The splitting data process is performed in a stratified way as to preserve

class distribution is one of the crucial steps on highly imbalanced datasets. Consid-

ering the imbalanced distribution of the classes, we have leveraged the class weight

approach to give different weights to both the majority and minority classes so that

class weights are taken into account by training algorithms.

Stratified 10 Fold strategy is used on training data for each dataset, and 10% of

training data is used for validation for each iteration. Thus, we guarantee that each

fold has the same distribution of malware families and ensure that every sample

from the dataset has the chance of appearing in both training and validation data.

Standard deviation and mean of 10 validation results are calculated for each evalua-

tion metric used in our study for robust interpretation. We have provided a dummy

classifier as a simple baseline since class distribution of each dataset is imbalanced.

We have used the "most frequent" strategy for our dummy classifiers. Base model

comparison results on each dataset is shown in the tables 4.1 to 4.4.
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Table 4.1 Base model comparison results for Catak dataset.

Base Model F1-score AUC score

Validation Mean Scores

LSTM 0.4873 ± 0.0126 0.7887 ± 0.0128

Transformer 0.5689 ± 0.0578 0.8676 ± 0.0329

Test Scores

LSTM 0.4638 0.7885

Transformer 0.5042 0.8246

Dummy 0.0308 0.5000

Table 4.2 Base model comparison results for Oliveira dataset.

Base Model F1-score AUC score

Validation Mean Scores

LSTM 0.5570 ± 0.0182 0.8853 ± 0.0142

Transformer 0.5792 ± 0.0379 0.9280 ± 0.0142

Test Scores

LSTM 0.5637 0.8844

Transformer 0.5650 0.8855

Dummy 0.0980 0.5000

27



Table 4.3 Base model comparison results for VirusSample dataset.

Base Model F1-score AUC score

Validation Mean Scores

LSTM 0.7690 ± 0.0419. 0.9656 ± 0.0110

Transformer 0.8070 ± 0.0323 0.9885 ± 0.0055

Test Scores

LSTM 0.7531 0.9701

Transformer 0.7548 0.9680

Dummy 0.1291 0.5000

Table 4.4 Base model comparison results for VirusShare dataset.

Base Model F1-score AUC score

Validation Mean Scores

LSTM 0.7121 ± 0.0231 0.9274 ± 0.0130

Transformer 0.7641 ± 0.0297 0.9700 ± 0.0182

Test Scores

LSTM 0.7071 0.9298

Transformer 0.7125 0.9350

Dummy 0.0980 0.5000

Considering the two base models, LSTM and Transformer model, the standard devi-

ation of the mean validation scores of evaluation metrics for the Transformer model

is higher. Even in this case, we get higher results on unseen test data.

Evaluation results demonstrate that the Transformer model is more reasonable to

continue with compared to the LSTM model.
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4.2 RQ.3-) What are the effects of pre-processing on API call sequences

to the model results?

Data pre-processing steps mentioned in Pre-processing Method on datasets part are

applied to the Catak dataset only as pre-processing has no effect on VirusSample

and VirusShare datasets, and Oliveira dataset has already been pre-processed and

limited with 100 non-consecutive API calls.

Original API call sequences and pre-processed API call sequences on Catak dataset

have been compared with the LSTM and Transformer model.

Table 4.5 shows the comparison results of Original API call sequences and pre-

processed API call sequences.

Table 4.5 Comparison of the original and pre-processed Catak datasets.

Catak Dataset F1-score AUC score

On Original API Call Sequences

LSTM 0.4638 0.7885

Transformer 0.5042 0.8246

On Pre-processed API Call Sequences

LSTM 0.5020 0.8156

Transformer 0.5106 0.8372

Evaluation results show that pre-processing step outperforms for Catak dataset.

Both the AUC score and F1-score have increased after the pre-processing steps for

both LSTM and Transformer model. New sequences generated after pre-processing

steps are leveraged for the following experiments, pre-trained models and RTF model

for the Catak dataset.
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4.3 RQ.4-) What are the effects of tokenizer-based (word piece) pre-

trained transformer model (e.g. BERT) and tokenizer-free trans-

former model (e.g. CANINE) to our model results?

In this part, Due to the large number of parameters used in pre-trained models,

20% of the training data is allocated for validation instead of the stratified k fold

strategy. The best model that gives higher scores for the CANINE model is included

only in the result tables between the sub-word and character strategy.

The comparison of the pre-trained models is shown with the RTF model results to

see the comparison clearly.

4.4 RQ.5-) What is the effect of ensemble of pre-trained transformer

models, BERT and CANINE, which is based on bagging for imbal-

anced multiclass malware classification?

In the RTF model N different training subsets, thus N different base estimators

are utilized to fine-tune the N different pre-trained BERT or CANINE model. We

have tried several combinations of N and pre-trained transformer models, BERT

and CANINE, for each dataset. As a result of several trials, the combinations that

provided the best scores are accepted as our RTF score. Table 4.6 shows the best

combination for each dataset and model comparison results on each dataset are

shown in tables 4.7 to 4.10.

Table 4.6 Best parameters for RTF model.

Dataset Number of Base Estimators (N) Pre-trained Model

Catak 6 BERT

Oliveira 2 BERT

VirusSample 10 CANINE-S

VirusShare 5 CANINE-S
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Table 4.7 All model comparison on Catak dataset.

Model F1-score AUC score

Transformer 0.5106 0.8372

CANINE-S 0.5633 0.8339

BERT 0.5919 0.8735

RTF 0.6149 0.8818

Table 4.8 All model comparison on Oliveira dataset.

Model F1-score AUC score

Transformer 0.5650 0.8855

CANINE-S 0.4725 0.8636

BERT 0.4839 0.8321

RTF 0.4745 0.8058

Table 4.9 All model comparison on VirusSample dataset.

Model F1-score AUC score

Transformer 0.7548 0.9680

CANINE-C 0.7893 0.9570

BERT 0.7759 0.9690

RTF 0.8170 0.9714

Table 4.10 All model comparison on VirusShare dataset.

Model F1-score AUC score

Transformer 0.7125 0.9350

CANINE-S 0.7064 0.9286

BERT 0.7145 0.9364

RTF 0.7459 0.9436
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According to the results, at least one of the pre-trained transformer models, CA-

NINE or BERT, surpassed Transformer Model, and the RTF model obtained the

highest scores on three out of four datasets.

Among the four datasets we have experimented on, only the Catak dataset is compa-

rable since VirusShare and VirusSample datasets are newly published and Oliveira

dataset is transformed to a multiclass problem by us.

Schofield (2021) has proposed a model for multiclass classification on Catak Dataset.

In this study, all the samples in the Catak dataset are shuffled, and 80% of the

dataset is allocated for the train set. Then, all the samples in the Catak dataset

are shuffled again and 20% of the dataset is allocated for the test set. The logical

error made here is whole samples are shuffled twice. This situation causes the test

part to have some samples which exactly fall into the train part. Thus, the model

might test what it learned from the train. We have performed a test on the code

shared with us by the authors Schofield (2021) from the GitHub link 1 . We have

performed a test to divide the whole dataset into the training and testing dataset

with the exact code script performed by authors for their study. Finally, we realized

that 1,117 of 1,371 samples allocated for the test set intersect with the train set. For

these reasons, evaluation scores obtained by this article are not taken into account

to compare our results. The logical error has been reported to the article authors.

To the best of our knowledge highest F1-score obtained on the Catak dataset for

multiclass classification is 0.57 (Li and Zheng, 2021) compared to the baseline score

of 0.47 obtained by the Catak dataset creators (Catak et al., 2020). Although the

F1-score reported by Catak et al. (2020) is 0.47, the calculated F1-score from the

given confusion matrix (CM) in (Catak et al., 2020) is 0.41 as in Figure 4.1a. The

20% of original Catak dataset is allocated as unseen test data for RTF experiments

like in (Catak et al., 2020). Catak et al. (2020) showed their CM of LSTM model

results on unseen test dataset. Their CM is referred to as source CM as this is the
1https://github.com/MattScho/MalwareClassificationCNN
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first study performed on Catak dataset. Since only this study contains CM, we have

compared their CM with our proposed RTF model CM on unseen test data. Among

the experimental studies conducted on the Catak dataset for multiclass classification

(Li and Zheng, 2021; McDonnell et al., 2021; Catak et al., 2020) our proposed RTF

model has surpassed and reached the state-of-the-art F1-score of 0.6149 as shown in

Figure 4.1b.

(a) SOURCE CM (b) RTF CM
Figure 4.1 Comparison of confusion matrix on Catak dataset.

4.5 Experimental Setup

We have utilized the google-cloud colab for base model comparison using Keras

(Chollet et al., 2018). We have worked on Tesla K80 GPU with 12 GB available

RAM provided by the colab platform. Since the pre-trained transformer models and

hence RTF experiments faced GPU memory exhausted error on colab, we tested our

remaining experiments on the computer with 2 GPU (GeForce GTX 1080 Ti) with

12 GB RAM per each GPU. For pre-trained transformer models and RTF model,

the PyTorch framework (Paszke et al., 2017) is leveraged with pre-trained models

taken from HuggingFace (Wolf et al., 2019). All jupyter notebook files that contain

source codes regarding the research questions, from base model comparison to RTF

model, can be found in the Github repository 2 .
2https://github.com/Ferhat94/Random-Transformer-Forest
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5. INCLUDED PAPERS AND CONTRIBUTIONS

In this part of the thesis, our papers contributed to this study are shown.

5.1 Paper-I

Website Category Classification Using Fine-tuned BERT Language Model

(Demirkıran et al., 2020).

5.1.1 Summary

The contents on the Word Wide Web is expanding every second providing web users

a rich content. However, this situation may cause web users harm rather than good

due to its harmful or misleading information. The harmful contents can contain

text, audio, video, or image that can be about violence, adult contents, or any other

harmful information. Especially young people may readily be affected with these

harmful information psychologically. To prevent youth from these harmful contents,

various web filtering techniques, such as keyword filtering, Uniform Resource Locator

(URL) based filtering, Intelligent analysis, and semantic analysis, are used. We

propose an algorithm that can classify websites, which may contain adult contents,

with 67.81% (BERT) accuracy among 32 unique categories. We also show that a

BERT model gives higher accuracy than both the Sequential and Functional API

models when used for text classification.

5.1.2 Contributions

In this study, a highly imbalanced dataset is leveraged for multiclass website category

classification based on the the descriptions of the categories. This study has shown

us the success of the pre-trained transformer model, BERT, over LSTM for sequence-
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based text classification. From this point of view, we have seen the promise of pre-

trained transformer models on sequential data, and leveraged BERT and CANINE

for malware family classification using API calls as these API calls are inherently

sequential.

5.2 Paper-II

New Datasets for Dynamic Malware Classification (Düzgün et al., 2021).

5.2.1 Summary

Nowadays, malware and malware incidents are increasing daily, even with various

anti-viruses systems and malware detection or classification methodologies. Many

static, dynamic, and hybrid techniques have been presented to detect malware and

classify them into malware families. Dynamic and hybrid malware classification

methods have advantages over static malware classification methods by being highly

efficient. Since it is difficult to mask malware behavior while executing than its un-

derlying code in static malware classification, machine learning techniques have been

the main focus of the security experts to detect malware and determine their families

dynamically. The rapid increase of malware also brings the necessity of recent and

updated datasets of malicious software. We introduce two new, updated datasets in

this work: One with 9,795 samples obtained and compiled from VirusSamples and

the one with 14,616 samples from VirusShare. This paper also analyzes multi-class

malware classification performance of the balanced and imbalanced version of these

two datasets by using Histogram-based gradient boosting, Random Forest, Support

Vector Machine, and XGBoost models with API call-based dynamic malware clas-

sification. Results show that Support Vector Machine, achieves the highest score

of 94% in the imbalanced VirusSample dataset, whereas the same model has 91%

accuracy in the balanced VirusSample dataset. While XGBoost, one of the most

common gradient boosting-based models, achieves the highest score of 90% and

80%.in both versions of the VirusShare dataset. This paper also presents the base-
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line results of VirusShare and VirusSample datasets by using the four most widely

known machine learning techniques in dynamic malware classification literature. We

believe that these two datasets and baseline results enable researchers in this field

to test and validate their methods and approaches.

5.2.2 Contributions

Two datasets, VirusSample and VirusShare, prepared in this study are leveraged to

test our models from LSTM to our proposed RTF model with two different datasets

as mentioned in Datasets. To our best knowledge, VirusSample dataset have the

most up-to-date malware observations based on API calls. Thus, we have the oppor-

tunity to work on an up-to-date malware dataset, which is crucial considering that

malware evolves over time. Therefore, we find an opportunity to test performance

of our models reliably due to the total of four different datasets.
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6. CONCLUSIONS AND FUTURE WORK

In this study, we have leveraged several deep learning models for highly imbalanced

multiclass malware classification based on API calls, which are inherently sequence

problems. We have assessed the performance of our models with AUC score and

F1-score evaluation metrics as the four datasets used in this study are imbalanced.

Our evaluation results demonstrate that the Transformer Model with one trans-

former block layer has achieved slightly better results than the LSTM model. More-

over, the pre-trained transformer models, BERT or CANINE, outperformed one

transformer block layer Transformer Architecture.

The CANINE model has been used for the first time in the field of malware classifica-

tion in this study. We have reached a state-of-the-art results on the VirusShare and

VirusSample dataset with a bagging-based ensemble of the CANINE model. There-

fore, we have demonstrated the success of the CANINE model with the strength of

RTF on two out of four datasets.

We have achieved a state-of-the-art F1-score of 0.6149 on the Catak dataset with

the power of bagging-based ensemble of BERT model and pre-processing since pre-

processing steps have enabled us to increase our results significantly on the Catak

dataset. In addition, the F1-score of 0.6149 obtained on the well-known benchmark

Catak dataset has proved the success of our proposed RTF Model. In general,

our proposed RTF Model has obtained state-of-the-art results on three out of four

datasets.

This study can be extended by integrating our proposed ensemble model with the

AUC maximization paradigm (Yuan et al., 2021). We believe we may increase our

results in this way.
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