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SHORT TERM FORECAST OF TURKEY’S ELECTRICITY DEMAND DNN VS 

LSTM 

 

ABSTARCT 

This study aims to estimate Turkey's short-term electricity demand using artificial 

intelligence algorithms. Electrical systems are complex structures; therefore, many details 

must be considered for the prediction. Electricity demand forecasting depends on many 

conditions such as climate, calendar effect ( holidays, day of the week, etc.), demographic 

data, and economic data. Turkey is a relatively large and crowded country, whose 

population distribution is concentrated in some regions and climatic conditions, 

population-weighted meteorological data were used as independent variables. Predicting 

the future is challenging machine learning can help us understand how systems behave 

by identifying and analyzing patterns in data. Two advanced artificial neural network 

models were deployed in this study: a deep neural network (DNN) model, and stacked 

(deep) long short-term memory (LSTM) model. Their outputs provided estimates of 

hourly electricity consumption compared with the actual data. For this comparison, mean 

square error (MSE), mean absolute error (MAE), and mean absolute percentage error 

(MAPE) metrics were used. It was observed that the DNN model predicted more 

accurately than the stacked LSTM model. 

Key words: Short term electricity demand forecast, LSTM, deep learning, artificial 

intelligence, neural networks, time series 
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TÜRKİYE’NİN KISA VADELİ ELEKTRİK TALEP TAHMİNİ DNN VS LSTM 

ÖZET 

Bu çalışma yapay zeka algoritmaları kullanarak Türkiye'nin kısa vadeli elektrik talebini 

tahmin etmeyi amaçlamaktadır. Elektrik sistemleri karmaşık yapılardır; bu nedenle, 

tahmin için birçok ayrıntı dikkate alınmalıdır. Elektrik talep tahmini, iklim, takvim etkisi 

(tatiller, haftanın günü vb.), demografik veriler ve ekonomik veriler gibi birçok koşula 

bağlıdır. Türkiye, nispeten büyük ve kalabalık bir ülkedir ve nüfus dağılımı bazı 

bölgelerde yoğunlaşmış olup, iklim koşulları, nüfus ağırlıklı meteorolojik veriler 

bağımsız değişken olarak kullanılmıştır. Geleceği tahmin etmek zorlu bir iştir makine 

öğrenimi, verilerdeki kalıpları belirleyip analiz ederek sistemlerin nasıl davrandığını 

anlamamıza yardımcı olabilir. Bu çalışmada iki gelişmiş yapay sinir ağı modeli 

uygulandı: bir derin sinir ağı (DNN) modeli ve yığılmış (derin) uzun kısa süreli bellek 

(LSTM) modeli. Bu modellerin çıktıları olarak saatlik elektrik tüketim tahminleri elde 

edildi ve gerçek verilerle karşılaştırıldı. Bu karşılaştırma için ortalama kare hatası (MSE), 

ortalama mutlak hata (MAE) ve ortalama mutlak hata yüzdesi (MAPE) metrikleri 

kullanıldı. DNN modelinin yığın LSTM modelinden daha doğru tahmin ettiği 

gözlemlendi. 

Anahtar kelimeler: Kısa vadeli elektrik talep tahmini, LSTM, derin öğrenme, yapay 

zeka, sinir ağları, zaman serileri 
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1. INTRODUCTION 

Since the industrial revolution, energy has become a critical position for the economies 

of developed and developing countries. After the industrial revolution, electrical energy 

became the basic need of modernized society due to the transition from steam-powered 

machines to electrical power machines and the increasing use of electricity. Today, the 

first form of energy that comes to mind when referring to energy is electricity. The fact 

that electrical power has become the most critical energy source for today's society 

necessitates that electricity should be continuous, reliable, and accessible. That fact is an 

obligation for energy companies and has certain challenges. Challenges faced by 

companies that produce, transmit and distribute energy is the necessity of producing 

electrical energy from other energy sources, and it should be consumed as soon as it is 

produced because it cannot store with today's technology. 

Planning is therefore highly significant due to generating electricity from limited 

resources and the need for a production consumption balance. Providing continuous, 

reliable, and accessible energy is only possible with good planning for the future. High 

accurate modeling and forecasting for the future mean making investments with a high 

cost-performance ratio (Bulut & Başoğlu, 2017). The failure to make new investments to 

create demand may cause bottlenecks in the energy sector. Problems in energy supply for 

countries mean serious economic losses, such as was witnessed during the oil crisis in the 

1970s (Sanlı, 2022). 

Our electrical systems are also highly complex. Electricity is produced and transmitted 

simultaneously for millions of people to use (Veljanovski et al., 2020). Many companies 

from many fields need forecasts for the future because of this complex structure. The first 

ones that come to mind are energy-producing companies and energy transmission and 

distribution companies, which require. The biggest reason for this is the need for precise 

forecasting and modeling for the correct management of the electrical system. One of the 

most important forecasts is electricity consumption because of the increasing share of 

non-dispatchable renewable sources in energy production, the electricity market 
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structure, the optimal unit commitment, and the planning of conventional power plant 

operations (Hong, 2014). 

Future consumption forecasts can be classified into short-term, medium-term, and long-

term. Short-term forecasts usually cover a period of up to six months (Uslu et al., 2013). 

Long-term forecasts refer to a broad time ranging from one year to decades and are vital 

for planning to build new generation facilities and expand transmission lines. It also helps 

that utilities and governments make informed decisions regarding the electricity sector's 

development (Esteves et al., 2015). Short-term forecasts can be used for many purposes. 

Fossil-sourced power plants with production costs and hydroelectric power plants with 

reservoirs need to adjust their production schedules to meet demand in high consumption 

hours and periods. Resource management is thus crucial for these power plants. Short-

term forecasts are also essential for the system operator to keep the system in balance. If 

the high consumption cannot be predicted by the generation and transmission-distribution 

companies, there will be an energy deficit; otherwise, an energy surplus occurs. In these 

cases, the system operator intervenes by giving instructions and ensuring balance between 

production and consumption. Forecasts also useful for scheduling the time of unit work 

programs, the production economy, providing effective price offers in the free market, 

and unit maintenance (Bulut & Başoğlu, 2017). 

Predicting the future for a complex system is not easy. Therefore, many different 

prediction methods and models have been developed, but none is prophetic in practice. 

Every country has different climatic conditions and energy portfolios; therefore, a general 

model cannot be created (Bulut & Başoğlu, 2017). Meanwhile, many details influence a 

prediction. An electricity demand forecast depends on many conditions such as climate, 

the calendar effect ( holidays, day of the week, etc.), demographic data, and economic 

data. Temperature, day type, humidity, and wind speed are some of the climate and 

calendar elements that substantially affect electricity consumption and power system load 

in the short term. The effect of air temperature on system load is particularly essential in 

terms of power system operational management in the short term (Veljanovski et al., 

2020).  

Since electricity companies aim to increase their operational profits, forecasting studies 

have grown in recent years. Scientific publications on load forecasting have risen from 
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around 100 to over 1,000 in 20 years (Veljanovski et al., 2020). Many forecasting 

strategies were tested by forecasters, with artificial neural networks (ANN) being one of 

the most popular. Many scientific studies have been carried out in Turkey. Ediger and 

Tatlıdil (2002) presented one of the first examples of these studies, estimating the primary 

energy need of Turkey using a cycle analysis, a semi-statistical method. In this study, 

many forecasting models were examined, and the most successful among the examined 

ones was hold-winters method. Then, they analyzed the total amounts of energy demand 

and GDP, rates of change of energy demand and GDP, energy coefficient, and the annual 

increase of primary energy demand data between 1950 and 1999 with the cycle analysis 

method. They estimated the energy need in 2010 to be around 130 million toe. 

Akan and Tak (2003) did scientific research to reveal the short- and long-term relationship 

between Turkey's total energy consumption and consumer groups and estimate Turkey's 

total consumption, and consumption of different energy groups from 2001-2005. They 

established a multiple least squares model using electricity prices, GNP and population 

data, and annual electricity consumption from 1970-2000. According to the three 

scenarios, low, medium, and high growth, established for 2005, the estimated total 

consumption wass 127032 GWh, 138169 GWh, and 150102 GWh, respectively (Akan & 

Tak, 2010). 

Hamzaçebi and Kutay (2004) set up an ANN model using electricity consumption and 

population information. They trained their model with the data from 1970-1990 and used 

the data from 1991-1998 for the validation. Their test set was the data from 1999-2002. 

The ANN's prediction had better results when compared with box jenkins and various 

other regression methods. 

Turkey's net electricity consumption on a sectoral basis to 2020 was predicted by 

Hamzaçebi (2006) using annual electricity consumption data from 1970-2004 that was 

organized according to sectors and modeled with the ANN method. The total 

consumption for 2020 was estimated at around 500 TWh, with 49.90% residential 

consumption, 45.67% industrial consumption, 3.65% agricultural irrigation, and 0.76% 

transportation. 

In their study, Ediger and Akar (2007) estimated the primary energy demand of Turkey 

from 2005-2020 using Autoregressive Integrated Moving Average (ARIMA) and 
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seasonal ARIMA (SARIMA) methods. In order to make this estimation, they used the 

data of consumption and various energy sources from 1950-2004. When the results of the 

ARIMA and SARIMA methods estimations were compared, they concluded that the 

ARIMA method is more consistent than SARIMA. They demonstrated the usability of 

these methods for energy consumption forecasts. 

Bilgili (2009) tried to estimate Turkey's net electricity production using linear regression, 

nonlinear regression, and artificial neural network methods. In this estimation, Turkey's 

installed power, gross electricity generation, population, and the total number of 

subscribers between 1990 and 2007 were used as variables and created two different 

scenarios as low and high. In this estimation, Turkey's installed power, gross electricity 

generation, population, and the total number of subscribers between 1990 and 2007 were 

used as variables and created two different scenarios as low and high. As a result of the 

study, he estimated that consumption in 2012 was 221.07 TWh for the low scenario and 

251.1 TWh for the high scenario. In this study, it has been revealed that ANNs give better 

results than the other two methods. 

Altınay (2010) analyzed the seasonal effects of electricity demand in his study and 

revealed that the trend changes over time with seasonal fluctuations. Therefore, the 

seasonal ARIMA model was used for demand forecasting. Various models were analyzed 

and the SARIMA(0,1,1)x(1,1,1) model was chosen. For comparison, a second 

deterministic model was set in which seasonality is approached with dummy variables. 

Fort his mode SARIMA(1,1,0)x(2,0,1) choosed. The estimates of these two models for 

2009 were then compared, which determined that the short- and long-term trends are 

stochastic. 

Hotunoğlu and Karakaya (2011) used ANNs for demand forecasting and created three 

different scenarios: static, sustainable, and periodic change. The first scenario was based 

on stable economic growth, the second one on energy intensity, and the third one on 

periodic changes in economic growth. The first two scenarios are arranged according to 

high, medium, and low growth forecasts, and the second scenario also has sub-scenarios 

where energy intensity decreases and remains constant. Data from 1970-2008 were used 

in these scenarios. They concluded that the ANN forecasts were reliable and the estimates 

were below those of the MENR. 
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Oğcu et al. (2012), forecasted Turkey’s electricity consumption using support vector 

machine (SVM) and artificial neural network (ANN). They tried to estimate electricity 

consumption from 2010 to 2011. Monthly electricity consumption was used from January 

1970 to December 2011. They removed seasonality and trend on data with first 

differences and seasonal differences. The train data was from 1 January 1970 to 31 

December 2009, and the results were tested from 2010 to 2011. According to their train 

and forecast results, both methods’ MAPE score was lower than 5%, and  support vector 

regression (SVR) was more accurate. 

Ishik et al. (2015), used the hour, day of the week, month, Ankara temperature, Istanbul 

temperature, and Izmir temperature that pertains to 2012 to estimate the short-term 

electricity load of Turkey. In the study feed-forward neural network method was used. 

70% of the data set was used as training data, 15% as validation data, and the remaining 

15% as test data. When they compared the results, MAPE was 2.3%, and MAE was 600 

MWh. Then they separated the data set according to the seasons and tried to estimate load 

with besides support vector machines (SVM). According to the seasonal estimation 

results, while the neural network was more successful in winter and spring, SVM was 

more successful in summer and fall. The data set was divided into three as a day time, 

evening, and nighttime MAPE scores, respectively 3.5%, 3.0%, and 3.2%.   

Uslu et al. (2013) created a model for Turkey's monthly electricity demand. To create the 

model, monthly consumption data, industrial production index, monthly average 

temperature data for Istanbul and Ankara, and monthly work and holiday days were used. 

Present, high, and low were the three scenarios created for the forecast. The forecast for 

2014 was 249,124.3 million KWh for the first scenario, 262,948.5 million KWh for the 

second scenario, and 242,999.1 million KWh for the third scenario (Uslu et al., 2013). 

Hamzaçebi and ES (2014) estimated the annual electricity consumption of Turkey with 

the optimized gray modeling (1.1) method in their study. They used electricity 

consumption data from 1945-2010 published by the Turkish Statistical Institute (TUIK). 

While establishing the model, they divided the data into modeling and testing. Modeling 

data covers from 1945-2005, and test data covers from 2006-2010. The model was applied 

in direct and iterative ways, and it was revealed that the direct model gave better results. 
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According to the estimation, the consumption in 2015, 2020, and 2025 would be 19326.2 

ktoe, 25358.6 ktoe, 30470.3 ktoe, respectively. 

Günay (2016) modeled Turkey's annual gross electricity demand. The model used 

population, gross domestic product per capita, percentage of inflation, and average 

summer temperature as independent variables. A multilayer ANN model was created for 

prediction, and data from 1975-2006 were used. The model was tested with the data from 

2007-2013, and that the results were more accurate than those estimates of the Turkey’s 

Ministry of Energy and Natural Resources. In the estimation for the coming years, 460 

TWh of consumption was forecast for 2028. 

Yukseltan et al. (2017) created a model that considers the harmonics and the modulation 

of daily periodic changes with seasonality to predict annual, monthly, and daily electricity 

consumption. The model is based on sinusoidal changes using data from 2012-2014. It 

has a 3% MAPE for short-term forecasts, while it has a 9% MAPE for long-term forecasts. 

This study also tried to estimate industrial and residential consumption over total demand. 

For this, they took the calendar effect as a basis. 

Başoğlu and Bulut (2017) created a hybrid model called EPSİM-NN by using expert 

systems in addition to ANN. In this study, the daily average and 24-hour demands were 

forecasted with two different ANNs, and then the errors were minimized with the expert 

system, which used recent demand trends for error minimization. In the example study, it 

was observed that while ANNs have an error rate of 5% or 6%, this decreases to around 

2% with the expert system module. A better result was obtained when compared tothe 

estimates of Energy Exchange Istanbul (EXIST), which is responsible for managing and 

operating Turkey’s power and commodities markets. 

Cömert and Yıldız (2018), used time series in their study and made a parameter 

optimization. The data set consists of monthly energy demand data from January 2000 to 

December 2017. In the model established with artificial neural networks, data from 2000 

to 2015 were used for training, and validation was made with five months of data. The 

energy demand for 2016 and 2017 has been estimated and compared with the actual 

values. The mean percentage error of the estimation was found to be below 1%. 
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In his study, Melikoğlu (2018) set up an energy consumption forecasting model for 

Turkey's 2023 energy targets. This model is semi-empirical, and four different annual 

growth scenarios are used. These are very low, low, medium, and high. While creating 

these scenarios, per capita electricity consumption and population data are taken as the 

basis. Attention was drawn to the relationship between per capita electricity consumption 

and economic growth, and the annual electricity demand increase percentage per capita 

was used to create models to establish this relationship. The author took into account the 

crisis years and the last data point, 2016, while calculating the annual electricity demand 

increase percentage per capita. The results are estimated at 327,000 GWh for the very low 

scenario, 362,000 GWh for the low scenario, 386,000 GWh for the medium scenario, and 

429,000 GWh for the high demand scenario. It is predicted that the wind installed power 

may remain below the target, but the total installed power may meet the target. 

Haliloğlu and Tutu (2018) tried to estimate the daily electricity demand in their study. 

They emphasized the importance of meteorological factors and calendar effects in their 

short-term forecasts, using this data as independent variables in their models. Their 

models defined the temperature threshold value as a variable for seasonality and the 

relationship between temperature and consumption. The model also included the calendar 

effect with the dummy variables that they defined. They used the least-squares method to 

set up the estimation model using 2012-2017 data and then tested data from January 2018  

to April 2018. They observed that the estimation deviated from the actual value between 

1.3% and 1.6%. 

Türkünoğlu (2019), in his study, estimated Turkey's electricity demand for one, six and 

24 hours with the LSTM method. He used temperature data and calendar effect as 

independent variables for his estimation, based on the temperature values of five 

important provinces since Turkey covers a wide area geographically and experiences 

different climates. Hourly consumption data from 2010-2016 was used as the dependent 

variable. Bank holidays, day types, and Islamic holidays are included in the model for 

calendar effect. As a result, the 24-hour estimation of the model gave close results 

compared to the TEİAŞ estimation. 

Bişkin and Çiftçi (2021), long short term memory (LSTM) and gated recurrent unit 

(GRU) was used in their study. Root mean square error (RMSE), normalized root mean 
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square error (NRMSE), root mean squared logarithmic error ( RMSLE), mean absolute 

percentage error (MAPE) used as an performance metrics. Electricity consumption from 

December, 31 2015 to March 2, 2021 was used. They splitted their data set as a train and 

test. Train data was October, 30, 2019 to October, 30 2020 and October, 31, 2020 to 

December, 31, 2020 was used for validation. Test data set was electricity consumption 

data from January, 1 2021 to March, 2 2021. According to the study results GRU model 

was slightly better than LSTM model. 

Bodur et al. (2021), in their study, used electricity data from January 1, 2013 to December 

31, 2017. They separated their data as 80% for train and 20% for test. Their input values 

are dates, and they have been tried to forecast power demand from input values. They 

used recurrent neural network (RNN) and long short-term memory (LSTM) methods. 

They compared the two methods' 24 hours, 48 hours, and one-year forecasts, mean 

absolute percentage (MAPE) values, and r2 scores. According to the study results, LSTM 

was more accurate and suitable for short-term estimates.   

In this study, the consumption estimation was made with LSTM and deep neural network 

models, which are popular, and the results of these two models were compared. The study 

searched which approach to forecasting Turkey's short-term electricity demand would be 

better. Meteorological data were chosen as an independent variable like some mentioned 

studies. The data is population-weighted, the most crucial difference between the data in 

other studies. The study includes the calendar effect, but public holidays were not labeled 

separately. Chapters are follows; Turkish electricity market, methodology, consumption 

forecast, results, and conclusion. 

 

 

 

 



 

 

 

9 

 

2.TURKISH ELECTRICITY MARKET 

The Turkish electricity market can be analyzed in three stages. The first stage is the early 

stage and covers the 1920s and 1960s. In this period, planning was weak and regulatory 

authorities had not been formed yet. The other stage was the structuring stage; at this 

stage, regulatory institutions emerged. The Turkish Electricity Administration (TEK) and 

the Ministry of Energy and Natural Resources (MENR) were established. The first 

liberalization efforts began in this period, and independent power producers (IPPs) 

became market shareholders. The period covering the 2000s and today is called the 

growth stage. The crucial developments in this stage are establishing the organized 

electricity market, the Energy market regulatory authority (EMRA), and promoting 

renewable energy (PwC Turkey & Presidency of the Republic of Turkey, 2021). 

Turkey is a developing country; at the same time, the energy sector is developing rapidly. 

In the growth stage, energy consumption has increased, but the increase has stopped due 

to the economic crisis in the world and the country in the last few years (figure 2.1). When 

examining the share of sectors in electricity consumption, it is seen that households and 

services had the largest share in 2019 (figure 2.2). Turkey's total installed power in 2021 

is seen in figure 2.3. Regarding production, the biggest shareholders are coal with 31.4%, 

and natural gas with 32.7%. Considering renewable energy separately, hydro renewables 

have 16.8% and solar and wind 13.4% (figure 2.4). 
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Figure 2.1 Historcal Electricity Demand Of Turkey (PwC Turkey & Presidency of the Republic of 

Turkey, 2021) 

 

Figure 2.2 Turkey’s Net Energy Demand By Sectors (PwC Turkey & Presidency of the Republic of 

Turkey, 2021) 
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Figure 2.3 Turkey’s Installed Capacity By Energy Source (PwC Turkey & Presidency of the 

Republic of Turkey, 2021) 

 

Figure 2.4 Turkey’s Electricity Generation By Source (IEA, n.d.) 
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3.METHODOLOGY 

3.1.  What Is Machine Learning 

Various algorithms are used in computers to understand and solve problems. An 

algorithm is a set of instructions that converts input to output. For some cases we cannot 

produce algorithms, but we know what the input is and what the output should be. In these 

cases, we want the program to learn from the data and create the algorithm automatically, 

so we appliy machine learning algorithms. Machine learning is a process for discovering 

necessary models to understand system behaviors. It uses certain patterns and trends that 

exist in the data to explore these patterns and make meaning of the data or find significant 

trends within it. 

Machine learning can be applied to large databases to deduct meaningful conclusions. 

We can think of this large amount of data as the raw material before it is processed. 

Obtaining meaningful and valuable data by processing this raw material is called data 

mining, which has extensive uses in the field. Artificial intelligence (AI) algorithms form 

the basis of machine learning. They are dynamic systems and must have the ability to 

learn. Machine learning aims to optimize the model according to a performance criterion 

using specified sample data. Models can be predictive or descriptive (Alpaydin, E, 2014, 

p.2-3). Machine learning is generally categorized in two ways; the learning process and 

the problem-solving process. The learning stages are also divided into supervised, semi-

supervised and unsupervised (Edgar & Manz, 2017, p.154-155). 

3.1.1. Supervised learning 

Data sets may differ from each other. While the available data can be labeled correctly, 

sometimes labeling itself may not be possible. The variability in the data set may require 

the learning styles to be changed for a successful result. When choosing which machine 

learning algorithms to use, it is necessary to consider their learning styles. 

Supervised learning can be briefly defined as machine learning with correct answers. The 

training set is labeled with the desired solutions (Géron, 2019, p. 30-31). The data 
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provided as inputs are processed, and its outputs are compared with the required results. 

After the comparison, the errors are fed back into the system. The weights assigned by 

the model are re-adjusted, a process that is repeated many times. For this type of learning, 

the data must contain certain information in order to produce the output, and sufficient 

data must be provided to the model. Otherwise, the model will not truly learn or converge 

to the desired result (Anderson, D., and McNeill, G., 1992, p. 26-27). 

 

Figure Error! Use the Home tab to apply Başlık 2 to the text that you want to appear here..1 Supervised 

Learning Areas of Usage 

3.1.2. Unsupervised learning 

Supervised learning involves learning from output to input with labeled data. In 

unsupervised learning, there are only inputs that are not marked with outcomes. In this 

type of learning, the model learns to group the inputs by itself, through a process called 

self-organization or adaptation (Anderson, D., and McNeill, G., 1992, p. 26-27). To do 

this, it tries to identify an existing pattern or trend in the input data. In statistics, this is 

called density estimation. An example of this learning method is clustering, and other 

commonly used methods are shown in Figure 3.1.2. Customer segmentation, which 
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companies use for many different purposes, is an example of this learning style and 

technique. Unsupervised learning is used in many fields, one of it which is the field of 

bioinformatics. DNA sequences consist of four types of nucleobases: adenine, thymine, 

cytosine, and guanine. These four bases line up in various ways to form DNA. Proteins 

are made up of sequences of amino acids, just like DNA, which learns the existing motifs 

in these sequences with clustering methods (Alpaydin, E, 2014, p.11-13). 

 

Figure 3.1.2 Unsupervised Learning Areas Of Usage 

3.1.3. Semisupervised learning 

Supervised learning contains tagged data and works with 2D (x,y) inputs. Here, the goal 

is to obtain a function f(x) that estimates y from x. Labeling each x with y is sometimes 

not time and cost-efficient. In these cases, algorithms that can work with small amounts 

of labeled and large amounts of unlabeled data are needed. Algorithms that work with 

such data are called semisupervised learning (SSL). For example, photo-hosting services, 

which detect the same person in many uploaded photos and determines which images are 

included (unsupervised part), work with this method. By tagging one of these photos, the 
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user allows that person to be tagged in other photos. As can be seen from the example, 

semi-supervised learning also works together with supervised and unsupervised learning 

(Géron, 2019, p.37-37). 

3.1.4. Reinforcement learning 

Reinforcement learning is a different branch of machine learning. In some cases, the 

system's output is a sequence of actions. In these cases, a specific series of actions are 

required to achieve a goal, and individual actions are unimportant (Alpaydin, E, 2014, 

p.11-13). For example, a humanoid robot sitting on a chair involves a series of actions. 

Suppose these actions are one step back and one step to the left. Stepping back and to the 

right does not constitute the sequence of actions necessary to sit on the chair. This 

situation necessitates not a single action but a whole set of actions and the right policy to 

choose the right actions. The Markov decision process is used to select these policies. 

The Markov property is expressed mathematically as equation 3.1. The probability of 

occurrence of S(t+1) should depend only on the state of St. 

 P [St + 1 | St ]  =  P [St + 1 | S1, … . , St]  (3.1) 

The Markov process is expressed by equation 3.2. This process is defined by states and 

state transition probability (S, P). Every situation in this process must show a Markov 

property. Pss' represents the probability of transition from the current state to a state s'. 

 Pss’ =  P [St + 1 =  s’ | St =  s]  (3.2) 

A simple Markov chain is demonstrated in Figure 3.1.4 for a robot example like the one 

given earlier. In this learning model, the right behavior should be reinforced, and the 

wrong behavior should be penalized so that the robot can choose the best approach. 

Penalty points are applied for misconduct. Not every successful approach is the best 

policy, so a lot of experimentation and a long learning process is crucial to choosing the 

best approach. 
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Figure Error! Use the Home tab to apply Başlık 2 to the text that you want to appear here. Robot 

Example Marcov Chain (Jagtap, 2022) 

3.2. Artificial Neural Networks 

Human have speculated about how the human brain works throughout histor, as humans' 

ability to process information and make sense of nature is unique, which is what makes 

them special. People often observe nature and are inspired by it, so it is unsurprising that 

they try to transfer their abilities to machines. Artificial neural networks (ANNs) result 

from such aspirational work and are based on the process of trying to imitate the 

biological neural networks that enable the brain to process information. ANNs first 

appeared in 1943, when they were introduced by the neurophysiologist Warren 

McCulloch and the mathematician Walter Pitts (Géron, 2019, p.358). 

To understand ANNs, we must first understand the structure of biological neurons. A 

neuron in the human brain can be illustrated simply as in Figure 3.2. These cells consist 

of a cell body, dendrites, and an axon. The end of the axon divides into many branches, 

containing synapses that connect with the dendrites of other neurons. Neurons produce 

electrical impulses that cause synapses to release chemical signals when they are 

sufficiently stimulated. A single neuron has a simple structure, but billions of neurons can 

be connected to solve complex problems. 



 

 

 

17 

 

 

Figure 3.2.1Illustration of a biological neuron (Neves et al., 2017) 

ANNS are widely used across an array of fields from image processing to speech 

recognition and games. Despite their wide use, they were not always so prevalent. The 

increase in the amount of available data, the increase in processing power as technology 

developed, and the development of new algorithms all contributed to the growth in the 

use of ANNs. 

The basic ANN is called a perceptron. Perceptrons are based on neurons called the thres 

hold logic unit (TLU). TLUs are simple neurons with a single input unit and activation 

function. A perceptron consists of a single fully connected TLU layer. In perceptrons, 

inputs pass through special structures called input neurons. The layer where the input 

neurons are located is called the input layer. 

Equation 3.3. calculates the outputs of the artificial neuron layers. X represents an input 

matrix with one row per sample and one column per feature. W defines the weight matrix, 

contains the weights of all connections, and contains one row for each input neuron and 

one column for each artificial neuron. Usually, a bias neuron is added to perceptrons. The 

output of this neuron is always 1. The bias vector W is not included in the weight matrix 

and is denoted by b. Φ represents the activation function. 

 hw, b (x)  =  ϕ (XW + b)  (3.3) 

If the biological neurons often stimulate each other, their connections get stronger. This 

principle underlay Hebb's rule, which says that the weight of the link between neurons 

increases when they fired together. Perceptrons are trained according to this rule, namely 

neurons that reduce errors increase the weights of their connections (Géron, 2019, p.360-

365). 
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3.3. Deep Learning 

Multilayer perceptrons have a hidden layer, an output layer, and an input layer. The 

hidden layers and output layer are also the TLU layers. When ANNs contain one or more 

hidden layers, they are called deep neural networks (DNNs). 

The most critical step in developing DNNs was the invention of the backpropagation 

method in 1985, which is still actively used today. This method, introduced by David 

Rumelhart, Geoffrey Hinton, and Ronald Williams, calculates the gradient of errors 

according to each parameter in the model. It also uses the gradient descent technique to 

make this calculation. In short, it sets the necessary link and bias weights to reduce the 

error. To do this, it sets the parameters by the derivative of the function and does it 

iteratively. The aim is to minimize the loss function by reaching the global minimum. As 

a first step, all weights in the function are randomly assigned, and gradient descent is used 

until the global minimum is reached (Géron, 2019, p.171-174). 

3.4.  Hyperparameters Of Deep Neural Networks 

With the development of deep learning algorithms, much scientific research has been 

done regarding multilayer ANNs. Specifically, researchers want to learn how to design 

deep learning models to solve problems, how many layers these models should consist 

of, how many neurons will they contain, and which optimization algorithms or activation 

functions are the most vital for problem-solving. 

While creating machine learning models, it is necessary to decide which algorithm and 

what parameters should be used. While establishing deep learning models, the person 

who designed the model should decide on many parameters, such as the number of layers, 

the number of neurons on each layer, and which activation function will be used. These 

parameters called hyper-parameters. There are no strict rules for the selection of 

hyperparameters, and in many cases, the choice is entirely determined by the experience 

of the person designing the model as well as influence from current trends. 

The modeler must therefore decide how deep the model will be. Even networks with a 

single hidden layer can handle complex operations if they have enough neurons, but deep 
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networks are more efficient for complex problems. Initially, it can be started with a single 

hidden layer and then increasing the number from there. In some cases, the increased 

number of layers can cause overfitting, so more layers cannot be added thereafter. The 

number of neurons in the layers is vital to the model's success. Input and output neurons 

should be adjusted according to the data set. In hidden layers, the general judgment is that 

the number of neurons in each layer decreases. Recently, it has been shown that having 

an equal number of neurons can also increase performance. As with the number of layers, 

when the number of neurons is more than necessary, overfitting may cause problems 

(Géron, 2019, p.415-416). 

The dataset is the most critical step in building a model. Deep learning models require 

large datasets and a diverse set of, independent variables to have the best results. The 

largest disadvantage is that processing large data sets requires a lot of processing power 

and time. As mentioned before, in deep learning algorithms, the weight of each link is 

calculated over and over again with the backpropagation process, about which more 

below, implemented at each step. To overcome the disadvantage of the method, the batch 

size hyperparameter is used to limit the size of the data that can be processed at one time. 

Keeping the batch value low increases the value of the loss function while saving time 

and processing power (Çarkacı, 2020). 

Backpropagation uses a chain rule to update weights retrospectively. In this process, it 

first calculates the partial derivate of the function. This value is then multiplied by the 

learning rate, and a new weight value is calculated by subtracting the obtained value from 

the old weight value. The error values used in this process can be calculated using many 

methods called loss functions. The most used loss funtions for regression are mean 

squared error (MSE), mean absolute error (MAE), and mean bias error(MBE). The most 

used loss functions for classification algorithms are support vector machines (SVM) loss 

and cross-entropy loss (Mulla, 2021). 

In deep learning and other ANN algorithms, the learning process of the model is an 

optimization it needs to find the optimum method for nonlinear values, which requires 

optimization algorithms. The most known optimization algorithms are stochastic gradient 

descent (SGD), adagrad, adadelta, adam, and adamax. Each of these has advantages and 

disadvantages. Although SGD is the default method in deep learning, it works slowly and 
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is poor at image processing. Adagrad is more suitable to use for sparse parameters. In 

adagrad, the learning rate gradually decreases, and it can stop over time. Adadelta, on the 

other hand, does not have the rapid learning decline that adagrad has (Çarkacı, 2020). 

One of the most used optimization algorithms today is adam, which works similarly to 

SGD but uses the gradient moving average. The optimization algorithm is one of the 

parameters for ANNs, which should be selected according to the type of problem and 

what is expected from the model. 

Deep learning models are widely used in solving nonlinear problems. Activation 

functions are needed so that the model must not be linear. The value obtained from matrix 

multiplication is linear, and activation functions convert it to a nonlinear form. The 

standart activation functions are sigmoid, tanh, and rectified linear unit (ReLU) (Çarkacı, 

2020). The sigmoid function is defined in equation 3.4. Its outputs are between 0 and 1, 

depending on the input. The tanh function is similar to sigmoid but assigns values between 

-1 and 1. In this function, if the input is more positive, it converges to 1; if it is more 

negative, it converges to -1 (see equation 3.5). Today the most widely used activation 

function is ReLU. In this activation function, if the value is negative, a 0 output is 

obtained; if the input is greater than 0, the output is equal to the input (see equation 3.6). 

 Sigmoid(x)  =  1
1 + 𝑒−𝑥⁄     (3.4) 

 Tanh(x) = (𝑒𝑥 − 𝑒−𝑥) (𝑒𝑥 + 𝑒−𝑥)⁄   (3.5) 

 ReLU(x) = max(0, x)  (3.6) 

The ReLU activation function is also not perfect. In some cases, neurons become unable 

to produce any value other than 0, which is called the ‘death of neurons’. The 

phenomenon is observed especially with a high learning rate and when the inputs are 

mostly negative. Many variants of RELU, however have been developed to solve this 

problem, for example, LeakyReLU. This function is defined as in equation 3.7, where α 

is the function's "leakage" coefficient and denotes the slope for z<0. The exponential 

linear unit (ELU) activation function, which is similar to ReLU but slightly different, has 

been developed in recent years. It is defined as in equation 3.8 and does not return 0 for 

z<0. In this function, α denotes the value to which the function converges when z is a 

large negative number. Although it converges faster than ReLU, the test speed is slower. 
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In 2017, the Scaled ELU (SELU) method was introduced. This method is self-

normalizing and generally outperforms other activation functions for deep neural 

networks. The model must be sequential and the layers dense to use the SELU activation 

function [36]. 

 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑧) = max(𝛼𝑧, 𝑧)            (3.7) 

 𝐸𝐿𝑈𝛼(𝑧) = {
𝛼(𝑒𝑥𝑝(𝑧) − 1), 𝑧 < 0

𝑧, 𝑧 ≥ 0
   (3.8) 

 𝑆𝐸𝐿𝑈(𝑥) = 𝜆 {
𝑥, 𝑥 > 0

𝛼𝑒𝑥 − 𝛼, 𝑥 ≤ 0
           (3.9) 

In some cases, dropout is applied in fully connected layers. Dropping the nodes below a 

specific threshold value can increase the performance, and the determined threshold value 

is called the dropout value, since this weak information is forgotten. In deep learning, the 

dropout layer is used to prevent overfitting. The threshold value used in the drop-out layer 

varies according to the problem and the data set, and a different value can be used in each 

layer (Çarkacı, 2020). 

3.5. Recurrent Neural Network 

Recurrent neural networks (RNNs) are a type of nonlinear autoregressive moving average 

model that works with sequencial series or time series. RNN's are quite suitable for time 

series that must contain moving average components, have a trend, or are in state 

dependence (Connor et al., 1994). The most significant difference between RNNs from 

other deep-learning models is their memory. To predict, RNNs establish relationships 

between inputs and remember all relationships they have found and then use a loop to 

remember these relationships. This cycle is expressed mathematically as in equation 3.10, 

where Ht denotes the output value of the neuron, Ht-1 is the previous output value, and Xt 

is the input vector. 

 𝐻𝑡 = 𝑓(𝐻𝑡−1, 𝑋𝑡)  (3.10) 

The two most important advantages of RNN are that it establishes a relationship between 

the inputs and has an extensive usage area. They are used in regression and classification 

problems, language processing, and many other areas. The most critical problem is 
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gradient vanishing. When gradient vanishing occurs, the weight parameters are updated 

until 0, and the learning stops. On the contrary, the exploding gradients problem is that 

the weights get too large for a stable model. A significant drawback is that it is difficult 

to handle long inputs with RNNs. 

3.6. Long-Short Term Memory 

RNNs cannot remember for a long time due to the gradient vanishing problem, but LSTM 

models have been developed to solve this problem. With LSTM, there is a cell state that 

is responsible for carrying information in the cell. LSTM has units called memory cells 

in repetitive hidden layers. Each memory block contains units called gates (Sak et al., 

2014). The forget gate decides which information should be remembered, the input gate 

controls the information flow in the memory cell with its activation function, and the 

output gate controls the data flow out of the cell. 

The first gate in the cell is the forget gate. As mentioned earlier, this gate decides which 

information will be remembered, which is done with the sigmoid function. The result of 

this function is a number between 0 and 1. When the result of the function approaches 1, 

it means that the information is important and should be remembered. Otherwise, it 

approaches 0, which means that the information is not important. This structure is shown 

in Figure 3.6.1.  
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Figure Error! Use the Home tab to apply Başlık 2 to the text that you want to appear here.6.1 A forget 

gate illisturation in LSTM cell. Adapted from Olah (Understanding LSTM Networks -- Colah’s 

Blog, 2015) 

The information then moves to the input gate, which chooses what information will be 

stored to update the cell state. In short, it measures the importance of the new information. 

The input gate consists of two stages. The first stage is the sigmoid function, which 

determines the values that will be updated in this part. The vector of the new values is 

generated with the tanh function, and these two outputs are multiplied. The input gate is 

visualized in Figure 3.6.2. 

 

Figure 3.66.2 A input gate illisturation in LSTM cell. Adapted from Olah (Understanding LSTM 

Networks -- Colah’s Blog, 2015) 

The last gate is the output gate, which decides the output that goes to the next layer. First, 

a sigmoid function again determines which values will be included in the output. The cell 

state values are then arranged from -1 to 1 with the tanh function. The values in range -1 

and 1 are multiplied by the output of the sigmoid function. This way, we get the output 

values [39]. The output gate is visualized in Figure 3.6.3. 
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Figure 3.6.3 A output gate illisturation in LSTM cell. Adapted from Olah (Understanding LSTM 

Networks -- Colah’s Blog, 2015) 

3.7. Deep/Stack Long-Short Term Memory 

Depth is conceptually defined as one or more hidden nonlinear layers between the input 

and output (Pascanu et al., 2014). Stack LSTMs contain more than one nonlinear layer, 

as in DNNs. Despite these nonlinear layers, data is processed by a single nonlinear layer 

before contributing to the output. According to this definition, a stack LSTM is created 

using more than one LSTM layer, as seen in Figure 3.7. One of the advantages of Stack 

LSTMs is that the processed data passes through more nonlinear layers without increasing 

the memory size needed when processing the data (Sak et al., 2014). 

 

Figure Error! Use the Home tab to apply Başlık 2 to the text that you want to appear here.7 A deep 

LSTM structure (Sak et al., 2014) 
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4. CONSUMPTION FORECAST 

This study attempts to estimate Turkey's hourly electricity consumption using deep neural 

network and stack LSTM methods. Real historical hourly electricity consumption data 

was used, which is published on the transparency platform of market operator EXIST. 

Historical population-weighted meteorological data was gathered from 

"renewables.ninja," which has a NASA data information policy license. 

4.1. Historical Hourly Consumption Data 

EXIST created the transparency platform in 2016, since which time considerable data 

about the electricity market has been made available to the public, including hourly 

electricity consumption. In this study, data from January 1 ,2016 to December 31, 2019 

was used. 

 

Figure Error! Use the Home tab to apply Başlık 2 to the text that you want to appear here. Turkey’s 

historical hourly electricity demand 



 

 

 

26 

 

4.2. Feature Selection 

Many factors affect electricity consumption. The main ones relate to climate and 

seasonality, as previously mentioned. Electricity consumption has a high seasonality, 

increasing and decreasing at specific times according to the hour, day, and month. The 

chosen data should explain these increases and decreases. In this study, hourly electricity 

consumption was assumed to be directly related to weather conditions and the hour of the 

day. Population-weighted data were used because the effects of weather conditions in 

areas of high density population are more critical than in areas of low-density population. 

The meteorological data included in this study are precipitation (mm/h), temperature (°C), 

surface irradiance (W/m2), irradiance on top of the atmosphere (W/m2), snowfall (mm/h), 

snowmass (kg/m2), cloud cover (0,1), and air density (kg/m3), covering the period from 

January 1, 2016 to December 31, 2019. When the dataset was examined, there was no 

duplicate or note a number (NaN) data, so missing value handling was not applied. 
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Figure 4.2.1 Data set raw data 
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To notice the sequential trend in the data, new features were derived using historical data. 

These derived features are listed in Table 4.2. In the day of the week variable, each day 

is encoded with a number: 1 for Friday and 7 for Thursday. 

Table Error! Use the Home tab to apply Başlık 2 to the text that you want to appear here. Observed and 

derived features 

No Type Variable 

1 Observed Electricity Consumption (MW) 

2 Observed Day time 

3 Observed Temperature (°C) 

4 Observed Precipitation(mm/h) 

5 Observed Surface Irradiance(W/m2) 

6 Observed 
Irradiance On Top Of The 

Atmosphere(W/m2) 

7 Observed Snowfall (mm/h) 

8 Observed Snow Mass(kg/m2) 

9 Observed Cloud Cover(0,1) 

10 Observed Air Density(kg/m3) 

11 Derived Year 

12 Derived Mounth Of Year 

13 Derived Day Of Week 

14 Derived Hour Of Day 

15 Derived Electricity consumption in t-24 (MW) 

 

The relationship between the dependent variable, electricity consumption, and the other 

independent variables is shown in Figure 4.2.2. Independent variables should be 

correlated with the dependent variable but not highly correlated with each other. 

Independent variables that are highly correlated with each other can cause noise during 
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the learning phase of the model. It can be seen that there is no high correlation between 

independent variables in Figure 4.2.2. 

 

Figure 4.2.2 Feature correlation heat map 

The OLS regression results of the 13 independent variables are shown in Figure 4.2.3. 

The eighth independent variable is snowfall in OLS statistics. Its p-value is higher than 

the threshold value, which is 0.05. The p-value is a parameter that denotes how 

statistically significant the variable is. If this value exceeds the threshold value, the 

variable is statistically insignificant. According to the current situation, the snowfall 

variable should be removed. At the same time, the multicollinearity problem in regression 

attracts attention. This problem is due to the independent variables having high 

coefficients in the regression. This issue is insignificant at this moment. The data will 

scale in a later stage of the model. 
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Figure 4.2.3 OLS regression statistics of the variables 

After the snowfall variable is dropped, the OLS regression results are provided in Figure 

4.2.4, and all p values are lower than the threshold value. 

 

 

Figure 4.2.4 OLS regression statistics of independent the variables after dropping snowfall 
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4.3. Model Implementation 

4.3.1. Normalization 

Deep learning models and all other ANN models are sensitive to data scaling, and a 

multicollinearity problem may arise if the data is not scaled. The root of this problem is 

that some independent variables have large values while others have much smaller values. 

This situation can be noticed from the OLS statistical results for the independent variables 

we used in the study. 

Different statistical methods are available for normalization. This study used the 

MinMaxScaler method in Python's sklearn library. In this method, the data is scaled to 0 

and 1 intervals. 

 𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
  (4.1) 

4.3.2. Accuracy validation 

In the literature, many different performance criteria are used. Mean squared error (MSE), 

mean absolute error (MAE), and mean absolute percentage error (MAPE), which are 

widely used and included in Keras API, were used in this study. 

 𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑥𝑖 − 𝑥| 𝑛

𝑖=1  (4.2) 

 MSE =
1

𝑛
∑ (𝑥𝑖 − �̂��̇�)

2𝑛

𝑖=1
 (4.3) 

 MAPE =
1

𝑛
∑ |

𝑥𝑖−𝑥𝑖

𝑥𝑖
|

𝑛

𝑖=1
  (4.4) 

where :  

𝑥𝑖 actual value 

�̂�𝑖 predicted value 
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4.3.3. Train test split 

Models must not memorize the data. Therefore data must be separated as test and train. 

In the DNN model, which is the first model, the data from December 18. 2019 to 

December 31, 2019 was reserved for testing. The model was trained with the rest of the 

data. During the model training, 20% of the data were used for validation. 

 

Figure 4.3.3.1 Train And Test Split 

The dataset used for the second model, deep LSTM, had to be made in 3D. The function 

in Figure 4.3.3.2 is used to convert the 2D time series array to 3D, and a two week portion 

of the data was reserved for testing. 

 

Figure 4.3.3.2 Time Series Array To 3D Matrix 
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4.4. Deep Neural Network Model 

The DNN model was built using the Keras API in Python and Python codes shared on 

github (Dede, 2022a). As mentioned, 12 independent variables and one dependent 

variable were used in this model. In the study, one neuron for each independent variable 

for a total of 12 neurons were used in the input layer. One neuron was used in the output 

layer because we wanted to forecast hourly consumption. First, to determine the optimal 

number of hidden layers, a hidden layer was added at each iteration with 50 neurons, the 

"relu" activation function was used, and the results were recorded. As can be seen in Table 

4.4.1, the best results were obtained with four hidden layers. 

Table 4.4.1 Hidden Layers And Validation Losses 

 VALIDATION LOSS 

HİDDEN 

LAYER 

 

MAE 

 

MAPE 

 

MSE 

1 0,0022 0,7102 0,38 

2 0,0020 0,6006 0,10 

3 0,0025 0,8202 0,24 

4 0,0013 0,3618 0,04 

5 0,0019 0,4754 0,08 

 

After the number of hidden layers was determined, the results were recorded with the 

commonly used “sigmoid”, “tanh”, “relu”, “elu”, “selu”, and “leakyrelu” activation 

functions to select the best option. It is seen in the literature that activation functions 

should be used with specific weight initiators. This is because each activation function is 

different and not compatible with every weight initiator. Therefore, the “sigmoid” and 

“tanh” functions were used with the “GlorotNormal” weight initializer (Glorot & Bengio, 

2010), “relu”, “elu”, and “leaky relu” with the “he_normal” weight initializer (He et al., 

2015), and finally, “selu” with the “lecun_normal” weight initializer (Géron, 2019, p.430-

434). As seen in Table 4.3.2, the best result was obtained with the “relu” activation 

function. 
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Table 4.4.2 Activation Functions And Validation Losses 

 VALIDATION LOSS 

Activation 

Functions 

MAE MAPE MSE 

Sigmoid 0,0026 0,7905 0,17 

Tanh 0,002 0,4409 0,07 

ReLU 0,0016 0,4613 0,06 

ELU 0,0037 1,0186 0,27 

SELU 0,0036 1,0477 0,23 

LeakyReLU 0,0022 0,6277 0,10 

 

Finally, in each iteration, the number of neurons was changed to determine the optimal 

number of neurons in the hidden layers.[a, f] represent the input and output layers, 

respectively, while [b, c, d, e] represent four hidden layers. Neuron numbers were tested 

as recommended in the literature, which is equal or decreasing. As can be seen in Table 

4.4.3, the optimal result was obtained when 50 neurons were in each hidden layer. 
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Table 4.4.3 Number Of Neurons In Layers And Validation Losses 

Architecture No. Number of Neurons Validation Loss 

a b c d e f MAE MAPE MSE 

1 12 10 10 10 10 1 0,0012 0,389 0,29 

2 12 50 10 10 10 1 0,0031 0,8733 0,55 

3 12 50 50 10 10 1 0,0014 0,502 0,08 

4 12 50 50 50 10 1 0,003 0,9746 0,22 

5 12 50 50 50 50 1 0,0012 0,4599 0,06 

6 12 100 50 50 50 1 0,0023 0,6957 0,11 

7 12 100 100 50 50 1 0,0019 0,4901 0,08 

8 12 100 100 100 50 1 0,0018 0,5241 0,07 

9 12 100 100 100 100 1 0,0032 0,8541 0,22 

10 12 100 100 50 10 1 0,0014 0,3434 0,04 

11 12 100 50 50 10 1 0,0018 0,5182 0,07 

12 12 100 50 10 10 1 0,002 0,5626 0,08 

13 12 100 10 10 10 1 0,0012 0,5353 0,08 
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Figure 4.4.1 Python Code For DNN 

4.5. LSTM Model 

The LSTM model was built using Keras API in Python and Python codes shared on github 

(Dede, 2022b). Like the other model, 12 independent variables and one dependent 

variable were used, and one neuron for each independent variable, for a total of 12 

neurons, was used in the input layer. One neuron was also used in the output layer to 

forecast hourly consumption. We determined the hidden layer, then the activation 

function, and finally the number of neurons in the hidden layers in order to establish the 

hyperparameters as in the previous model. According to Table 4.5.1, two hidden layers 

gave the best results.  
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Table 4.5.1 Hidden Layers And Validation Losses 

 VALIDATION LOSS 

HIDDEN 

LAYER 

MAE MAPE MSE 

1 0,0103 2,4226 1,9891 

2 0,009 2,1365 1,5402 

3 0,0123 2,8783 2,6816 

4 0,0106 2,4763 2,1046 

 

Activation functions 'sigmoid', 'tanh', 'relu', 'elu', 'selu', and 'leaky relu' were attempted 

and defined the best activation function for the model. Among them, “tanh” was slightly 

better than the others according to the validation loss illustrated in Table 4.5.2. 

 

Table 4.5.2 Activation Functions And Validation Losses 

 Validation Loss 

Activation 

Functions 

MAE MAPE MSE 

Sigmoid 0,0144 3,2522 4,0042 

Tanh 0,009 2,1365 1,5402 

ReLU 0,0107 2,6442 2,1546 

ELU 0,0135 3,1301 3,1882 

SELU 0,0124 2,9233 2,6474 

LeakyReLU 0,0121 2,8096 2,4991 

 

The number of neurons for the input and output layers is shown by [a,d], and for the 

hidden layers by [b,c]. According to Table 4.5.3, it was concluded that there should be 

150 neurons in each hidden layer. 
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Table 4.5.3 The Number Of Neurons In Layers And Validation Losses 

Architecture No. Number Of Neurons Validation Loss 

a b c d MAE MAPE MSE 

1 12 10 10 1 0,0121 2,9016 2,74 

2 12 50 10 1 0,0098 2,3045 1,86 

3 12 100 10 1 0,0098 2,3388 1,75 

4 12 150 10 1 0,0096 2,2679 1,73 

5 12 200 10 1 0,0091 2,1582 1,63 

6 12 50 50 1 0,0111 2,6979 2,24 

7 12 100 50 1 0,0105 2,4285 2,09 

8 12 150 50 1 0,011 2,5512 2,21 

9 12 200 50 1 0,0094 2,1560 1,70 

10 12 100 100 1 0,0099 2,3049 1,85 

11 12 150 100 1 0,0096 2,2041 1,70 

12 12 200 100 1 0,0098 2,2801 1,80 

13 12 150 150 1 0,009 2,1074 1,48 

14 12 200 150 1 0,0098 2,2559 1,78 

15 12 200 200 1 0,0094 2,1999 1,69 
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Figure 4.5.1 Python Code For LSTM Model 
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5. RESULTS 

The DNN model, which is the first of the prediction models used in this study, was run 

with the selected optimal parameters. As mentioned before, 20% of the data used for the 

train was separated for validation. Before early stopping was activated, the loss per epoch 

was calculated with the mean absolute error metric and plotted as in Figure 5.1. This 

graph gives us information about how successful the model was during training and about 

the errors such as overfitting or unknown fitting that occurred during the training of the 

model. Unknown fitting occurs when the validation loss is much lower than the training 

loss, whereas overfitting occurs if the validation loss and training loss overlap precisely. 

These two cases reveal that there was a problem during the learning phase. As shown in 

Figure 5.1, although the learning is a little noisy, these two situations were not observed 

in the training of the model. 

 

 

Figure 5.1 DNN Model Train And Validation Loss 

The stacked LSTM model was run with the parameters as outlined above. As in the other 

model, 20% of the data was separated for validation during training, and the mean 

absolute error metric was used to calculate losses. The training success of the stacked 
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LSTM model is shown in Figure 5.2. Although the training phase is less noisy than the 

other model, its accuracy is slightly lower. 

 

Figure 5.2 The Stacked LSTM Model Train And Validation Loss 

The first model ran with the independent variables in the data set separated for the test. 

Consumption was estimated for two week periods. The estimated and actual consumption 

graphics are compared in Figure 5.3. Visually, the estimated consumption and actual 

consumption are quite similar. The accuracy of the prediction was calculated with three 

metrics; mean squared error(MSE), mean absolute error (MAE), and mean absolute 

percentage error (MAPE), respectively. As a result of the two week estimation of the first 

model, MSE was calculated as '265.32876527436383', MAE as '244.703125', and MAPE 

as '0.007274017701473777'. 

 

Figure 5.3 DNN Model’s Predicted and Real Consumption Graph 

In the second model, hourly electricity consumption was estimated by the independent 

variables in the data set separated for the test, the same as in the first model. The estimated 

consumption of the model and actual consumption are shown in Figure 5.4. Visually, the 

prediction results seem more inaccurate than the first model. To measure the accuracy of 

the estimation, mean squared error (MSE), mean absolute error (MAE), and mean 
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absolute percentage error (MAPE) metrics were used, respectively, as in the first model. 

As a result of the accuracy calculation of the estimated consumption, MSE is calculated 

as '2056.4022046438995', MAE is '1667.5655059614307', MAPE is 

'0.05251767775430342', and all error metrics can observe from Table 5.1. 

 

Figure 5.4 Stack LSTM Model’s Predicted And Real Consumption Graph 

 

Table 5.1 DNN and LSTM metrics 

Model MAE MAPE MSE 

DNN 244.70 0.0073 265.33 

LSTM 1667.57 0.0526 2056.40 

 

Cross-validation was performed to ensure that the study was robust. Fourteen days from 

two different years and two different periods were selected for cross-validation. The 

forecast results were highly accurate, can be seen in Figure 5.5 and Figure 5.6. The first 

testing was for the first two weeks of May 2019, and the error metrics were recorded as 

follows, MSE '410.94618336833355', MAE '336.74942', and MAPE '0.011522852'. The 

consumption was forecasted for the first two weeks of August 2018 secondly, and it was 

highly accurate. On the second attempt, the error metrics were recorded as follows, MSE 

'252.22991433908072', MAE '205.47615', and MAPE '0.005456625'. 

 

Figure 5.5 DNN Model’s Forecast Results For First Two Week Of May 2019 
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Figure 5.6 DNN Model’s Forecast Results For First Two Week Of August 2018 

The cross-validation results were compared with the consumption estimations provided 

by EXIST on the EXIST Transparency Platform. Error measurements for EXIST's 01 

May 2019 – 14 May 2019 consumption forecast are MAE '800.5181' and MAPE 

'0.027285'. Error measurements for EXIST's 1 August 2018 – 14 August 2018 

consumption forecast are MAE '864.6486526' and MAPE, '0.022026814', and all error 

metrics can be observed in Table 5.2. 

Table 5.2 Cross validation and EXIST's forecast metrics 

Date MAE MAPE MSE 

1 – 14 May 2019 

(DNN) 

336.74942 0.011522852 410.94618336833355 

1 -14 August 2018 

(DNN) 

205.47615 0.005456625 252.22991433908072 

1 – 14 May 2019 

(EXIST) 

800.5181 0.027285 - 

1 – 14 August 

2018 (EXIST) 

864.6486526 0.022026814 - 

 

The consumption estimation of the first model is more accurate. Sometimes, two weeks 

can be a long timeframe for a short-term forecast. In that case, a one week or even a one 

day forecast becomes essential. The results of the one week estimation in the first model 

are seen in Figure 5.7, while the test metrics were calculated as MSE 

'258.7979540159367', MAE '188.6723400297619', and MAPE '0.00573465100916626'. 
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Figure 5.7 DNN Model One Week Forecast 
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6. CONCLUSION 

In a concluson, there are many studies in the literature on short-term electricity 

consumption forecasts, which discuss the problem in different ways using different 

methodologies. With the development of technology in recent years, the increase in the 

data processing capacity of computers and the increasing amount of data, our abilities to 

predict are improving. In light of these developments, ANN models have been used 

frequently, especially for problems that are difficult to predict.  

This study used stacked LSTM and deep neural network methods to predict Turkey's 

short-term electricity consumption on an hourly basis. It differs from other studies 

because it is based entirely on meteorological data and the weighting of these data with 

population distribution, and also compares the prediction success of the stacked LSTM 

and DNN methods with a relatively small amount of data. 

Nine independent variables were observed, and five independent variables were used in 

the models, while 12 independent variables were eliminated due to the p values on their 

OLS regression results. According to the selected error measurement metrics, it was 

decided that the DNN model should have for hidden layers, a ReLU activation function, 

and 50 neurons for each hidden layer. It was also concluded that in the stacked LSTM 

model, there should be two hidden layers, 150 neurons for each hidden layer, and the tanh 

activation function. 

As a result of the estimation made with these selected hyperparameters, the DNN model 

was found to the most successful with 258.79 MSE and suggest that this model be used 

when conducting short-term consumption forecasting, as it is superb as dealing predicting 

short-term actions. This finding has implications for electricity price estimations based 

on consumption estimations, especially since they must take into account energy facilities 

that face limited sources. Consumption estimations are also vital in offering ancillary 

services prices in the electricity market and determining the price for load and deload 

offers. 

The main reason for the lower prediction success of the Stacked LSTM model may be 

that the model needs more data points than the other model. In addition, the forget gate 

in the structure of this method may have caused some critical information to be forgotten. 



 

 

 

46 

 

At the same time, this method needs 3D matrices. Slight data loss occurred when 2D 

matrices were converted to 3D, but it is not at an amount that would affect the estimation. 

6.1. Future Policy 

The proposed method has a low deviation percentage, as revealed, and can be used for 

short-term load demand forecasting for companies in the energy sector. It has been 

observed that it gives a better estimation than the system operator's estimation and can be 

used by the system operator when needed. Meteorological data should be weighted with 

population distribution and given to the system with historical consumption data. The 

proposed method is planned to be developed in future studies using a larger data set and 

calendar labels for public holidays. 
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