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MODELS FOR ELECTRICITY DEMAND FORECASTING, 

CLASSIFICATION, AND IMBALANCE REDUCTION FOR COMPETITIVE 

MARKETS 

 

 

ABSTRACT 

In liberalized energy markets, hourly forecasts of consumers and producers are 

crucial for efficiently using energy resources and reducing environmental impacts. 

In this study, the countries’ consumption in the ENTSO-E common network 

between 2006 and 2018 was analyzed using the time series method. With the 

created model, short, medium, and long-term demand forecasts are made using 

Fourier Series Expansion. In order to improve the error rate of short-term forecasts, 

a hybrid model was created with alternatively created feedback and autoregressive 

methods. While annual forecasts are made with an average error rate of 6%, the 

error rate in daily forecasts is around 4.5%. With the hybrid models created, hourly 

estimates can be made with approximately 1.5% and 1% error rates. Accurate 

estimations are of great importance in terms of the efficiency of energy markets, 

and the emergence of energy storage opportunities with the developing technology 

increases this importance. For this reason, the amount of imbalance was estimated 

by using the forecast result of the hybrid model in the Turkish Energy Market, and 

a strategy was developed to reduce the imbalance cost accordingly. With this 

strategy, simulations have been made for situations with and without storage, and 

the results have been shared. 

Keywords: Energy Storage, Free Electricity Markets, Time Series Analysis, 

Demand Forecasting, Market Strategies 

  



 

 

 

ELEKTRİK TALEP TAHMİNİ, SINIFLANDIRILMASI VE 

REKABETÇİ PİYASALAR İÇİN DENGESİZLİK AZALTMA 

MODELLERİ 

 

ÖZET 

Liberalleşen enerji piyasalarında, tüketici ve üreticilerin saatlik tahminleri, enerji 

kaynaklarının verimli kullanılması ve çevresel etkilerin azaltılması açısından büyük 

önem taşımaktadır. Bu çalışmada ENTSO-E ortak ağında yer alan ülkelerin 2006-

2018 yılları arasındaki tüketimleri zaman serisi yöntemi kullanılarak analiz 

edilmiştir. Oluşturulan model ile Fourier Serisi Genişletmesi kullanılarak kısa, orta 

ve uzun vadeli talep tahminleri yapılmaktadır. Kısa vadeli tahminlerin hata oranını 

iyileştirmek için alternatif olarak oluşturulan geri besleme ve otoregresif 

yöntemlerle hibrit bir model oluşturulmuştur. Yıllık tahminler ortalama %6 hata 

oranı ile yapılırken, günlük tahminlerde hata oranı %4,5 civarındadır. Oluşturulan 

hibrit modeller ile yaklaşık %1,5 ve %1 hata oranları ile saatlik tahminler 

yapılabilmektedir. Doğru tahminler enerji piyasalarının etkinliği açısından büyük 

önem taşımakta ve gelişen teknoloji ile birlikte enerji depolama imkanlarının ortaya 

çıkması bu önemi artırmaktadır. Bu nedenle hibrit modelin tahmin sonucu 

kullanılarak Türkiye Enerji Piyasasındaki dengesizlik miktarı tahmin edilmiş ve 

buna göre dengesizlik maliyetinin düşürülmesine yönelik bir strateji geliştirilmiştir. 

Bu strateji ile depolamanın mümkün olduğu ve olmadığı durumlar için 

simülasyonlar yapılmış ve sonuçlar paylaşılmıştır. 

Anahtar Kelimeler: Büyük Ölçekli Enerji Depolama, Serbest Enerji Pazarları, 

Zaman Serisi Analizi, Talep Tahmini, Piyasa Stratejileri 
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1. INTRODUCTION 

1.1. Brief History of Electricity 

The common belief about the discovery of electricity is that it was found suddenly. 

However, it is the result of a series of discoveries, from simple to complex. The 

magnetic and electrical properties of lodestone and amber have been known by 

humans very long time. When the lodestone is placed to a woodblock on water, it 

behaves as a compass and aligns in north-south directions. If certain materials are 

rubbed with amber, they attract light objects like paper. William Gilbert is the first 

person who systematically examines these first samples of electricity and 

magnetism (Gilbert, 1958).  

The foundations of electric machines were laid in the 17th and 18th centuries by 

studies of Otto von Guericke and Francis Hauksbee. Guericke invented the 

primitive electrostatic generator in 1663 with a rotating and rubbing sulfur globe. 

This design inspired future simple generators, and many scientists devised different 

ideas to improve them. Isaac Newton offered to use glass material instead of sulfur 

(Newton et al., 1951). At the beginning of the 18th century, Francis Hauksbee 

improved the design and made the frictional electrical machine that rotates and 

glows a glass ball when it closes to woolen cloth (Pumfrey, 2004). These 

experiments led to many studies on electricity, and Stephen Gray and Charles Du 

explained how electricity moves on a stick. Stephen Gray discovered the 

differences between conductors and insulators and proved that the amount of 

electricity on any object is independent of its mass (Hellström, 1998). Charles Du 

completed these studies by discovering two electricity charges, positive and 

negative (Guarnieri, 2012). 

In the mid of 18th century, Benjamin Franklin proved that all materials are in an 

electrically natural state and can be charged positively or negatively with friction. 

If materials charge positively or negatively, the electric discharge and materials 

return to their natural state. In the following century, Italian scientist Alessandro 

Volta created the first electric cell that allowed scientists to use electricity from a 

reliable source (Guarnieri, 2012).  
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Finally, Michael Faraday was the first person that realize the relationship between 

magnetism and electricity. An electric current may be produced by slipping a 

magnet through a copper wire (“V. Experimental Researches in Electricity,” 1832). 

This discovery converts electrical energy to motion energy and motion energy to 

electrical energy.  

1.2. Generation, Transmission, and Distribution 

1.2.1. Electricity Generation 

Energy became one of the industrialization’s primary inputs, especially with the 

start of the 20th century. The race between developed countries in industrialization 

caused an increase in energy consumption.  

Energy resources can be classified under two main titles: non-conventional and 

conventional resources. Conventional resources like fossil fuels and nuclear power 

are not renewed by any natural process; however, non-conventional resources are 

continuously recycled by natural processes. These resources are alternative 

resources to conventional ones. The most common non-conventional resources 

were hydropower and biomass previously. With the advance in technology, wind 

and solar have become significant energy resources, and their portion in 

consumption will continue to increase in the future.  

All conventional energy resources have commonly been used in the last decades, 

and the number of alternative energy resources increased in recent years. Hence, 

non-conventional energy resources are still developing, and their share in total 

energy consumption is minimal.  

Figure 1.1 below shows the yearly energy resource shares in total global 

consumption. The usage of fossil fuels, especially coal and gas, rapidly increased 

in the 18th and 19th centuries. With the oil crisis in 1972, the share of oil 

consumption started to decrease in total consumption, but oil is still the most 

common and primary energy resource.  

The overall picture is slightly different from total consumption when it comes to 

electricity generation. The electricity generation from alternative resources has 

considerably increased in the last ten years. The main reason for the increase is the 

limitation of fossil fuels. Moreover, the rapid increase in fossil fuel consumption, 
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especially after the 1980s, causes climate problems and questions about fossil fuel 

reliability.  

These concerns will expedite the development and usage of alternative energy 

resources. Figure 1.2 presents the share of energy resources in electricity 

generation. Coal and natural gas are the primary sources of electricity generation, 

while oil share has decreased since the 1972 oil crisis. Wind and solar have become 

very popular and will play an essential role in transitioning from fossil fuel to 

renewable energy resources.  

 

Figure 1.1: Yearly energy resources shares in total world consumption 

The industrialization race between countries, especially after World War II, makes 

energy important strategically. The distribution of energy resources in the world is 

unequal, and some countries have a geographical advantage in reaching energy 

resources. As a result, countries with energy resources or sovereignty over energy 

resources rapidly reach the higher technological and industrializations level. Hence, 

energy gained importance strategically for modernization, and developed countries 
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started to use their sovereignty on energy resources to obtain a political privilege 

over other countries.  

To summarize, energy became one of the main drivers of industrialization in the 

19th century. It shaped the political strategies of developed countries to secure and 

reach energy resources for sustainable growth.  

 

Figure 1.2: Energy resources share in electricity generation by years 

1.2.2. Transmission and Distribution 

In the beginning, electricity usage was mainly for industry. However, with the 

invention of the incandescent lamp by Thomas Edison in the 19th century, it started 

to be used in public areas and homes for lighting. The end of the 19th century is 

called the "War of the Current" in literature because of the competition between 

alternating and direct currents.  

Direct current (DC) transmissions were initially used but were inefficient for long-

range electricity transfers because of the different voltage requirements of different 

electrical items. Direct current transmission is based on high current and low 

voltage, which is unsuitable for a device that needs a high voltage. That is why 
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transmission lines with different specializations were needed for different devices. 

For this reason, transmission lines cannot expand rapidly, and the number of 

distributed local generation systems increased (Brown & Sedano, 2004).  

Transmission with alternative current (AC) became possible in the following years 

with the efforts of White Westinghouse and Nicola Tesla (Allerhand, 2017). The 

AC transmission system needs a more complex design than the dc transmission 

lines. However, it allows electricity transmission with minimum loss and for an 

extended range. Moreover, it is cheaper than DC transmission lines. Even though it 

is more complicated than DC transmission, it meets different voltage requirements 

of different equipment on the end customer level. DC lines need a more complex 

converter system to meet different voltage requirements.    

The electricity supply is divided into two steps by centralization and capacity 

increase of power plants: transmission and distribution. In early times, the 

transmission was used only. However, with the increasing and expansion of grid 

lines and end-users, it was separated as distribution for low-voltage electricity 

transfer between substations and consumer's end and transmission for high-voltage 

electricity transfer for long-range between power plants and substations. These 

terms formed because of the need to separate bulk and small electricity transfers. 

The connection of consumers directly to large power plants is not practical and is 

much more expensive. Transmission line capacity is for extra high voltage, 330-

1100 kV (500-2000 MWA), and high voltage, 60-220  kV (50-300 MWA), while 

distribution line capacity is for mid voltage 1-66 kV (1-50 MWA) and low voltage 

0.4-1 kV (0.01- 1 MWA)(Majstrović, 2020).  

With the increase of renewable energy resources in electricity generation, new 

technologies are emerging for efficient transmission because of the difference from 

conventional generation methods. The different characteristics of renewable energy 

resources are listed in five categories by International Energy Agency (International 

Energy Agency, n.d.): 

• Low short-run marginal cost: 

Bids from renewable energy generators should be at the short-run marginal cost 

level. Additional payments like incentives should not affect market prices 

drastically. 
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• Variability: 

Due to variability in renewable resources, prices are valid for the short term, so 

large differences in prices are imported for the market.  

• Uncertainty: 

Uncertainty about renewable energy resources increases the importance of short-

term price signals because it causes variability in generation. Prices are formed 

close to real-time prices or based on the current grid status.  

• Location and Modularity: 

Renewable energy generation does not have to be centralized and can be done with 

a small capacity and at many locations. The less centralization makes prices differ 

from place to place.  

• Non-synchronous technology: 

Wind and solar power cannot connect to the system synchronously, and penetration 

of large amounts of non-synchronous generation to the grid is challenging, so high-

voltage direct current (HVDC) transmission lines have developed and gained 

popularity in recent years. They will be essential between renewable energy 

resources and substations for transmissions. However, AC distribution lines keep 

their importance for end customers, and existing substations need more investment 

or renewal to convert DC to AC for distribution. We can list the advantages and 

disadvantages of HVDC as follows; 

• Interconnection flexibility 

• Lower power loss due to not requiring capacitive-reactive power like in AC 

• Able to connect through a sea (Submarine DC connection) 

• Able to transfer non-synchronous power generation  

• High cost and complexity due to conversion requirements for end customers 

1.3. Evaluating the energy status of Türkiye  

Reaching sustainable and cheap energy resources is one of the critical inputs for 

industrialization and development. There is a direct relationship between energy 

consumption and economic growth; they are positively correlated, and economic 

growth is highly dependent on energy consumption (Zhixin & Xin, 2011). We can 
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say that higher economic standards also support higher energy consumption by 

people for their well-being. That is why energy consumption per person is one of 

the significant indicators of a country's economic and development level. Figure 1.3 

below shows energy consumption per person for Türkiye, high-income, upper-

middle-income, low-middle, and low-income countries. The World Bank economic 

income classification is used (World Bank Country and Lending Groups – World 

Bank Data Help Desk, n.d.), and details are in Appendix A.  

On the other hand, reaching higher economic and social levels cause efficient 

energy usage, especially in high-income countries; even if GDP increases, their 

energy consumption level does not change significantly because of productivity. 

For this reason, energy intensity has become popular in measuring countries' 

capacity to turn consumed energy into US dollars. The definition of "Energy 

Intensity" according to "Our World in Data" is; "Energy intensity level of primary 

energy is the ratio between energy supply and gross domestic product measured at 

purchasing power parity. Energy intensity is an indication of how much energy is 

used to produce one unit of economic output. A lower ratio indicates that less 

energy is used to produce one unit of output". Figure 1.4 shows calculated energy 

intensity according to the 2011 US dollar index. 

 

Figure 1.3: Energy consumption per person 
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Both data indicate how countries consume primary energy resources. The energy 

intensity of Türkiye is slightly smoother than the other class. Comparing it with 

"Upper-middle income countries," we see that Türkiye's economic growth is 

underperformed. Even though the lower energy intensity is better and shows a 

higher productivity level, historical data of Türkiye is a result of less 

industrialization according to the upper-middle income group.  

Moreover, even though the countries continue to increase their GDP, their energy 

intensity is not increasing due to technological levels. According to a study of 21 

developed countries, a 1% increase in GDP results in a 0.62-0.78% reduction in 

energy intensity (Zhou et al., 2021).  

These indicators are significant for the countries, especially those lacking energy 

resources, and Türkiye is in that group. Increasing population and industrialization 

cause higher consumption, but limited energy resources create difficulties.  

 

Figure 1.4: Energy intensity changes between 1990-2015 (2011 US dollar) 

Türkiye is a net energy importer country. Energy import costs are the main 

component of the national account deficit. Figure 1.5 shows that Türkiye differs 
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from other developing countries in energy imports. The portion of imported energy 

in total consumption increases due to high population and industrialization. It is too 

much more when compared to other countries. This picture proves the strategic 

importance of energy resources and how the 1970s oil crisis affected energy 

imports.  

Türkiye must follow strict policies to overcome energy problems because of the 

increase in population in the last decade and economic growth causing high import 

dependency. Türkiye follows European energy policies mostly and shows efforts to 

reach decarbonization targets. Electricity market reforms and the pace of transition 

from fossil fuels to renewable energy resources are decisive steps to diversify the 

energy mix. Moreover, diversification of import resources of natural gas is also 

favorable for energy security—the dominance of Russia in supplying natural gas 

decreases with importing natural gas from Iran and Azerbaijan. This prevents of 

using energy supply as a political pressure by the exporters.  

 

Figure 1.5: Energy net import/export ratios by yearly (Positive ratios are imports and 

negative ones are exports) 

Türkiye also has considerable potential for renewable energy resources. Solar, 

wind, and geothermal energy resources have rapidly increased their portion in 
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electricity generation in the last years with the help of government incentives. 

However, existing technologies for renewable energy resources do not solve 

intermittency problems completely. This intermittency problem risks energy supply 

security and slows the energy transition from fossil fuels to renewable energy 

resources. Hence, Türkiye should make a long-term plan carefully to increase 

renewable energy resources in total consumption.  

For instance, Denmark is one country that generates a high portion of electricity 

from renewable energy resources, but it has encountered high electricity prices in 

the last years. The highest electricity prices occurred in Germany and Denmark 

worldwide in the second half of 2021 (Electricity Prices around the World | 

GlobalPetrolPrices.Com, n.d.). These two countries have a high transition speed 

from fossil fuels to renewable ones, as shown in Figure 1.6. The main reason for 

these high prices is that solar and wind power have high dominancy in renewable 

energy resources. Sweden is another country with higher renewable energy resource 

usage but primarily uses hydropower. Solar and wind power's contribution to 

electricity generation is significantly less. The price fluctuation and increase are not 

as high as in Denmark and Germany because of no intermittency problem with 

hydropower.  

 

Figure 1.6: Ratio of renewable energy resources in electricity generation 
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On the other hand, Türkiye is on a very strategic route to transfer Asia and Middle 

East energy resources to Europe and other countries. This advantage can potentially 

eliminate the lack of own energy resources. To achieve this, Türkiye developed and 

implemented various energy transfer projects: 

• Trans Anatolian natural gas pipeline: Natural gas transfer between 

Azerbaijan and the EU 

• Baku – Tiflis – Ceyhan, and Iraq – Türkiye oil pipelines: Oil transfer from 

Azerbaijan, Turkmenistan, Kazakhstan, and Iraq to Ceyhan port to deliver 

to other countries with sea-borne 

• Russia – Türkiye natural gas pipeline (West) 

• Blue stream (with Russia) 

• Iran – Türkiye natural gas pipeline 

• Baku – Tiflis – Erzurum natural gas pipeline 

• Türkiye – Greece natural gas pipeline (not completed) 

• TurkStream (with Russia) 

Türkiye has also continued hydrocarbon and natural gas exploration in the Black 

and Mediterranean Seas. These efforts will decrease dependency on imported 

energy resources and ensure energy security.  

1.4. The History of Deregulated Electricity Markets 

In the early 90s, governments produced, distributed, and transmitted electricity in 

most countries. Traditionally, the electricity market has been developed and 

operated as a framework strictly organized and vertically integrated into all or most 

activities, from production to retail trade. However, with the free-market trends 

starting in the 90s, most countries privatized the assets, started free trades, and 

gradually developed competitive markets and various support services for operating 

energy systems with the effects of liberalization trends. These reforms aimed to lead 

to more efficiency and improvements of electricity supplies in many aspects, 

including operation cost and pricing.  

These improvements can also be classified as having short-term and long-term 

implications. Short-term expected advantages of privatized markets are increased 

competition, decreased retail prices, and lower operating costs. Long-term expected 
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advantages of privatized markets are to develop new technologies with increasing 

competition, new investments to increase capacity, and reliable transmission 

systems to provide and secure continuous electricity supply for end users-

consumers and decrease environmental effects. According to the energy outlook 

reports by International Energy Agency, they expect downward pressure on 

wholesale electricity prices with the increasing capacity of zero-emission 

generations (How Will the Electricity Market of the Future Work? – Analysis - IEA, 

n.d.).  

With the liberalization of electricity markets, governments aim to increase public 

welfare, reduce prices, secure a sustainable electricity supply, and encourage the 

private sector for new investments to increase the efficiency and use of renewable 

energy resources. As highlighted before, electricity operation has three segments, 

generation, transmission, and distribution. Due to natural limits, increasing 

competition in transmission and distribution would not be possible (Willems & 

Ehlers, 2008). Transmission and distribution companies operate based on location. 

However, billing, contracting, or managing other services for end-user is another 

area called the supply side (Pollitt, 1997). 

Supply firms are responsible for marketing and service quality. Market 

liberalization policies encourage new firms to enter and invest in new technologies. 

Market barriers are changed to make small firms' entrance to the market easier 

because existing market firms can resist applying new technologies to prevent 

additional short-term costs. However, small firms focus on a specific technology to 

increase efficiency. If they become a part of markets, they decrease operation costs, 

and existing firms must follow and adopt new technologies. As a result, some 

governments make policies to encourage new investments in renewable energy 

resources and technologies. These supports are also crucial for decreasing 

greenhouse gas emissions (Kim & Jeong, 2016). They provide feed-in tariffs or 

give incentives due to environmental concerns.  

On the other hand, competition on the supply side provides an alternative for the 

customer to choose their supplier. Deregulated markets allow all or some 

consumers to make contracts directly with suppliers and fix electricity prices. 

Changing supplier ratio is another factor that shows the success of the deregulation 

process. The United Kingdom and Ireland have more switching ratios than all EU 

countries (Shin & Managi, 2017). 
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To summarize energy market developments around the globe, we have selected 

some countries according to the importance of their market reform progress and 

income level and examined their market developments individually to see different 

approaches and results.  

1.4.1. Chile 

Chile is known as the first country that reforms energy markets. Chile National 

Energy Commission was the regulator in charge of setting up transmission and 

distribution tariffs; in 1980, broad economic reforms started, and these movements 

also affected the energy market structure. The first legislation for vertical and 

horizontal unbundling was enacted in 1982. The privatization process was 

completed in 1989 for transmission, distribution, and generation. During the same 

time horizon, the compliance board was formed with the legislation to audit 

electricity and fuel markets.  

In 1995, An agreement was made with Argentine to import natural gas, and the 

privatization process continued until 2005. There were two underlying crises in 

1998 and 2005. The first was due to the drought in 1998, which suddenly caused 

hydropower generation to decrease, and the second was the supply problem of 

natural gas from Argentina. The high dependency on imported natural gas from 

Argentina directly affects generation costs. In 2005, distribution companies started 

to buy electricity from the open market with public auctions. 

1.4.2. Argentina 

Argentina is shown as one of the examples of the energy market reforms. Reforms 

and their implementations set an example for the reforms in other countries' energy 

markets and are considered a road map to achieving full-scale power market 

reforms.  

With government legislation in 1991, market unbundling started for transmission, 

distribution, and generation. The following year, wholesale markets started 

operating, and energy prices were determined with public auctions. Privatization of 

transmission, distribution, and generation continued until the 2000s. Argentina 

faced an economic and political crisis at the start of the 2000s. As a result, the 

Argentine currency was devalued and directly affected the functioning of free 

markets. Foreign exchange trading was restricted by law. This economic crisis 

caused a shortage in gas extraction, and the government started importing gas from 
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Bolivia and limiting gas exports to Chile. Energy markets answered the crisis well 

with an increased number of generation resources. There are also improvements in 

different indicators, such as operating cost, capacity index, and electricity prices 

(Vagliasindi & Besant-Jones, 2013).  

1.4.3. Brazil 

Brazil is another pioneer country that showcases the changes from a vertical market 

structure to a free market. Previously, the energy market was dominated by 

hydropower and controlled by government companies vertically. In 1995, the first 

legislation was made for the unbundling market structure, and Brazilin Electricity 

Regulatory Commission was founded in the following year. While generation and 

transmission privatizations continued between 1995 and 2000, many different laws 

and commissions were established for a competitive market in the same period. The 

wholesale electricity market launched in 1998 was established, and Centrais 

Elétricas Brasileiras S.A. (Eletrobras) split into six holdings and 14 companies. 

These companies joined the market for generation and transmission (OECD 

Reviews of Regulatory Reform: Brazil 2008, 2008).  

Brazil grew rapidly in the 1990s, and the increase in private electricity generation 

capacity stayed behind demand growth in this period. As a result, the government 

launched a thermal priority program to augment the diversification of electricity 

generation resources and decrease the dominancy of hydropower. The great drought 

in 2002 also directly affected the electricity market. Other market reforms were 

implemented in 2003 and 2004 due to the slowdown in new investments. According 

to these new reforms, the long-term electricity energy market was supported, and 

distribution companies were required to purchase long-term electricity from this 

market. In this way, the risks that might arise for new investments were reduced. 

Finally, in 2004 and 2005, primary and secondary auction market mechanisms were 

established for distribution companies. 
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1.4.4. South Korea 

South Korea is another country that changed its energy market gradually in the 

1990s. The electricity operation was managed by KEPCO (Korean Electric Power 

Company) for generation, transmission, and distribution in a vertically integrated 

market structure. The dominance of KEPCO made privatization difficult, so they 

created a pool market, and KEPCO participated as a retail seller in the generation, 

transmission, and distribution. These policies did not lead to free markets as 

planned because the dominancy of KEPCO created substantial entry barriers for 

new markets. The Korean government announced a market restructuring plan in 

2001, and KEPCO split into six-generation companies. However, distribution 

unbundling was canceled in 2003, and the market restructuring was stopped.  

1.4.5. Japan 

Electricity market reforms were in 1990-2000, similarly in Japan. The market 

structure was different from other countries. Before liberalization trends, 

governments or state-owned companies operated most of the energy markets. 

However, Japanese energy market utilities have operated privately since 1939. In 

1951 one generation and nine distribution companies participated in the market. 

Hence, only an open market was created, and distribution companies started bidding 

on electricity with public auctions. Consumers started to get the right to choose their 

retail companies for electricity suppliers according to their consumption level. The 

consumption level to be eligible for choosing supplier companies decreased; in 

2016, all consumers could choose their suppliers. Yearly changes in consumption 

limit to choose suppliers are presented below in Figure 1.7 (Shinkawa, 2018). Also, 

The Japanese Ministry of Economy, Trade, and Industry started applying a feed-in 

tariff for solar PV in 2012 to increase renewable energy resources usage. The 

incentives create an opportunity for foreign companies to enter Japan's energy 

markets. Many companies invested to benefit from the incentives, making Japan's 

energy market one of the biggest solar PV markets.  
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Figure 1.7: Percentage of consumer eligible to choose their supplier  

1.4.6. Market Reforms in Other Countries 

Energy market liberalization continued across the globe in the 1990s. Sweden and 

New Zealand could be considered pioneer countries in Europe. They completed the 

deregulation of electricity markets in 1994 and 1996. Then Norway gave customers 

a right to choose their suppliers and energy markets combined with Sweden and 

called "Nord Pool," the first multinational energy market (Flatabo et al., 2003). In 

the same period, England, Wales, Germany, and other European countries also 

restructured their energy markets to allow private companies' participation and 

increase competition between generators.  

 

Figure 1.8: The energy market liberalization years of some countries 

The reforms differ and change according to countries' existing market structures, 

but the policy frames and targets are similar. Liberalization trends continued in the 

U.S., but Asian countries did not follow this trend and continued operating their 

regulated markets until the 2000s. The electricity market liberalization years are 
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given in Figure 1.8 for some countries(ALSUNAIDY & GREEN, 2006; 

Vagliasindi & Besant-Jones, 2013). 

Despite the success story of the United Kingdom and Ireland's deregulation process, 

the benefits of the deregulated markets are not the same for every country 

(Nagayama, 2007). Although the deregulated energy markets expect to decrease 

retail prices and operation costs for end users with higher service levels (Erdogdu, 

2011), these are not the natural outcomes of deregulation. After the deregulation of 

the electricity markets in Estonia, significant price rises have been observed 

(Vihalemm & Keller, 2016). In some circumstances, restructuring the market makes 

stronger existing natural monopolies. Transmission and distribution operations are 

mostly natural monopolies in most countries. In Chile, transmission and distribution 

companies increase their monopoly activities by entering the retail market to supply 

electricity to large customers (Palacios M. & Saavedra P., 2017). Intense monopoly 

activities, especially in different services, negatively affect market operations. 

On the other hand, independent transmission, distribution, and generation functions 

cause other problems with energy reliability because electricity cannot be stored, 

and demand and supply should be balanced. Hence, some countries cannot prefer 

multiple transmission companies to control generation and supply from a single 

point. They also supported new-generation companies in entering the market by 

making long-term supply agreements. High competition creates problems in 

operations as well. Competitors may focus only on cost and selling price and 

manipulate price with changing production plans. California electricity market 

deregulation is commonly known as the catastrophic application of this situation. 

In 2000, a price hike occurred due to insufficient supply in the summertime and 

continued until September 2001 (Sweeney, n.d.). Many other states in the U.S. 

started to revise their policies for liberalization and open spot markets to prevent 

the adverse effects of monopolies and high competition.   

1.5. Türkiye Electricity Market 

The first step toward the free electricity market in Türkiye was the Turkish 

Electricity Authority (TEK) split, which managed the generation, transmission, and 

distribution units, into two generation-transmission and distribution in 1993. TEAŞ 

was established for electricity generation and transmission, and TEDAŞ was 
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established for distribution. This operational structure continued until 2001. This 

year, TEAŞ split, and Elektrik Üretim A.Ş. (EÜAŞ), Turkiye Electricity 

Transmission A.Ş. (TEİAŞ), and Türkiye Electricity Trade and Commitment A.Ş. 

(TETAŞ) were established. The first license for electricity trade was given to 

TETAŞ. The Energy Market Regulatory Authority (EMRA) was founded as the 

regulator, and the legislation, number 4628, was enacted for the new energy market.  

 

Figure 1.9: Türkiye Electricity organization changes 

In 2004 and 2005, the energy sector strategy document and the law "Balancing and 

Conciliation" were announced. Then, balancing market and cash conciliation 

started in 2006 and 2007. The "Market Financial Settlement Center" (PMUM) was 

established to calculate settlements based on the differences between the realized 

purchases and sales and the contracted amounts. Then, debts or credits are 

announced for each market participant.  

Between 2008 and 2010, ancillary services and day-ahead planning markets opened 

with the privatization of rivers to increase installed power. Moreover, the Türkiye 

electricity grid was connected to the European Network of Transmission System 

Operators (Entso-e) in  2011. 2011 and 2012 were busy years for setting up the free 

energy market structure; EMRA enacted many legislations and regulations to 

ensure market sustainability. The government announced improved and detailed 

legislation to support renewable energy investments based on the 2005 renewable 

energy legislation (YEKDEM).  

Forward & futures electricity and intra-day markets were opened, and EÜAŞ 

generation capacity was handed to private companies. Finally, Energy Exchange 

Istanbul (EXIST) was established, and individual markets were collected under this 
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name. In the following years, the government continued to private generations and 

distributions function and supported private companies to increase the number of 

participants in the market. The milestones and essential development steps of 

Türkiye Energy Markets are shown in Figure 1.10 according to the years. 

 

Figure 1.10: Yearly developments of the energy market in Türkiye 

The electricity markets can be classified as disorganized, organized, and real-time 

markets. Organized markets consist of day-ahead and intra-day markets, and the 

disorganized market is only the bilateral contracts between suppliers and large-scale 

residential and industrial customers. Real-time markets balance demand and supply 

and ensure electricity transmission quality and transmission lines efficiency. The 

market structure is presented in Figure 1.11. 

 

Figure 1.11: Electricity markets based on operation and organization 
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Each market type has different operating hours and regulations. There is no 

limitation to making bilateral agreements for a specific day, but spot and real-time 

markets have a strictly defined operation schedule. In Figure 1.12, the operation 

schedules of each market are shown. As seen in the figure, suppliers and customers 

can make an agreement anytime before the supply day. The day-ahead market starts 

on the previous day for the next day and continues at a particular time. According 

to the current operation schedules, system operators collects bid until 12:30 and 

announces accepted bid and equilibrium prices at 13:30. All participants can check 

and object to the announced quantity and prices until 13:50. The system operator 

finalize the following day's planning schedule at 14:00.  

With the completion of the day-ahead market, the intra-day market starts and 

continues until two hours ahead for each hour. Participants should check their 

consumption/supply status and must balance it. For instance, suppliers/customers 

must buy/sell an additional quantity in the intra-day market if they have a 

supply/demand shortage or vice-versa. They have to keep their position on supply-

demand equilibrium as net zero. If they have not accomplished balancing their 

position until two hours ahead, balancing markets make adjustments automatically 

by using pre-collected bids and offers for balancing. The balancing markets 

collected bids and offers must be activated in 15 minutes.  

 

Figure 1.12: Operation structures of the Türkiye electricity market 
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1.6. Results of Electricity Market Liberalization in Türkiye 

As highlighted before, liberalization trends affected not only the energy markets but 

also different markets to increase quality and efficiency by using competition 

between companies. In Türkiye, With the liberalization of energy markets, the 

number of large-scale and small-scale power plants and auto producers increased 

with the government's financial support. The main target is to decrease the 

dependency on imported energy resources that cause to higher national account 

deficit. There are various support mechanisms to increase competition and resource 

diversity. One of the critical incentives is the feed-in tariff application to increase 

renewable energy installed capacity and generation within the scope of national 

energy politics. The effect of legislation and liberalization on installed capacity is 

seen in Figure 1.13. 

 

Figure 1.13: Türkiye electricity installed capacity and yearly generation changes by year 

As seen in the figure, installed capacity increased higher than the average hourly 

generation in the last years. However, this additional capacity comes from mostly 
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renewable power plants. The most common renewable energy resources in Türkiye 

are the river, hydro, wind, and solar. With recent technologies, wind and solar 

cannot be considered reliable energy resources due to intermittency. Wind and solar 

have a crucial role in reaching the zero-emission target and decreasing dependency 

on imported energy resources. However, energy security and reliability are vital for 

countries with higher industrial and population growth, like Türkiye. There has 

been no rapid change in installed capacity in the last three years, but wind and solar 

continue to increase their share in installed capacity (Kurulu Güç Raporları, n.d.).  

 

Figure 1.14: Yearly installed capacity changes by source 

Figure 1.13 and Figure 1.14 show that liberalization supports investments in 

renewable energy resources but does not provide energy security with existing 

technologies. When we compare the hourly average load with installed capacity, 

installed capacity increases higher than consumption, but the contribution of 

renewable energy resources to energy security is limited. Moreover, a rapid increase 

in the installed capacity of renewable energy resources causes a decrease in capacity 
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utilization, leading to an increase in energy prices (Steady Decline in Capacity 

Utilisation in the German Electricity Sector, n.d.).  

Türkiye is above world average electricity generation from renewables, mainly 

including hydropower. However, the general renewable energy generation trend in 

the world gets slower due to shifting demand during the pandemic period and 

energy price fluctuations resulting from the political issue between Russia and 

Europe. As seen in Figure 1.15, the average electricity generation from renewables 

in the world goes up slightly on a yearly basis, but it is even around 25% in the 

European Union, which is the pioneer region of the energy transition from fossil 

fuels to renewable ones.  

 

Figure 1.15: Percentage of electricity generation from renewable energy resources 

As a result, European Union is the most affected region by the Russian invasion of 

Ukraine because of its high dependency on Russian fossil fuels. The energy prices 

rapidly increased with limited energy supply from Russia due to economic 

embargos that Europe and the United Nations applied. These political crises clearly 
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show that the transition from fossil fuel to renewable energy resources should be 

planned carefully, and energy security is as essential as energy sustainability. Most 

European countries started activating their conventional coal-nuclear power plants 

again to solve the energy crisis (Germany′s Scholz Says Switch Back to Coal and 

Oil ′temporary′ | News | DW | 16.07.2022, n.d.).  

On the other hand, with liberalization, price decrease due to high competition and 

diversification in energy resources is one of the expected results. Recent energy 

price trends still tend to get higher because of government incentives, less 

competition, and the intermittency of renewable energy resources. Investing in 

alternative energy resources could not decrease the dependency on fossil fuels 

globally and not provide a considerable advantage on electricity generation costs. 

As seen in Figure 1.16, when we checked the household electricity prices in the 

second half of 2021, Denmark and Germany cannot differ in electricity generation 

costs even though they have high renewable energy capacity (Electricity Price 

Statistics - Statistics Explained, n.d.).  

 

Figure 1.16: Electricity prices per kWh in the second half of 2021 by country 
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The trend in electricity prices is the same in Türkiye. Even though the installed 

capacity of renewable energy resources has increased, base electricity prices do not 

decrease. Figure 1.17 presents US dollar electricity price changes for residential, 

commercial, and industrial consumers after market liberalization. The prices were 

higher for residential and commercial consumers at the beginning. However, in the 

following years, industrial and commercial electricity prices increased more than 

residential because of economic problems and fluctuations in exchange rates. The 

government prevented residential electricity tariff increases due to political 

concerns and decreased taxes for residential consumers in March 2022, while 

commercial and industrial consumers were directly affected by the global energy 

crisis in 2022. In addition, electricity prices in dollars seem to decrease between 

2013-2019, but this is not a result of liberalization. The main reason is that the 

economic policy applied by the government caused fluctuations in the exchange 

rate. 

 

Figure 1.17: The electricity prices change for residential, commercial, and industrial 

consumers in Türkiye. 
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Renewable energy capacity cannot provide flexibility or decrease energy crisis 

effects in this period because of ineffective renewable energy mechanisms and 

energy security problems of renewable energy resources.  

As mentioned before, Türkiye applied a feed-in tariff to support and increase 

installed capacity and generation share of renewable energy resources. All these 

buy-back guarantees were given in foreign currency. Türkiye economically is too 

sensitive to exchange rates due to high energy import dependency. This feed-in 

tariff in foreign currency causes the transfer of economic fragility to energy markets 

entirely. Figure 1.18 illustrates the share of energy resources in electricity 

generation. Türkiye electricity generation comes from natural gas and coal mainly. 

Both resources share in the generation is approximately 65-70% of the total 

electricity generation. With the liberalization of existing hydropower plants, all 

these renewable energy resources can benefit from feed-in tariffs in foreign 

currency. Incentives and support based on foreign currencies economically make 

85% of electricity generation dependent on outside incidents. These cause every 

global political and economic problem directly affecting Turkish energy market 

prices. The average incentive was around 25% initially, but in 2018 and 2019, 

approximately 80% of an overpayment was made compared with realized spot 

prices due to exchange rate fluctuations (Orhan Aytaç, 2019). Both ineffective 

liberalization methods, global economic recession, and inflation pressure on the 

exchange rate will continue to become a risk Türkiye Energy Market. 
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Figure 1.18: Yearly electricity generation share by energy resources 

1.7. ENTSO-E Common Grid System 

As mentioned in the beginning, with the development of human civilization, energy 

supply, supply security, environmental effects, and efficiency became challenging. 

Reaching sustainable growth with limited resources and decreasing adverse 

environmental effects have become the main target of industrialization to secure 

continuous growth. The European electricity transmission network is one of the 

largest networks and developed over a very long period and the integration of many 

countries. Hence, European countries are pioneers in the energy transition from 

fossil fuels to renewable ones. Many countries across the world follow their policies 

and plans.  

At the beginning of the 19th century, Europe's growth rate increased energy needs. 

Power grids constantly expanded from the local to the international scale, and 

countries started power exchanges to decrease energy costs, optimize allocation, 

and deliver energy to more areas. France, Sweden, and Italy established one of the 

first joint grids in 1906 (Cross-Border Interconnections on Every Continent, 2010). 
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They started the cross-border transmission for some areas. With the joining of 

Belgium and Germany, they planned to expand grids to cover more areas and also 

efficient resource allocation (Lagendijk, n.d.). Europe's growth continued, and 

energy consumption increased by approximately 70 percent from 1960 to 1990 

(Global Comparison: How Much Energy Do People Consume? - Our World in 

Data, n.d.).  

The developments of grid expansion and energy generation continued, especially 

between France and Germany, due to nuclear energy capacity of France. In 1951, 

France, Germany, Austria, Belgium, Netherlands, Italy, and Luxemburg started 

synchronous grid connections under the Union for the Coordination of Production 

and Transmission of Electricity (UCTE). In the following years, Portugal, Spain, 

and the former Yugoslav connected to the UCTE, and expansion continued year by 

year with the joining of other European countries. However, interconnected 

transmission grids developed a regional basis. Especially at the end of the 90s, the 

Association of the Transmission System Operators of Ireland (ATSOI), the Baltic 

Transmission System Operators (BALTSO), and the UK Transmission System 

Operators Association (UKTSOA) were founded and managed on a regional basis. 

The Internal Electricity Market (IEM) foundation by European Union created 

continental transmission management that includes all European countries(Former 

Associations, n.d.). To accomplish this, in 1999, the European Transmission System 

Operators (ETSO)  was founded 1999 to create a shared network and cross-border 

electricity trade, which also conforms with the competitive market concept. In 2001 

the number of member countries reached 15, with 32 independent European 

Transmission System Operators (TSO). 

With the success of the ETSO in operation and compensation, in 2008, 40 TSOs 

signed a protocol to expand this shared network. At the end of that year, European 

Transmission System Operation for Electricity (ENTSO-E) was founded. All ETSO 

activities were transferred to ENTSO-E in 2009. ENTSO-E consists of five 

Regional Security Coordinators (RSCs), Coreso, TSC, SCC, Nordic, and Baltic, 

and all members operate under these RSCs. Figure 1.19 shows the territory of the 

RSCs and adhered countries across Europe(Power Regions, n.d.). 
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Figure 1.19: ENTSO-E RSCs and countries map (https://www.entsoe.eu) 

Five primary tasks of RSCs based on the latest regulations are shown in Table 1.1. 

(ENTSO-E, 2019a). RSCs are responsible for supporting short- and medium-term 

adequacy and outage planning coordination. Moreover, capacity calculation and 

coordination and regional planning according to capacity potential are the tasks to 

secure and build a typical grid for the participant TSOs.  

  

https://www.entsoe.eu/
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Table 1.1:Primary responsibilities of the RSCs and their benefits 

Task Benefits for TSOs and market participants 

Regional 

operational 

security 

coordination 

Identify operational security violations in the active 

planning phase. Identify the most efficient remedial 

actions and recommend them to the concerned TSOs. 

Regional outage 

coordination 

Detect outage planning incompatibilities and the solutions 

to solve the incompatibilities. 

The coordinated 

capacity 

calculation for 

CACM 

Calculate available electricity transfer capacity across 

borders (using flow-based or net transfer capacity 

methodologies). Maximize the capacity offered to the 

market. 

Regional adequacy 

assessment 

Provide TSOs with short (day-ahead) to medium (up to 

week-ahead) adequacy forecasts to foresee possible 

critical grid situations and deal with these accordingly. 

Building a 

common grid 

model 

Provide the standard grid model for all timeframes and 

applications to all TSOs that an RSC serves. 

1.8. Research Objectives and Motivation 

As stated in the study's introduction, electricity was used only for heating and 

lighting purposes at the beginning. However, after the industrial revolution, it 

started to be used as a labor force. For this reason, the need for energy in societies 

has constantly increased, and a linear relationship has emerged between energy and 

development. The dominance over energy resources has been one of the 

determining factors of societies' political and economic power. Sustainable energy 

and energy security are vital for all societies since traditional energy sources are not 

infinite, and their distribution is unequal. 

Efficient use of resources and correct resource planning are essential due to 

environmental and economic effects, as well as equal access to existing resources. 

Although the use of alternative energy sources has increased with developing 

technologies, the issue of energy security is still a critical issue for developed and 

developing countries. With the existing technologies, the costs of renewable energy 
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sources such as solar, wind, and geothermal have decreased, and their efficiency 

has increased. However, sufficient technological applications have not yet been 

developed regarding planning and continuity. Today, all machines and vehicles 

dependent on fossil fuels are replaced with electrically powered ones. Since many 

countries use fossil fuels such as natural gas in electricity generation, the effect of 

this change is small, but breaking the direct link between fossil fuels and the end 

user is significant for the alternative energy transition in the future. As a result, the 

harmful environmental effects of fossil resources will also decrease. 

The biggest expectation in this regard is the development of large-scale energy 

storage technologies. The development of energy storage technologies will ensure 

energy security and reduce the cost of supply-demand imbalances. Today, all 

electricity markets work on balancing supply and demand, and they are faced with 

high costs due to any problem in the system or a bottleneck in any energy 

transmission or transportation. At the same time, situations where the supply is high 

cause inefficient use of resources. Therefore, demand or consumption forecasting 

became vital for efficiently managing a competitive market. The electricity must be 

produced and consumed simultaneously with a limited storage capacity. In order to 

plan production, the demand levels should be known in advance. The fuel and 

operation planning of the generation source will be organized accordingly. 

On the other hand, the transmission line has a limited capacity, and the power needs 

to be distributed to required locations using the transmission and distribution 

infrastructure. The electricity demand has stochastic characteristics with many 

unknown or uncertain parameters. The climate, work habits, daily routines of 

people, weekday-weekend consumptions, holiday seasons, special days, and 

consumption of industrial and commercial facilities must be evaluated carefully. 

Hence, demand segregation might be needed to characterize the demand better. The 

electricity demand forecasting methodologies have always been an important issue, 

but long-term forecasting for different time periods has not been studied 

extensively.  

In addition, the increase in large and small-scale participants in privatized energy 

markets and the development of renewable energy technologies caused an increase 

in the volume of the intraday electricity market. However, day-ahead planning is 

crucial for reliable production, transmission, and distribution mechanism. Energy 

needs to be planned for efficient and effective use of existing resources and 
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transmission systems. The increase in intra-day market volume directly affects the 

quality of day-ahead planning. For this reason, storage technologies will be a 

critical function in preventing imbalances and inefficiencies that may arise from the 

participants' desire to trade in the intraday market. The deviation between day-

ahead and real-time demand leads to imbalances that cause extra costs, eventually 

imposed on the end consumer. In addition, to use better short- and long-term 

demand forecasting methodologies, an efficient mechanism can be developed to 

increase market efficiency and lead to better planning, eventually leading to lower 

costs for market participants. This dissertation's research objectives can be 

summarized below in light of these problems; 

1. Building forecasting models for both short-term and long-term forecasts 

based on past data without incorporating any external information, 

2. Analyzing consumption trends and proposing methodologies to classify 

countries into groups based on their consumption objectives and 

temperatures 

3. Developing an innovative algorithm that effectively reduces real-time 

imbalance costs leads to more efficient markets and increases social benefit.  

The methodology part of this study consists of chapters 3,4 and 5. After giving 

information about the methods to be used in the second part, the data set was 

introduced in the third part with the applied steps in making the data set ready for 

the models. In chapter 4, short and long-term demand forecasting models are 

created for all countries, and the results are compared. The sensitivities of countries' 

electricity consumption in different geographies to the weather conditions are 

shown, and classifications are made. Chapter 5 examines the Turkish electricity 

market, and a new strategy is proposed to reduce costs due to the supply-demand 

imbalance. Simulations have demonstrated the results of the proposed strategy in 

different energy storage capacities. We provide discussions and conclusions at the 

end. 
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2. TIME SERIES METHODS FOR DEMAND 

FORECASTING 

The increasing number and variety of data with the development of technology have 

made using traditional statistical methods essential and widespread. However, 

thanks to advanced computers, computer learning algorithms have become 

applicable, and various hybrid models have been created. 

Time series analysis is also widely used because forecasting problems often involve 

time as well. In this way, it is used in a wide variety of areas such as sales, stock, 

weather, earthquake, or financial market forecasts. 

Although time series methods are applicable, many internal and external factors can 

affect the accuracy of the forecasts or model results. Achieving a better and more 

reliable result remains a challenge. Many different time series methods are used, 

such as exponential smoothing, autoregressive methods, multiple linear regression, 

and artificial neural networks. 

Sets of data collected with fixed time intervals or timestamps are called time series. 

Mathematically Y time series is a set of collected data, 𝑌 = (𝑦1, 𝑦2, 𝑦3 … … … 𝑦𝑖), 

where 𝑦 is collected data at time 𝑖. If the data occurs in fixed time intervals like 

monthly, daily, or hourly, that is called a "Regular time series," and if data occurs 

in random time intervals, that is called an "Irregular time series." Typically, time 

series analyses are performed on a fixed time interval assumption. However, in 

some variables, such as demand or natural events, data sets may not occur with 

fixed intervals. For this reason, studies are carried out by converting such data sets 

into fixed interval data sets using methods such as interpolation. 

2.1. Time Series Components 

Time series are basically composed of four main components: trend (𝑇), seasonal 

(𝑆), cyclic (𝐶), and random (𝑅) movements (residuals), as shown in the below 

equation. Some sources consider seasonal and cyclical movements together and call 

them as periodic movements. Although seasonality and cyclicality are similar 

concepts, they are different. Seasonality can be defined as periodic movements 

caused mainly by external and continuous influences, while cyclicality can be 

defined as changes caused by internal influences. Changes due to cyclicality are not 
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constant in time, while seasonality is observed in the same periods. For example, 

for a company, the variability created by campaigns to increase sales is cyclical, but 

the variation in sales by month is seasonal.  

𝑌 = 𝑓(𝑇, 𝑆, 𝐶, 𝑅)     (2.1)  

Trend and periodic components are deterministic; after removing the deterministic 

part from the function, residuals remain, and the series becomes stationary.  

2.2. Time Series Forecasting 

There are two different time series analyses in the literature: time series forecast 

(TSF) and time series classification (TSC). TSF is mainly used to model how the 

data set will behave in the short or long term by considering each data point. TSC 

can be used for different purposes. It is generally used to group similar data points 

into different classes and to name data points in existing data. Therefore, TSC is 

seen as classification or grouping, while TSF is seen as regression analysis. 

TSF can be used in many different areas. Some of the most common uses are 

language translation applications using natural language processes (NLP) and load 

estimation models, which is one of the topics of this thesis. This study will use TSC 

methods to analyze energy consumption characteristics while creating load 

forecasting models. 

Natural language processes are a subfield of computer science. By using artificial 

intelligence, the interaction of the computer with the human language has been 

ensured. In this way, many different information and services have been revealed 

by analyzing human language data. The most prominent features are speech 

recognition, speech segmentation, automatic text completion, and translation 

features. The basis of all these algorithms is to guess the next word or letter in the 

sequence and reach the whole word or paragraph. While machine learning was 

widely used for NLP initially, significant progress has been made with Neural 

network algorithms in recent years. In particular, recurrent neural networks are 

widely used in character-based language models. 

TSF is widely used in different disciplines to get an idea about the future. As in this 

study, it is used for different periods in energy demand forecasting modeling. These 

methods can be developed for different periods, from the shortest to the longest. 
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2.3. Linear Models 

 Linear models consist of auto-regressive models and simple moving average 

models applied to stationary time series. Linear equations are shown as the equation 

below is the most straightforward equation for the independent and identically 

distributed data set.   

𝑌 = 𝐴𝑋 + 𝐵     (2.2) 

Where A and B are denoted as slope and intercept, respectively, if we define the 

observation set, it becomes as below.  

𝑌𝑡 = 𝜃𝑋𝑡−1 + 휀𝑡    (2.3) 

The equation is an example of simple autoregressive series when θ constant for 

every observation. Each observation is affected by the previous one with the size of 

|θ|<1 and error term (µ=0,σ2). In the time series lag operator, 𝐿 is used to show 

previous observations. It includes basic mathematical operations like those shown 

in the below equation. 

𝐿2𝑋𝑡 = 𝐿𝐿𝑋𝑡 = 𝐿𝑋𝑡−1 = 𝑋𝑡−2   (2.4) 

2.4. Moving Averages 

Moving averages are one of the simplest time series analyses for stationary series. 

The method ignores the errors and calculates the next data point as the average of 

the past q data points. The size of the q number determines how much of the 

historical data set the predicted data point will be affected by. A small number of q 

takes into account more current data, while a large number of q takes into account 

more past data 

𝑌𝑡 = ∑
𝑋𝑖

𝑞
𝑡−1
𝑖=𝑡−𝑞     { 𝑞, 𝑡 ∈ 𝑍+ 𝑎𝑛𝑑 𝑡 > 𝑞}   (2.5) 

Weighted moving averages, unlike simple moving averages, are formed by 

assigning different weights(w) to each data point according to the characteristics of 

the data. These weights can be optimized using the least squares method using 

historical data points or added to the model as a constant. 
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𝑌𝑡 = ∑ 𝑤𝑖
𝑋𝑖

𝑞
𝑡−1
𝑖=𝑡−𝑞     { 𝑞, 𝑡 ∈ 𝑍+, 𝑡 > 𝑞 𝑎𝑛𝑑 ∑ 𝑤𝑖 = 1} (2.6) 

Another method is exponential smoothing. Brown, Holt, and Winters introduced 

the exponential smoothing method in 1950 (Holt, 2004; R. G. Brown, 1959; 

Winters, 1960). The following data point is estimated by decreasing the weights 

given to the historical data from the recent to the old one. In short, the closest data 

has the highest weight, while the farthest data from the target point has the lowest 

weight. This approach is straightforward and quickly applicable to various 

problems from different fields. There are three types of exponential smoothing 

methods according to their complexity. First, it is the simple exponential smoothing 

method, which is the simplest according to its complexity. Simple exponential 

smoothing applies only to series with no apparent trends or seasonality. 

𝑌𝑡 = 𝐿𝑋𝑡𝛼 +  𝐿2𝑋𝑡𝛼(1 − 𝛼) +  𝐿3𝑋𝑡𝛼(1 − 𝛼)2 …       (2.7) 

In the general equation above, α is the correction factor between 0<α<1. it 

determines how the previous data will affect the result. Large α values increase the 

impact of current data points on the result, while small α values include a long-

range data set in the calculation. It is crucial to choose the α value according to the 

characteristics of the data set. If the effect of sudden changes close to 𝑡 is significant, 

the α value is close to 1, and if the long-term change of the data set is essential, the 

alpha value is close to zero. 

Other exponential smoothing methods have also been developed to model trend and 

seasonality effects. Standard exponential smoothing is applied in the above 

equation. However, in data sets such as electricity consumption, trend and 

especially seasonality constitute an essential part. Seasonality, trend, and standard 

smoothing parameters are handled separately, and a forecast model is created from 

their combination (Holt, 2004). The forecast 𝑌𝑡+ℎ is expressed as the equation 

below if we name the trend, seasonality, and regular changes as 𝑏𝑡, 𝑐𝑡, and 𝑠𝑡. 

𝑌𝑡+ℎ = 𝑠𝑡 + ℎ ∗ 𝑏𝑡 + 𝑐𝑡+ℎ−𝑛    (2.8) 

The smoothing coefficients for all parameters are defined separately, and all 0 <

𝛼, 𝛽, 𝛿 < 1, similar to the simple exponential smoothing coefficient. These 

components have a recursive relationship to calculate each next 𝑌 value. The 𝑛 
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value in the equation refers to the length of the seasonal period. The recursive 

equations and components of 𝑌𝑡+ℎ are shown in the below equation set. 

𝑠𝑡 = 𝛼(𝑥𝑡 − 𝑐𝑡−𝑛) + (1 − 𝛼)(𝑠𝑡−1 + 𝑏𝑡−1) 

𝑏𝑡 = 𝛽(𝑠𝑡 − 𝑠𝑡−𝑙) + (1 − 𝛽)(𝑏𝑡−1)       (2.9)  

𝑐𝑡 = 𝛿(𝑥𝑡 − 𝑠𝑡) + (1 − 𝛿)(𝑐𝑡−𝑛)   

As can be seen from the equation, the parameter must be defined first. However, 

initial value assignment can lead to bias in models that give too much weight to past 

estimates. Therefore, the selection of the first value is essential. Various techniques 

have been advised for selecting the initial value and reducing the bias effects of the 

initial value selection on the model. 

2.5. Autoregressive Methods 

Autoregressive (AR) models are used to predict or model the value at time 𝑡 based 

on the previous values of any 𝑥 variable. As the name suggests, only past values are 

used as inputs for the model. Since it is assumed that past values contain 

information about all variables, so it is widely used in price estimation, especially 

in the financial sector. For example, only the last price changes are used to predict 

the price change of a financial instrument at time 𝑡; past prices include the effect of 

all market developments and company news. Therefore, no additional data is used. 

In autoregressive models, the output values are linearly dependent on the previous 

values. For this reason, the equations are expressed as stochastic difference 

equations. The following equation shows the 𝐴𝑅(𝑝) model, where 𝑐, φ, and 

휀~𝑁(0, 𝜎2) are the model parameters and white noise components, respectively. 

𝑋𝑡 = 𝑐 + ∑ 𝜑𝑖
𝑝
𝑖=1 𝑋𝑡−𝑖 + 휀𝑡     (2.10) 

This model is based on the principle of data being stationary, which means that 

stationary time series has a constant mean, variance, and autocovariance and change 

only with a time lag 𝐿. The order, 𝑝 of the model, is determined beforehand 

according to the data set characteristic, and it is not changed (Taylor, 2010; Taylor 

& McSharry, 2007). The typical model for short-term forecasting is a combination 

of AR and MA called Autoregressive Moving Average. The ARMA method 

expresses a stochastic process in terms of autoregressive and moving average values 
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(Wilson, 2016). The 𝑀𝐴(𝑞) process expression is shown below the equation where 

μ, θ, εt, εt-i~𝑁(0, 𝜎2) are  the expected value of 𝑋𝑡, parameters of the model, and 

white noise terms, respectively.  

𝑋𝑡 = 𝑐 + 휀𝑡 + ∑ 𝜃𝑖휀𝑡−𝑖
𝑝
𝑖       (2.11) 

Hence 𝐴𝑅𝑀𝐴(𝑝, 𝑞) models are the sum of AR(p) and MA(q), and μ is usually 

assumed zero as shown below equation.  

𝑋𝑡 = 𝑐 + ∑ 𝜑𝑖
𝑝
𝑖=1 𝑋𝑡−𝑖 + 휀𝑡 + ∑ 𝜃𝑖휀𝑡−𝑖

𝑝
𝑖      (2.12) 

The generalized 𝐴𝑅𝐼𝑀𝐴 is a prevalent method in the literature. Its extensions 

ARIMAX (can be added external features) and SARIMA (considering seasonality 

or cycles) are commonly used in short-term modeling data. In the real world, load 

data or financial data are generally non-stationary, so 𝐴𝑅𝑀𝐴 model can have 

integration factors and become 𝐴𝑅𝐼𝑀(p,d,q), called Autoregressive Integrated 

Moving Average.  

2.6. Fourier Series Expansion (FSE) 

A Fourier series expansion is a mathematical method used to represent a periodic 

function as a sum of sine and cosine functions. This can be useful for analyzing the 

properties of the function, such as its frequency content and amplitude at different 

frequencies, or for approximating the function with a finite number of terms. 

To create a Fourier series expansion for a function, we first take the Fourier 

transform of the function. This converts the function from the time domain to the 

frequency domain, resulting in a set of complex numbers that can be written in the 

form 𝑎 +  𝑏𝑖, where 𝑎 is the real part, and 𝑏 is the imaginary part. Next, we write 

each complex number as the sum of a sine and cosine function as 𝑎/𝑐𝑜𝑠(𝑥) +

𝑏/𝑠𝑖𝑛(𝑥) and the resulting Fourier series expansion will be a sum of these sine and 

cosine functions, with coefficients that depend on the original function. 

One of the main advantages of using a Fourier series expansion is that it allows us 

to analyze the frequency content of a periodic function. By examining the 

coefficients of the sine and cosine functions in the expansion, we can determine the 

relative amplitudes of the different frequency components in the original function. 
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This can be useful for understanding the behavior of a system or for designing filters 

to remove unwanted frequencies from a signal. 

Another advantage of Fourier series expansions is that they can be used to 

approximate a periodic function with a finite number of terms. This can be useful 

for creating simplified models of a system or for analyzing the behavior of a 

function using fewer terms than would be required with other methods. 

A Fourier series expansion is a mathematical representation of a periodic function 

as a sum of sine and cosine functions. It is typically written in the following form: 

𝑓(𝑡) =
𝑎0

2
+ ∑ (𝑎𝑛 𝑐𝑜𝑠(

2𝜋𝑛𝑡

𝑇
) + 𝑏𝑛 𝑠𝑖𝑛(

2𝜋𝑛𝑡

𝑇
))∞

𝑛=1   (2.13) 

where 𝑎0, 𝑎𝑛, 𝑏𝑛 are the Fourier coefficients, which are determined by the function 

𝑓(𝑡). The variable 𝑡 represents time, and 𝑇 is the period of the function, which is 

the length of one complete cycle. 

The Fourier coefficients can be calculated using the following formulas: 

𝑎0 =
1

𝑇
∫ 𝑓(𝑡)𝑑𝑡

𝑇
    (2.14) 

𝑎𝑛 =
1

𝑇
∫ 𝑓(𝑡)

𝑇
cos(

2π𝑛𝑡

𝑇
)𝑑𝑡    (2.15) 

𝑏𝑛 =
1

𝑇
∫ 𝑓(𝑡)

𝑇
sin(

2π𝑛𝑡

𝑇
)𝑑𝑡    (2.16) 

The 𝑎0 coefficient is the average value of the function 𝑓(𝑡) over one period, and 

the 𝑎𝑛 and 𝑏𝑛 coefficients represent the amplitude and phase of the harmonic 

components of the function. The Fourier series expansion is a way to represent the 

periodic function as a sum of these harmonic components. 

In general, the more terms included in the Fourier series expansion, the more 

accurately it will approximate the original function 𝑓(𝑡). However, calculating the 

Fourier coefficients can be computationally intensive, so the number of terms 

included in the series is typically chosen based on the desired accuracy and 

computational limitations. 

To illustrate the concept, consider the simple function 𝑓(𝑡)  =  1 for 0 ≤  𝑡 ≤  1 

and 𝑓(𝑡)  =  0 for 1 <  𝑡 <  2. This function has a period of 𝑇 =  2 and can be 

represented as a Fourier series as follows: 
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𝑓(𝑡) =
1

2
+

1

2
cos(

2π𝑡

2
)     (2.17) 

The 𝑎0 coefficient is calculated as: 

𝑎0 =
1

2
∫ 1

1

0
𝑑𝑡 =

1

2
     (2.18) 

The 𝑎1 coefficient is calculated as: 

𝑎1 =
1

2
∫ 1

1

0
cos(

2𝜋𝑡

2
)𝑑𝑡 = 0       (2.19) 

Since 𝑎1 is zero, the Fourier series becomes: 

𝑓(𝑡) =
1

2
      (2.20) 

This means that the function 𝑓(𝑡) is constant and equal to 1/2 over one period. 

In general, the more terms included in the Fourier series, the more accurately it will 

approximate the original function 𝑓(𝑡). However, calculating the Fourier 

coefficients can be mathematically intensive, so the number of terms included in 

the series is typically chosen based on the desired accuracy and computational 

limitations. Fourier series are used in many applications, including signal 

processing, image and video compression, and analysis of periodic phenomena in 

physics and engineering 

Fourier series expansion is a mathematical method named after the French 

mathematician and physicist Joseph Fourier. Fourier was interested in studying heat 

transfer and the way that heat flows through solid objects. In his work, he developed 

a mathematical model to describe how heat diffuses through an object over time. 

Fourier’s model was based on the idea that any periodic function, such as a wave 

or a vibration, could be represented as the sum of a series of sine and cosine 

functions. He derived a set of equations, known as the Fourier series, to describe 

this relationship mathematically. 

Fourier’s work was published in his book “The Analytical Theory of Heat” in 1822, 

and it quickly became a key concept in the field of mathematics. It was later applied 

to other fields, such as physics, engineering, and signal processing, where it is used 

to analyze and represent periodic functions. 
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Today, Fourier series expansions are a widely used tool in many different fields, 

and the concepts introduced by Joseph Fourier continue to be an important part of 

modern mathematics and science. 

2.7. Neural Networks 

Neural networks are a type of machine learning algorithm that is particularly well-

suited for time series forecasting. They are a popular method for time series 

forecasting because they are able to automatically learn and identify complex 

patterns in the data, which makes them more accurate and efficient than traditional 

methods such as ARIMA.  

To understand how neural networks can be used for time series forecasting, it is 

helpful first to understand the basics of how neural networks work. A neural 

network is a type of machine learning algorithm that is designed to recognize 

patterns in data. It consists of multiple layers of interconnected nodes, where each 

node represents a unit of computation. The nodes are connected by weights, which 

determine the strength of the connection between the nodes. To train a neural 

network, we feed it a large dataset of known inputs and outputs. The neural network 

uses this data to adjust the weights between the nodes, in order to learn to predict 

the output based on the input. Once the neural network has been trained, we can use 

it to make forecasts on new data by feeding it the input and letting it use the learned 

weights to generate an output. When it comes to time series forecasting, we can use 

a neural network to predict the future values of a time series based on its past values. 

This is done by training the neural network on a dataset that contains the past values 

of the time series, along with the corresponding future values that we want to 

predict. Once the neural network has been trained, we can feed it new past values, 

and it will generate a forecast for the future value. 

There are many different types of neural networks that can be used for time series 

forecasting, including feedforward neural networks, recurrent neural networks, and 

convolutional neural networks. Each type of neural network has its own strengths 

and weaknesses, and which type to use will depend on the specific characteristics 

of the time series data. Some of the most common types of neural networks include: 
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• Feedforward neural networks: This is the most basic type of neural network, 

where the data flows in one direction from the input layer to the output layer 

without looping back. 

• Recurrent neural networks: This type of neural network includes loops in 

the connections between the nodes, which allows it to process input data in 

a sequence or temporal order. This makes it well-suited for tasks such as 

natural language processing and time series forecasting. 

• Convolutional neural networks: This type of neural network is designed to 

process data with a grid-like structure, such as an image or a video. It uses 

convolutional layers, which apply a filter to the input data to extract features 

and reduce the dimensionality of the data. 

• Deep neural networks: This type of neural network includes multiple hidden 

layers, which allows it to learn more complex patterns in the data. Deep 

learning algorithms are popular for many machine learning tasks, including 

image and speech recognition. 

• Generative adversarial networks: This type of neural network consists of 

two parts: a generator and a discriminator. The generator produces synthetic 

data, while the discriminator attempts to distinguish the synthetic data from 

real data. The two parts compete against each other, allowing the network 

to learn to generate realistic data.There are many other types of neural 

networks, and new types are constantly being developed. Which type of 

neural network to use will depend on the specific characteristics of the data 

and the task at hand. 

One of the key advantages of using neural networks for time series forecasting is 

that they are able to automatically learn and identify complex patterns in the data. 

This means that they can handle nonlinear relationships and seasonality in the data, 

which are challenging to model using traditional methods. Additionally, neural 

networks are able to adapt to changes in the underlying data distribution, which 

makes them more robust and accurate over time. Another advantage of neural 

networks is that they can be easily fine-tuned to improve their performance. This 

can be done by adjusting the network architecture, such as the number of layers and 

nodes, or by using regularization techniques to prevent overfitting.  

The number of hidden layers and neurons in a neural network can have a significant 

impact on its performance. In general, a neural network with more hidden layers 
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and neurons can learn more complex patterns in the data. However, it also requires 

more computational resources and is more susceptible to overfitting. Therefore, 

choosing the right number of hidden layers and neurons is a trade-off between 

model complexity and performance.  

One common approach to determining the number of hidden layers and neurons is 

to start with a simple network and gradually increase the number of hidden layers 

and neurons until the desired performance is achieved. This can be done through a 

process of trial and error, where the network is trained and evaluated using different 

settings, and the best-performing configuration is selected. 

Alternatively, some researchers have developed mathematical methods for 

estimating the optimal number of hidden layers and neurons in a neural network. 

These methods typically involve complex equations and assumptions about the data 

and the network, and they may not always be applicable or accurate in practice. 

Ultimately, the right number of hidden layers and neurons will depend on the 

specific characteristics of the time series data and the desired forecast accuracy. 

There is no one-size-fits-all solution, and it may be necessary to experiment with 

different configurations to find the best-performing network. 

The mathematical representation of a neural network depends on the specific 

architecture of the network and the type of data it is being applied to. However, in 

general, a neural network can be represented as a series of computational units, or 

nodes, that are connected by weights. Each node in the network represents a 

computation unit and performs a mathematical operation on the input data. This 

operation typically involves combining the input data with the weights of the 

incoming connections to produce an output value. The output value is then passed 

to the next layer of nodes, where it is processed in the same way. This process 

continues until the output of the final layer of nodes is produced, which is the neural 

network’s output. 

The weights between the nodes are the key to a neural network’s ability to learn 

and make forecasts. They determine the strength of the connections between the 

nodes and are adjusted during the training process to minimize the forecast error. 

The final set of weights, once the network is trained, represents the learned 

knowledge of the network, and it is used to make forecasts on new data. 
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Mathematically, the computation performed by a node can be represented by a 

vector of input values, a vector of weights, and a scalar bias term. The node’s output 

is then calculated as the dot product of the input vector and the weight vector plus 

the bias term. This output value is then passed to the next layer of nodes, where it 

is processed in the same way.Overall, the mathematical representation of a neural 

network is a complex and multi-dimensional system of equations that describes the 

operations performed by the nodes and the connections between them. It is a 

powerful tool for learning and predicting complex patterns in data, and it forms the 

basis of many machine learning and artificial intelligence systems. 

This study uses the Nonlinear Autoregressive with Exogenous Input method to 

estimate possible energy deficiency using the main forecast results and electricity 

production plan. The NARX method is another type of neural network that is 

specifically designed for time series forecasting. It is a variant of the traditional 

autoregressive (AR) model, which is a statistical method for predicting future 

values of a time series based on its past values. The NARX model extends the 

traditional AR model by adding exogenous input variables, which are external 

variables that may affect the time series. This allows the NARX model to capture 

the influence of these external variables on the time series and the internal 

dependencies within the time series itself. 

The NARX model is implemented as a feedforward neural network with multiple 

hidden layers and an output layer. The input layer consists of the past values of the 

time series and the exogenous input variables. The hidden layers are used to learn 

the complex patterns in the data, and the output layer produces the forecast for the 

next time step. To train the NARX model, we need to provide it with a dataset of 

past values and exogenous input variables, along with the corresponding future 

values that we want to predict. The model uses this data to learn the relationships 

between the inputs and the outputs and to adjust the weights between the nodes. 

Once the model has been trained, we can use it to make forecasts on new data by 

feeding it the past values and exogenous input variables, and letting it generate a 

forecast for the next time step. 

The NARX model has several advantages for time series forecasting. It can capture 

nonlinear relationships and seasonality in the data and adapt to changes in the 

underlying data distribution. Additionally, the use of exogenous input variables 

allows the NARX model to capture the influence of external factors on the time 
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series, which can improve the accuracy of the forecasts. However, it is essential to 

carefully select the input variables and the model architecture and adequately tune 

the model parameters to achieve good performance with the NARX model. 

The history of neural networks can be traced back to the 1940s and 1950s when 

researchers started exploring the idea of using networks of artificial neurons to 

simulate the behavior of the human brain. The first neural network was developed 

by Warren McCulloch and Walter Pitts in 1943, and it was called the McCulloch-

Pitts neuron. Over the next few decades, researchers continued to develop new 

types of neural networks and explore their potential applications. In the 1960s, the 

Perceptron, a type of single-layer neural network, was developed by Frank 

Rosenblatt. This was followed by the development of multi-layer neural networks 

in the 1980s, which paved the way for the modern deep learning algorithms that are 

widely used today. 

In the 1990s, the field of neural networks experienced a resurgence of interest due 

in part to the availability of powerful computers and the development of new 

learning algorithms. This led to the widespread use of neural networks in various 

applications, including image and speech recognition, natural language processing, 

and time series forecasting. Today, neural networks are a key component of many 

machine learning and artificial intelligence systems and continue to be an active 

area of research and development. 

In summary, neural networks are a powerful and flexible method for time series 

forecasting. They are able to automatically learn and identify complex patterns in 

the data and can be easily fine-tuned to improve their performance. While they may 

require more data and computational resources than traditional methods, they offer 

significant advantages in terms of accuracy and robustness. 
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3. ELECTRICITY DATA PROCESSING AND 

MODELLING FOR ENTSOE 

Electricity is a crucial commodity, and data is collected regularly. However, the 

data might be in different formats and for different periods. Hence special methods 

need to be used for data processing and modeling. In this chapter, the data for 

ENTSO-E will be explored, and proposed methodologies will be discussed. 

The ENTSO-E electricity load data consists of hourly consumption and covers 

2006-2018 (ENTSO-E, 2019b). In order to observe the effects and analyze the 

relation between weather conditions and electricity load, we bought hourly weather 

data corresponding to each country's analysis period. To make the collection of 

weather data easy and consistent in the calculations, we obtained weather data only 

for the capital cities of each country. All data sets were checked carefully, arranged 

in the same time domain, and shown in the same time domain length to standardize 

analysis throughout the study. Missing or incorrect data on an annual base were 

excluded from the study. The countries list was presented in APPENDIX J. 

3.1. Handling Missing Data 

Data quality was checked for each country, and the whole year was excluded in 

case of extensive missing and inaccurate data. Data for Ukraine is excluded because 

the whole country's consumption is unavailable; their grid data record is divided 

into the western and eastern parts of Ukraine. Data for Albania, North Macedonia, 

Northern Ireland, Cyprus, Luxembourg, Montenegro, and Iceland are either 

incomplete or display irregularities are excluded. Among these, part of the data for 

Cyprus and Iceland will be used for specific purposes. Cyprus is a typical example 

of dominant summer consumption for cooling. Iceland is located at high latitudes, 

and it is an example of winter consumption but not for heating purposes. After the 

initial data control, we made systematic checks and processes for each country, as 

listed below; 

• Combine each year's data and make single time series data with 

corresponding time axis for each country and some data excluded annually 

due to extensive missing points or inaccurate records by plotting each year 

for each country. 
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• The synchronization of all country data's time domain with the study's time 

domain 2006-2018; filled the empty data points with NaN. 

• Some zero-value data points, due to wrong records or an hour shift for 

daylight saving, were changed with the closest data point of the same hour 

of the same day. Figure 3.1 is a sample and shows data points for Estonia 

we marked change. 

Figure 3.1: Estonia's original data and corrected ones 

3.2. Main Consumption Profiles 

Electricity consumption is broadly classified as household and 

industrial/commercial/office. Other consumption areas such as railroad 

transportation, street illumination, agricultural needs, and electric vehicles are not 

directly observable from the data; hence they are included in the basic types above. 

The household component consists of the consumption due to household 

appliances, illumination, heating, and cooling needs. Appliances work more or less 

continuously, but illumination needs are determined by the (deterministic) daylight 

cycle, depending on the latitude. The consumption for heating or cooling needs is 
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much more complicated; it depends on weather conditions and social habits that 

determine comfortable temperatures and even display memory effects arising from 

the heating of buildings.  

Commercial electricity use is mainly confined to daylight hours, but it may be 

effective during weekends. On the other hand, offices are usually off during 

weekends. Industrial electricity usage is a crucial component of non-household 

consumption, and it is hard to estimate because certain plants may work 

uninterruptedly. Nevertheless, certain countries may have holidays or vacation 

periods during which all (non-crucial) plants are shut down. In such cases, it is 

possible to estimate the share of purely household consumption from data. The 

relative proportions of weekday and weekend consumption are also an indicator of 

industrial activities. Different consumption patterns are observed when all 

countries' electricity consumption data are examined. The data for Sweden, Croatia, 

Germany, and Poland are displayed in Figure 3.2 as examples.  

 

Figure 3.2: Comparison of consumption patterns for Sweden, Croatia, Germany, 

and Poland 

The consumption of Sweden is high and irregular in winter, indicating the use of 

electricity for heating. For Croatia, increased summer consumption indicates 
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cooling needs, and summer and winter consumption is higher than spring and 

autumn due to the same heating and cooling capacity. The seasonality of electricity 

consumption in Germany and Poland is less dominant, indicating a higher weight 

of industrial consumption. Substantial weekly variations are also indicators of 

industrialization. The consumption patterns for Germany and Poland are at different 

scales but follow a similar pattern throughout the year. 

 

 

Figure 3.3: Comparison of consumption patterns for Cyprus, Greece, Spain, and 

Italy  

Figure 3.3 presents the hourly electricity consumption of four Mediterranean 

countries, Cyprus, Greece, Spain, and Italy, for 2014. Cyprus has a typical 

Mediterranean climate with mild winters and hot summers. Thus, electricity 

consumption is expected to be higher in summer. The climate in Greece is more 

moderate than in other selected countries, and summer and winter consumptions 

are comparable. The climate in Spain and Italy are also mixed, and industrial 

electricity usage has a higher share for these countries, so the increase in electricity 

consumption in summer is less dominant. In Italy, the low consumption period in 

summer corresponds to the shutdown of industrial plants due to summer vacation. 
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Figure 3.4: Comparison of consumption patterns for Norway, Iceland, France, and 

Bulgaria 

Increased electricity consumption in winter is related to both the diminishing of 

daylight hours and the use of electricity for heating. Hence, increased electricity 

consumption in winter may not be the sole indicator of its usage in heating. In 

Figure 3.4, we present electricity consumption for 2014 in the high-latitude 

countries Sweden and Iceland and the mid-latitude countries France and Bulgaria. 

Although Sweden and Iceland are high-latitude countries, the increase in winter 

consumption for Iceland is moderate compared to Sweden. 

3.3. Special Event & Holiday Detection 

Special days and events are crucial for determining the daily base household 

consumption profiles, hence estimating the share of commercial and industrial 

consumption. National or religious holidays or annual industrial shutdowns that 

occur more or less on fixed dates can be considered an anomaly in data, but these 

are typical consumption pattern characteristics. Time series can also be used for the 

special day and event detection (Zhang et al., 2019). Most existing studies for 

detecting events focus on the end-user level consumption to explain different load 
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profiles, energy efficiency for household appliances, and energy management (Eibl 

et al., 2018; Gajowniczek et al., 2017; Goia et al., 2010; Goodwin & Yazidi, 2014). 

There are different approaches and applied methods to detect special events. 

However, they mostly use smart meter data gathered from specialized devices for 

specific conditions or users and aim to detect occupancy (Akbar et al., 2015; Becker 

& Kleiminger, 2018).   

Holidays and special events can be country-specific or regional, like New Year’s 

Eve, Christmas holidays, or time changes for daylight savings throughout Europe. 

In Muslim countries, the dates of religious holidays shift earlier every year because 

they are determined according to the lunar calendar. Also, those countries with 

higher industrial activities have industrial shutdown periods in summer. In the 

below figure, we display a close-up of the data for Türkiye and Italy as typical 

examples. In the first one, we display the low consumption period in Türkiye, 

corresponding to religious holidays.  

 

(a)      (b) 

Figure 3.5: Holiday consumption changes. (a) Türkiye, low consumption periods 

coincide with religious holidays; (b) Italy, low consumption period corresponds to the 

shutdown of industrial facilities in mid-summer 

The dates of these religious holidays based on the lunar calendar shift back by ten 

days each year relative to the Gregorian calendar. In such cases, FSE fails to detect 

and predict these periods, and special treatment for these events is needed. The 

decrease in consumption in Figure 3.5 corresponds to an industrial shutdown period 

in Italy. 

It is challenging to map days to events directly as there is incomplete information 

and uncertainty about the aggregate data for a specific daily consumption. 
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Therefore, the impact of an event on daily or hourly consumption is difficult to 

estimate accurately. Hence, an unsupervised model to distinguish 

special/exceptional events from data is proposed to determine whether a specific 

day is special/exceptional or not. First, the data structure is changed, and 

consumption patterns are evaluated for each hour individually so that the daily 

average does not disguise the irregularities in consumption. Generally, consumption 

is meager and stable at midnight compared to intraday. That is why, when the data 

is analyzed based on average consumption in a day, most of the special/exceptional 

events are not noticed. 

On the other hand, when the weekly averages are considered and compared based 

on weekly average load data, every Sunday’s load becomes special/exceptional as 

it is lower than that of other days in a week. The data is split into weekdays and 

weekends to prevent misleading results, providing a logical comparison as the same 

profile is expected every weekday according to consumers’ daily routines. 

However, there are also significant differences between night and daytime 

consumption, preventing the correctly detecting special/exceptional events.  

For each country, the time span of the data is arranged as starting at midnight hour 

00:00 of a Monday of the first year until ending at hour 23:00 of the Sunday of the 

last year under consideration. If the data covers 𝑁 weeks, this time series is arranged 

in the form of a matrix 𝑆𝑡𝑜𝑡𝑎𝑙 with 24 rows and 7 × 𝑁 columns. With this 

rearrangement, the columns with index 6 + 7𝑘, 𝑘 = 0,1, … , 𝑁, correspond to 

Saturdays, the columns with index 7𝑘, 𝑘 = 1,2, … , 𝑁 correspond to Sundays, and 

the remaining columns correspond to weekdays. Then, matrices corresponding to 

weekdays, Saturdays, and Sundays are denoted by 𝑆𝑤, 𝑆𝑠𝑎𝑡, 𝑆𝑠𝑢𝑛, respectively. With 

this setup, each row of 𝑆𝑡𝑜𝑡𝑎𝑙 is a time series for a given hour and 𝑆𝑤, 𝑆𝑠𝑎𝑡, 𝑆𝑠𝑢𝑛 are 

subset of 𝑆𝑡𝑜𝑡𝑎𝑙 .  

Generally, consumption is meager and stable at midnight compared to intraday, as 

we highlighted before. Let 𝑡ℎ,𝑑  be the consumption at the hour ℎ of the day 𝑑 in 

𝑆𝑤,. In order to decide whether 𝑡ℎ,𝑑 is an outlier or not, we compare it to the mean 

of the same hours in the days, covering two days before and two days after the 

current days 𝑑. The consumption ratio, 𝑂ℎ,𝑑, is defined as: 

𝑂ℎ,𝑑 =
𝑡ℎ,𝑑

(𝑡ℎ,𝑑−2+𝑡ℎ,𝑑−1+𝑡ℎ,𝑑+𝑡ℎ,𝑑+1+𝑡ℎ,𝑑−2)/5
    (3.1) 
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We compare an hour on weekdays within the previous and later weekdays and an 

hour on Saturday and Sundays within the previous or next week’s Saturday and 

Sunday.  

We choose a threshold value 𝑇ℎ,𝑑 = 0.95 to decide whether the hour ℎ of day 𝑑 is 

an exceptional hour or not. We define the index 𝐸ℎ,𝑑 = 1 if 𝑂ℎ,𝑑 < 𝑇ℎ,𝑑, otherwise 

𝐸ℎ,𝑑 = 0 to label each hour. Thus, depending on the threshold, each hour is 

classified as an “exceptional hour” (𝐸ℎ,𝑑 = 1) or an “ordinary hour” (𝐸ℎ,𝑑 = 0). 

Clearly, each day can have between 0-24 exceptional hours. 

In order to decide whether a day is an ordinary or an exceptional day, we count the 

number of exceptional hours on that day as: 

𝑂𝑑 = ∑ 𝐸ℎ,𝑑
24
ℎ=1      (3.2) 

The classification of a day as an “ordinary day” or an “exceptional day” is based on 

a choice of a threshold 𝑇𝑑. If  𝑂𝑑 > 𝑇𝑑, then the day 𝑑 is classified as an 

“exceptional day”; otherwise, it is classified as an “ordinary day.” Night hours tend 

to be ordinary, even if a day is extraordinary. Based on this observation and 

preliminary analysis, we have chosen 𝑇𝑑 = 10 means that if approximately 85% of 

intra-day hours are exceptional, the day also exceptional too. The threshold value 

can be adjusted according to the different analysis purposes. A smaller threshold 

can provide a detailed analysis of changes in daily demand or consumption, like 

power plant failure or any incident affecting national daily routines. 

Finally, after determining the exceptional dates for each year in whole data on a 

country basis, we count and compare these dates' occurrences. If a particular day of 

a particular month appears consistently unusual, that date is a nationally important 

day or a national holiday for the country concerned. With his method, we were able 

to identify several exceptional days from data, including Christmas, Easter Monday, 

and All Saints and some specific holidays such as “Epiphany” (the sixth of every 

January) in Germany or “All Saints’ Day” (first of every November) in certain 

countries. Also, it is found from the data that there is no holiday on May 1 as a 

“Labour Holiday” in the United Kingdom, but the “May Bank Holiday” is 

celebrated on the first Monday of May each year. In the below table, we presented 

the results for Australia. As seen in Table 3.1 fixed holiday frequency of marked 

https://excelnotes.com/epiphany/
https://excelnotes.com/all-saints-day/
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extraordinary is nearly equal to the data length. Some missed ones, like National 

Day or All Saints’ Day, are due to weekend effects. 

Table 3.1: Special event detection result for Australia 

Date 
Count the date 

 when 𝑻𝒅 > 𝟏𝟎 
Data Length (Year) 

Day Info (Austria Public 

Holidays 2022 - 

Qppstudio.Net, n.d.) 

24-Dec 12 12 Christmas Eve bank holiday 

25-Dec 12 12 Christmas Day 

26-Dec 12 12 St. Stephen`s Day 

15-Aug 11 12 Assumption Day  

06-Jan 10 12 Epiphany Day 

01-May 10 12 Labor Day 

26-Oct 10 12 National Day 

01-Nov 10 12 All Saints` Day 

08-Dec 10 12 Conception Day  

01-Jan 9 12 New Year 

 

We also note that the method explained above can automatically detect 

special/exceptional days when such holidays are on fixed days of the calendar year 

or variable days, such as holidays based on the lunar calendar. 
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4. ELECTRICITY DEMAND MODELING AND 

FORECASTING 

Electricity demand has an increasing trend component, climatic effects, and 

stochastic characteristics. A linear model of a modulated FSE was used to forecast 

hourly electricity demand over a 1-year horizon. This method is handy in cases 

where periodic variations are dominant and electricity is used predominantly for 

illumination, i.e., negligible heating and cooling-related demand. The method can 

be used to forecast and understand how electricity consumption is affected by 

external factors or changes (Yukseltan et al., 2017, 2020). 

The modulated FSE model can be summarized as follows. A periodic function 𝑓(𝑡) 

with period 𝑇 can represent an infinite sum of cosine and sine functions with periods 

𝑇/𝑛. Those sinusoidal functions with periods 𝑇/𝑛 are called the “harmonics” of the 

main variation. In the time series for the hourly electricity demand, the dominant 

component is the daily variation within 24 hours. The harmonics of this variation 

have periods of 12, 8, 6, 𝑎𝑛𝑑 24/𝑛 hours.  

In addition to these “fast” variations, there are weekly and seasonal variations. The 

weekly variation reflects the weekend effect, i.e., industrial and office consumption 

shutdown. Seasonal variations have components arising from illumination, heating, 

and cooling needs. The change in the demand due to the changes in the daylight 

hours can be incorporated into the FSE by adding the “modulation” of the high-

frequency variations (i.e., sinusoids with periods of 24/𝑛 hours, 𝑛 ⋲ ℤ+) and the 

low-frequency variations (i.e., the harmonics of the seasonal variation with periods 

of 365/n days, 𝑛 ⋲ ℤ+). This “modulation” considers the variations in the amplitude 

of the 24-hour variation throughout the year. It is obtained by adding the products 

of high- and low-frequency harmonics as regressors. The demand arising from 

heating and cooling needs is modeled by adding the deviations from comfortable 

temperatures as a regressor to the linear model. In addition to these periodic 

components, overall trends arise from demographics and economic growth. Finally, 

it should be noted that electricity demand on special days, such as holidays, has to 

be treated separately.  

Other time-series methods, such as AR or ARMA, focus on short-term electricity 

consumption forecasts. However, the modulated FSE provides hourly forecasts 
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over a long-term horizon, such as a year, within good modeling and forecast errors, 

particularly in cases where illumination and industrial usage are dominant. 

The number of regressors to be included in the modulated FSE is limited 

theoretically by the “Sampling Theorem,” stating that the shortest period that can 

be included in the expansion is twice the sampling interval, in this case, 2 hours. 

Hence, the number of regressors should be large enough to capture the essence of 

the data but should be moderate to avoid the inversion of matrices with high 

condition numbers. 

In the model, the daily electricity demand is denoted by 𝑆. A constant vector 

(represented by 1) and a linear term (represented by 𝑡) are used for the linear trend 

in the data. Periodic variations consist of 𝑋𝑛 (the nth harmonics of sinusoidal 

functions with a period of one year, i.e., 364/n days), 𝑍𝑚 (the mth harmonics of one 

week, i.e., 7/m days) and of 𝑌𝑘 (the kth harmonics of sinusoidal functions with 24 

hours, i.e., 24/k hours). The regressors that represent the modulation of the high-

frequency variations (𝑍𝑚 and 𝑌𝑘)  by the low-frequency variations (𝑋𝑛) is included 

by the component-wise product of the corresponding vectors, denoted as 𝑋𝑛𝑍𝑚 and 

𝑋𝑛𝑌𝑘. The number of this last group of regressors should be moderate to avoid over-

learning. The effect of climatic conditions is represented by 𝑇𝛿 = abs(𝑇𝑐 − 𝑇), 

which measures the deviation from a threshold temperature 𝑇𝑐, that people start to 

use electricity for cooling or heating. The representation of the model is as follows. 

𝐹 = [1, 𝑡, 𝑋1  𝑋2 … 𝑋𝑁 , 𝑍1  𝑍2 … 𝑍𝑚, 𝑌1  𝑌2 … 𝑌𝐾 , 𝑋1𝑍1. . 𝑋𝑖𝑍𝑗  . . 𝑋1𝑌1. . 𝑋𝑘𝑌𝑙  𝑇𝛿]   (4.1) 

Then, the coefficient vector 𝑎 and model vector 𝑦 can be calculated as below. 

𝑎 = (𝐹𝑡𝐹)−1𝐹𝑡𝑆       (4.2) 

𝑦 = 𝐹𝑎     (4.3) 

The model is adopted for the forecast as follows. Data is split into “training” and 

“test” periods. Recall that the regression coefficients are obtained from 

Equation (18), where 𝑆 is the data and 𝐹 is the matrix, whose columns are the model 

functions, and the best fit to the data in the mean square sense is given by Equation 

(8).  The data splitting into training and test periods corresponds to the splitting of 

the matrix F and the vector S as, 𝐹 = [𝐹1𝐹2], 
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𝑆 = [𝑆1𝑆2],  where 𝐹1 and 𝑆1 cover the training period. The model coefficients are 

computed in terms of 𝐹1 and 𝑆1 as follows. 

𝑎1 = (𝐹1
𝑡𝐹1)−1𝐹1

𝑡𝑆1   (4.4) 

The forecast for the test period is obtained from the equation below. 

𝑦2 = 𝐹2𝑎1     (4.5) 

The forecast error is the norm of the difference between the forecast for the test 

period, 𝑦2, and the data for the test period, 𝑆2; |𝐹2𝑎1 − 𝑆2|. 

4.1. Long Term Modelling and Forecasting 

We applied the model we created for all countries. While applying the model, we 

used 2-year hourly data as the observation period and predicted the next year 

according to this data. 

 

Figure 4.1: Austria's actual consumption and forecast between 2012-2017.  

In short, we estimated each year based on the data of the previous two years. We 

can easily change the training data and estimation period with the modulated 

Fourier series to forecast different periods. Although one-year estimates have been 
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compared to assess the results, this period may be extended for different purposes. 

Long-term forecasts play an important role in deciding the medium and long-term 

projections of electricity installed capacity and consumption and determining the 

investments to be made. As seen in Figure 4.1, we presented actual consumption 

and forecast result for Austria in the period between 2012-2017 years. The yearly 

forecast errors for all countries are shown in Appendix B. 

We adopted the same method, and we updated the model parameters using data 

from the previous 2-year period to predict the next day and repeat this procedure 

for each day. The method can be interpreted as viewing data over a sliding 

observation window of two years (2x52x7 days) and applying the forecast with a 

1-day roll-over period.  

Every day, the model is updated using the latest available data. Figure 4.2 presents 

the day ahead forecast and the histogram of the error distribution for the day ahead 

forecast model. 

 

Figure 4.2:  Data and day-ahead forecast for 2012-2017 (upper panel) and  histogram 

(lower panel) 
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The same methodology can be used for day-ahead forecasts. MAPE values for the 

day-ahead forecast errors are given in Appendix C. The daily rolling forecast has a 

lower error rate compared with the yearly forecast results. However, these results 

show how consistent the results obtained for the long-term projection are and have 

great flexibility in making forecasts for different periods. This model can be quickly 

revised and applied to forecast periods such as weekly, monthly, quarterly, or semi-

year. 

4.2. Short Term Modelling and Forecasting 

In the previous section, we presented the results for predicting hourly consumption 

over 1-year and 1-day horizons in modulated Fourier expansion. The actual 

consumption and daily forecast discrepancies are mainly due to weather conditions 

or unplanned extended holidays. Although it would be possible to incorporate 

climactic information into the model, we prefer to adopt a data-independent 

approach. In this section, we obtain a 1-hour ahead forecast for consumption as a 

correction term to the 1-day horizon forecasts. This simple approach is the 

“feedback” method that consists of adding a multiple of the forecast error for the 

previous hour as a correction term.  

In order to determine the best feedback parameter, the model is run with feedback 

parameters in a particular range, and the forecast errors are calculated. The value 

leading to the lowest MAPE and RMSPE values is chosen as the feedback 

parameter.  The feedback parameter based on the whole period is k=0.96. In order 

to study the time variation of the feedback coefficient, this procedure is repeated 

every quarter, and the resulting feedback coefficients are plotted below figure, 

together with their bounds. Although the coefficient change is essential, the 

determined 0.96 coefficient gives a reasonable result. Continuous coefficient 

updating or using a fixed coefficient may vary depending on the area where the 

results to be obtained will be used. For general planning, a quick result can be 

obtained using a fixed coefficient, or for more detailed planning, the coefficient can 

be updated in different short periods. 

The correction coefficient can be applied quickly once the predicted period's actual 

value is formed. If we call the new forecast value 𝑧(𝑛), the feedback is expressed 
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as follows: S and y are the observed and predicted values, respectively, and k is the 

feedback coefficient. 

𝑧(𝑛) = 𝑦(𝑛) + 𝑘 (𝑆(𝑛 − 1) − 𝑦(𝑛 − 1))         𝑛 > 1   (4.6) 

Instead of the correction coefficient, a more sophisticated autoregressive model can 

be applied. However, determining the coefficients with the autoregressive method 

and also determining which periods have systematic errors requires more complex 

calculations. For comparison, estimation errors were also analyzed with the 

autoregressive method. Figure 4.5 shows partial autocorrelation graphs before and 

after the autoregressive model is applied.  

 

Figure 4.3: Best feedback coefficient based on six years of data 
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Figure 4.4:  Best feedback coefficients based on 3-month periods.  

 

Figure 4.5: The partial autocorrelation function for the difference between data and the 

day-ahead forecast before and after applying AR modeling. 

As can be seen from the original partial autocorrelation graph, lags 1 and 25 have a 

dominant effect on the latest error. Likewise, it can be said that delay number 24 
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has a limited effect on the final error. Therefore, we took the autoregressive 

modeling (𝐴𝑅(𝑝)), 𝑝 value as 25 for analysis. However, autoregressive models 

generally calculate the coefficient of all lags whose 𝑝 value is less than itself. For 

𝐴𝑅(25), values for all lags between 1 and 25 are calculated. In the analysis, only 

the coefficients of lags 1,24, and 25 were calculated using the MATLAB library. In 

the autoregressive model, the coefficient of the first lag regressor is c1= 0.900, 

which is close to the value found by the best feedback coefficient, k=0.96. 

Coefficients for lag 24- and 25-hour are c24= 0.476 and c25= -0.440, respectively. 

The model for the forecast 𝑧(𝑛)  is given by 

𝑧(𝑛) = 𝑦(𝑛) +  𝑐1ℎ(𝑛 − 1) + 𝑐24ℎ(𝑛 − 24) + 𝑐25 ℎ(𝑛 − 25)  𝑛 > 25  (4.7) 

 

Figure 4.6: Data and day-ahead forecast with feedback for 2012-2017 (upper panel) and 

histogram (lower panel). 

𝑦(𝑛) is the day-ahead linear regression model, ℎ(𝑛) differences between 

observation and forecast (𝑆(𝑛) − 𝑦(𝑛)). The autoregressive model applied to the 

difference between the data, and the day-ahead forecast improves the simple 

feedback by adding correlations at multiple lags.  The forecast made with the 

feedback and the error distribution graph is given in Figure 4.6 for Austria as an 
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example. Although the error rate is higher when compared with the autoregressive 

method, as shared in Appendix D and E for each country, it can be said that the 

increase in the error rate is at a reasonable level according to its easy and fast 

applicability. 

 

Figure 4.7: Error change for different forecast horizons by countries 

In order to compare the long-term and short-term model results for different 

periods, the error changes of each country are plotted below. Figure 4.7 shows that 

the model forecast results get better for most countries when the forecast horizon 

gets shorter. For some countries yearly forecast performs better than the semi-year 

because of the dominancy of a yearly cycle. Autoregressive and feedback method 

results are very close to each other. A simple feedback parameter efficiently clears 

the systematic errors and helps obtain residuals in white noise form. Another 

significant property of the model, there is no high variance in the different forecast 

horizons. The model effectively answers forecast horizon changes within the 

acceptable error range. If the autoregressive and feedback correction models are 
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excluded, we can say that daily, monthly, quarterly, semi-year, and yearly forecasts 

are distributed in two-sigma bounds. 

4.3. Analysis of Weather Conditions on Consumption 

Temperature is one of the primary external information that affects electricity 

consumption. The sensitivity of the consumption depends on countries’ resource 

allocation for heating and cooling. If the electricity is used for heating, consumption 

during winter is high and irregular. On the other hand, if electricity is used for 

cooling, summer consumption is higher and irregular. Furthermore, residential use 

of electricity for heating or cooling may lead to a difference in the weekend and 

weekday consumption. In general, irregularity indicates electricity usage for 

heating and cooling purposes. In such cases, the data must be supplemented by 

meteorological information to make a reliable model and forecast. We calculated 

each country's average cooling and heating days to compare countries' climatic 

conditions. We separately calculated the hourly temperature deviation from the 

comfortable temperature for winter and summer. Comfortable temperatures for 

winter (𝑇𝑤) and summer (𝑇𝑠) are determined as 18.5º and 23º Celsius, respectively. 

There are other comments about the ambient temperature level in winter and 

summer, but these values are acceptable to mark the start of the heater or cooler 

use. We calculated the cooling (CDD) and heating (HDD) degree requirements for 

each hour 𝑖 with the equations below. 

𝐻𝐷𝐷𝑖 = 𝑀𝑎𝑥(𝑇𝑤 − 𝑇𝑖, 0)    (4.8) 

𝐶𝐷𝐷𝑖 = 𝑀𝑎𝑥(𝑇𝑖 − 𝑇𝑠, 0)    (4.9)  

Figure 4.8 presents the heating and cooling needs of the European countries in the 

grid. As seen in the figure, while Northern European countries such as Iceland, 

Norway, and Sweden have a higher need for heating needs, central European 

countries such as Romania and Hungary have a more balanced climate, and it can 

be said that their cooling and heating needs are equal. In contrast to Northern 

Europe, countries in the Mediterranean region, such as Greece and Cyprus, need 

more cooling needs. The difference in heating and cooling energy needs directly 

affects the electricity consumption characteristics of countries. Especially the direct 
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and individual use of electrical energy in heating and cooling causes too much 

variability in consumption. 

 

Figure 4.8: Average heating and cooling degree days for European countries in the 

ENTSO-E grid 

We recall that electricity consumption for illumination and industrial purposes is 

more or less deterministic, and the modulated Fourier series expansion provides 

entirely satisfactory models. On the other hand, electricity consumption for heating 

and cooling is temperature dependent and cannot be determined solely from the 

periodicities in the data. Firstly the model is developed using solely modulated 

Fourier series expansion to detect the share of electricity consumption for heating 

or cooling. Then we supplemented the model with deviations from comfortable 

temperatures as an additional regressor. The average forecast errors range from 3% 

to 11% for the selected countries with different consumption patterns. The model 

can be used to predict hourly consumption over a year, with an accuracy of around 

3% in cases where the usage of electricity for heating purposes is not dominant. 
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Figure 4.9: Improvement in the modeling error after adding deviations from comfortable 

temperatures as a regressor 

The improvement in the modeling error when using temperature deviation from 

comfortable temperature as a regressor is shown in Figure 4.9. From Figure 4.9, 

one can see that Norway, Sweden, Finland, Serbia, and France form a cluster of 

countries for which electricity consumption is weather dependent. For the 

remaining countries, the improvement in the error decreases gradually. It is 

noteworthy that this improvement is the lowest for Germany and Denmark. 
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Figure 4.10:  Improvement in the modeling error for Finland, Sweden, France, and 

Serbia (Black series: Standart Model, Red series: Using temperature deviation as a 

regressor) 

In Figure 4.10, we present the improvement in the errors for Finland, Sweden, 

France, and Serbia as examples of the most significant improvement in the error. 

We note that a significant improvement obtained by introducing temperature 

information is not enough to conclude that electricity is used for heating. For 

example, in Sweden, electricity is not used directly for heating; there is a central 

heating system. The system pumps hot water, and electricity is used to operate these 

pumps for large regions (Werner, 2017). 

Figure 4.11 shows error improvements using temperature for other selected 

countries, Greece, the United Kingdom, Spain, and Germany. Although Spain and 

Greece are in the warm climate zone, there has been a slight improvement in the 

model error rate. However, it cannot be said that the model in which heat is used 

makes a difference in Germany and the United Kingdom, which have high 

industrial consumption. It can be said that the effect of electricity used for heating 

and cooling on total consumption in these countries is limited. 
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Figure 4.11: Improvement in the modeling error for Greece, the United Kingdom, Spain, 

and Germany (Black series: Standart Model, Red series: Using temperature deviation as a 

regressor) 

In the previous figures, the relationship of the model created with temperature for 

some selected countries was given in detail by years. These figures show that 

Finland and Sweden are well-defined clusters of countries whose electricity 

consumption strongly depends on cold temperatures. The cluster consisting of 

Greece and Spain has low heating needs and does not benefit from additional 

climatic information. 

In order to create a clearer picture, the model output can be used to see the 

relationship of all countries with temperature, and the average CDD and HDD 

values of all countries are calculated. The average model error improvement versus 

CDD and HDD are plotted as follows. 

In Figure 4.12 and Figure 4.14, we see the other countries similar to selected 

countries, like Italy and Portugal, or see clearly how Norway, Sweden, and France's 

electricity consumption response to temperature changes. Iceland also shows 

different characteristics, even having higher heating requirements. They use district 

heating systems, and electricity is not the primary resource for heating in Iceland. 

Hence, electricity consumption cannot affect the model result much. We got this 

information directly from the consumption data and corroborated it from Iceland's 

official sources. According to the ministry of the environment and climate, 65% of 

total energy consumption came from geothermal resources in 2016.  
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Figure 4.12: Percentage improvement in the modeling error as a function of average 

heating degree days 

Similarly, the percentage improvement in the error as a function of average cooling 

degree days is shown in the figure below. This graph shows data for Cyprus and 

Türkiye as examples of Mediterranean countries with higher cooling needs. In this 

figure, Cyprus and Greece appear as a cluster of countries with high cooling needs 

and benefit from introducing weather information. The cluster in the upper left, 

consisting of Norway, Sweden, and Finland, significantly improves the modeling 

error as previously. However, as they have low cooling needs, this improvement 

cannot be tied to information about high temperatures. 
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Figure 4.13: Percentage improvement in the modeling error as a function of average 

cooling degree days 

As a further confirmation of the use of electricity for heating or cooling and 

deciding whether the improvement obtained by introducing temperature 

information is related to high or low temperatures, the scatter plots of the electricity 

consumption together with a piecewise linear fit to the data are given.  

The following figures (Figure 4.14-40) present the scatter plots of the mean hourly 

consumption for Cyprus, Spain, Germany, and Finland, respectively, for weekdays 

and weekends, for 2016-2018. We also note that these scatter plots indicate that 

each country's threshold for “comfortable temperatures” differs. In fact, these 

graphs show at which temperature level the electricity consumption characteristics 

of the countries change. This ensures that the comfort temperature, which we 

previously took as the same for all countries, is calculated differently for each 

country. 
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Figure 4.14: Mean hourly consumption (MW) with respect to temperature for the years 

2016-2018, Cyprus 

 

Figure 4.15: Mean hourly consumption (MW) with respect to temperature for the years 

2016-2018, Spain 
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Figure 4.16: Mean hourly consumption (MW) with respect to temperature for the years 

2016-2018, Germany 

 

Figure 4.17: Mean hourly consumption (MW) with respect to temperature for the years 

2016-2018, Finland 

These figures show that in Cyprus, it is clearly seen that electricity is used for 

cooling after a threshold slightly higher than 20º Celcius. The relatively low 

difference in consumption between weekends and weekdays indicates a low level 
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of industrialization. For Spain, the mean hourly consumption as a function of 

temperature indicates a moderate use of electricity for cooling. The difference 

between weekend and weekday consumption is a good example of a higher level of 

industrialization. In Germany, another excellent example of higher industrial 

consumption, electricity is used moderately for heating and cooling. However, 

industrial consumption dominates because the maximal consumption is almost 

independent of temperature, particularly during weekdays. The data for Finland 

shows that electricity consumption increases linearly with the absolute value of the 

difference from temperatures around 10º Celcius.  

In order to quantify the electricity consumption dependence on heating and cooling, 

we used a piecewise linear fit to the scatter plot of the electricity consumption as a 

function of temperature. A one-dimensional optimization estimates the junction of 

the lines with positive and negative slopes by minimizing the least-squares error of 

the regression lines. Typical results for the year 2014 are shown in Figure 4.18 for 

selected countries.   

 

 

Figure 4.18: Piecewise linear fits to the electricity consumption data for the year 2014 for 

Norway, Greece, France, and Serbia 
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Recall that Norway and Greece are expected to use electricity for heating and 

cooling needs, respectively. This is consistent with steeper slopes at low and high 

temperatures, respectively. For France and Serbia, the slopes at colder temperatures 

are steeper; thus, we can conclude that the use of electricity for heating purposes is 

more common in these two countries. 

 

Figure 4.19: Slopes of piecewise linear fits for heating and cooling needs 

 

To obtain a clustering of the ENTSO-E countries according to their use of electricity 

for heating and cooling purposes, we plotted the slopes of the regression lines at 

high and low temperatures as a scatter plot. Note that for Norway, the slope of the 

regression line is slightly negative; such cases have occurred in a few countries, and 

these exceptional values were replaced by zero. This information is displayed in 

Figure 4.19 and Figure 4.20.  

Those countries with a large slope, Italy, Spain, Germany, the United Kingdom, 

and France, form a cluster. Italy and France are characterized by steeper slopes for 

cooling and heating needs, respectively. Close-ups excluding these countries are 

presented at below. 
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Figure 4.20: Close-ups on slopes of piecewise linear fits for heating and cooling 

needs 

As seen from Figure 4.20, at a first close-up, Norway and Sweden appear as 

countries whose electricity consumptions are sensitive to cold temperatures. In 

contrast, Netherlands and Poland appear to be sensitive to warm temperatures. The 

sensitivity of Finland to low temperatures is seen only in the second close-up. 

A high level of consumption in winter may not be tied directly to heating because 

electricity consumption can be much higher in winter compared to summer, due to 

shorter daylight hours, especially at high latitudes. Nevertheless, a well-defined, 

linear increase in consumption as a function of the deviations from comfortable 

temperatures clearly indicates the use of electricity for heating or cooling, as in the 

case of Norway, Sweden, and Finland. 

4.4. Demand Segregation 

Electricity consumption differs on holidays from typical consumption patterns as 

the closure of industrial facilities is common for such nationwide events. Public and 

industrial routines change during these periods, and these changes can be used to 

estimate the portion of industrial and household consumption on total demand. 

Consumption patterns during holidays occurring in different seasons may also 

provide information about heating and cooling demand. During holidays in spring 

or autumn, heating and cooling needs are minimal, and electricity consumption 

consists of primary household usage. For holidays occurring in winter or summer, 

the consumption would be the sum of primary household usage and household 

heating and cooling. Thus holidays occurring at different seasons of the year for the 

same country can provide information on the portion of household electricity 

consumption for heating and cooling. 
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To further clarify the methodology, the consumption components are classified 

below. 

Household usage (H0): This component consists of the electricity used in residential 

units on a 24-hour basis, such as refrigerators, computers, and other home 

appliances, and the consumption for illumination purposes. This component of 

electricity consumption is relatively deterministic and consists of a constant term 

superimposed by variations of 24 hours. Due to shorter daylight hours, these 

variations have higher amplitudes in winter, i.e., the diurnal variations are 

modulated by seasonal variations. Also, the shape of the daily variation curves gives 

clues about the work habits in society.  

Household heating-cooling (H1, H2): This component is the consumption due to 

household heating, and it appears as high and irregular in winter and summer. It has 

a strong dependence on deviations from comfortable temperatures. The heating-

cooling requirement in social areas is the same throughout the week, i.e., for both 

weekdays and weekends, and they are considered as part of household heating-

cooling.  

Industrial (Non-stop production) and Base consumption (I0): This component 

consists of the consumption for the industrial sectors that never stop their 

production, even on holidays. The sum of H0 and I0 represents the lowest 

consumption periods in the consumption profile of a country. 

Industrial & Commercial consumption (I1): This component consists of electricity 

used by industrial plants and commercial facilities that work during weekdays. 

Office consumption is considered part of industrial consumption. This component 

can be estimated from the difference between weekday and weekend consumption.  

Industrial & Commercial heating-cooling (I2, I3): This component consists of 

heating and cooling consumption in the industry; seasonal differences on holidays 

and weekends can be used to estimate a portion of this consumption. 

The relation between these components based on the season is shown in Table 4.1, 

where we divide electricity consumption into its components according to season 

and type of day. We do not use Saturday consumption data even though it is similar 

to Sunday. Saturday can have mixed industrial and household components because 

there is no specific regulation that makes Saturday a working day or not. However, 



 

89 

 

it can also be added as a weekend, which generalizes the algorithm for every 

country. There will be no such significant differences as annual averages are used. 

Table 4.1: Electricity components based on the season and day type 

 Type of Day 

Season Holiday Weekday Sunday 

Holiday Nighttime 

(Hours 00:00-

05:00) 

Winter H0+I0+H1 
H0+I0+I1+I2+H

1 
H0+I0+H1 I0+H1 

Spring H0+I0 H0+I0+I1 H0+I0 I0 

Summer H0+I0+H2 
H0+I0+I1+I3+H

2 
H0+I0+H2 I0+H2 

Autumn H0+I0 H0+I0+I1 H0+I0 I0 

 

As seen in the Table, we take average consumption at night time in spring and 

autumn as a reference base consumption because we assumed that there is no or 

negligible consumption for heating-cooling in this period. Also, household 

consumption is negligible at night due to consumers’ daily routines. The exact 

period of winter and summer differs because of geographical places.  

If we denote the hourly consumption on holidays as 𝑃𝑛𝑖, where 𝑖 represents the hour 

of day 𝑛, and 𝑘 represents the total number of holidays in a given period, base 

consumption 𝐼0 will be calculated as follows; 

𝐼0 =
∑ ∑ 𝑃𝑛𝑖

5
𝑖=1

𝑘
𝑛=1

5∗𝑘
     (4.10) 

The weights of other variables can be calculated after determining the average base 

consumption and setting it as 100% in order. Each component’s weights are shown 

in Table 4.2 for Türkiye and Germany for 2016-2018 and 2006-2018, respectively. 

Cooling consumption in summer is more than heating in winter because Türkiye 

mostly depends on natural gas for heating in winter. Moreover, the cooling 

requirement is higher for social areas and households than for commercial and 

industrial areas. On the other hand, Germany’s household heating and cooling 

consumption are minimal because the primary resource for heating is natural gas, 

and the cooling requirement is relatively less. The results can give an idea about 

how any consumption purposes contribute to total electricity consumption in 

different seasons. 
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Table 4.2: Weights of electricity consumption components for Türkiye and Germany 

(2006-2018) 

Country H0 H1 H2 I0 I1 I2 I3 

Türkiye 12.21% 6.84% 13.71% 100% 23.32% 1.69% 9.02% 

Germany 20.62% %~0 1.05% 100% 31.35% 7.08% %~0 

 

From a production planning perspective, demand segregation can be vital because 

it efficiently schedules electricity generation resources. Suppose the electricity 

demand is adequately segmented. In that case, production planning can be carried 

out to ensure that the appropriate generation resources are used to meet the needs 

of each class of consumption, or forecast results can be adjusted according to the 

same days in different seasons. This can help to reduce costs, improve efficiency, 

and ensure that power is delivered to customers reliably and consistently. 

The developed approach that automatically estimates demand type could be a 

valuable tool for utilities and other organizations involved in the electricity market. 

It could help them better to understand the demand patterns of different classes of 

customers and make more informed decisions about how to allocate resources to 

meet those demands. Moreover, it can be directly used as input for any forecast 

model to detect and treats special days differently without spending much efforts. 

However, it is important to note that demand segregation can be a complex issue 

that depends on various factors. Any algorithm used to estimate it must be carefully 

designed and validated to ensure that it produces accurate and reliable results 

according to the aim of usage. 
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5. TÜRKİYE ELECTRICITY MARKET STRUCTURE 

AND IMBALANCE REDUCTION METHODOLOGY 

5.1. Data and Bidding Types 

Turkish Electricity Markets consist of three different markets, and these are Day-

Ahead Market (DAM), Intra-Day Market (IDM), and the Balancing Market (BM). 

These markets are in the organized market category and regulated by the system 

operator. There is a schedule to participate in every market with a specific deadline.  

Participants in the Turkish electricity market should give their offer for the next day 

until 13:00. At 13:30, the system operator informs every participant of accepted 

offers and quantities. The participants have the right to object between 13:30 and 

13:50, and these objections are evaluated until 14:00 by the system operator. 

Finally, the system operator announces a conclusive price and quantity for the next 

day. 

After completing the DAM process, the participants provide the requested 

information to qualify for the IDM. At 18:00, IDM becomes active. The participants 

can make transactions for each hour of the next day; orders can be given or updated 

until an hour before the physical delivery. Matching logic is the same with stock 

exchange markets.  

If the participants cannot balance their position during intraday, the system operator 

puts imbalanced markets into automatic processes.  

 

Figure 5.1: Turkish Electricity Markets operation schedule 

There are three bid types in the current market: hourly, block, and flexible. Each 

offer consists of at least one price-quantity pair. Price-quantity pairs can be given 

in two directions: buying or selling. If the given amount is negative, this pair is in 
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the sell direction; if it is positive, it is in the buy direction. The participant who gives 

a binary where f represents the price and m the quantity indicates that he/she has 

given the maximum/minimum f unit price (₺ / MWh) to buy/sell m quantity. 

Amounts are given in lot units, and one lot equals 0.1 MWh. 

Hourly Bids: In this type of bid, participants bid price-quantity pairs (breakpoint) 

for the hours of the next day to buy or sell electricity. The amounts of price 

breakdowns on the sell side are given as negative. Due to the nature of the economy, 

market players want to buy goods at low prices and sell them at high prices. 

Therefore, as price breakdowns increase in hourly offers, the corresponding 

quantities should decrease (i.e., the buying quantity should decrease, and the 

absolute value of the selling quantity should increase). Although the hourly bid is a 

set of price-quantity pairs, it allows for linear interpolation to fill in between the 

breakpoints. The result is a piecewise linear function. The match amount for an 

hourly bid is also calculated on this piecewise linear function. It is determined as 

the amount corresponding to PTF. 

Block offers: Block offers are the second most common type in the market after 

hourly offers. Block bids can be considered consecutive hourly bids that cannot be 

broken down on the timeline. However, in this offer type, there is only one price-

quantity pair for the validity period. In this case, the price offered is given on the 

condition of buying/selling the whole amount. In addition to the price and quantity 

information, the number of consecutive hours to buy/sell electricity for the next day 

is specified. A block bid is either entirely accepted or rejected when it is active. 

Linked block bids, which are a type of block bids, are also a type of bid used in the 

day ahead market. Linked block bids can consist of child and parent bids like 

decision trees. Accordingly, the child block offer is also not accepted if the parent 

bid is not accepted. Up to 3 block bids can be linked together in this block bid type. 

Also, block proposals cannot be linked in a loop; this means if block bid A is tied 

to block bid B, then block bid B cannot be tied to block bid A. However, interlinked 

block bids must be in the same direction (sell or buy). 

Flexible bids: A flexible bid is given hourly and can be accepted at any hour. It can 

only be given in the sales direction in the current market. Flexible offers are either 

wholly accepted or rejected. The time the offer is accepted does not have to be the 
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hour with the highest PTF, but if the bid price is below the highest PTF, the offer is 

accepted for a reasonable hour. 

Many data sets are available in API systems, and we downloaded the below data to 

analyze market status. 

• Hourly DAM (PTF) and Imbalance (SMF) Price (2016-2021) 

• Hourly real-time consumption (2016-2021) 

• Hourly scheduled production by resource type (SCHP) (2016-2021) 

• Hourly real-time production (2016-2021) 

• Hourly forecast of System Operator (2016-2021) 

• Hourly load up and down (2016-2021) 

• Hourly positive and negative imbalance quantity (2016-2021) 

• Hourly positive and negative imbalance cost (2016-2021) 

• Hourly supply and demand curve (2019-2021) 

5.2. Analyzing Hourly Imbalance Quantity 

An imbalance in the electricity market refers to the difference between the actual 

electricity supply and demand at any given time. This imbalance can occur for a 

variety of reasons, including unplanned outages or failures of power plants or 

transmission lines, unexpected changes in consumer demand, or errors in 

forecasting or scheduling. 

There are several ways in which imbalances can affect the electricity market. One 

of the most significant impacts is on the price of electricity. When there is an 

imbalance between supply and demand, the price of electricity can fluctuate 

significantly, which can lead to price volatility and market instability. This can be 

particularly problematic for consumers, as they may face unexpected changes in 

their energy bills. 

Imbalances can also have an impact on the reliability of the electricity grid. If there 

is not enough electricity being generated to meet demand, it can lead to blackouts 

or brownouts, which can be disruptive and costly for businesses and households. 

On the other hand, if an excess of electricity is generated, it can be difficult for 

utilities to find customers to sell the excess power to, which can lead to stranded 

assets and financial losses for power generators. 
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At first, we thought that low forecast accuracy was the reason for the high 

imbalance on an hourly basis. However, when we checked the distribution of an 

hourly error of SO forecast in the below figures, we saw that forecast is quite good. 

We do not observe the same thing between scheduled production and actual 

production. Figure 5.2 shows that even though forecast error distribution is close to 

normal, scheduled production is consistently lower than actual production. There 

can be other reasons that create this shortage, for example, renewable energy 

volatility and intra-day market volume volatility. Intra-day market volume is one of 

the main reasons for the differences. However, negative differences between 

scheduled and actual production show that market players consciously leave some 

of their trading capacities to the intraday market.  

 

(a) (b) 

Figure 5.2: Differences between a) SO forecast- Actual production, b) Scheduled 

Production and Actual Production 

The differences between scheduled-actual production plans are presented in Figure 

5.3 for each energy resource to see the effects of renewable energy resources' 

intermittency on planning. 
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Figure 5.3: Differences between scheduled plans and actual production by resources type  

The distributions seem random when we examine the renewable energy source, 

wind, and river graphs. Although the average is close to zero, it can be said that the 

planned and the actual production are not aligned. This consistent situation shows 

that there may be a problem in resource-based production planning; participants are 

likely to make a defensive estimation for these resources due to the variability in 

renewable energy resources. The reason can be that the purchase guarantee 

incentive is applied for renewable energy sources independent of the planned 

production. 

The more striking point here is that the production of coal and natural gas power 

plants is constantly higher than the planned production. Natural gas power plants 

can be used in case of energy deficit due to variations in other sources or power 

plant failures due to the short start-up time. However, this is not possible for coal. 

Again, when the distribution of the differences is analyzed, the fact that coal and 

natural gas power plants produce more than planned continuously shows that this 

is a strategy. When we compare the planned and actual production of fossil fuels, 

approximately 5% of the total daily production is continuously released to the 

intraday market. 
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Figure 5.4 presents hourly data distribution in the same x-axis domain to analyze 

relations between imbalance quantity and other data sets. 

 

Figure 5.4: Histogram of data sets (axis x:MWh and y:Frequency) 

Although the imbalance data seem as a normal distribution pattern, the cost-based 

effect is not this way. Especially in cases of energy deficit, extraordinary price 

spikes may occur in the imbalance market. Again, as we can see from the EPİAŞ 

data, even if the net load up and down difference is negative for the same hour, and 

there is excess energy, the imbalance cost can be high and in different directions. 

This means that the load-up and load-down costs per MWh are different. 

Before analyzing the imbalance cost, the data sets provided by EPİAŞ need to be 

introduced. Two different imbalance data are published on the EPİAŞ data portal. 

Although both are hourly, one is announced daily according to the hourly values. 

The other is announced monthly according to the basis for settlement values. For 

the imbalance data announced monthly, the cost of each positive and negative 

imbalance is published hourly in the same format. Although the two data sets are 

similar, as seen in the figure below, we preferred to use the monthly data since we 

were going to make cost analyses in our study.  
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Figure 5.5: EPİAŞ imbalance data sets comparison (axis x: MWh and y: Frequency) 

Also, as we mentioned earlier, different imbalance costs may occur for the same 

quantity of imbalances in different hours. This leads to an independent cost in terms 

of imbalance direction. In other words, when an excess of energy has occurred for 

a specific hour, the cost of additional load purchases due to imbalance is much more 

than the load-down cost. In this case, it can be said that there is no perfect 

competition in the current market and that the producers make more profit than 

usual in case of an energy deficit.  

When we checked the data sets and distributions, SCHP was always less than the 

actual production. We can explain this with market participants' intentions. There 

is no storage option in the electricity markets, and sellers know that buyers have to 

buy specific amounts and buyers know that sellers cannot produce less than a 

certain amount due to ramp-up costs. Hence, buyers intend to secure the lower 

bound of their forecast because it is the critical limit and has to be supplied to the 

end user. If they need more, they can trade in the intra-day market. The reason of 

that if they buy more electricity and do not use all of them, their expected cost will 
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be DAM price for an MWh. On the other hand, if they purchase electricity from the 

intra-day market, the additional cost that they must stand for would be 𝐵𝑀 − 𝐷𝐴𝑀 

prices. In this circumstance, supplying additional quantities from IDM is less risky 

as long as 𝐵𝑀 ≤  2 ∗ 𝐷𝐴𝑀.  

The perception of sellers is also similar to buyers. They intend to sell the critical 

quantity in DAM and leave the remaining capacity for IDM and BM to sell at higher 

prices. As seen below, even imbalance quantity distribution is similar to forecast 

error distribution 

 

Figure 5.6: Probability and cumulative density functions of data sets 

Both buyer and seller intend to increase negative imbalance, and their strategies 

seem logical individually. However, this strategy causes a high price on a shortage 

at the aggregate level.  As seen in the graphs above, the distribution of the imbalance 

quantities and the distribution of the estimation errors are similar. Both data sets 

have equal samples on the negative and positive sides, and it is impossible to talk 

about any systematic pattern. Again, the distributions are similar when compared 

with the planned, actual, and forecast results. This gives us a clear picture of how 

consistent and realistic our estimates are. 

The strangest thing about the imbalance arises when we examine the actual costs. 

Table 5.1 shows previous years' positive, negative and net imbalance costs. As can 

be seen from the table, the cost of negative imbalances has been higher in all years. 

This shows that the effect of the energy deficit on the total cost is much more than 

the energy surplus. Based on this information, our method for decreasing negative 

hourly imbalances will be presented in the next section. 
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Table 5.1: Yearly negative, positive and net imbalance amount 

Years Positive Amt(TL) Negative Amt(TL) Net Imb Amt(TL) 

2016 1,246,169,755 -2,569,888,340 -1,323,718,584 

2017 1,273,704,106 -2,296,230,162 -1,022,526,056 

2018 1,675,090,087 -2,847,074,980 -1,171,984,893 

2019 1,680,333,209 - 2,774,274,616 -1,093,941,407 

2020 1,413,836,387 -2,837,607,944 - 1,423,771,557 

2021 2,473,154,094 -6,402,714,654 -3,929,560,559 

 

5.3. New Approach to Decrease Imbalance in Day-Ahead Market 

If we give information about how our forecast model has been revised to use this 

algorithm before getting to know the imbalance decrease algorithm, as we 

mentioned earlier, each market has clearly defined start and end times in the actual 

electricity market.  

Since the forecast made with the planned consumption in this algorithm will be used 

directly, the forecast periods should be compatible with the day-ahead market. To 

recall, for the day-ahead market, the participants should submit their hourly offers 

for the next day until 12:30. They should check the accepted plan by the system 

operator between 13:30 and 13:50 and make objections if necessary. As of 14:00, 

the final plan will be announced. Accordingly, the model has been revised to predict 

the next day at noon every day. For this reason, a 36-hour forecast period was 

created, and the 12th and 35th values of this forecast were recorded as the forecast 

for the next day.  

The FSE model forecast period was used as 35 hours to obtain the forecast for the 

following days. Although the forecast results with the FSE model, like the forecast 

section impressions, are very reliable, feedback or error correction with the 

autoregressive model gives better results in short-term forecasts. For this reason, an 

autoregressive model was created at different lags for each hour in the forecast 

period. Lag information and values are presented in Appendix F in detail.  

Returning to the market operation, we have both the predicted consumption and the 

official day-ahead production plan hourly for the next day as of 13:30, after 

completing our forecast. With these data, an imbalance estimation can be made for 

each point. In order to do this, the NARX model was created using the MATLAB 
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library. The default settings of the MATLAB library are used for the model. The 

schema of the NARX model created below is shared.  

 

Figure 5.7: Nonlinear Autoregressive with exogenous model schema 

In the nonlinear neural network model created, similar to the autoregressive model, 

the difference between planned production(SCHP) and forecast and the historical 

data of the imbalance data form the model's inputs as external variables. The model 

layer is created as size ten and time delay two. For the model's training, as in the 

general practice, 2018 (8760 Hours), data was divided by 70%, 15%, and 15% and 

used as training, validation, and test data, respectively. The model was trained only 

by 2018 data. The resulting model was used for step-ahead imbalance estimation 

for the years 2018, 2019, and 2020. 

The imbalance estimated by NARX will be directly used in the imbalance reduction 

algorithm. This algorithm aims to shift the market equilibrium point that occurs in 

the day ahead market to the right, to get additional capacity for negative imbalances 

that may occur during the day. In electricity markets like ours, where producers are 

dominant, producers deliberately trade in certain volumes in the day-ahead market. 

Because these companies, whose primary purpose is to make a profit, can use the 

imbalance market to their advantage. As we saw in the previous section, although 

the distributions of negative imbalances and positive imbalances are equal, there is 

a massive difference in costs. The basic concept and steps of the algorithm are 

shown in Figure 5.8.  

𝑚𝑖 = 𝑚𝑎𝑟𝑘𝑒𝑡 𝑒𝑞𝑢𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑝𝑟𝑖𝑐𝑒 𝑎𝑡 𝑖𝑡ℎ ℎ𝑜𝑢𝑟(𝑇𝐿) 

𝑡𝑖 = 𝑚𝑎𝑟𝑘𝑒𝑡 𝑒𝑞𝑢𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑝𝑟𝑖𝑐𝑒 𝑖𝑛𝑑𝑒𝑥 𝑎𝑡 𝑖𝑡ℎ ℎ𝑜𝑢𝑟 𝑖𝑛 𝑜𝑟𝑑𝑒𝑟𝑠 

𝑛𝑖 = 𝑛𝑒𝑤 𝑝𝑟𝑖𝑐𝑒 𝑎𝑡 𝑖𝑡ℎ ℎ𝑜𝑢𝑟 𝑎𝑓𝑡𝑒𝑟 𝑟𝑒𝑠𝑒𝑟𝑣𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑏𝑜𝑢𝑔ℎ𝑡 (𝑇𝐿) 
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𝑑𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝑖 = 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑑𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑦 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑓𝑜𝑟 𝑖𝑡ℎ ℎ𝑜𝑢𝑟 (𝑀𝑊ℎ)  

𝑟𝑖 = 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑠𝑢𝑝𝑝𝑙𝑦𝑠 𝑓𝑜𝑟 𝑖𝑡ℎ ℎ𝑜𝑢𝑟 (𝑀𝑊ℎ) 

𝑝𝑖 = 𝑖𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑝𝑟𝑖𝑐𝑒 𝑓𝑜𝑟 𝑖𝑡ℎ ℎ𝑜𝑢𝑟 (𝑇𝐿) 

𝑟𝑚𝑏𝑖 = 𝑟𝑒𝑎𝑙 𝑖𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒  𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑓𝑜𝑟 𝑖𝑡ℎ 

𝑟𝑚𝑝𝑖 = 𝑟𝑒𝑎𝑙 𝑖𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑝𝑟𝑖𝑐𝑒 𝑓𝑜𝑟 𝑖𝑡ℎ ℎ𝑜𝑢𝑟 (𝑇𝐿) 

L= 𝑝𝑟𝑖𝑐𝑒 𝑟𝑎𝑡𝑖𝑜(
𝑛𝑖

𝑚𝑖
) 𝑙𝑖𝑚𝑖𝑡𝑠 𝑡𝑜 𝑝𝑟𝑒𝑣𝑒𝑛𝑡 𝑏𝑢𝑦𝑖𝑛𝑔 𝑎𝑡 𝑡ℎ𝑒 ℎ𝑖𝑔ℎ𝑒𝑟 𝑝𝑟𝑖𝑐𝑒𝑠 

Step 1. Collect the bids for supply and demand for the hour 

Step 2. Calculate/Forecast the net imbalance quantity and price per MWh for the 

hour 

Step 3. If there is insufficient supply(deficiency) for the hour, go to step 4; 

otherwise, do nothing 

Step 4. 𝑊ℎ𝑖𝑙𝑒 𝑟𝑖 <  −𝑑𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝑖  𝑎𝑛𝑑  𝑛𝑖/𝑚𝑖 < L 

𝑟𝑖 = −𝑜𝑟𝑑𝑒𝑟𝑠. 𝑠𝑢𝑝𝑝𝑙𝑦(𝑡𝑖 + 𝑐) + 𝑜𝑟𝑑𝑒𝑟𝑠. 𝑠𝑢𝑝𝑝𝑙𝑦(𝑡𝑖) 

𝑐 = 𝑐 + 1 

Step 5. Calculate the profit or loss using realized imbalance cost 

𝑝𝑟𝑜𝑓𝑖𝑡 = min(𝑟𝑖, max(−𝑟𝑚𝑏𝑖, 0)) ∗ (𝑟𝑚𝑝𝑖 − 𝑛𝑖) − max(0, 𝑟𝑖 + min(0, 𝑟𝑚𝑏𝑖))
∗ 𝑛𝑖 

Figure 5.8: Simple Psuedo code of the algorithm 

The reason for the price ratio limit (𝐿) in the algorithm is to prevent considering 

imbalance quantity as the only constraint while shifting the market equilibrium 

point to the right. In this way, if the price for the additional capacity is high 

compared to the equilibrium price, the model will secure some part of the additional 

capacity or not at all.  

To optimize 𝐿 and see the algorithm's success, firstly, actual imbalance data is used 

to test. The algorithm run with different L values and profit changes of each year is 

shown in the below figure. As seen in the figure, profit changes in the years 2019 

and 2020 are more smooth for different 𝐿 values. However, profit change in 2021 

more dramatically decreasing with higher 𝐿. The reason for that is a change in 

buyers' and sellers' hourly bid distribution. In other words, the angle between supply 

and demand is smaller in 2019 and 2020 than in 2021. A higher angle causes a 

higher price for additional capacity when the equilibrium point shifts right. The 

optimum 𝐿 value is chosen as 1.17, and yearly profits with different 𝐿 values are 

presented in Appendix G.  
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Figure 5.9: The algorithm performance with different 𝑳 values 

We used the same coefficient and ran the model with a calculated imbalance with 

the NARX model. The results are shown below in the table. As seen in Table 5.2, 

forecasted data success on decreasing imbalance cost is similar in 2019-2020 but 

dramatically decreases in 2021. The reason is that day-ahead offers are not regular 

as in 2019-2020, and buying extra capacity is more expensive than in previous 

years.   

Table 5.2: Algorithm profit result with the actual and forecasted imbalance and total net 

imbalance cost in TL 

Year Profit with Actual Data Profit with Forecast Total 

2019 138,134,915 59,311,041 1,288,887,787 

2020 148,817,491 71,343,673 1,585,867,839 

2021 139,476,236 30,365,007 4,171,561,251 

 

We conducted a weekly performance analysis to evaluate the overall performance 

of our strategy. We randomly selected 156 weeks from a three-year simulation. 
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While choosing the weeks, we took the starting days randomly. The 156-week 

performance is shown in the table below. The 38 weeks of a total of 156 weeks have 

negative profit, and the 118 weeks algorithm has a positive profit. 

Table 5.3: Algorithm weekly performance between 2019-2021.  

Definition Value The Lowest The Highest 

Average Profit per week (TL) 5610.47 -27478.20 51544.38 

Std of Profit (TL) 10671.65 - - 

Average Profit(+) per week (TL) 9315.72 106.67 51544.38 

Std of Profit(+)(TL) 9553.83   

Average Profit(-) per week (TL) -5195.43 -27478.20 -8.07 

Std of Profit(-)(TL) 6642.10   
Average # of Hours Algorithm 

applied in a week 69.12 10 125 

5.4. Imbalance Optimization with large-scale storage 

Large-scale energy storage refers to the use of various technologies to store large 

amounts of electricity for later use. This can be useful for addressing the intermittent 

nature of renewable energy sources such as wind and solar power, as well as for 

providing backup power during outages or other emergencies.  

There are several different technologies that are used for large-scale energy storage, 

including pumped hydroelectric storage, compressed air energy storage, and battery 

storage. Each of these technologies has its own advantages and disadvantages. The 

most appropriate technology for a given situation will depend on factors such as the 

location, the amount of energy to be stored, and the length of time it needs to be 

stored. 

Pumped hydroelectric storage is one of the most common technologies used for 

large-scale energy storage. It involves using excess electricity to pump water from 

a lower reservoir to an upper reservoir, where it is stored until it is needed. When 

the stored energy is needed, the water is released back down through a turbine, 

generating electricity. This technology has been in use for many decades, and there 

are currently more than 100 pumped hydroelectric storage facilities around the 

world. 

Compressed air energy storage (CAES) is another technology that is used for large-

scale energy storage. It involves using excess electricity to compress air, which is 
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then stored in underground caverns or other types of storage containers. When the 

stored energy is needed, the compressed air is released and heated, expanding and 

driving a turbine to generate electricity. CAES technology has been in use since the 

1970s, and there are currently two CAES facilities in operation around the world. 

Battery storage is a relatively newer technology that is also used for large-scale 

energy storage. It involves using batteries to store excess electricity, which can be 

released back into the grid when needed. Battery storage technology has advanced 

significantly in recent years, and there are now many large-scale battery storage 

facilities in operation around the world.  

Overall, large-scale energy storage is a critical technology for enabling the 

widespread adoption of renewable energy sources and for improving the reliability 

of the electric grid. While there are still many challenges to be overcome, such as 

the high cost of some energy storage technologies and the need for more efficient 

and longer-lasting batteries, the future of large-scale energy storage looks 

promising 

• Improved reliability and stability of the power grid: Large-scale energy 

batteries can provide backup power during times of high demand or when 

there are disruptions in the power supply. This can help prevent blackouts 

and ensure a stable and reliable power supply. 

• Increased integration of renewable energy sources: Energy batteries can 

store excess energy generated by renewable sources, such as solar and wind, 

and release it when needed. This can help increase the use of renewable 

energy and reduce reliance on fossil fuels. 

• Enhanced grid flexibility: Energy batteries can help balance the supply and 

demand of electricity on the grid, allowing for more flexible and responsive 

power generation and distribution. 

• Reduced greenhouse gas emissions: Energy batteries can help reduce carbon 

emissions by reducing the need for fossil fuel-based power generation and 

enabling the use of renewable energy sources. 

• Cost savings: Large-scale energy batteries can provide cost savings by 

reducing the need for expensive peaker plants and other backup power 

generation systems. They can also help utilities avoid expensive grid 

upgrades and improve their overall operational efficiency 
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There are several recent and planned projects involving large-scale energy batteries; 

• In California, the Pacific Gas and Electric Company recently announced 

plans to deploy the world's largest lithium-ion battery storage system, which 

will have a capacity of 1,200 megawatt-hours. 

• In Australia, the Tesla Powerpack project has installed a 100-megawatt/129-

megawatt-hour battery system to provide backup power for the South 

Australia grid. 

• In the UK, the National Grid has plans to build a 40-megawatt battery 

storage system to help manage the country's electricity demand. 

• In Germany, the grid operator TenneT is planning to build a 300-megawatt 

battery storage system to help integrate renewable energy sources into the 

power grid. 

The development of large-scale battery possibilities will not only increase the share 

of renewable energy sources in energy production. However, it will also be vital to 

manage the inefficiency caused by imbalance, independent of demand-supply 

forecasting. For this reason, we made revisions and applied the developed algorithm 

for different storage capacities and scenarios.  

Our algorithm was used in the same way, but the following changes were applied 

for the specified scenarios. 

Scenario 1: We aim to run our algorithm for different storage capacities according 

to the net imbalance quantity in this scenario. After deciding to purchase additional 

capacity according to the day-ahead forecast, we added the storage capacity to the 

net gain function when this capacity was realized. The new profit function (Step 5) 

is expressed as follows. Also, we need to consider excess supply profit as well 

because of using it to fill storage. To clarify, if we calculated energy deficiency for 

a specific hour and our forecast was wrong, storage will provide extra cushion. If 

we do not forecast energy deficiency and excess supply occurs, we can use the 

excess quantity to fill storage, and the profit will be the total load-down amount.  

Recall Step 5. Calculate the profit or loss using realized imbalance cost 

𝑆 = 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑀𝑊) 

𝑠𝑖 = 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑝𝑜𝑤𝑒𝑟 𝑖𝑛 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑎𝑡 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑜𝑓 𝑖𝑡ℎ ℎ𝑜𝑢𝑟(𝑀𝑊) 

𝑝𝑟𝑜𝑓𝑖𝑡 = min(𝑟𝑖 , max(−𝑟𝑚𝑏𝑖 , 0)) ∗ (𝑛𝑖 − 𝑟𝑚𝑝𝑖) − max(0, 𝑟𝑖 + min(0, 𝑟𝑚𝑏𝑖) − (𝑆 − 𝑠𝑖)) ∗ 𝑛𝑖

+ min(−min(−𝑟𝑚𝑏𝑖 , 0) , (𝑆 − 𝑠𝑖)) ∗ 𝑛𝑖 
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Figure 5.10 shows the profit amounts for different storage capacities by year. The 

profit generated at the zero storage point is the same as the result of the first 

algorithm. The impact of storage for 2019 and 2020 is limited compared to 2021. 

This is another point that shows us that there has been a differentiation in managing 

imbalances over the years, and the costs are increasing faster than usual. The 

increase in storage capacity affects profit less after a certain point. Although this 

point changes according to years, it can be said 3000 MW, as seen roughly from the 

graph. The storage capacity is used according to the imbalance estimate made in 

this scenario. The storage is charged with additional unused capacity during the 

hours when the positive imbalance is predicted and the hours when the negative 

imbalance is incorrectly predicted. 

Figure 5.10: Total profit change with different storage levels by years 

Scenario 2: This scenario will be applied for comparison. The algorithm was run 

for different storage capacities with actual data, regardless of the estimates. If the 

net imbalance amount in any hour is positive, electricity is stored; if it is negative, 

it is used. The imbalance costs of the stored electricity and the electricity used from 

the storage are considered as the total profit.  
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Similar to the previous chart, while the profits of 2019 and 2020 are similar, the 

year 2021 is very different. The increase in storage capacity leads to greater profits 

for the year 2021. This means that, as we mentioned in the previous chart, there is 

an imbalance structure outside of the norms in 2021. In this graph, the profit for 

zero storage is also zero for all years because only the effect of storage was 

calculated using the real imbalance. In this scenario, as long as there is no storage, 

it is impossible to reduce the costs of positive and negative imbalances. 

 

Figure 5.11: Total profit change with different storage levels by years using an actual net 

imbalance 

The result of the first and second scenarios was shared in APPENDIX H and I.  
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6. DISCUSSION 

One of the challenges of the electricity markets is the potential misuse of 

monopolies or strategic behavior among electricity market participants. Suppliers 

and buyers in a free electricity market may engage in monopolistic or strategic 

behavior to maximize their profits. For example, a supplier may withhold electricity 

from the market in order to drive up prices, or a buyer may attempt to drive down 

prices by threatening to switch to a different supplier. This behavior can lead to 

market inefficiencies and make it difficult for utilities to reliably plan for future 

electricity needs. To mitigate these challenges, market participants can adopt a 

variety of strategies. For example, suppliers may enter into long-term bilateral 

contracts with buyers to reach more predictable and stable electricity prices. On the 

other hand, buyers may choose to diversify their electricity sources to reduce their 

reliance on a single supplier and increase their bargaining power. Additionally, 

regulatory bodies may implement rules or market mechanisms to promote more 

efficient behavior and reduce the potential for strategic behavior.  

The integration of large-scale battery storage can also potentially change the 

strategies of market participants in the day-ahead market. For example, with large-

scale storage availability, suppliers may offer more flexible and responsive services 

to buyers, potentially leading to more efficient outcomes in the market. On the other 

hand, buyers may be able to use large-scale storage to smooth out fluctuations in 

electricity demand, reducing their need to rely on traditional generation sources and 

potentially leading to cost savings. Overall, the integration of large-scale battery 

storage into electricity systems has the potential to bring significant benefits. 

However, it is essential to address the challenges of cost and strategic behavior in 

order to realize these benefits.  

Accurate forecasting is another critical function in the electricity market, as it 

allows market participants to make informed decisions about generation, 

transmission, and consumption. With the increasing adoption of renewable energy 

sources and the integration of large-scale battery storage, the importance of 

forecasting is likely to increase. In the current electricity market, forecasting is used 

to predict future electricity demand, which allows utilities to plan for sufficient 

generation capacity to meet that demand. With the adoption of smart grids, which 

enable more flexible and responsive electricity systems, the need for accurate 
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forecasting is likely to increase. Smart grids rely on a combination of distributed 

energy resources, such as rooftop solar panels, small-scale battery storage, and 

centralized generation sources. Accurate forecasting is necessary to ensure that 

these resources are used efficiently and effectively to meet changing electricity 

demand.  

The integration of large-scale battery storage into smart grids can also benefit from 

accurate forecasting. For example, accurate electricity demand forecasts can help 

utilities determine when it is most cost-effective to charge and discharge large-scale 

batteries. This can help utilities optimize the use of these batteries and reduce the 

need for expensive fossil fuel generation. Additionally, accurate forecasts of 

renewable energy generation, such as solar and wind, can help utilities determine 

when it is most cost-effective to use these resources and when it is necessary to rely 

on other sources of generation.  

Overall, accurate forecasting is essential for electricity markets' efficient and 

effective operation. It is likely to become even more important as the adoption of 

renewable energy sources and the integration of large-scale battery storage continue 

to increase. 

Although real market conditions and constraints are tried to be fully considered for 

the algorithms and approaches developed in this study, there are some limits. In the 

forecast model developed for the imbalance reduction algorithm, the data of the last 

actual consumption hours used to revise the hourly forecasts are not always 

available at the specified time. Moreover, the algorithm's first purpose was to 

increase the efficiency of the day ahead market and decrease balancing market 

volume rather than directly reducing the cost. The algorithm may not purchase any 

additional capacity even if there is an energy deficit within the defined constraints, 

even when an energy deficit is forecasted. The reason is that the changes in offer 

characteristics of sellers or irregular price steps correspond to different production 

levels. For this reason, the implementing mechanism should apply this algorithm 

within the framework of explicit rules. 
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7. CONCLUSION 

Although there are many studies in the literature about electricity consumption 

modeling, it is a constantly evolving field. Since electricity is a crucial input in 

many fields and no function is sustainable without electricity in today's life, 

optimizing electricity production and consumption is very important in terms of 

efficient use of resources. Therefore, analyzing and forecasting electricity 

consumption is very important for long and short-term projections.  

With the FSE model developed in this study, consumption profiles of countries 

were created using only the consumption data, and country-specific characteristics 

were determined. Additionally, long and medium-term forecasts were produced 

successfully without changing model complexity. These data-driven analyses can 

provide valuable information about countries for the ENTSO-E grid expansion. The 

countries in the ENTSO-E region were classified by comparing the temperature 

data of the model outputs on a country basis. 

With  the flexibility of the FSE model, short-term forecasts were also made from 

the same model. In order to make these estimations more reliable, the AR model 

and Feedback model are suggested as a hybrid model. While the AR model needs 

complex calculations for the coefficients, the feedback model provides convenience 

in terms of applicability. Obtaining stable results for countries of different scales 

shows that the model can be applied to different levels of planning. 

Seller and buyer activities in free electricity markets directly affect market 

efficiency. Especially in underdeveloped markets, less or limited competition 

allows the seller or buyer to make more profit. In such markets, sellers' and buyers' 

desire to maximize profits leads to more imbalances and costs. For this reason, the 

hybrid forecast method created with the FSE and AR methods was applied to the 

Turkish Electricity Market under realistic conditions and used as an input to the 

algorithm created to reduce the imbalance cost. 

In order to use the model in the day-ahead market, 35 different AR models were 

created to adjust the 35-hour forecast of FSE model. Thus, day-ahead forecasts were 

made with a very low error rate. The differences between the generated forecasts 

and the planned production are used for the hourly imbalance forecast. For this 

forecast, the NARX method was applied using the MATLAB library. The 
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imbalance estimation was made using the differences calculated between scheduled 

production and forecast with the historical imbalance data as input. The algorithm 

aims to reduce the high costs in the imbalance market by taking additional capacity 

for the hours for which the imbalance is estimated in the day ahead market. 

According to the results, when the algorithm is run with actual values, it reduces 

the total cost by approximately 5.5%, 5.01%, and 0.77% for 2019-2021. When we 

run the algorithm considering that there is a storage option, it gives much more 

effective results. 

With the support of a very accurate forecast, buying additional capacity to prevent 

high prices intra-day and balancing the market by adjusting equilibrium prices in 

the day-ahead market can help increase market efficiency. By having an accurate 

demand forecast, the system operator can effectively plan and schedule the 

generation resources and ensure that adequate power is available to meet customers' 

needs. This can help to reduce the costs of power generation and improve the 

reliability of the power supply. Additionally, by having an accurate forecast of 

demand, the system operator can more effectively manage the balancing of supply 

and demand, which can help to reduce the need for expensive balancing services, 

such as buying additional capacity on the spot market. Hence, high market 

efficiency provides to make better decisions and optimize the use of resources, 

which can lead to a more efficient and reliable electricity market and ultimately 

benefit the consumers. 

The imbalance reduction algorithm provides flexibility to manage the market 

condition and supports the increase of day-ahead market volume and efficiency 

without any storage capacity. Moreover, if it is combined with storage availability 

with advancing storage technologies, it becomes a more useful tool and provides 

more gain even in low storage scenarios. 

With the hybrid methods created in this study, electricity consumption scenarios 

can be created from hourly to annual. With the algorithms developed in our study, 

many characteristic features of the consumption profiles can be obtained by using 

only electrical energy data. In this way, it becomes a fast and reliable indicator of 

the decision-making for any planned or unplanned changes in production, 

transmission, or distribution strategies. 
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In summary, energy is an issue whose importance is constantly increasing from past 

to present and directly affects the welfare level of societies. In this area, it is vital 

to use resources efficiently as well as to have them. This is one of the issues that 

will not fall off the agenda regarding the countries' interests and environmental 

effects. It will be more and more critical to develop good forecasts and analyze the 

current structure of consumer profiles as the primary input of planning. While 

understanding the consumption habits of countries with the forecast models 

developed in this study, we also showed that these forecasts could be used as the 

primary input of imbalance reducing algorithms for our own electricity market. 

Therefore, our study has provides many and valuable insights that can be applicable 

by standard systems on different consumers levels. Each algorithm can be used 

stand-alone or together to get information about electricity markets and consumers 

or support decision making systems to reach more efficient and effective markets.  
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APPENDIX 

APPENDIX A.  Country Classification (Source: Our World 

Bank Data) 

According to the World Bank, countries are classified in three ways: regional wise, 

yearly income per person, and landing groups. We used income classification as 

shown below table in this study. (HI- High Income, UPM- Upper-Middle Income, 

LMI-Lower Middle Income, and LI-Lower Income) 

Country Class Country Class Country Class Country Class 

Afghanistan LI Benin LMI Chile HI Sri Lanka LMI 

Albania UPM Bermuda HI China UPM St. Kitts and Nevis HI 

Algeria LMI Bhutan LMI Colombia UPM St. Lucia UPM 

American 
Samoa 

UPM Bolivia LMI Comoros LMI 
St. Martin (French 

part) 
HI 

Andorra HI 
Bosnia and 

Herzegovina 
UPM 

Congo, Dem. 
Rep 

LI 
St. Vincent and 
the Grenadines 

UPM 

Angola LMI Botswana UPM Congo, Rep. LMI Sudan LI 

Antigua and 
Barbuda 

HI Brazil UPM Costa Rica UPM Suriname UPM 

Argentina UPM 
British Virgin 

Islands 
HI Côte d'Ivoire LMI Sweden HI 

Armenia UPM 
Brunei 

Darussalam 
HI Croatia HI Switzerland HI 

Aruba HI Bulgaria UPM Cuba UPM 
Syrian Arab 

Republic 
LI 

Australia HI Burkina Faso LI Curaçao HI Taiwan, China HI 

Austria HI Burundi LI Cyprus HI Tajikistan LMI 

Azerbaijan UPM Cabo Verde LMI Czech Republic HI Tanzania LMI 

Bahamas, The HI Cambodia LMI Denmark HI Thailand UPM 

Bahrain HI Cameroon LMI Djibouti LMI Timor-Leste LMI 

Bangladesh LMI Canada HI Dominica UPM Togo LI 

Barbados HI Cayman Islands HI 
Dominican 
Republic 

UPM Tonga UPM 

Belarus UPM 
Central African 

Republic 
LI Ecuador UPM 

Trinidad and 
Tobago 

HI 

Belgium HI Chad LI 
Egypt, Arab 

Rep. 
LMI Tunisia LMI 

Belize UPM Channel Islands HI El Salvador LMI Türkiye UPM 

Equatorial 
Guinea 

UPM Guatemala UPM Kazakhstan UPM Turkmenistan UPM 

Eritrea LI Guinea LI Kenya LMI 
Turks and Caicos 

Islands 
HI 

Estonia HI Guinea-Bissau LI Kiribati LMI Tuvalu UPM 

Eswatini LMI Guyana UPM 
Korea, Dem. 
People’s Rep 

LI Uganda LI 

Ethiopia LI Haiti LMI Korea, Rep. HI Ukraine LMI 

Faroe Islands HI Honduras LMI Kosovo UPM 
United Arab 

Emirates 
HI 

Fiji UPM 
Hong Kong 
SAR, China 

HI Kuwait HI United Kingdom HI 

Finland HI Hungary HI Kyrgyz Republic LMI United States HI 

France HI Iceland HI Lao PDR LMI Uruguay HI 
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French 
Polynesia 

HI India LMI Latvia HI Uzbekistan LMI 

Gabon UPM Indonesia LMI Lebanon LMI Vanuatu LMI 

Gambia, The LI 
Iran, Islamic 

Rep 
LMI Lesotho LMI Vietnam LMI 

Georgia UPM Iraq UPM Liberia LI 
Virgin Islands 

(U.S.) 
HI 

Germany HI Ireland HI Libya UPM 
West Bank and 

Gaza 
LMI 

Ghana LMI Isle of Man HI Liechtenstein HI Yemen, Rep. LI 

Gibraltar HI Israel HI Lithuania HI Zambia LI 

Greece HI Italy HI Luxembourg HI Zimbabwe LMI 

Greenland HI Jamaica UPM 
Macao SAR, 

China 
HI   

Grenada UPM Japan HI Madagascar LI   

Guam HI Jordan UPM Malawi LI   

Malaysia UPM New Caledonia HI Romania HI   

Maldives UPM New Zealand HI 
Russian 

Federation 
UPM   

Mali LI Nicaragua LMI Rwanda LI   

Malta HI Niger LI Samoa LMI   

Marshall 
Islands 

UPM Nigeria LMI San Marino HI   

Mauritania LMI 
North 

Macedonia 
UPM 

São Tomé and 
Principe 

LMI   

Mauritius UPM 
Northern 

Mariana Islands 
HI Saudi Arabia HI   

Mexico UPM Norway HI Senegal LMI   

Micronesia, 
Fed. Sts. 

LMI Oman HI Serbia UPM   

Moldova UPM Pakistan LMI Seychelles HI   

Monaco HI Palau UPM Sierra Leone LI   

Mongolia LMI Panama HI Singapore HI   

Montenegro UPM 
Papua New 

Guinea 
LMI 

Sint Maarten 
(Dutch part) 

HI   

Morocco LMI Paraguay UPM Slovak Republic HI   

Mozambique LI Peru UPM Slovenia HI   

Myanmar LMI Philippines LMI 
Solomon 
Islands 

LMI   

Namibia UPM Poland HI Somalia LI   

Nauru HI Portugal HI South Africa UPM   

Nepal LMI Puerto Rico HI South Sudan LI   

Netherlands HI Qatar HI Spain HI   
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APPENDIX B.  Yearly forecast errors of each country (ND: No 

Data, T: Training) 

Year AT BE BG CH CY CZ DE DK ES FI FR GB GR 

2006 T T T T ND T T T T ND T ND T 

2007 T T T T ND T T T T ND T ND T 

2008 3.41 3.61 4.87 10.68 ND 4.34 4.59 3.97 5.70 ND 4.10 ND 5.86 

2009 5.87 7.79 8.66 9.72 ND 7.32 8.20 6.03 7.51 ND 5.83 ND 7.06 

2010 6.43 13.95 6.70 7.30 ND 10.03 13.48 44.86 7.08 T 5.93 T 7.37 

2011 13.62 11.24 6.40 7.34 ND 4.23 7.47 45.31 4.39 T 8.81 T 5.38 

2012 15.80 3.92 9.19 8.92 ND 4.01 6.04 4.47 4.11 3.32 5.71 4.00 6.07 

2013 3.30 5.87 6.32 8.14 ND 4.41 4.56 9.01 4.00 2.94 5.23 4.05 9.38 

2014 3.47 4.57 4.92 5.38 T 3.50 5.25 11.61 4.19 2.83 5.06 3.71 8.72 

2015 3.57 3.84 6.35 25.75 T 3.52 3.69 6.15 4.39 2.75 5.90 4.41 11.58 

2016 7.63 6.12 12.49 25.32 11.34 5.94 7.30 7.95 7.34 4.36 7.36 11.17 13.44 

2017 4.80 4.14 8.22 7.30 6.94 4.70 4.87 5.05 5.04 3.23 5.72 23.63 6.43 

2018 3.93 5.55 18.81 4.82 11.81 3.93 3.42 4.01 3.95 2.89 5.41 9.66 4.96 

              

Year HR HU IE IS IT NL NO PL PT RO RS SE SI 

2006 T T ND ND T T ND T T T T ND T 

2007 T T ND ND T T ND T T T T ND T 

2008 4.14 4.60 T ND 5.78 6.35 ND 4.39 4.02 5.31 6.47 ND 13.89 

2009 5.17 5.77 T ND 6.87 12.37 ND 5.40 4.49 10.99 5.13 ND 5.63 

2010 4.20 3.78 6.81 T 11.95 11.34 T 8.57 4.35 12.56 4.39 T 19.54 

2011 4.25 7.79 4.14 T 6.20 4.23 T 3.43 5.33 3.36 3.59 T 5.60 

2012 5.27 3.84 5.05 1.37 4.66 4.88 6.22 3.88 3.60 5.86 5.18 4.16 6.67 

2013 4.68 3.92 4.45 1.94 6.20 8.99 4.51 3.30 5.39 5.10 5.54 3.97 6.20 

2014 4.28 3.48 3.90 5.83 4.54 7.82 2.83 3.42 3.36 6.33 4.85 3.46 6.00 

2015 5.40 3.55 4.45 8.30 5.87 4.67 3.73 3.30 3.69 5.29 4.69 4.29 4.40 

2016 8.66 6.49 8.61 7.13 10.20 6.44 4.66 6.99 9.13 7.73 8.74 6.13 8.02 

2017 5.93 4.31 4.54 4.55 6.90 4.74 4.85 4.81 4.94 5.32 5.87 4.65 5.36 

2018 5.94 4.37 3.06 1.91 5.15 4.03 4.76 3.56 3.90 3.90 4.65 4.42 4.77 
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APPENDIX C.  Daily Rolling forecast errors of each country 

(ND: No Data, T: Training) 

Year AT BE BG CH CY CZ DE DK ES FI FR GB GR 

2006 T T T T ND T T T T ND T ND T 

2007 T T T T ND T T T T ND T ND T 

2008 3.69 3.36 5.94 6.01 ND 4.75 4.01 3.83 4.96 ND 5.37 ND 5.65 

2009 4.39 4.91 5.49 6.40 ND 4.43 4.77 3.79 5.47 ND 5.14 ND 5.33 

2010 4.08 5.22 6.42 6.35 ND 4.88 5.30 13.74 4.87 T 5.37 T 5.84 

2011 5.86 4.83 5.38 5.75 ND 3.86 4.72 14.19 3.84 T 5.27 T 5.42 

2012 5.73 4.21 6.97 5.83 ND 3.87 4.38 3.71 3.99 5.56 5.89 3.75 6.14 

2013 3.50 3.92 7.00 6.23 ND 4.31 3.87 7.62 3.88 4.38 6.15 4.35 8.06 

2014 3.70 3.73 4.97 5.27 T 3.83 3.73 6.10 3.50 3.83 6.11 3.99 6.83 

2015 3.45 3.22 6.57 11.06 T 3.38 2.86 3.89 4.20 3.26 4.95 4.11 9.23 

2016 6.37 4.83 10.37 9.39 9.84 5.17 5.69 6.48 6.19 4.56 6.90 7.91 9.21 

2017 4.26 3.45 7.69 5.28 7.29 4.42 3.70 3.84 4.29 3.65 6.00 8.89 6.64 

2018 4.22 5.19 6.86 4.79 10.60 4.19 3.31 3.89 3.99 3.99 6.03 6.67 5.42 

                            

Year HR HU IE IS IT NL NO PL PT RO RS SE SI 

2006 T T ND ND T T ND T T T T ND T 

2007 T T ND ND T T ND T T T T ND T 

2008 5.00 3.87 T ND 5.05 5.12 ND 4.00 3.83 5.13 6.09 ND 6.00 

2009 4.02 3.85 T ND 5.56 6.59 ND 3.60 4.42 4.75 4.97 ND 5.41 

2010 4.29 3.59 4.13 T 5.68 4.40 T 3.91 4.11 4.97 5.41 T 8.32 

2011 4.44 4.08 3.95 T 4.64 2.75 T 3.40 3.54 3.65 4.56 T 4.96 

2012 5.06 3.65 5.23 1.19 4.68 2.57 5.87 3.37 3.63 3.91 5.20 6.16 5.58 

2013 4.71 3.65 3.24 1.38 4.79 3.99 6.46 3.56 3.56 4.02 5.58 6.11 5.72 

2014 4.71 3.34 3.27 3.63 4.53 3.70 4.88 3.55 3.42 4.54 5.09 5.24 4.98 

2015 4.49 3.73 3.41 4.57 5.36 3.19 3.86 3.09 3.66 4.97 4.20 3.87 3.77 

2016 7.45 5.51 6.53 2.06 8.42 4.99 5.43 5.82 7.42 6.95 7.63 6.45 6.38 

2017 5.28 3.76 3.48 2.06 5.83 3.78 4.88 4.09 4.05 4.66 6.06 4.72 4.30 

2018 5.49 3.79 2.79 1.73 4.74 3.60 4.44 3.39 3.98 3.53 5.26 5.74 4.41 
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APPENDIX D.  Hourly Rolling forecast with feedback 

correction errors of each country (ND: No Data, T: Training) 

Year AT BE BG CH CY CZ DE DK ES FI FR GB GR 

2006 T T T T ND T T T T ND T ND T 

2007 T T T T ND T T T T ND T ND T 

2008 1.01 0.93 1.32 2.32 ND 1.47 1.00 1.32 2.11 ND 0.93 ND 1.31 

2009 1.09 1.01 1.36 1.81 ND 1.47 1.08 1.43 1.76 ND 0.93 ND 1.32 

2010 1.01 0.99 1.44 1.87 ND 1.43 1.07 1.79 1.27 T 0.88 T 1.30 

2011 1.34 1.11 1.24 1.66 ND 1.17 1.10 1.43 1.17 T 0.92 T 1.34 

2012 1.15 1.09 1.30 1.69 ND 1.33 1.08 1.18 1.18 0.75 0.93 1.40 1.48 

2013 1.08 1.19 1.29 1.70 ND 1.57 1.02 1.83 1.14 0.72 0.94 1.19 2.07 

2014 1.08 0.98 1.18 1.75 T 1.11 0.91 1.21 1.08 0.70 0.94 1.21 1.65 

2015 1.04 0.89 1.16 1.68 T 1.01 0.84 1.22 1.03 0.67 0.90 1.34 2.05 

2016 2.73 2.33 3.85 2.38 3.34 2.24 2.41 3.13 2.57 1.71 3.26 3.46 2.99 

2017 1.45 1.30 1.68 2.13 1.80 1.28 1.18 1.60 1.29 0.89 1.55 2.03 1.56 

2018 1.15 1.32 1.10 1.93 2.09 1.10 0.87 1.18 0.99 0.73 1.21 1.78 1.18 

                            

Year HR HU IE IS IT NL NO PL PT RO RS SE SI 

2006 T T ND ND T T ND T T T T ND T 

2007 T T ND ND T T ND T T T T ND T 

2008 1.26 1.83 T ND 1.36 1.23 ND 0.90 1.51 1.33 0.88 ND 1.67 

2009 1.28 1.69 T ND 1.36 1.34 ND 0.91 1.53 1.02 1.18 ND 1.95 

2010 1.42 1.56 1.46 T 1.36 1.12 T 0.87 1.42 0.98 1.23 T 2.36 

2011 1.56 1.03 1.57 T 1.21 0.95 T 0.87 1.41 1.00 1.15 T 2.04 

2012 1.61 0.92 1.55 0.61 1.23 0.93 0.87 0.86 1.38 0.91 1.15 1.02 2.20 

2013 1.55 0.90 1.33 0.56 1.20 0.92 0.98 0.85 1.35 0.98 1.14 0.92 2.48 

2014 1.55 0.90 1.62 0.67 1.20 0.90 0.91 0.87 1.33 1.14 1.12 0.85 1.81 

2015 1.58 0.86 1.84 0.65 1.28 0.92 0.85 0.85 1.33 1.73 1.12 0.81 1.52 

2016 3.79 2.31 3.09 0.65 3.56 2.30 1.51 2.47 3.71 3.06 3.16 2.02 3.06 

2017 1.94 1.19 1.63 0.65 1.76 1.38 1.00 1.24 1.48 1.41 1.42 1.30 1.62 

2018 1.49 0.95 1.16 0.72 1.29 1.04 0.83 0.89 1.10 0.84 1.09 1.07 1.42 
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APPENDIX E.  Hourly Rolling forecast with AR correction 

errors of each country (ND: No Data, T: Training) 

Year AT BE BG CH CY CZ DE DK ES FI FR GB GR 

2006 T T T T ND T T T T ND T ND T 

2007 T T T T ND T T T T ND T ND T 

2008 0.93 0.87 1.32 2.22 ND 1.26 0.93 1.15 1.71 ND 0.86 ND 1.21 

2009 0.99 0.96 1.33 1.78 ND 1.27 1.01 1.25 1.72 ND 0.87 ND 1.18 

2010 0.96 1.02 1.48 1.82 ND 1.18 1.10 2.17 1.15 T 0.83 T 1.19 

2011 1.25 1.10 1.24 1.61 ND 1.03 1.03 2.27 1.01 T 0.92 T 1.15 

2012 1.22 1.00 1.31 1.63 ND 1.13 1.02 1.03 1.04 0.76 0.91 1.20 1.27 

2013 1.01 1.09 1.29 1.64 ND 1.30 0.95 1.83 1.01 0.69 0.88 1.04 1.72 

2014 1.02 0.91 1.10 1.68 T 1.00 0.82 1.14 0.92 0.66 0.90 1.05 1.52 

2015 0.99 0.84 1.10 1.82 T 0.92 0.74 1.14 0.89 0.64 0.85 1.18 1.65 

2016 2.01 1.70 2.73 2.20 2.54 1.69 1.78 2.26 1.84 1.28 2.27 2.49 2.14 

2017 1.32 1.18 1.61 2.10 1.70 1.16 1.11 1.52 1.18 0.83 1.36 2.00 1.42 

2018 1.03 1.16 1.22 1.90 1.85 0.97 0.80 1.14 0.86 0.67 0.96 1.59 1.02 

                            

Year HR HU IE IS IT NL NO PL PT RO RS SE SI 

2006 T T ND ND T T ND T T T T ND T 

2007 T T ND ND T T ND T T T T ND T 

2008 1.12 1.46 T ND 1.17 1.15 ND 0.82 1.26 1.20 1.02 ND 1.67 

2009 1.09 1.42 T ND 1.21 1.35 ND 0.82 1.23 1.03 1.14 ND 1.92 

2010 1.22 1.18 1.23 T 1.20 1.00 T 0.83 1.18 1.01 1.18 T 2.53 

2011 1.32 0.99 1.27 T 1.07 0.83 T 0.80 1.17 0.92 1.10 T 2.00 

2012 1.38 0.81 1.32 0.69 1.05 0.82 0.98 0.78 1.17 0.85 1.09 0.95 2.16 

2013 1.33 0.81 1.07 0.65 1.08 0.87 1.01 0.76 1.14 0.91 1.07 0.92 2.48 

2014 1.31 0.77 1.23 0.85 1.06 0.84 0.91 0.78 1.13 1.03 1.04 0.83 1.62 

2015 1.35 0.76 1.37 0.90 1.14 0.81 0.87 0.76 1.14 1.31 1.05 0.79 1.49 

2016 2.74 1.66 2.22 0.79 2.57 1.73 1.25 1.76 2.68 2.06 2.28 1.55 2.34 

2017 1.78 1.07 1.36 0.77 1.64 1.24 1.01 1.15 1.35 1.30 1.40 1.19 1.58 

2018 1.30 0.84 0.99 0.84 1.18 0.95 0.87 0.83 0.98 0.77 1.05 1.07 1.36 
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APPENDIX F.  AR Model Coefficient for each hour 

Predicted 
Hour 

Lag 
1 

Lag 1 
Hour 

Lag 1 
Value 

Lag 2 
Lag 2 
Hour 

Lag 2 
Value 

Lag 3 
Lag 3 
Hour 

Lag 3 
Value 

13:00 t-1 12:00 0.96 t-24 13:00 0.49 t-25 12:00 -0.46 

14:00 t-2 12:00 0.82 t-24 14:00 0.17 t-25 13:00 -0.02 

15:00 t-3 12:00 0.71 t-24 15:00 0.28 t-25 14:00 -0.03 

16:00 t-4 12:00 0.60 t-24 16:00 0.37 t-25 15:00 -0.02 

17:00 t-5 12:00 0.54 t-24 17:00 0.50 t-25 16:00 -0.08 

18:00 t-6 12:00 0.46 t-24 18:00 0.51 t-25 17:00 -0.03 

19:00 t-7 12:00 0.40 t-24 19:00 0.60 t-25 18:00 -0.07 

20:00 t-8 12:00 0.36 t-24 20:00 0.61 t-25 19:00 -0.04 

21:00 t-9 12:00 0.33 t-24 21:00 0.65 t-25 20:00 -0.05 

22:00 t-10 12:00 0.30 t-24 22:00 0.66 t-25 21:00 -0.04 

23:00 t-11 12:00 0.28 t-24 23:00 0.67 t-25 22:00 -0.05 

00:00 t-12 12:00 0.26 t-24 00:00 0.67 t-25 23:00 -0.03 

01:00 t-13 12:00 0.24 t-24 01:00 0.69 t-25 00:00 -0.03 

02:00 t-14 12:00 0.22 t-24 02:00 0.69 t-25 01:00 -0.03 

03:00 t-15 12:00 0.20 t-24 03:00 0.67 t-25 02:00 0.00 

04:00 t-16 12:00 0.19 t-24 04:00 0.65 t-25 03:00 0.03 

05:00 t-17 12:00 0.19 t-24 05:00 0.62 t-25 04:00 0.06 

06:00 t-18 12:00 0.19 t-24 06:00 0.60 t-25 05:00 0.08 

07:00 t-19 12:00 0.19 t-24 07:00 0.59 t-25 06:00 0.08 

08:00 t-20 12:00 0.20 t-24 08:00 0.57 t-25 07:00 0.08 

09:00 t-21 12:00 0.23 t-24 09:00 0.50 t-25 08:00 0.12 

10:00 t-22 12:00 0.29 t-24 10:00 0.45 t-25 09:00 0.11 

11:00 t-23 12:00 0.36 t-24 11:00 0.38 t-25 10:00 0.10 

12:00 t-24 12:00 0.90 t-24 12:00 0.07 t-25 11:00 -0.17 

13:00 t-25 12:00 0.95 t-48 13:00 0.06 t-49 12:00 -0.23 

14:00 t-26 12:00 0.91 t-48 14:00 -0.03 t-49 13:00 -0.12 

15:00 t-27 12:00 0.87 t-48 15:00 -0.01 t-49 14:00 -0.13 

16:00 t-28 12:00 0.85 t-48 16:00 0.00 t-49 15:00 -0.15 

17:00 t-29 12:00 0.83 t-48 17:00 0.00 t-49 16:00 -0.17 

18:00 t-30 12:00 0.81 t-48 18:00 0.00 t-49 17:00 -0.18 

19:00 t-31 12:00 0.78 t-48 19:00 0.02 t-49 18:00 -0.20 

20:00 t-32 12:00 0.76 t-48 20:00 -0.02 t-49 19:00 -0.16 

21:00 t-33 12:00 0.75 t-48 21:00 -0.13 t-49 20:00 -0.05 

22:00 t-34 12:00 0.74 t-48 22:00 -0.18 t-49 21:00 0.00 

23:00 t-35 12:00 0.74 t-48 23:00 -0.20 t-49 22:00 0.02 
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APPENDIX G. Yearly profit (𝑻𝑳) changes with different new 

and original equilibrium price ratios. 

Ratio 2019 2020 2021 

1.00 - - - 

1.01 70,953,222 76,892,837 65,740,164 

1.02 104,913,293 117,997,441 105,892,001 

1.03 115,858,077 132,828,963 123,327,648 

1.04 121,487,981 139,108,849 130,586,024 

1.05 125,749,071 141,680,420 134,505,110 

1.06 128,546,400 143,045,543 136,657,082 

1.07 130,021,800 145,110,475 138,641,797 

1.08 131,868,610 146,158,326 139,476,236 

1.09 132,817,235 146,905,664 139,230,936 

1.10 134,397,957 147,122,564 138,692,520 

1.11 135,105,728 147,633,401 137,609,542 

1.12 135,666,208 148,383,182 136,383,027 

1.13 136,015,725 148,455,697 135,314,559 

1.14 136,327,213 148,189,593 133,633,656 

1.15 136,568,463 148,608,826 131,880,332 

1.16 138,090,599 148,435,814 129,335,392 

1.17 138,134,915 148,817,491 127,018,196 

1.18 137,789,863 147,976,900 124,050,738 

1.19 137,447,516 147,317,527 121,473,626 

1.20 137,377,664 146,721,305 119,030,464 

1.21 137,695,011 145,935,761 116,609,267 

1.22 137,348,303 144,957,984 114,117,593 

1.23 137,267,158 143,346,109 110,810,036 

1.24 136,930,183 142,223,302 107,820,326 

1.25 137,108,170 141,764,049 104,495,750 

1.26 137,027,021 140,547,462 101,514,705 

1.27 136,751,708 139,194,154 98,584,478 

1.28 136,788,003 138,324,597 95,385,549 

1.29 136,088,057 136,943,263 92,573,323 

1.30 135,589,026 136,280,934 90,248,642 

1.40 130,154,483 123,352,210 61,662,208 

1.60 118,880,139 94,764,924 19,581,014 

1.80 110,285,180 68,075,017 4,832,302 

2.00 102,982,427 47,487,583 743,238 
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APPENDIX H. The result of the first scenario that uses forecasted 

imbalance quantity with different storage levels 

Storage 
(MW) 

2019 2020 2021 

Positive Negative Total Positive Negative Total Positive Negative Total 

0 - 59.3 M 59.3 M - 71.3 M 71.3 M - 30.4 M 30.4 M 

100 1.9 M 76.4 M 78.3 M 2.3 M 89.2 M 91.4 M 3.8 M 60.7 M 64.6 M 

200 3.9 M 87.8 M 91.7 M 4.6 M 101.3 M 105.9 M 8.0 M 82.0 M 90.1 M 

300 6.1 M 95.3 M 101.4 M 7.1 M 109.4 M 116.5 M 12.5 M 96.8 M 109.3 M 

400 8.5 M 100.6 M 109.0 M 9.7 M 114.7 M 124.4 M 17.1 M 107.0 M 124.1 M 

500 10.9 M 104.0 M 114.9 M 12.2 M 118.6 M 130.8 M 21.8 M 113.6 M 135.5 M 

600 13.3 M 106.1 M 119.4 M 14.6 M 121.5 M 136.0 M 26.3 M 118.5 M 144.8 M 

700 15.5 M 107.5 M 123.0 M 16.8 M 123.2 M 140.0 M 30.6 M 121.7 M 152.4 M 

800 17.8 M 108.5 M 126.3 M 19.0 M 124.2 M 143.2 M 34.6 M 123.9 M 158.6 M 

900 19.9 M 109.3 M 129.2 M 20.9 M 125.0 M 145.9 M 38.5 M 125.5 M 164.0 M 

1000 22.0 M 109.7 M 131.7 M 22.9 M 125.6 M 148.4 M 42.2 M 126.6 M 168.9 M 

1100 24.0 M 110.0 M 134.0 M 24.7 M 126.0 M 150.6 M 45.7 M 127.5 M 173.2 M 

1200 25.8 M 110.2 M 136.1 M 26.4 M 126.3 M 152.7 M 49.1 M 128.2 M 177.2 M 

1300 27.6 M 110.4 M 138.0 M 28.0 M 126.7 M 154.6 M 52.2 M 128.8 M 180.9 M 

1400 29.2 M 110.5 M 139.7 M 29.5 M 126.9 M 156.4 M 55.1 M 129.2 M 184.3 M 

1500 30.7 M 110.6 M 141.3 M 31.0 M 127.1 M 158.1 M 57.9 M 129.4 M 187.3 M 

1600 32.1 M 110.7 M 142.8 M 32.3 M 127.2 M 159.5 M 60.6 M 129.6 M 190.2 M 

1700 33.5 M 110.7 M 144.2 M 33.6 M 127.2 M 160.8 M 63.1 M 129.7 M 192.7 M 

1800 34.8 M 110.7 M 145.5 M 34.8 M 127.3 M 162.1 M 65.4 M 129.8 M 195.2 M 

1900 36.0 M 110.7 M 146.8 M 36.0 M 127.3 M 163.3 M 67.6 M 129.9 M 197.5 M 

2000 37.3 M 110.7 M 148.0 M 37.1 M 127.4 M 164.5 M 69.7 M 129.9 M 199.7 M 

2500 43.1 M 110.8 M 153.9 M 42.3 M 127.5 M 169.8 M 79.0 M 130.2 M 209.2 M 

3000 48.0 M 110.9 M 158.9 M 47.0 M 127.7 M 174.6 M 86.6 M 130.3 M 217.0 M 

3500 52.6 M 110.9 M 163.4 M 51.3 M 127.9 M 179.2 M 93.5 M 130.8 M 224.3 M 

4000 56.4 M 111.0 M 167.3 M 55.1 M 127.9 M 183.0 M 99.9 M 131.0 M 230.8 M 

4500 59.7 M 111.2 M 170.9 M 58.7 M 128.0 M 186.7 M 105.5 M 131.2 M 236.6 M 

5000 62.7 M 111.3 M 174.0 M 62.0 M 128.0 M 190.0 M 110.1 M 131.3 M 241.4 M 

5500 65.7 M 111.3 M 177.0 M 64.9 M 128.1 M 193.1 M 114.1 M 131.8 M 245.9 M 

6000 68.4 M 111.3 M 179.7 M 67.7 M 128.1 M 195.9 M 118.0 M 131.8 M 249.8 M 

6500 71.0 M 111.3 M 182.3 M 70.5 M 128.1 M 198.6 M 121.8 M 131.8 M 253.6 M 

7000 73.4 M 111.3 M 184.8 M 73.3 M 128.1 M 201.4 M 125.4 M 132.0 M 257.4 M 

7500 75.6 M 111.4 M 187.0 M 76.2 M 128.2 M 204.3 M 128.8 M 132.0 M 260.8 M 

8000 77.6 M 111.6 M 189.2 M 79.0 M 128.2 M 207.1 M 131.9 M 132.0 M 263.9 M 

8500 79.6 M 111.6 M 191.2 M 81.6 M 128.2 M 209.8 M 134.8 M 132.0 M 266.8 M 

9000 81.7 M 111.6 M 193.2 M 84.1 M 128.3 M 212.4 M 137.7 M 132.0 M 269.7 M 

9500 83.6 M 111.6 M 195.2 M 86.1 M 128.5 M 214.6 M 140.6 M 132.2 M 272.7 M 

10000 85.5 M 111.6 M 197.1 M 87.9 M 128.5 M 216.4 M 143.2 M 132.5 M 275.7 M 
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APPENDIX I. The result of the second scenario that uses actual 

imbalance quantity with different storage levels 

Storage 
(MW) 

2019 2020 2021 

Positive Negative Total Positive Negative Total Positive Negative Total 

0 - - - - - - - - - 

100 6.3 M 19.4 M 25.7 M 5.8 M 20.2 M 26.0 M 10.5 M 5.6 M 16.1 M 

200 12.1 M 34.8 M 46.9 M 11.1 M 36.3 M 47.4 M 19.9 M 12.1 M 32.0 M 

300 17.3 M 48.0 M 65.3 M 15.8 M 50.1 M 65.9 M 28.3 M 20.8 M 49.1 M 

400 22.0 M 59.7 M 81.8 M 20.2 M 62.3 M 82.5 M 35.8 M 29.9 M 65.7 M 

500 26.3 M 70.2 M 96.6 M 24.1 M 73.1 M 97.2 M 42.6 M 38.7 M 81.2 M 

600 30.2 M 79.6 M 109.8 M 27.7 M 82.7 M 110.4 M 48.9 M 52.5 M 101.3 M 

700 33.7 M 88.2 M 121.9 M 31.0 M 91.4 M 122.4 M 54.8 M 68.7 M 123.5 M 

800 37.0 M 96.2 M 133.2 M 34.0 M 99.2 M 133.3 M 60.2 M 84.7 M 144.9 M 

900 40.0 M 103.6 M 143.6 M 36.8 M 106.4 M 143.2 M 65.3 M 94.1 M 159.4 M 

1000 42.9 M 110.4 M 153.3 M 39.3 M 113.1 M 152.4 M 70.1 M 109.4 M 179.5 M 

1100 45.5 M 116.6 M 162.2 M 41.7 M 119.4 M 161.1 M 74.6 M 124.2 M 198.8 M 

1200 48.0 M 122.3 M 170.3 M 44.0 M 125.4 M 169.4 M 79.0 M 139.0 M 218.0 M 

1300 50.3 M 127.8 M 178.1 M 46.2 M 131.1 M 177.3 M 83.0 M 149.6 M 232.6 M 

1400 52.6 M 132.9 M 185.5 M 48.3 M 136.6 M 184.9 M 86.8 M 157.6 M 244.4 M 

1500 54.7 M 137.8 M 192.5 M 50.3 M 142.0 M 192.3 M 90.3 M 165.9 M 256.2 M 

1600 56.8 M 142.4 M 199.2 M 52.3 M 147.3 M 199.6 M 93.7 M 174.1 M 267.7 M 

1700 58.8 M 146.8 M 205.6 M 54.2 M 152.2 M 206.4 M 96.9 M 182.6 M 279.5 M 

1800 60.8 M 151.1 M 211.9 M 56.0 M 157.0 M 213.0 M 100.0 M 192.1 M 292.1 M 

1900 62.6 M 155.0 M 217.6 M 57.8 M 161.6 M 219.4 M 102.6 M 200.4 M 303.0 M 

2000 64.4 M 158.8 M 223.2 M 59.5 M 166.0 M 225.5 M 105.2 M 209.6 M 314.7 M 

2500 72.5 M 175.4 M 247.9 M 67.0 M 185.4 M 252.4 M 116.0 M 241.5 M 357.6 M 

3000 79.5 M 190.1 M 269.6 M 73.4 M 201.9 M 275.3 M 125.4 M 268.9 M 394.3 M 

3500 85.8 M 202.9 M 288.8 M 79.0 M 216.4 M 295.4 M 133.7 M 291.9 M 425.6 M 

4000 91.3 M 214.5 M 305.8 M 84.1 M 229.0 M 313.2 M 141.1 M 315.3 M 456.4 M 

4500 96.1 M 225.2 M 321.3 M 88.8 M 240.0 M 328.8 M 148.2 M 334.0 M 482.2 M 

5000 100.3 M 234.8 M 335.1 M 93.1 M 250.6 M 343.7 M 154.9 M 357.1 M 512.0 M 

5500 104.6 M 243.8 M 348.3 M 97.1 M 261.0 M 358.1 M 160.9 M 373.3 M 534.2 M 

6000 108.3 M 252.1 M 360.4 M 100.6 M 270.4 M 371.0 M 166.4 M 387.5 M 553.9 M 

6500 111.7 M 259.5 M 371.1 M 104.1 M 279.2 M 383.3 M 171.4 M 403.2 M 574.7 M 

7000 114.8 M 266.4 M 381.2 M 107.3 M 287.4 M 394.7 M 175.9 M 418.9 M 594.9 M 

7500 117.7 M 272.6 M 390.4 M 110.4 M 294.8 M 405.2 M 180.0 M 428.3 M 608.4 M 

8000 120.4 M 278.2 M 398.6 M 113.2 M 301.3 M 414.5 M 183.7 M 439.2 M 622.9 M 

8500 123.0 M 283.8 M 406.9 M 115.7 M 307.1 M 422.8 M 187.3 M 447.2 M 634.5 M 

9000 125.5 M 289.0 M 414.5 M 118.1 M 312.3 M 430.4 M 190.5 M 458.8 M 649.3 M 

9500 127.8 M 293.8 M 421.7 M 120.3 M 317.6 M 437.9 M 193.5 M 469.0 M 662.6 M 

10000 130.1 M 298.3 M 428.4 M 122.4 M 322.1 M 444.5 M 196.1 M 472.4 M 668.5 M 
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APPENDIX J. Countries in the ENTSO-E system and their 

basic information 

Country Code MHC (All Available Years) MHC (Last Available Year) Population 

Türkiye (1) TR 32576 33352 84340 

Germany DE 59840 59085 83191 

United Kingdom GB 38391 38831 67886 

France FR 55097 54303 67287 

Italy IT 36634 36777 59258 

Spain ES 29076 28946 47431 

Ukraine (2) UA 630 634 41902 

Poland PL 16785 18468 38268 

Romania RO 6065 6402 19266 

Netherlands NL 12760 13302 17425 

Belgium BE 9886 9734 11493 

Czech Republic CZ 7285 7620 10702 

Greece GR 5873 5875 10689 

Sweden SE 15943 16095 10379 

Portugal PT 5737 5810 10305 

Hungary HU 4702 4928 9770 

Austria AT 7440 8132 8901 

Switzerland CH 5973 6874 8637 

Bulgaria BG 4254 3876 6917 

Serbia RS 4499 4476 6908 

Denmark DK 3426 3899 5823 

Finland FI 9692 9977 5536 

Slovakia SK 3244 3369 5460 

Norway NO 14753 15460 5368 

Ireland IE 3048 3299 4995 

Croatia HR 1994 2092 4047 

Bosnia and Herzegovina (4) BA 1382 1424 3281 

Albania (3) AL 814 818 2878 

Lithuania (4) LT 1250 1382 2795 

Slovenia (4) SI 1504 1640 2100 

North Macedonia (3) MK 913 779 2083 

Latvia (4) LV 815 838 1902 

Northern Ireland (3) NI 1025 1003 1890 

Estonia (4) EE 920 959 1331 

Cyprus (3) CY 526 586 1207 

Luxembourg (3) LU 734 729 632 

Montenegro (3) ME 408 388 622 

Iceland (3) IS 2026 2207 366 

(1) Data excluded because Türkiye is not part of the ENTSOE grid  

(2) Data excluded because only west Ukraine data is available  

(3) Data excluded due to insufficiency 

(4) Data excluded because of low consumption 
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