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GENERALIZED SYNCHRONIZATION: MASTER-SLAVE

RELATIONSHIP IN THREE COUPLED SYSTEMS

ABSTRACT

Synchronization is an important phenomenon for complex, biological, and physical

systems such as the brain, i.e., Parkinson’s disease, heart beating, hand-clapping,

power grids, lasers, and many others. Intuitively, we can express synchronization

as strong correlations between coupled systems. We can state two scenarios in

this manner. One is synchronization between identical systems, which is called

complete synchronization; the other is the synchronization between the non-identical

systems, called generalized synchronization. In this thesis, initially, we considered

the two coupled systems and calculated the critical coupling value for the generalized

synchronization analytically. More precisely, the Lorenz system drives two Rössler

systems. We investigated the critical coupling value for synchronization numerically.

However, real-world examples are much more complex. The most straightforward

case was the two coupled systems for the generalized synchronization, and next, we

focus on three coupled systems. In particular, suppose that we have three coupled

one Lorenz and two Rössler systems. In our example, the Lorenz system drives the

first Rössler system, and first Rössler system drives the second Rössler system, and

finally, the second Rössler system also drives the Lorenz system. We calculated the

critical coupling of the whole system for generalized synchronization and analyzed

the time series for each system.

Keywords: synchronization, coupled systems
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ÖZET

Senkronizasyon, beyin gibi karmaşık, biyolojik ve fiziksel sistemler, yani Parkinson

hastalığı, kalp atışı, alkışlama, elektrik şebekeleri, lazerler ve diğerleri için önemli

bir olgudur. Sezgisel olarak, senkronizasyonu, bağlı sistemler arasındaki güçlü ko-

relasyonlar olarak ifade edebiliriz. Bu şekilde iki senaryo belirtebiliriz. Biri, tam

senkronizasyon olarak adlandırılan özdeş sistemler arasındaki senkronizasyondur;

diğeri ise, genelleştirilmiş senkronizasyon olarak adlandırılan, özdeş olmayan sistem-

ler arasındaki senkronizasyondur. Bu tezde ilk olarak iki bağlı sistemi ele aldık ve

genelleştirilmiş senkronizasyon için kritik eşleşme değerini analitik olarak hesapladık.

Daha açık bir şekilde, Lorenz sistemi iki Rössler sistemini çalıştırır. Bu senaryodaki

senkronizasyonu gözlemleyeceğimiz kritik eşleşme değerini sayısal olarak araştırdık.

Ancak, gerçek dünyadaki örnekler çok daha karmaşıktır. Bu bağlamda, en basit du-

rum, genelleştirilmiş senkronizasyon için iki bağlı sistemdi ve daha sonra, üç bağlı

sisteme odaklandık. Üç adet birleştirilmiş bir Lorenz ve iki adet Rössler sistemimiz

olduğunu varsayalım. Bu örnekte Lorenz sistemi birinci Rössler sistemini ve ilk

Rössler sistemi ikinci Rössler sistemini çalıştırır ve son olarak ikinci Rössler sistemi

de Lorenz sistemini çalıştır. Genelleştirilmiş senkronizasyon için tüm sistemin kritik

eşleşme değerini hesapladık ve her sistem için zaman serilerini analiz ettik.

Anahtar Sözcükler: senkronizasyon, birleştirilmiş sistemler
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1. INTRODUCTION

This thesis introduces the phenomenon of synchronization in coupled chaotic dynam-

ical systems. By synchronization, we mean a notion of strong correlations between

coupled systems. Dynamical systems have synchronization if the distance of their

states goes to zero when time is sufficiently large. Intuitively, synchronization refers

to the tendency to have the same dynamical behavior. In this sense, we can cat-

egorize synchronization in real-world examples. From biology point of view, heart

beating is an example of synchronized cells. Parkinson’s disease and epilepsy are

also related to synchronization phenomena. From the mathematical point of view,

we want to understand these phenomena more concretely. Suppose that we have

identical systems, then we can define their synchronization, and it is called complete

synchronization. On the other hand, if we took totally different kinds of systems

and coupled them, we can define another kind of synchronization called general-

ized synchronization. Chaotic dynamics is one of the scientific revolutions of the

twentieth century related to unpredictability—initiated by Henri Poincaré in the

late-nineteenth century, and we know that chaotic behavior typically occurs when

we measure a positive Lyapunov exponent—we will discuss some details of chaotic

dynamics in Section 5. In this thesis, we will provide the necessary conditions for

the existence of generalized synchronization between chaotic systems.

In particular, consider two non-linear systems

ẋ = f(x)

ẏ = g(y) + α(x− y)

where f, g ∈ C∞(Rn) and α ∈ R.

We take the case of two different coupled systems with α coupling and investigate

the critical coupling value for the existence of generalized synchronization using the

1



auxiliary system approach. For a master system, we used the Lorenz system, and for

a slave system, we used the Rössler system and we calculated the critical coupling

value for synchronization. One step further is the three-coupled systems.

Consider the following equations

ẋ = f(x) + α(z − x)

ẏ = g(y) + β(x− y)

ż = h(z) + γ(y − z)

where f, g, h : Rn → Rn are C∞ and α, β, γ ∈ R. We have three master systems and

these systems are a slave system also. Numerically we calculate the criticality for

the existence of generalized synchronization by using the auxiliary system approach.

We used three different chaotic systems for our simulations, Lorenz system and two

Rössler systems. The parameters of the first Rössler system a = 0.2, b = 0.2, c =

5.7 and other one is a = 0.2, b = 0.2, c = 20. We investigated and illustrated

the generalized synchronization phenomena with respect to the these parameter

values. The direction of the thesis is as follows. Sections 2, 3, and 4 briefly give the

background of non-linear dynamical systems theory. Section 5 will discuss the chaos

phenomena, and in chapters we study synchronization scenarios between coupled

systems.

2



2. ORDINARY DIFFERENTIAL EQUATIONS

This chapter aims to develop some elementary knowledge of ordinary differential

equations. The definitions and examples here illustrate some basic ideas for finding

the differential equations’ solutions. Later, we introduce the existence and unique-

ness theorem as the criteria for this aim. The first couple of examples related to the

existence of solutions and later examples aimed to give the reader the taste of spe-

cific topics, e.g., equilibria, periodic solutions that we will often return to throughout

this thesis.

2.1 Basics of ODEs

Consider a differential equation

ẋ = f(x)

x(t0) = x0

(2.1.1)

with f : U → Rn. Here U ⊆ R × Rn is an open set1 and (t0, x0) is a initial value

for system (2.1.1). This type of differential equation is called Initial Value Problem

(IVP).

Definition 2.1.1 (Solution of an IVP). Consider an initial value problem

ẋ = f(x)

x(0) = x0

(2.1.2)

with f : U ⊆ Rn → Rn and f ∈ C12. By a solution we mean a function

x : I → Rn

t 7→ x (t)
(2.1.3)

where I ⊂ R is an interval containing 0 that satisfies system (2.1.2).

1See, Definition 8.1.2.
2See, Definition 8.1.4.

3



The purpose of this section is asking the questions such as, does this system have a

solution or not. If it has, it is unique or infinite? Here are a few examples for each

of these possibilities.

Example 2.1.1 (Unique solution). Consider

ẋ = ax, a ∈ R

x(0) = x0.
(2.1.4)

The function x(t) : R → R, where x(t) = eatx0 is a solution of system (2.1.4) (see,

Figures 2.1 and 2.2). It follows from Theorem 2.2.1 (proved later) that this solution

is unique.

Figure 2.1 The solution graphs for ẋ = ax, for a > 0. Each curve represents a
particular solution.

Example 2.1.2 (No solution). Consider ẋ = f(x) where

f(x) =

 1 when x < 0

−1 when x ≥ 0

Consider a solution at x(0) = 0. Such a solution must decrease since dx(0)
dt

= −1,

but for all negative values of x, solutions must increase. This cannot happen.

4



Figure 2.2 The solution graphs for ẋ = ax, for a < 0.

Example 2.1.3 (Infinitely many solutions). Take ẋ = |x|
1
2 with x(0) = 0. First,

x(t) = 0 is clearly a solution. Then we can see that x(t) defined by

x(t) =


0, when t ≤ 1

(t− 1)2/4, when t > 1

is a solution. For every t value we have another solution, since t ∈ R, we have

infinitely many solutions.

This example is taken from Van Strien (2018, p. 11). From these two examples

we can see that, to ensure existence and uniqueness of solutions, there must be

some concrete conditions on the function f(x). In the first example, the function

f(x) is not continuous at the point 0. In the second example the function f(x)

is not differentiable at the point 0. We will see in Theorem 2.2.1 that if we add

differentiability (in fact, the weaker condition of locally Lipchitz3 ) on the function

f(x) that gives us the Existence and uniqueness of a solution.

2.2 Existence and Uniqueness of Solutions of ODEs

In this section, we focus on the elementary theorem of differential equations, the

existence and uniqueness theorem. Let f be a C1 function on Rn, and consider an

3See, Definition 8.1.6.
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IVP

ẋ = f(x),

x(0) = x0

(2.2.1)

In Definition 2.1.1, we defined the solution of system (2.2.1). In geometrical sense,

the solution x(t) of system (2.2.1) is a curve, and at every time t0, the vector f(x(t0))

is tangent to this curve at the point x(t0) ∈ Rn. As we mentioned before, non-linear

differential equations may not have (unique) solutions at certain initial conditions.

The following fundamental theorem gives criteria for the existence and uniqueness

of a solution.

Theorem 2.2.1 (Existence and uniqueness of solutions of ODEs). Consider ẋ =

f(x), x(0) = x0 with f : U → Rn where U ⊆ Rn is open. Suppose f be a C1 function.

Then, there exists a unique function x : (−h, h) → Rn such that it is a solution for

system (2.2.1).

Sketch of the proof. Suppose that I be a compact interval in R. Let C(I,Rn) be the

space of continuous functions defined on I to Rn. We know that, the space C(I,Rn)

is a Banach space (see, Definition 8.1.8) with a norm
∥∥u(t)∥∥ = maxt∈I

∣∣u(t)∣∣4 where

u(t) ∈ C(I,Rn). By integration

ẋ = f(x)

x(0) = x0

is equivalent to

x(t)− x(0) =

∫ t

0

f(x(s))ds.

Then, it follows that finding a solution of IVP turns out to find the fixed point x of

the operator F : C(I,Rn) → C(I,Rn) such that

F (u(t)) = x0 +

∫ t

0

f(u(s))ds

4Here,
∣∣u(t)∣∣ = √∑n

i=1(u
2
i ) where u ∈ Rn and t ∈ I.

6



on Banach space C(I,Rn). One can show that F is a contraction map on Banach

space C(I,Rn). Then, by Banach fixed point theorem (see, Theorem 8.1.1), the

operator F has a unique fixed point.

Let us introduce the concept of the flow of a system of differential equations.

Definition 2.2.1 (Flow of a system of ODEs). Consider IVP (2.2.1) and let ϕt(x0)

be the solution at the initial condition x0 ∈ Rn. Then, the function ϕ(t, x0) :

R× Rn → Rn is defined by ϕ(t, x0) := ϕt(x0) is called the flow of system ẋ = f(x).

The following definition is the orbit of a point x0 ∈ Rn.

Definition 2.2.2 (Orbits). Let x0 ∈ Rn. The set

{ϕ(t, x0) : t ∈ R}

is called the orbit through x0.

Definition 2.2.3 (Equilibria). If the set {ϕ(t, x0) : t ∈ R} = {x0} then, we say x0

is an equilibrium point.

Definition 2.2.4 (Periodic orbits). We say ϕt(x) is a periodic orbit of the system

ẋ = f(x) if there exists a constant T > 0 and a nonequilibrium point x ∈ Rn such

that ϕT (x) = x.

Remark 2.2.1. It follows that ϕt+T (x) = ϕt(x) for every t ∈ R. The minimum

value of T is called the period of the solution.

We already know the equilibrium solution must satisfy the equation ∂ϕ
∂t
(t, x0) =

f(ϕ(t, x)). Since ϕ(t, x0) = x0 then ẋ0 = 0 = f(x0). Hence, if we have the equilib-

rium solution then, we have f(x0) = 0. Moreover, we can take this equality as a

definition of an equilibrium solution.

7



3. LINEAR SYSTEMS

In this thesis, our aim is studying generalized synchronization. To be more precise,

consider the system

ẋi = fi(xi) + α

N∑
j=1

(xj − xi) for i ∈ {1, 2, · · · , N}

where xi, xj ∈ Rn, α ∈ R and fi ∈ C∞(Rn). In our case, we take two or three

non-linear coupled systems, and these are the main models for our synchronization

phenomena that we introduce later. To examine the behavior of above system, we

use the mainly linearization technique, and we have to know the properties of linear

systems for this manner. Linear systems will be our reference to analyzing stability,

and they play a key role in examining the behavior of solutions of non-linear systems.

Let us begin to present the linear system of differential equations

ẋ = Ax

where x ∈ Rn, A is n by n matrix and

ẋ =
dx

dt
=



dx1

dt

dx2

dt
...

dxn

dt


.

The massive portion of this chapter is concerned the computation of a matrix ex-

ponential (see, Definition 3.1.2) and its computational properties (see, Proposition

3.1.3). Then we focus on the stability of linear systems and introduce the spaces

Es, Eu, Ec, and finally, we define the concept of sinks and sources.

8



3.1 Linear Operators and the Matrix Exponential

In order to define matrix exponential we should define the concept of convergence

in the linear spaces. Consider a linear operator T : Rn → Rn. The operator norm

of T defined by

∥T∥ = max|x|≤1

∣∣T (x)∣∣
where | · | is Euclidean norm on Rn. More precisely, |x| =

√
x2
1 + x2

2 + · · ·+x2
n where

x = (x1, x2, · · · , xn) ∈ Rn.

Remark 3.1.1. We denote the linear space (or vector space, see, Definition 8.1.7)

as L(Rn).

Let us define the concept of convergence on linear spaces L(Rn).

Definition 3.1.1 (Convergence of linear operators). Suppose that Tk ∈ L(Rn) for

k = 1, 2, · · · . The sequence of operators Tk are called convergent to T ∈ L(Rn)

when k → ∞ if for all ϵ > 0 there exists N ∈ N such that for k ≥ N we have

∥Tk − T∥ < ϵ.

Lemma 3.1.1. Take S, T ∈ L(Rn) and x ∈ Rn. Then the followings hold.

(i)
∣∣T (x)∣∣ ≤∥T∥ |x|

(ii) ∥TS∥ ≤∥T∥∥S∥

(iii)
∥∥T k

∥∥ ≤∥T∥k for all k = 0, 1, 2, · · · .

Proof. As it is possible to find the proof in any standard books, we do not prove it

here. For proof see in Ref. Perko (2014, p. 11).

Theorem 3.1.2. Consider T ∈ L(Rn) and let t0 be positive real number. Then,

∞∑
k=0

T ktk

k!
(3.1.1)

is absolutely (see, Definition 8.1.9) and uniformly convergent (see, Definition 8.1.10)

for all |t| < t0.

9



Proof. Take ∥T∥ = a. By Lemma 3.1.1, for |t| < t0, we have∥∥T ktk
∥∥

k!
≤ ∥T∥k tk0

k!
≤ aktk0

k!
.

On the other hand,

∞∑
k=0

aktk0
k!

= eat0 .

By Weierstrass M-test5 ∥∥T ktk
∥∥

k!

is absolutely and uniformly convergent for all |t| < t0.

Let A be a real n×n matrix. Suppose that, the linear operator T is represented by

matrix A. Then, the exponential of the linear operator A is absolutely convergent.

More precisely:

Definition 3.1.2 (The exponential of a matrix). We define the exponential of an

n× n matrix A by

eAt =
∞∑
n=0

(At)n

n!
= I + At+

A2t2

2!
+

A3t3

3!
+ · · ·

where t ∈ R.

Here are some properties of the matrix exponential.

Proposition 3.1.3. Let A, B, T ∈ Rn×n. Suppose that matrix T be invertible.

Then, the following statements hold.

(i) If B = T−1AT then, eB = T−1eAT

(ii) If AB = BA then, eA+B = eAeB

(iii) e−A = (eA)−1

Proof. See, Van Strien (2018, p. 43).

5See, Proposition 8.1.2.
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3.2 Stability of Linear Systems

In this section we introduce the concept of stability, and later in Section 4.2, we

will see that if we have hyperbolic equilibria, then the flow of non-linear system and

the flow of its linearized system conjugate with each other (see, Theorem 4.2.2).

Before we give the theorem, we will focus on some fundamental definitions of linear

systems, and immediately after, we give the definition of stability of linear systems.

Take a matrix A ∈ Rn×n. The eigenvalues of the matrix A is denoted by λi for

i ∈ {1, 2, · · · , n}. It can be calculated from det(A − λi I) = 0. Consider the non-

zero vectors vj such that vj ∈ Null(A−λi I).
6 Then, vector vj are called associated

eigenvectors with eigenvalues λi where j ∈ {1, 2, · · · , n}. Here I is the n×n identity

matrix. Also the vectors v such that v ∈ Null(A− λI)k but v /∈ Null(A− λI)k−1 is

called generalized eigenvectors of order k where k ∈ N.

Definition 3.2.1. Let A ∈ Rn×n, we say A is hyperbolic if all of its eigenvalues

have non-zero real parts.

Definition 3.2.2. Let A ∈ Rn×n, we say equilibrium point x0 is hyperbolic if all of

eigenvalues of matrix A have non-zero real parts.

In here, we define the stable unstable and center subspaces, Es, Eu and Ec of the

autonomous linear system

ẋ = Ax, (3.2.1)

where A ∈ Rn×n. Let wj = uj + ivj be a generalized eigenvector of A associated to

an eigenvalue λj = aj + ibj, where 1 ≤ j ≤ n.

Definition 3.2.3. Let wj = uj + ivj ∈ C be the generalized eigenvector and λj =

6The null space of matrix A denoted as Null(A). By definition, the vector x ∈
Null(A) if
Ax = 0.
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aj + ibj ∈ C be the corresponding eigenvalue of the matrix A ∈ Rn×n. Then,

Es := span{uj, vj : aj < 0}

Eu := span{uj, vj : aj > 0}

Ec := span{uj, vj : aj = 0}

for all 1 ≤ j ≤ n.

Remark 3.2.1. The spaces Es, Eu and Ec are called stable, unstable and center

subspaces of system (3.2.1) respectively.

Example 3.2.1. Find the stable, unstable and center subspaces of the linear system

(3.2.1) with the matrix

A =

1 0

0 −1

 .

Solution. Consider ẋ = Ax then ẋ1 = x1 and ẋ2 = −x2. Let us calculate the

eigenvalues and the corresponding eigenvectors of the matrix A. That is det(A −

λiI) = 0 for i = 1, 2. Hence, we have λ1 = 1 and its associative eigenvector is

v1 = e1. Likewise, λ2 = −1 and its corresponding eigenvector is v2 = e2. Then, by

the definition of the spaces Es, Eu

Es = span{e2}

Eu = span{e1}

where e1 = (1, 0), e2 = (0, 1) that is the standard basis of R2.

Example 3.2.2. 7 Consider the linear system (3.2.1). Take the matrix A as

A =


0 −1 0

1 0 0

0 0 2

 . (3.2.2)

The eigenvalues of the matrix A is λ1 = λ2 = i and λ3 = 2. The eigenvectors of A is

(0, 1, 0) ± i(1, 0, 0) associated to eigenvalues λ1, λ2. Likewise, the eigenvectors of A

7This example and figure are taken from Perko (2014, p. 52).
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is (0, 0, 1) associated to eigenvalue λ3. Then, by definition the center and unstable

subspaces are

Ec = span{(0, 1, 0), (1, 0, 0)}

Eu = span{(0, 0, 1)}.

Hence, (x1, x2)− plane is the center subspace Ec and x3 axis is the unstable subspace

Eu (see, Figure 3.1).

Figure 3.1 The center Ec and unstable Eu spaces of the linear system (3.2.2).

Theorem 3.2.1. Let A ∈ Rn×n. Thus,

Rn = Es ⊕ Eu ⊕ Ec

where Es, Eu and Ec are the stable, unstable and center subspaces of the linear sys-

tem (3.2.1). Moreover, Es, Eu and Ec are invariant8 with respect to the flow of

(3.2.1), i.e., eAtE ⊆ E where E ∈ {Es, Eu, Ec}.

Proof. See, Perko (2014, p. 55).

Now, we can define the sinks and sources of n-dimensional linear systems.

8See, Definition 8.2.2.
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Definition 3.2.4 (Sinks). Let x∗ be the equilibrium solution for the linear system

(3.2.1). If all of the eigenvalues of the matrix A ∈ Rn×n have negative real parts,

then we say x∗ is sink for the linear system (3.2.1).

And likewise we can define the source as follows:

Definition 3.2.5 (Sources). Let x∗ be the equilibrium solution for the linear system

(3.2.1). If all of the eigenvalues of the matrix A ∈ Rn×n have positive real parts,

then we say the x∗ is source for the linear system (3.2.1).

Proposition 3.2.2. Consider linear system (3.2.1) again. If x0 ∈ Es then, eAtx0 ∈

Es for every t ∈ R and limt→∞ eAtx0 = 0. Likewise, if x0 ∈ Eu then, eAtx0 ∈ Eu

for every t ∈ R and limt→−∞ eAtx0 = 0.

Proof. See, Perko (2014, p. 58).
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4. STABILITY OF THE EQUILIBRIA

In this section we discuss the stability of the equilibrium points of the non-linear

system

ẋ = f(x).

We will see that the stability of hyperbolic equilibrium point x∗ of this system

is determined by the sign of the real parts of eigenvalues of its linearized system

(see, Theorem 4.2.3). However, the stability of non-hyperbolic points is generally

more difficult to determine. In the following we introduce Lyapunov function (see,

Theorem 4.3.1) as one way to do that. Before we start let us define an equilibrium

point’s stability, instability, and asymptotic stability in the following definitions.

4.1 Basic Definitions

Suppose that x∗ ∈ Rn is an equilibrium point for system

ẋ = f(x). (4.1.1)

Let ϕ(t, x) be the flow of system (4.1.1).

Definition 4.1.1 (Stability of an equilibrium point). The point x∗ is a stable equi-

librium if for every ϵ > 0 there exists δ > 0 such that Nδ(x
∗) ⊆ Nϵ(x

∗)9 and for every

initial value x0 ∈ Nδ(x
∗) the flow ϕ(t, x0) remains in the neighbourhood Nϵ(x

∗) for

all t ≥ 0.

Definition 4.1.2 (Instability of an equilibrium point). The equilibrium x∗ is called

unstable if it is not stable.

9To make a emphasize of the radius, the ϵ−neighbourhood of the equilibrium point x∗

is denoted as Nϵ(x
∗) (see, Definition 8.1.3).

15



Definition 4.1.3 (Asymptotic stability of an equilibrium point). If we have a stable

equilibrium point x∗ and for all x0 ∈ Nδ(x
∗) we have also limt→∞ ϕ(t, x0) = x∗, then

x∗ is called asymptotically stable.

4.2 Linearization

Let us define concept of the linearization of a given system.

Suppose that f : Rn → Rn be a Ck function. Take x = (x1, x2, · · · , xn) ∈ Rn. Then,

f(x1, x2, · · · , xn) = (f1(x), f2(x), · · · , fn(x))

where function fi : Rn → R is Ck, for all i = 1, 2, · · · , n.

Theorem 4.2.1 (Taylor’s theorem). Let f be a Ck function at the origin that we de-

scribed above. Assume that we have non-negative integers αi for every i = 1, · · · , n.

Consider following definitions |α| := |α1 + α2 + · · ·+ αn| with α! := α1! α2! · · · αn!

and xα := xα1
1 xα2

2 · · · xαn
n . Then, for |α| = k and i = 1, 2, · · · , n there exists a

function Ri,α : Rn → Rn such that we have

f(x) =
∑
|α|≤k

n∑
i=1

Dαfi(0)

α!
xα +

∑
|α|=k

n∑
j=1

Rj,α(x) x
α

where limx→0Ri,α(x) = 0.

Proof. As it is possible to find the proof in any standard books, we do not prove it

here.

Example 4.2.1 (Taylor’s theorem for n = 1). Consider f : R → R be Ck. Then,

at the origin we have

f(x) = f(0) + f ′(0)
x

1!
+ f ′′(0)

x2

2!
+ f ′′′(0)

x3

3!
+ · · ·+ f (k)(0)

xk

k!

and

R(x) = R(x) xk

where limx→0R(x) = 0.
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Consider a system

ẋ = f(x) (4.2.1)

where f : Rn → Rn. Suppose that the equilibrium point of this system is x∗ = 0.

By Taylor’s theorem we can write this system

ẋ = Df(0)x+R(x)

where limx→0R(x) = 0 and Df(0) is n× n matrix. More precisely,

Df(0) =



∂f1(0)
∂x1

∂f1(0)
∂x2

· · · ∂f1(0)
∂xn

∂f2(0)
∂x1

∂f2(0)
∂x2

· · · ∂f2(0)
∂xn

...

∂fn(0)
∂x1

∂fn(0)
∂x2

· · · ∂fn(0)
∂xn


.

Remark 4.2.1. The matrix Df(0) is Jacobian matrix of the function f : Rn → Rn

at the origin.

Definition 4.2.1. Consider system (4.2.1) again, Df(0) is called the linear part of

the system at the origin, and

ẋ = Df(0)x

is called the linearized system at the origin.

A homeomorphism is a function that continuous, one-to-one, onto, and the inverse

is also continuous. Consider two systems of differential equations on Rn that is

ẋ = f(x) and ẏ = g(y) where f, g ∈ C1. The systems ẋ = f(x) and ẏ = g(y) are

equivalent if there exists a homeomorphism h : Rn → Rn such that

h(ϕf (t, x)) = ϕg(t, h(x))

where ϕf (t, x) and ϕg(t, h(x)) is the flow of the systems ẋ = f(x) and ẏ = g(y)

respectively.

Now, we turn on to classify the stability of the equilibrium points of the non-linear

systems, and the following theorem is the criteria for stability of these systems.
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Theorem 4.2.2 (Linearization theorem (Hartman–Grobman theorem)). Consider

the system

ẋ = f(x) (4.2.2)

where f : Rn → Rn and f is Ck. Suppose that system (4.2.2) has hyperbolic equilib-

rium point x∗ ∈ Rn. Then, the flow of non-linear system (4.2.2) is conjugate to the

flow of its linearized system in the neighbourhood of x∗.

Proof. See, Hirsch, Smale and Devaney (2013, p. 168).

Note that the following theorem and the Hartman-Grobman theorem are practical

for us. The Example 4.2.2 shows how useful to determine the stability of non-linear

systems more efficiently by using the following theorem.

Theorem 4.2.3. Suppose x∗ ∈ Rn is an equilibrium point of system (4.2.2). If

all of the eigenvalues of the linearized system at x∗ have negative real parts then,

equilibrium point x∗ is asymptotically stable.

Proof. See, Wiggins (2003, p. 11).

Example 4.2.2. Consider the non-linear system

ẋ1 = −x1 − x3
2

ẋ2 = −x2 + x2
1

The origin is an equilibrium point for this system. The linearized system at the

origin ∂x1

∂t

∂x2

∂t

 =

−1 0

0 −1


x1

x2

 .

Since the equilibrium point origin has negative real parts, the corresponding stable

subspace Es is union of x1 and x2 axis. Thus, by using Theorem 4.2.3, the origin is

asymptotically stable.
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Let us briefly introduce the non-autonomous systems. Consider A(t) ∈ Rn×n and it

is continuous with respect to the time variable t. Then, we have following theorem.

Theorem 4.2.4 (Existence and uniqueness theorem for non-autonomous linear sys-

tem). Consider the following linear non-autonomous system

ẋ = A(t)x

x(t0) = x0

(4.2.3)

where t defined on the interval [a, b]. Then, system (4.2.3) has unique solution on

the interval [a, b].

Proof. See, Hirsch, Smale and Devaney (2013, p. 401).

Consider the autonomous non-linear system ẋ = f(x) again where f is C1. Let

x(t) be the solution of this system defined on t ∈ [a, b]. Now, fix the time variable

t0 ∈ [a, b] with x(t0) = x0. For every t ∈ [a, b] let us define

A(t) := Df(x) =


∂f1(x)
∂x1

∂f1(x)
∂x2

· · · ∂f1(x)
∂xn

...

∂fn(x)
∂x1

∂fn(x)
∂x2

· · · ∂fn(x)
∂xn


where Df(x) is the Jacobian matrix of f(x) at the point x(t) ∈ Rn. We already

know that f ∈ C1 function then, for every x(t) ∈ Rn the Jacobian A(t) ∈ Rn×n is

continuous family of matrices. Consider the non-autonomous linear system

u̇(t) = A(t)u(t) = Df(x(t))u(t). (4.2.4)

The above equation is called variational equation along the solution x(t). Moreover,

if u(t) is the solution of equation (4.2.4) at u(t0) = u0 then, the function

x(t) + u(t)

is the good approximation of y(t) which is the solution of the IVP

ẋ = f(x)

y(t0) = x0 + u0

(4.2.5)

where u0 is small enough.
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Example 4.2.3. Consider the non-linear system of differential equations

ẋ1 = x1 + x3
2

ẋ2 = −x2 + x2
1

One of the equilibrium solution for this system is x∗ = (0, 0). It follows that the

Jacobian matrix for this system at x∗ is Df(x∗) =
(
1 0
0 −1

)
. Then, the variational

equation u̇ = Au corresponding to the equation u̇ =
(
1 0
0 −1

)
u. This is an autonomous

linear system and we can solve this system explicitly. Thus, the solution of the vari-

ational equation is u(t) = (x1(0)e
t, x2(0)e

−t) where the initial values x1(0) and x2(0)

are given. Then, by system (4.2.5) it follows that if we sufficiently close to the origin

the solution of the non-linear equation is approximately close to u(t).

4.3 Lyapunov Functions

The stability of an equilibrium point is obvious when we have the hyperbolic equilib-

rium point. On the other hand, if we have a non-hyperbolic equilibrium point then,

this case is more complicated to analyze. In this section, we introduce an alternative

method and give some conditions on the stability of an equilibrium point for a given

system.

The set of all initial conditions with solutions tend to the equilibrium point is called

basin of attraction of an equilibrium point, i.e.,

{y ∈ Rn : lim
t→∞

x(t) = x∗ where x(t0) = y for every t0 ∈ R}

here x∗ is equilibrium point of the system ẋ = f(x).

Let x∗ be an equilibrium point of the system ẋ = f(x). Suppose that the function

L : Ux∗ → R be differentiable on an open set Ux∗ in Rn that contains x∗. Consider

the function

L̇(x) = DLx(f(x)).
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The operator DLx is stands for the derivative of the function L(f) with respect to

the point x = (x1, x2, · · · , xn) ∈ Ux∗ .

Remark 4.3.1. More precisely, by chain rule we can calculate the derivative of the

function L as the following L̇(x) = d
dx
L(x(t)) = DLx

dx(t)
dt

= DLx(f(x)).

Here is a method that we can investigate the stability of a non-hyperbolic equilibria.

Theorem 4.3.1. Let x∗ be the equilibrium point for the system ẋ = f(x). Let

L : Ux∗ → R≥0 be a differentiable function on an open set Ux∗. Suppose that

(i) L(x∗) = 0.

(ii) If L̇ ≤ 0 for all x ∈ Ux∗ − {x∗} then, x∗ is stable.

(iii) If L̇ < 0 for all x ∈ Ux∗ − {x∗} then, x∗ is asymptotically stable.

Proof. See, Hirsch, Smale and Devaney (2013, p. 196).

Function L that satisfies (i) and (ii) is called Lyapunov function of the equilibrium

point x∗. If the condition (iii) happens then we say L is strict Lyapunov function

of x∗. Now, as an example of how to find Lyapunov function let us introduce the

Lorenz system (4.3.1).

Example 4.3.1 (Lorenz system). Consider the system

ẋ = σ(y − x),

ẏ = x(ρ− z)− y,

ż = −βz + xy,

(4.3.1)

where, β, σ and ρ are real positive constants.

Let us calculate the equilibrium points of Lorenz equations. From the first equation

we have y = x. Then eliminating y from second and third equations, we obtain

x(ρ− 1− z) = 0

−βz + x2 = 0.
(4.3.2)
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Take x = 0. Then, we have y = 0 and z = 0. On the other hand, z = ρ − 1.

It follows that, we have x = ±
√
β(ρ− 1). Note that these expressions only valid

for x and y are only real and it follows ρ ≥ 1. Thus we have three equilibrium

points p1, p2 = (±
√
β(ρ− 1),±

√
β(ρ− 1), ρ − 1) and p3 = (0, 0, 0). Now consider

the Lorenz system as f(x, y, z) = (f1(x, y, z), f2(x, y, z), f3(x, y, z)). The linearized

Lorenz system is

Df(x, y, z) =


∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f2
∂x

∂f2
∂y

∂f2
∂z

∂f3
∂x

∂f3
∂y

∂f3
∂z

 =


−σ σ 0

(ρ− z) −1 −x

y x −β

 .

The corresponding matrix of the equilibrium point p3 = (0, 0, 0) is

Df(0) =


−σ σ 0

ρ −1 0

0 0 −β

 . (4.3.3)

Consider the eigenvalues of the linearized Lorenz system above. Take the param-

eters as σ = 0, β = 8/3, ρ = 0. The eigenvalues of (4.3.3) are λ1 = 0, λ2 =

−1 and λ3 = −8/3. Thus, the matrix Df(0) is non-hyperbolic. So far we have

seen theorems about hyperbolic equilibrium cases and we determined the stability

of them. However, the linearized matrix at p3 is not hyperbolic, then it follows that

we must use a method that is valid for a non-hyperbolic case. Let us use Theorem

4.3.1 that we introduced to determine the stability of Lorenz system.

Consider the function L(x, y, z) = 1
σ
x2 + y2 + z2. By the definition of Lyapunov

function it must satisfy Theorem 4.3.1. Then, by Theorem 4.3.1 the function L

must have positive real values. We can easily see that the function L(x) ≥ 0 for all

x, y, z ∈ R. Moreover, at the equilibrium point x∗ the function L must also satisfy

L(x∗) = 0. Since L(p3) = 0 but L(p1) and L(p2) different then zero it follows that,

the assumption of theorem does not hold and the only candidate is the point p3 to

determine the stability.
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Let us calculate the derivative of L(x, y, z)

L̇(x, y, z) =
2

σ
xẋ+ 2yẏ + 2zż.

The corresponding values of ẋ, ẏ, ż implies

L̇ =
2

σ
x(σ(y − x)) + 2yx(ρ− z)− y + 2z(−βz + xy)

L̇ = 2xy − 2x2 + 2ρxy − 2xyz − 2βz2 + 2xyz

L̇ = 2xy − 2x2 + 2ρxy − 2βz2

L̇ = −2x2 − 2βz2

where ρ = −1 and β > 0.

Since L̇ < 0 also holds by using Theorem 4.3.1, the point p3 = (0, 0, 0) is asymptot-

ically stable equilibrium for system (4.3.1).
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5. CHAOS THEORY

In the previous chapter, we have already introduced the Lorenz system, and we

examined the behavior of the equilibrium solution near the origin. The Lorenz sys-

tem is the most famous chaotic differential equation formulated in 1963 by Edward

Norton Lorenz, and it is the system of differential equations that the simplified at-

mosphere model. In this chapter, we focus on the fundamental definitions of chaos

theory. We define the sensitive dependence on initial conditions (see, Definition

5.1.1) in the following the chaotic invariant set (see, Definition 5.1.3) and attractor

(see, Definition 5.1.4). The Rössler equations will be another famous chaotic sys-

tem of differential equations, and we will examine the equilibrium points of Rössler

system also. Finally, we will give the concept of Lyapunov exponents and deter-

mine chaotic behavior by itself. Later on, the Lorenz and Rössler equations will be

examples of our numerical calculations of Lyapunov exponents and synchronization

phenomena.

5.1 Fundamental Definitions

Consider an autonomous Ck systems of differential equations on Rn

ẋ = f(x). (5.1.1)

Suppose that ϕt(x) be the flow of system (5.1.1). Suppose further that, the set

Λ ⊆ Rn is compact and invariant with respect to the flow ϕt(x). Then, we have

following definitions.

Definition 5.1.1 (Sensitive dependence on initial conditions (SDIC)). The flow

ϕt(x) have sensitive dependence on initial conditions on the set Λ if there exists

ϵ > 0 such that for all x ∈ Λ and any neighborhood N(x) of x, there exist y ∈ N(x)

and t > 0 such that we have
∥∥ϕt(x)− ϕt(y)

∥∥ > ϵ.
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Intuitively, this definition basically says that for any point x in Λ we can find at

least one point y arbitrarily close to x such that after some time x and y diverge

from each other.

Let us introduce the notion of topological transitivity. In the following we are going

to examine what is the concept of chaos and as well as the strange attractor.

Definition 5.1.2 (Topological transitivity). Let Λ be closed and invariant set with

respect to the flow ϕt(x). The set Λ is topologically transitive if for every two open

sets U1, U2 ⊆ Λ there exists time value t ∈ R such that ϕt(U1) ∩ U2 ̸= ∅.

Definition 5.1.3 (Chaotic invariant set). 10 11 The compact and invariant set Λ is

called chaotic if the following statements hold

(i) ϕt(x) has sensitive dependence on initial condition on Λ.

(ii) Λ is topologically transitive with respect to the flow ϕt(x).

Example 5.1.1. Consider

ẋ = ax, x ∈ R (5.1.2)

with a > 0. The flow of the system (5.1.2) is

ϕt(x) = xeat. (5.1.3)

Then, by the equation (5.1.3) we can say the following,

(i) ϕt(x) is topologically transitive on (−∞, 0) and (0,∞) but these two intervals

are not a compact set.

(ii) Take two different arbitrary points x1, x2 ∈ R. Then,

∣∣ϕt(x1)− ϕt(x2)
∣∣ = eat|x1 − x2| .

10This definition is taken from Wiggins (2003, p. 736).
11 Some people add following additional requirement to this definition.

(iii)∗ The periodic orbits of ϕt(x) are dense in Λ.
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We can conclude that the flow ϕ(t, x) = xeat has a sensitive dependence on initial

conditions on R. This means, the distance between two arbitrary points are growing

when t > 0.

Remark 5.1.1. The flow ϕt(x) = eat has no periodic orbits.

Definition 5.1.4 (Attractor). 12 Suppose that ẋ = f(x) is the system of differential

equations with respect to the flow ϕt(x) where f : Rn → Rn.

(i) The set Λ is compact and invariant.

(ii) There exists an open set U such that Λ ⊆ U and the set U is invariant with

respect to the flow ϕt(x). Moreover, we have
⋂

t≥0 ϕt(U) = Λ.

(iii) The set Λ is topologically transitive.

If the statements (i), (ii), (iii) are hold then, we say the set Λ is an attractor.

Definition 5.1.5 (Strange attractor). The set Λ ⊆ Rn is strange attractor if Λ is

chaotic.

In the next section we are going to give a definition of the Lyapunov exponent. We

will see that the positive Lyapunov exponents have been a standard way to detecting

when a dynamical system is chaotic. But before we do that let us introduce the

Rössler equations.

Example 5.1.2 (Rössler equations). Consider the system of equations

ẋ = −y − z,

ẏ = x+ ay,

ż = b+ z(x− c)

(5.1.4)

where f : R3 → R3 with all parameters a, b, c ∈ R. The chaotic behaviour can see

in the case that a = 0.2, b = 0.2, and c = 5.7.

12Unfortunately there is no common accepted definition of an attractor in mathematics,
some people choose condition (i) and (ii) as a definition of attractor. Moreover, if the set
Λ also meets condition (iii), then it is called a transitive attractor.
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5.2 Lyapunov Exponents

In this section we focus on Lyapunov exponents which is the criteria for detecting

the chaotic behaviour.

Consider the system of differential equations

ẋ = f(x) (5.2.1)

where f : Rn → Rn and f ∈ Ck. Take the solution ϕt(x) = ϕ(t, x) = x(t) at the

initial value ϕ(0, x) = x0. Consider the linearization of (5.2.1) at x(t)

u̇ = Df(x(t))u, u ∈ Rn. (5.2.2)

Let X(t, x0) be the fundamental solution matrix13 of the system (5.2.2). Let e ̸= 0

in Rn. The expression ∥∥X(t, x0)e
∥∥

∥e∥

is called the coefficient of expansion in the direction e along the orbit through x0.

Definition 5.2.1 (Lyapunov exponent). The Lyapunov exponent in the direction

of e through the orbit of x0 is

λ(x0, e) = lim sup
t→∞

1

t
log

∥∥X(t, x0)e
∥∥

∥e∥
.

We also define λ(x0, 0) = −∞ (see, Figure 5.1).

Now, let us give a Lemma about matrix 2-norm or Euclidian norm from Linear

Algebra.

Lemma 5.2.1. Let A ∈ Rn×n. Consider matrix norm induced by Euclidian vector

norm ∥A∥ = max ∥Ax∥
∥x∥ where x ̸= 0. Then, ∥A∥ is largest eigenvalue of the matrix

A⊤A.

13For every u0 ∈ Rn we can always find a unique solution u(t) = X(t, x0)u0 of the linear
initial value problem u̇ = Df(x)u with u(0) = u0.
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Figure 5.1 The expansion rate for infinitesimally close orbits to x(t).

Proof. For proof, see, Meyer (2000, p. 281).

Then, by Definition 5.2.1 and Lemma 5.2.1 if α(t) is the largest eigenvalue of X⊤X

then we have

λmax = lim
t→∞

sup
1

t
logα(t). (5.2.3)

Example 5.2.1. Consider the linear system

ẋ = ax, x ∈ R,

where a ∈ R. We can evaluate the above equation at x = 0, x > 0 and x < 0. The

fundamental solution matrix is given by

X(t) = eat.

For each case we have one Lyapunov exponent and we can see it is the value of a.

Thus, if a > 0 trajectories of separate exponentially when t → ∞.
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6. SYNCHRONIZATION

In this chapter, we are going to consider the two or three coupled non-linear systems.

First, we briefly examine the notion of synchronization and discuss the synchroniza-

tion scenarios between two coupled non-linear systems. In the following, we intro-

duce the generalized synchronization (See, Definition 6.2.1) and give an example of

how to determine generalized synchronization (see, Theorem 6.2.1). Finally, we will

discuss the basic results for the synchronization of chaotic systems.

6.1 Complete Synchronization

Let us give the definition of complete and generalized synchronization. Take a

system

ẋ1 = f(x1) + α(x2 − x1)

ẋ2 = f(x2) + α(x1 − x2)
(6.1.1)

where x1, x2 ∈ Rn, α ∈ R and f ∈ C2 function on Rn. Let us define M := {(x1, x2) ∈

R2n : x1 = x2}. We say system (6.1.1) has complete synchronization if there exists

an open set N such that M ⊆ N and for every initial value (x1(0), x2(0)) ∈ N we

have

lim
t→∞

∥∥x1(t)− x2(t)
∥∥ = 0.

Remark 6.1.1. Here the norm ∥.∥ is the Euclidian norm on the space Rn.

6.2 Generalized Synchronization

Consider two non-linear systems

ẋ = f(x),

ẏ = g(y, h(x))
(6.2.1)
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where f : Rn → Rn, g : Rm+k → Rm and h : Rn → Rk with f, g, h ∈ C∞.

Definition 6.2.1 (Generalized synchronization (GS)). System (6.2.1) has general-

ized synchronization if the following two properties hold.

(i) There exists an unique function F : Rn → Rm with an invariant manifold

M = {(x, y) : y = F (x)} and a neighborhood N ⊆ N(x̃0)×N(ỹ0) ⊆ Rn ×Rm

such that M ⊆ N .

Moreover,

(ii) For any (x0, y0) ∈ N14 the corresponding flow Φ = (ϕf , ϕg)
15 of system (6.2.1)

converges to the manifold M when t → ∞.

Remark 6.2.1. If the manifold M is graph of an identity function then system has

complete synchronization.

Theorem 6.2.1. System (6.2.1) have generalized synchronization if and only if for

all (x0, y0) ∈ N ⊆ N(x̃0)×N(ỹ0) and for every y1, y2 ∈ N(ỹ0) we have

lim
t→∞

∥∥y(t, x0, y1)− y(t, x0, y2)
∥∥ = 0. (6.2.2)

Proof. Let ϕt
f : Rn → Rn be the flow of system ẋ = f(x) and ϕt

g : Rm+k → Rm

be the flow of system ẏ = g(y, h(x)). Consider flow Φ(ϕf , ϕf ) of system (6.2.1).

Our aim is construct a map F : Rn → Rm. To do this, take a point x0 ∈ N(x)

and determine the corresponding point y0 ∈ N(y) such that we have y0 = F (x0).

Consider point (ϕ−t
f (x0), y0), after time t has evaluated we have (x0, ϕ

t(y0)) and it is

close to the set M . Define F̃ := limt→∞ ϕt
g(ϕ

−t
f (x0), y0). Then, by (6.2.2), we have∥∥∥ϕt

g(ϕ
−t
f (x0), y10)− ϕt

g(ϕ
−t
f (x0), y20)

∥∥∥ → 0 for all y10, y20 ∈ N(y). Thus, F̃ (x0, y0)

is independent from any arbitrary y0 ∈ N(y). We can define the synchronization

manifold M by function F (x0) := F̃ (x0, y0).

14The point x0 is the initial value at t = 0 for the system ẋ = f(x) and also y0 is the
initial value of the system ẏ = g(y, h(x)) at t = 0 .

15The function ϕf : Rn → Rn is the flow of system ẋ = f(x) and likewise ϕg : Rm+k →
Rm is the flow of system ẏ = g(y, h(x)).
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Now, we are going to consider an example to investigate the generalized synchro-

nization phenomena.

Consider two non-linear coupled system

ẋ = f(x)

ẏ = g(y) + α(x− y)
(6.2.3)

where α ∈ R and f, g ∈ C∞(Rn). To detect the generalized synchronization, we will

use the auxiliary system approach16 (see Figure 6.1), this method mainly induces

system the generalized synchronization to complete synchronization phenomena.

Let us consider the auxiliary system

˙̃y = g(ỹ) + α(x− ỹ) (6.2.4)

Figure 6.1 Illustration of the auxiliary system approach for the generalized
synchronization: state x drives the state y and ỹ and also state ỹ is exact copy of
driven state y. If we see the complete synchronization between y and ỹ then we

say x and y have generalized synchronization.

that is the exact copy of the system ẏ = g(y) + α(x − y). Consider a new variable

z := y − ỹ. Then, subtracting of y and ỹ we get

ż = ẏ − ˙̃y

ż = g(y)− g(ỹ)− αz.
(6.2.5)

16Further details can be found: Abarbanel, Rulkov and Sushchik (1996, pp.4528–4535).
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Now, our aim is to find sufficient conditions for α ∈ R so that we can have

lim
t→∞

z(t) = 0.

Let us linearize equation (6.2.5) at the point z = 0. By the Taylor expansion at

y = ỹ we have

g(ỹ) = g(y)−Dg(y)(y − ỹ) +R(y) (6.2.6)

where R(y(t)) stands for high order terms and it satisfy limt→∞R(y) → 0. Now, we

use equation (6.2.6) to rewrite equation (6.2.5)

ż = [Dg(y)− α]z. (6.2.7)

Let us define new variable

w = eαtz(t). (6.2.8)

Consider the derivative of w

ẇ = αeαtz + eαtż

ẇ = αw + [Dg(y(t))− α]eαtz

ẇ = Dg(y(t))w.

(6.2.9)

The last equation is variational equation along the solution y(t). Suppose that

X(t, y0) be the fundamental matrix17 solution of (6.2.9) then, we have w(t) =

X(t, y0)w0 for any arbitrary initial condition w0 ∈ Rn. Suppose that Λ be the

maximal Lyapunov exponent for y(t). Then, the Lyapunov exponent of y(t)

Λ = lim sup
t→∞

1

t
ln

∥∥X(t, y0)w0

∥∥
∥w0∥

.

By definition of limsup, there exist a τ > 0 such that we have

lim sup
t→∞

1

t
ln

∥∥X(t, y0)w0

∥∥
∥w0∥

:= lim
t→∞

sup
τ≥t

{
1

t
ln

∥∥X(t, y0)w0

∥∥
∥w0∥

} .

17Consider a smooth system ẋ = f(x) with x(0) = x0 where x ∈ Rn. Let x(t) be the
solution of this system. By a fundamental solution matrix we mean that a function of a
matrix such that for any initial value w0 ∈ Rn we have unique solution w(t) = X(t, x0)w0

of the initial value problem ẇ = Df(x(t))w and w(0) = 0.
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Then, we have

sup
τ≥t

1

t
ln

∥∥X(t, y0)w0

∥∥
∥w0∥

< Λ + ϵ

where ϵ > 0. Thus,

ln

∥∥X(t, y0)w0

∥∥
∥w0∥

< (Λ + ϵ)t, ∀t > τ∥∥X(t, y0)w0

∥∥ < e(Λ+ϵ)t∥w0∥ , ∀τt > .

By above inequality, there exists a constant C :=∥w0∥ such that∥∥w(t)∥∥ ≤ Ce(Λ+ϵ)t, ∀t > τ. (6.2.10)

From equation (6.2.8) and (6.2.10) we obtain that

∥∥z(t)∥∥ ≤ Ce(Λ+ϵ−α)t, ∀t > τ. (6.2.11)

Since ϵ > 0 is arbitrary we can take the critical α as the following

αc = Λ(y(t)).

Thus, we observe synchronization when we have α ≥ αc.

Example 6.2.1. Let us consider two identical Rössler system with parameters a =

0.2, b = 0.2 and c = 5.7. They are driven by Lorenz system with parameters

σ = 10, β = 8/3, ρ = 28 via (x, y, z)-components where α ∈ R is coupling constant.

We used the auxiliary approach for determine the generalized synchronization. The

numerical results showed that the critical coupling for this system is αc = 0.07.

For a systematic analysis, we consider the distance E between two Rössler systems

for varying coupling strengths. Consider x1 and x2 as the representation of states

of different Rössler systems. Define

E =
1

T

√√√√ T∑
t=0

∣∣x1(t)− x2(t)
∣∣2 (6.2.12)

where T ∈ N. We will use for the synchronization error.
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For given α = 0.05 (see, Figure 6.2) complete synchronization is not happened

between the Rössler and auxiliary Rössler therefore there is no generalized synchro-

nization between the Lorenz and the Rössler systems. If a coupling constant larger

than the critical one α = 0.07, i.e., α = 0.08 (see, Figure 6.3) then, the Rössler

system and the copy of the Rössler system have complete synchronization and we

can observe the generalized synchronization between master and slave systems.

0 2000 4000 6000 8000 10000

5

0

5

x,
x

0 2000 4000 6000 8000 10000
0

2

4

|x
x|

=0.05

Figure 6.2 Trajectories of Rössler and copy of Rössler system. If
given α value smaller than the critical coupling constant αc = 0.07

then, there is no synchronization.
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Figure 6.3 Trajectories Rössler and copy of Rössler system. If
given α value larger than the critical coupling constant αc = 0.07

then, synchronization is obtained.

Figure 6.4 shows the synchronization diagram of E against the coupling strength

α. We can conclude that, after the critically αc = 0.07 we have always E ≈ 10−17.

Since we have same E value for every α ≥ 0.07 it corresponds to the zero value, i.e.,
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10−17 ≈ 0, for such system scenario.

Figure 6.4 Error calculation between Rössler and copy of Rössler. The criticality
for two coupled system in Example 6.2.1 is approximately αc ≈ 0.07.

6.3 Generalized Synchronization on Graphs

In the simplest case for generalized synchronization application on complex net-

works, after two coupled systems, is three coupled systems. We will examine this

scenario by using auxiliary system approach. Consider three non-linear coupled

system

ẋ = f(x) + α(z − x)

ẏ = g(y) + β(x− y)

ż = h(z) + γ(y − z)

(6.3.1)

where f, g, h : Rn → Rn are C∞ and α, β, γ ∈ R. To investigate synchronization

we use the auxiliary approach one by one. Figure 6.5 shows the diagram of a such

system.

Example 6.3.1. Consider two Rössler systems (see, system (5.1.4)) with respect to

parameters a = 0.2, b = 0.2, c = 5.2 and a = 0.2, b = 0.2, c = 20 driven by Lorenz

system (see, system (4.3.1)) with parameters σ = 28, β = 10 ρ = 8/3 via −(x, y, z)

components with α ∈ R coupling constant, i.e., α = β = γ. Illustration 6.5 is

exactly the same coupling direction scenario for this example, i.e., Lorenz system
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Figure 6.5 Generalized synchronization: representation of auxiliary approach of
the three coupled non-linear system.

drives Rössler system (c = 5.7), Rössler system (c = 5.7) drives a another Rössler

system (c = 20) and finally Rössler system (c = 20) drives Lorenz system.

We used the auxiliary system approach the detect generalized synchronization. The

numerical calculations showed that generalized synchronization exists at the critical

coupling αc ≈ 1.19. If we zoom in values α ∈ (0, 0.09) then we can investigate that

critical constant for the Rössler systems (c = 5.7) is αc = 0.018. When we give

smaller values such as α = 0.016, there is no complete synchronization between the

Rössler systems (c = 5.7). Likewise, we can observe that the criticality for second

Rössler systems (c = 20) is αc = 0.079. Below the criticality we do not obtain

synchronization (see, Figure 6.7).

It follows that the Lorenz systems are the last system that we can examine a state

of complete synchronization. It seems the transient time t for the Lorenz system is

large for such a system scenario. After a couple of realizations for this numerics,

the criticality may reduce. However, this is beyond the scope of this thesis. We

can conclude that, for Runge–Kutta integration scheme for time value 100000 with

0.1 time step we have the coupling constant αc = 1.19, if given α value is larger or

equal than criticality we can observe the state of complete synchronization for each
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Figure 6.6 Error Calculation of Three Coupled Systems for 0 ≤ α ≤ 1.14.

sub-system. After Lorenz gets in complete synchrony at α ≈ 1.19, the whole system

(Lorenz, Rössler (c = 5.7), and Rössler (c = 20)) has generalized synchronization

(see, Figure 6.6).

Figure 6.7 Error Calculation of Three Coupled Systems for 0 ≤ α ≤ 0.09.
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7. CONCLUSION

Overall, generalized synchronization is an important topic in science, and it has

many applications in most of the engineering, medical, and biological fields. As

science and engineering disciplines grow, the use of synchronization grows as new

mathematical problems are encountered and new mathematical skills are required.

In this respect, synchronization will play a significant role in applied mathematics.

The broad utility of synchronization to mathematics reflects the deep connection

between the dynamical systems and science. The synchronization phenomenon has

been studied with two coupled systems since 1990. Concerning this, we took two

different non-linear coupled systems where C∞(Rn) and calculated the critical con-

stant for the generalized synchronization. It turns out that the critical coupling

value is exactly the Lyapunov exponent of the driven system. We saw that the

analytical calculations coincide with the numerical calculations using the auxiliary

system approach. Later, we focus on the next step, three coupled systems, which is

a new perspective for synchronization cases till now. More precisely, we took three

different systems and coupled them so that; each system is the driver state and

the driven state both for our specific example. We saw there exists a generalized

synchronization between these three systems. The idea of how we investigated the

generalized synchronization was the following. First, we took the whole system as

a partition of three different systems (see, Figure 6.5). For every case, we used the

auxiliary approach one by one. Thus, by this approach, if we have complete syn-

chronization between the driven system and a copy of the driven (auxiliary system),

we say the main system has generalized synchronization. If we proceed by this order

for every partition, it follows that the system gets synchrony in a generalized sense.

After accomplishing these steps, we have seen numerical results using the auxiliary

system approach and illustrate the synchronization time series. Synchronization is

strongly related to many other concepts. It is also crucial to many mathematical
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areas, including computational mathematics, chaos theory, dynamical systems, and

many other disciplines. The auxiliary systems approach is a technique used mainly

in detecting generalized synchronization. However, this is not the only way of in-

vestigating synchronization. As we mentioned before, the definition of generalized

synchronization is basically a geometrical problem, finding the functional relation-

ship between two or more (different) systems. At this point, there are many missing

theoretical aspects in the notion of synchronization. However, this topic has had

significant attention because of its broad application in many scientific fields and

still continues growing since 1990, and there might be more theoretical mathematics

studies in the future for synchronization phenomena.
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8. PRELIMINARIES

This section will give basic definitions and theorems of Analysis and Geometry that

are required and used in this thesis.

8.1 Preliminaries From Analysis

Definition 8.1.1 (Open balls). Consider a metric space (X, d). Let ϵ > 0 and

x0 ∈ X. We define

Bϵ(x0) = {x ∈ X : d(x, x0) < ϵ}.

The above set is called an open ball of radius ϵ centered at the point x0 ∈ X.

Definition 8.1.2 (Open sets). We say a set U ⊆ X is an open set if for every x ∈ U

there exists an ϵ > 0 such that Bϵ(x) ⊆ U .

Definition 8.1.3 (Neighborhood of a point). The set Nϵ(x) is called a neighborhood

(or ϵ-neighborhood) of x if there exists an open ball Bϵ(x) such that Bϵ(x) ⊆ Nϵ(x).

Sometimes we simply denote the neighborhood of x as N(x).

Definition 8.1.4. A function is continuously differentiable or C1 if all of its partial

derivatives exist and are continuous. Inductively, a function is called Ck, if its partial

derivatives are Ck−1.

Definition 8.1.5 (Lipschitz functions). Let (X, dX) and (Y, dY ) be metric spaces.

We say a function f : X → Y is Lipschitz if there exist K ≥ 0 such that

dY (f(u1), f(u2)) ≤ KdX(u1, u2) (8.1.1)

holds for all u1, u2 ∈ X.

Definition 8.1.6 (Locally Lipschitz). We say f is locally Lipschitz if for every

x ∈ X, there exists a neighbourhood N(x) such that f : N(x) → Y is a Lipschitz

function.
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Remark 8.1.1. Here the neighborhood N(x) of x is defined on the metric that

induced from the metric space (X, dX).

Definition 8.1.7 (Vector space(Linear space)). The setX over the field R is a vector

space if X be closed set under the operators addition and scalar multiplication, i.e.,

for every x1, x2 ∈ X and c1, c2 ∈ R we have c1x1 + c2x2 ∈ X.

Remark 8.1.2. In our case we usually take the set X = Rn where n ∈ {1, 2, · · · , N}.

Definition 8.1.8 (Banach space). We say the set X ⊆ Rn is a Banach space if it

is a complete vector space with a norm equipment.

Theorem 8.1.1 (Banach fixed point theorem). Suppose that (X, d) be complete

metric space. Consider f : (X, d) → (X, d) with λ ∈ (0, 1) such that

d(f(x), f(y)) ≤ λd(x, y) for all x, y ∈ X.

Then, f has a fixed point p ∈ X, i.e., f(p) = p and for every x0 ∈ X the sequence

xn+1 := f(xn) converges to the fixed point p.

Proof. See, e.g., Van Strien (2018, p. 21).

Definition 8.1.9 (Absolute convergence). Suppose that
∑∞

n=m an be a series of real

numbers. The series is absolutely convergent if and only if the series
∑∞

n=m|an| is

convergent.

Definition 8.1.10 (Uniform convergence). — Let (X, dX) be a metric space. Let

X ⊆ R and suppose that fn : X → R for n = 1, 2, · · · . Then, we say fn converges

uniformly to f : X → R if for every ϵ > 0 there exists a N ∈ N such that for all

n ≥ N and for all x ∈ X we have dX(fn(x), f(x)) < ϵ.

Proposition 8.1.2 (Weierstrass M-test). Let X ⊆ R and (X, dX) be a metric space.

Suppose that the sequence of functions (fn)
∞
n=1 be bounded and continuous functions

on the space X such that
∑∞

n=1∥fn∥∞ is convergent. Then the series
∑∞

n=1(fn)

converges uniformly to some function f on X, and the function f is also continuous.

Proof. See, Rudin (2018, p. 148).
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8.2 Preliminaries From Geometry

Definition 8.2.1 (Manifolds). Consider a topological space (X, τX). The set X is

a manifold if for every x ∈ X there exists an open neighborhood Ux that contains x

such that f : Ux → Rn is a homeomorphism for some natural number n.

Definition 8.2.2 (Invariance condition for manifolds). Consider X ⊆ Rn and take

the flow ϕ of the system ẋ = f(x). The set X is called invariant with respect to the

flow ϕ if for every x ∈ X, the flow ϕ(t, x) in the set X, for all t ∈ R.
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