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HIGH-PASS AND LOW-PASS MIXED ELEMENT LOSSLESS TWO-PORT 

NETWORKS AS PHASE SHIFTERS 

 

 

ABSTRACT 

Phase shifters are one of the sub-units in many systems. In active-phased array radar 

(APAR) systems, digital phase shifters (switched line, reflection, loaded-line, and high-

pass/low-pass which is the smallest in volume [17]) are used. High-pass/low-pass phase 

shifters was introduced over 50 years ago [28,40,44]. Besides the size advantage, if their 

power and phase-bandwidth capabilities are compared with other type phase shifters 

[7,23,39], high-pass/low-pass phase shifters are the best choice [28]. From the more 

complicated versions [46] to simple versions [43], the usage of the high-pass/low-pass 

shifters has increased in the last 20 years. For a system designed to be small in size, all 

the sub-units must be as small as possible. Therefore, in practice, high-pass/low-pass 

phase shifters are implemented using lumped elements. However, the connection points 

will deteriorate the frequency response of the phase shifter at microwave frequencies. 

Therefore, these points must be considered as distributed elements, circuits must be 

designed to contain mixed lumped and distributed elements. In this thesis, phase shifting 

properties of four different mixed element lossless two-port networks have been studied: 

Two high-pass networks (with inductors and capacitors separated by distributed elements 

and with capacitors separated by distributed elements), two low-pass networks (with 

inductors and capacitors separated by distributed elements and with capacitors separated 

by distributed elements). In the design of these networks, a real frequency-based approach 

is utilized. Namely, free parameters are initialized, and then optimized to get the desired 

response. Obtained circuit functions are used to calculate the normalized component 

values. In the thesis, a new component value calculation process is defined. Calculated 

normalized values are denormalized to get real component values. In the last section of 

the thesis, high-pass and low-pass sections are designed. Then real component values are 

calculated for different frequency values, and performances of the phase shifters are 

obtained and compared. 

 

Key Words:  Phase Shifters,  Lumped Elements, Distributed Elements 
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FAZ KAYDIRICI OLARAK YÜKSEK GEÇİREN VE ALÇAK GEÇİREN KARMA 

ELEMANLI KAYIPSIZ İKİ KAPILI DEVRELER 

 

 

ÖZET 

Faz kaydırıcılar birçok sistemin alt sistemlerinden biridir. Aktif Faz Dizinli Radar 

sistemlerinde (hat anahtarlamalı, yansıma, yüklü hat ve yüksek geçiren / alçak geçiren, ki 

en az yer kaplayan [17]) dijital faz kaydırıcılar kullanılmaktadır. Yüksek geçiren / alçak 

geçiren faz kaydırıcılar 40 yılı aşkın bir süre önce ortaya çıkmıştır [28,40,44]. Boyut 

avantajının yanı sıra, güç ve faz- bant kabiliyetleri, diğer tip faz kaydırıcıları [7,23,39] ile 

kıyaslandığında yüksek geçiren / alçak geçiren faz kaydırıcılar en iyi seçenektir [28]. 

Daha karışık versiyonlardan [46] basit versiyonlara [43], yüksek geçiren / alçak geçiren 

kaydırıcıların kullanılması son 15 yılda artış göstermiştir. Tasarlanan bir sistemin küçük 

boyutlarda olması için, bütün alt sistemlerin de olabildiğince küçük olması gerekir. Bu 

yüzden, pratikte yüksek geçiren / alçak geçiren faz kaydırıcılarda toplu elemanlar 

kullanılır. Şu var ki, bağlantı noktaları mikrodalga frekanslarda faz kaydırıcıların 

performansını kötüleştirir. Bu yüzden, bağlantı noktalarının dağınık eleman olduğu farz 

edilmeli, toplu ve dağınık elemanları içeren karma elemanlı devreler tasarlanmalıdır. Bu 

tezde, dört farklı iki-kapılı kayıpsız karma elemanlı faz kaydırıcı devrenin faz kaydırma 

özellikleri incelenmiştir: Bobin ve kondansatörlerin dağınık elemanlarla ayrıldığı yüksek 

geçiren devre, kondansatörlerin dağınık elemanlarla ayrıldığı yüksek geçiren devre, bobin 

ve kondansatörlerin dağınık elemanlarla ayrıldığı alçak geçiren devre, kondansatörlerin 

dağınık elemanlarla ayrıldığı alçak geçiren devre. Bu devrelerin tasarımlarında, gerçek 

frekans tabanlı bir yaklaşım kullanılmaktadır. Yani, serbest parametrelere başlangıç 

değerleri atanır ve sonra istenilen cevap elde edebilmesi için optimal hale getirilir. Elde 

edilen devre fonksiyonları normalize edilmiş devre elemanlarının değerlerini 

hesaplamakta kullanılır. Bu tezde, eleman değerlerinin hesaplanmasında yeni bir 

yaklaşım tanımlanmıştır. Hesaplanan normalize edilmiş elemanları değerleri, gerçek 

eleman değerlerinin bulunması için denormalize edilir. Tezin son kısmında, yüksek 

geçiren ve alçak geçiren bölümler tasarlandı. Sonra gerçek eleman değerleri farklı frekans 

değerleri için hesaplandı ve faz kaydırıcıların performansları elde edildi ve karşılaştırıldı. 

 

Anahtar Sözcükler: Faz kaydırıcılar, Toplu elemanlar, Dağınık elemanlar 
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1. INTRODUCTION 

 
Phase shifters are one of phased array system elements used to control electronic beam 

direction and fast beam scanning in communication and radar systems, like flight control, 

collision avoidance, missile prevention, and global positioning systems 

[10,18,20,24,41,42]. The phased array antenna uses the phase shifter to change the phase 

of the generated radiation main beam so that the system can scan over the specific area 

without mechanical movement of the antenna [21,27]. Different phase shifters are 

generated according to bandwidth needs, insertion loss, circuit size, and power 

consumption. The phase shifters, in literature, are switched phase shifters, loaded phase 

shifters, and reflection-type phase shifters [7,22,44,49]. Compared with these phase 

shifters, high/low pass phase shifters possess advantages such as small circuit size, low 

power consumption, and phase-to-bandwidth capabilities [17]. The distributed elements 

are insufficient due to sizes in low frequencies as lumped elements. The lumped elements 

are beneficial in low frequencies, but inductors are busy and produce magnetic fields 

caused parasitic in the LC ladder network at high frequencies. These circumstances 

negatively affect the civilian and military applications' phase response [26]. With these 

conditions, utilizing the lumped and distributed elements together becomes inevitable. 

The proximity of inductors with capacitors can be resolved by placing the transmission 

line between the lumped elements or replacing the transmission lines with inductors in 

LC ladder networks. This thesis uses the transmission line with characteristic impedance 

and commensurate delay as a circuit component, like lumped elements. This thesis has 

two configurations for phase shifters with mixed elements in high-pass and low-pass 

ladder networks. One type of ladder network as phase shifters consists of two different 

lumped elements separated by transmission lines. The other type has only series and shunt 

capacitors separated by transmission lines individually. Two independent variable 

scattering parameters can verify the system functions. Complex frequency p defines the 

lumped elements. Richards’ variable λ defines the distributed components. The two 

variable scattering parameters can define reflections, phase, and transducer power gain 

responses in both directions at two port networks [1-3]. The restrictions will be 
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determined according to the scattering parameters for optimization methods to get the 

desired amplitude and phase responses. The calculation of component value is at the end 

of the design process.   
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2. LITERATURE 

 

The high-pass and low-pass phase shifters consist of lumped and distributed elements, 

individually or together. The performance of a phase shifter is based on the number of 

components in the design process at high-pass and low-pass networks [6]. The 

performance of phase shifters with lumped elements in high-pass and low-pass π/T 

topologies is analyzed in [14]. The design for π and T type circuits, consisting of inductors 

and pin diodes, acts as a capacitor in reverse conditions to get 00 to 1800 phase response 

for high-pass and low-pass phase shifters at extra high frequencies [11]. The study for π 

and T type circuits possessed capacitors, inductors, and pin diodes (in reverse biased act 

like a capacitor and in forward biased as a short circuit) according to design 00-3600 high-

pass and low-pass phase shifters for each four different generated LC circuits [12]. The 

study for the execution of a numerical method is about the minimization of insertion loss 

and increase in bandwidth against the parasitic effects and performance loss of three 

lumped elements in high-pass and low-pass symmetrical ladder networks [13]. The design 

of two types of symmetrical LC lattice networks contains capacitors, inductors, and pin 

diodes used to generate efficient high-pass and low-pass phase shifters due to wide 

bandwidth and 00-3600 wide phase shifters [15]. In all these studies, the phase response 

and amplitude responses are calculated according to admittance, impedance methods, or 

the ABCD matrix used to define the scattering matrix. 

 

The study of high-pass and low-pass 00-3600 phase shifters via lumped elements uses 

three canonic polynomials to represent scattering parameters to designate conditions and 

restrictions for the definition of the algorithm. Moreover, this design does not execute the 

switching process [29]. There are restricted studies about the high-pass and low-pass two-

port lossless ladder networks via lumped elements separated by distributed components. 

These studies are based on scattering parameters defined by three canonic two different 

variables polynomials to determine mathematical analysis for matching or filter design 

for good transducer power gain results. The lumped elements are represented with p 
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(complex frequency), and the unit element (distributed component) is represented with 

(Richards' variable) λ. The design concerns low-pass ladder networks with two types of 

lumped elements (inductor and capacitor) separated by transmission lines [17]. The 

analysis of high-pass, band-pass, and stop-band networks with inductors and capacitors 

separated by unit elements is defined in [8]. A broadband matching network design with 

mixed elements is described in [30]. The study about structures of ladder networks with 

shunt capacitors separated by transmission lines is defined in [32]. There are two different 

topologies for high-pass and low-pass via mixed element two-port networks as phase 

shifters. One is a high-pass and low-pass phase shifter with capacitors and inductors 

separated by transmission lines. The other one has only series capacitors or shunt 

capacitors separated by transmission lines. The mathematical analysis of the ladder 

network with series capacitors separated by transmission lines is the subject of this thesis 

[34]. The analysis of these networks as phase shifters is about the defining restrictions to 

receive the desired amplitude, phase responses and observation of these results [36]. The 

circuit component value calculation for each topology is executed at the end of the design 

process. The synthesis of three configurations is existed in literature and has been tested 

with mathematical analysis except for the network with series capacitors separated by 

transmission lines. The synthesis of the network with series capacitors separated by 

transmission is also the subject of this thesis [33]. 
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3. SCATTERING PARAMETERS 

 

A scattering method with two different types of description will be introduced. The first 

type is the voltage and current waves used to describe the scattering parameters. In the 

second type, the three canonic polynomials (g, h, f)  are used to define the scattering 

parameters. 

 

The high-pass and low-pass lossless ladder networks with two different and one type of 

lumped elements separated with distributed components are described via scattering 

parameters. 

 

3.1 Scattering Parameters via Incident and Reflected Waves 

 

In literature, many methods like impedance, admittance, and scattering matrices are used 

to analyze two-port networks at low frequencies. The scattering parameters with 

admittance and impedance methods are used in microwave and RF frequencies. The 

loadings are defined as zero or infinity (like Thevenin or Norton) at the ports that 

scattering parameter becomes an insufficient method at high frequencies. These scattering 

parameters are defined by using the waves in the forward direction from the source to the 

network and the backward direction from the network to the source in the first port. In 

the second port, the wave in the forward direction is from the network to the load 

resistance. The backward direction is from the load resistance to the network [25]. 
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In Figure 3.1, Zint is the input impedance.  a1 is the incident wave from source to port one 

of the networks (forward direction).  b1 is the reflected wave from the first port of the 

network to the source (backward direction). l represents the length of the network. V1 is 

the voltage at the first port of the network. V2 is the voltage at the second port of the 

network. b2 is the incident wave from the network to the load impedance. a2 is the 

reflected wave from the load (RL) to the network. 

 

According to Figure 3.1, if the output impedance (Zout) is equal to RL, the reflection will 

not occur at the load resistance. The reflection in port one will not occur if the input 

impedance is equal to the generator impedance (Rin).   

 

 

 

Figure 3.1 A two-port network with waves 

 

The incident and reflected waves at both ports are defined as 

 

a1=
(V1+Rin Iint) 

2√Rin

,                                                       (3.1) 

 

b1=
(V1-RinIint)  

2√Rin

,                                                       (3.2) 
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a2=
(V2+RLI0)

2√RL

,                                                           (3.3) 

 

b2= 
(V2-RLI0)

2√RL

.                                                          (3.4) 

 

The definition of the voltage at port one with the incident waves and reflected waves is 

shown as 

 

V1=(a1+b1)/√Rin  .                                                    (3.5)  

 

The definition of the current in port one with the incident waves and reflected waves is 

shown as 

 

I1=
a1-b1

√Rin

  .                                                                 (3.6) 

 

The definition of the voltage at port two with the incident and reflected waves is shown 

as 

 

V2=(a2+b2)/√RL                                                     (3.7) 

 

The definition of the current at port two with the incident and reflected waves is shown 

as 

 

I2=
a2-b2 

√RL

 .                                                                (3.8) 

 

Sint represents the input reflection coefficient. 

 

   Sint=
b1

a1

=
Zint - Rin

 Zint + Rin 
  .                                                (3.9) 

 

Sout represents the output reflection coefficient. 

 

       Sout=
b2

a2

=
Zout-ZL

Zout+ZL

   .                                               (3.10) 
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Sin represents the reflection coefficient from the generator. 

 

    Sin=
Zin-1

Zin+1
 .                                                          (3.11) 

 

SL represents the load reflection coefficient. 

 

   SL=
ZL-Zout

ZL+Zout

  .                                                   (3.12) 

 

There are four different scattering parameters for two-port networks. The scattering 

matrix is defined as 

 

b= [
b1

b2
] , a= [

a1

a2
] , S= [

S11 S12

S21 S22
]    .                                 (3.13) 

 

The input reflection is defined by 

 

S11=
b1

a1

       𝑎2=0   .                                                (3.14) 

 

The parameter of the conductivity from source to terminated load resistance is shown as 

 

S21=
b2

a1

   𝑎2=0  .                                                  (3.15) 

 

The output reflection at the second port is defined as 

 

S22=
b2

a2

       𝑎1=0   .                                                (3.16) 
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The conductivity from terminated load resistance to source in the reverse direction is 

defined as 

 

S12=
b1

a2

         𝑎1=0     .                                         (3.17) 

 

S21 is equal to S12 if the network is reciprocal in a lossless two-port network. That means 

the power, amplitude, and phase response will be the same at both ports. 

 

Transpose of S parameter is defined as ST, and conjugate of S parameter is defined as S*. 

The multiplication of the scattering matrix with conjugate and transposing the same 

scattering matrix is equal to the identity matrix and is defined as 

 

S*TS=I for all p    .                                               (3.18) 

 

The relations of the scattering matrix parameters with each other are defined as 

 

S11*S11+S21*S21=1,                                               (3.19) 

 

S22*S22+S12*S12=1,                                               (3.20) 

 

S12*S11+S21S22*=0,                                              (3.21) 

 

S21*S22+S12S11= 0 .                                               (3.22) 

 

The absolute value of all scattering parameters is equal to or smaller than one for a lossless 

network. The maximum value of the circuit’s amplitude response will equal one. 
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Transducer power gain defines the performance of power transformation from source to 

the terminated load resistance. The total power is calculated with the incident and 

reflected waves in two ports and defined as 

 

PT=a1a1
*-b1b1

*+ a2a2
*-b2b2

*   .                                   (3.23) 

 

In literature, scattering parameters are also defined via ABCD parameters and written as 

 

S21 =
2

A + B + C + D
    .                                              (3.24) 

 

3.2 Scattering Parameters Defined via Polynomials 

 

The admittance and impedance methods are insufficient at high frequencies, with zero 

and infinite loads. Circuit functions can be defined with the scattering parameters. The 

three polynomials (g, h, f) have single or two independent variables depending on the 

type of components. The lumped and distributed components can be used in these 

networks individually or together. The lumped elements are defined via the frequency 

variable p. The distributed elements can be represented with Richards’ variable λ, and τ 

is the transmission delay of the unit element. 

 

If lumped and distributed elements are used together, two variable polynomials should be 

used to define the scattering parameters. High-pass and low-pass ladder networks possess 

only series and shunt capacitors separated by distributed elements. The unit elements 

(distribute components) with characteristic impedance and equal length are used to 

separate lumped elements. 
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The other two high-pass and low-pass ladder networks contain inductors and capacitors 

for lumped and unit elements as distributed elements. Unit element has the characteristic 

impedance and same transmission delay that unit elements are used to separate lumped 

elements. 

 

The scattering matrix via polynomials is expressed as 

 

S=

[
 
 
 
 
h

g

σf*

g

f

g

-σh*

g ]
 
 
 
 

 ,                                               (3.25) 

 

σ is a constant (+1 or -1), and f* is the conjugate of  f polynomial in equation (3.25) 

 

The representation of the scattering matrix via polynomials is defined as 

 

S(p,λ)=
1

g(p,λ)
[
h(p,λ) σf(-p,-λ)

f(p,λ) -σh(-p,-λ)
]  ,                                        (3.26)   

  

 S11=
h(p,λ)

g(p,λ)
, S12=

σf(-p,-λ)

g(p,λ)
, S21=

f(p,λ)

g(p,λ)
,  S22=

-σh(-p,-λ)

g(p,λ)
 .                    (3.27) 

 

If only lumped elements are used, scattering matrix via polynomials is defined as 

 

S(p)=
1

g(p)
[
h(p) σf(-p)

f(p) -σh(-p)
]   ,                                         (3.28) 

 

 S11=
h(p)

g(p)
, S12=

σf(-p)

g(p)
, S21=

f(p)

g(p)
,  S22=

-σh(-p)

g(p)
 .                    (3.29) 
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If only distributed elements are used, scattering matrix via polynomials is defined as 

 

S(λ)=
1

g(λ)
[
h(λ) σf(-λ)

f(λ) -σh(-λ)
]   ,                                      (3.30) 

 

 S11=
h(λ)

g(λ)
, S12=

σf(-λ)

g(λ)
, S21=

f(λ)

g(λ)
,  S22=

-σh(-λ)

g(λ)
  .                   (3.31) 

 

g polynomial is a strictly Hurwitz polynomial that real parts of all roots of g polynomial 

are smaller than zero [2]. The roots are in left half plane. f polynomial is an even or odd 

monic polynomial.  

 

The relations between these polynomials via single and two variables according to 

lossless two port network are defined as 

 

g(p,λ)g(-p,-λ) = h(p,λ)h(-p,-λ)- f(p,λ)f(-p,-λ) ,                      (3.32) 

 

g(p)g(-p) = h(p)h(-p)- f(p)f(-p)         λ=0  ,                           (3.33) 

 

g(λ)g(-λ) = h(λ)h(-λ)- f(λ)f(-λ)         p=0   .                          (3.34) 

 

g(p,λ), h(p,λ), f(p,λ) are canonic polynomials [40]. The coefficients of g polynomial are 

nonzero and positive. 

 

For two-port networks, f can be defined for low-pass and high-pass networks as 

 

f(p,λ)=pkλc(1-λ2)n/2                                              (3.35) 

 

In equation (3.35), k represents the number of capacitors and inductors in the ladder 

network, c represents the number of open and short transmission lines in a network. n is 

the number of transmission lines in the network. 

 

Mg is the coefficient matrix of g(p,λ) polynomial and defined as 

 

Mg= [

g
00

⋯ g
0n

⋮ ⋱ ⋮
g

k0
⋯ g

kn

]    .                                       (3.36) 
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Mh is the coefficient matrix of h(p,λ) polynomial and defined as 

 

Mh= [
h00 ⋯ h0n

⋮ ⋱ ⋮
hk0 ⋯ hkn

]      .                                    (3.37) 

 

Transfer scattering parameters are used in the calculations of circuit components [4-5]. 

 

 

The transfer scattering matrix is written as  

 

T(p,λ)=
1

f(p,λ)
[
σg(-p,-λ) h(p,λ)

σh(-p,-λ) g(p,λ)
] ,                                (3.38) 

 

 T12=
h(p,λ)

f(p,λ)
, T11=

σg(-p,-λ)

f(p,λ)
, T22=

g(p,λ)

f(p,λ)
,  T21=

σh(-p,-λ)

f(p,λ)
 .           (3.39) 
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4. HIGH-PASS AND LOW-PASS MIXED ELEMENT NETWORK  

 

There are four different lossless two-port high pass and low pass networks via lumped 

elements separated by unit elements. 

 

4.1 LPPSN via Series Inductors and Shunt Capacitors Separated by UE 

   
In literature, a low-pass lossless ladder network with two kinds of lumped elements 

separated via unit elements was studied in [1]. There are networks from two to five 

degrees for all configurations. Mathematical analysis is examined to identify the 

structures of these networks. The equations are derived for one lumped element and one 

unit element, two lumped elements and one unit element, one lumped element and two 

unit elements, two lumped elements and two unit elements, three lumped elements and 

two unit elements. These equations are used to calculate the unknown coefficients of 

g(p,λ) and h(p,λ).  

 

The representation of g(p,λ) is 

 

g(p,λ)=pTMgλ  .                                                (4.1)    

 

For three capacitors and two distributed elements, the coefficient matrix of g polynomial 

(Mg) is defined as 

 

𝑀𝑔 = [

1 g01 g02
g10
g20

g30

g11
g21

0

g12

0
0

]    .                                             (4.2) 

 

The representation of h(p,λ) is defined as 

 

h(p,λ)=pTMhλ      .                                             (4.3) 
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The coefficient matrix of h polynomial (Mh)  is defined as 

 

𝑀ℎ = [

0 h01 h02

h10

h20

h30

h11

h21

0

h12

0
0

]         .                                  (4.4) 

 

In Mg and Mh coefficient matrices, lumped elements are represented via the first column 

of the matrix (m=3). The unit elements (n=2) are defined via the first row. 

 

In this study, capacitors and inductors are used as lumped elements, and transmission 

lines are used as distributed elements to separate the lumped elements of the low-pass 

ladder network. 

 

 The unknown parameters in g and h are g11, g21, g12, and h11, h21, h12. The constant 

parameters are g00=1 and h00=0. 

 

The unknown parameters are calculated by using the equations given in [22]. 

 

f(p,λ) polynomial is defined  in equation (3.35) 

 

For n=1, m=1,2 

 

f(p,λ)=f(p)f(λ)=(1-λ2)n/2=(1-λ2)1/2  .                                (4.5) 

 

For n=2, m=1,2,3 

 

  f(p,λ)=f(p)f(λ)=(1-λ2)2/2=(1-λ2)   .                                  (4.6) 

 

This thesis aims to find conditions and restrictions on S21 parameter to achieve sufficient 

amplitude and desired phase response. S21 is defined as 

 

S21=
f(p,λ)

g(p,λ)
    .                                                                  (4.7) 
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4.1.1 One unit element and one lumped element 

  

Constant coefficients values are g00=1 and h00=0. Coefficient matrices and equations are 

defined as 

 

Mg=  [
1 g01

g10 g11
]    ,                                                  (4.8) 

 

Mh=[
0 h01

h10 h11
]   ,                                                    (4.9) 

 

g11 = g01 ∗ g10 − h01 ∗ h10  ,                              (4.10) 

 

g11 = h11 ∗ 𝑚2   ,                                                       (4.11)                                         

 

g10 = h10 ∗ m1  .                                                       (4.12) 

 

For shunt capacitor and unit element, m1 is equal to -1, and m2 is equal to -1. 

 

For unit element and series inductor, m1 is equal to 1, and m2 is equal to -1. 

 

For series inductor and unit element, m1 and m2 are equal to 1. 

 

For unit element and shunt capacitor, m1 is equal to -1, and m2 is equal to 1. 

 
4.1.2 One unit element and two lumped elements 

 

Constant coefficients values are g00=1, h00=0, g21=0 and h21=0.  Coefficient matrices 

and equations are defined as 

 

𝑀𝑔 = [
1 g01

g10

g20

g11

0
]      ,                                                (4.13) 

 

𝑀ℎ = [

0 h01

h10

h20

h11

0

]      ,                                               (4.14) 
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g11 = g01 ∗ g10 − h01 ∗ h10    ,                                (4.15) 

 

g20 = (1 + h20
2 )

1
2⁄      ,                                             (4.16)      

   

g10 = (2 ∗ g20 + h10
2 )

1
2⁄      ,                                    (4.17)       

 

h11 = g11 ∗ m1   .                                                     (4.18) 

 

For m1=1, the order of the circuit components is a series inductor, unit element, and shunt 

capacitor. 

 

For m1=-1, the order of the circuit components is a shunt capacitor, unit element, and 

series inductor. 

 

4.1.3 Two unit elements and one lumped element 

 

Constant coefficients values are g00=1 and h00=0. Coefficient matrices and equations are 

defined as 

 

𝑀𝑔=      [
1 𝑔01 𝑔02

g10
𝑔11 𝑔12

]  ,                                               (4.19) 

 

𝑀ℎ=      [
0 ℎ01 ℎ02

h10 ℎ11 ℎ12
]   ,                                              (4.20) 

 

g11 = g01 ∗ g10 − h01 ∗ h10      ,                                            (4.21) 
 

g12 =
g11 ∗ g02 − h11 ∗ h02

g01 − m2 ∗ h01
    ,                                             (4.22) 

 

h11 = ℎ02

g10 − 𝑚2 ∗ h10

g01 − 𝑚2 ∗ h01
 ,                                                   (4.23) 

 

h12 = g12 ∗ 𝑚2  ,                                                                     (4.24)           
 

h10 = g10 ∗ 𝑚1  ,                                                                    (4.25)            
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For m1=1 and m2=-1, the order of the components in the network is a unit element, series 

inductor, and unit element. 

 

For m1=-1 and m2=1, the order of the components in the network is a unit element, shunt 

capacitor, and unit element. 

 

4.1.4 Two unit elements and two lumped elements 

 

Constant coefficients values are g00=1, h00=0, g22 = 0 and h22 = 0. Coefficient matrices 

and equations are defined as 

 

      Mg = [
1 g01 g02

g10 g11 g12

g20 g21 0
] ,                                                     (4.26) 

 

     Mh = [

0 h01 h02

h10 h11 h12

h20 h21 0
]   ,                                                   (4.27) 

 

g11 = g01 ∗ g10 − h01 ∗ h10    ,                                             (4.28)  
 

g12 =
g11 ∗ g02 − h11 ∗ h02

g01 − m2 ∗ h01
   ,                                            (4.29)  

 

g21 =
g11 ∗ g20 − h11 ∗ h20

g10 − m2 ∗ h10
   ,                                           (4.30)  

  

h11 = h02

g10 − m2 ∗ h10

g01 − m2 ∗ h01
+ h20

g01 − m2 ∗ h01

g10 − m2 ∗ h10
  ,                     (4.31) 

 

h21 = g21 ∗ m2    ,                                                           (4.32) 
 

h20 = g20 ∗ m1   ,                                                            (4.33) 
 

h12 = g12 ∗ m2  .                                                             (4.34) 
 

For m1=1 and m2=1, the order of the components in the network is a series inductor, unit 

element, shunt capacitor, and unit element. 

 

For m1=-1 and m2=-1, the order of the components in the network is shunt capacitor unit 

element, series inductor, and unit element. 
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For m1=1 and m2=-1, the order of the components in the network is a unit element, series 

inductor unit element, and shunt capacitor. 

 

For m1=-1 and m2=1, the order of the components in the network is a unit element, shunt 

capacitor unit element, and series inductor. 

 

4.1.5 Two unit elements and three lumped elements 

 
Constant coefficients values are g00=1, h00=0, g22 = 0, h22 = 0, g31 = 0 g32 = 0  

h31 = 0, h32 = 0. Coefficient matrices are defined in equations (4.2) and (4.4). 

 

The equations are defined as 

 

g11 = g01 ∗ g10 − h01 ∗ h10   ,                                          (4.35) 

 

g12 =
g11 ∗ g02 − h11 ∗ h02

g01 − 𝑚2 ∗ h01
   ,                                              (4.36) 

 

g21 =
g11 ∗ g20 − h11 ∗ h20 − g01 ∗ g30 + h01 ∗ h30

g10 − 𝑚2 ∗ h10
   ,                 (4.37) 

 

h11 = ℎ02

g10 − 𝑚2 ∗ h10

g01 − 𝑚2 ∗ h01
+ ℎ20

g01 − 𝑚2 ∗ h01

g10 − 𝑚2 ∗ h10
   ,        (4.38) 

 

h21 = g21 ∗ 𝑚1     ,                                                                  (4.39) 

 

h30 = g30 ∗ 𝑚1   ,                                                                    (4.40) 

 

h12 = g12 ∗ 𝑚1  .                                                                    (4.41) 

 

For m1=1, the order of the components in the network is a series inductor, unit element, 

shunt capacitor, unit element, and series inductor. 

For m1=-1, the order of the components in the network is a shunt capacitor, unit element, 

series inductor, unit element, and shunt capacitor. 
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4.2 HPPSN via Series Capacitors and Shunt Inductors Separated by UE 

 

In literature, the high-pass lossless ladder networks with two kinds of lumped elements 

separated by unit elements were studied in [8]. There are networks from two-to-five-

degree for all configurations. This thesis consists of five different high-pass mixed-

element network configurations as phase shifters. Some equations are derived for one 

lumped element and one unit element, two lumped elements and one unit element, one 

lumped element and two unit elements, two lumped elements and two unit elements, three 

lumped elements, and two unit elements. These equations are used to calculate the 

unknown coefficients of g(p,λ) and h(p,λ).  

 

For three capacitors and two unit elements, the coefficient matrix of g polynomial (Mg) 

is defined as 

 

Mg=[

g00 0     0
g10
g20

1

g11
g21

g31

0
g22

g32

]  .                                  (4.42) 

 

The coefficient matrix of h polynomial (Mh) is defined as 

 

Mh=[

h00 0    0

h10

h20

0

h11

h21

h31

0
h22

h32

]    .                                       (4.43) 

 

The first column represents the lumped elements (λ=0), and the last row represents the 

distributed elements (p=0). The unknown parameters are g11, g21, g22, and h11, h21, h22.. 
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f(p,λ) polynomial for lossless reciprocal high/low pass network from equation (3.35) are 

written as 

 

For k=1 and n=1 
 

  f(p,λ)=f(p)f(λ)=p1(1-λ2)1/2 .                                          (4.44) 
 

For k=1 and n=2 
 

  f(p,λ)=f(p)f(λ)=p1(1-λ2)2/2 .                                         (4.45) 
 

For k=2 and n=1 
 

  f(p,λ)=f(p)f(λ)=p2(1-λ2)1/2 .                                         (4.46) 
 

For k=2 and n=2 
 

  f(p,λ)=f(p)f(λ)=p2(1-λ2)2/2 .                                         (4.47) 
 

For k=3 and n=2 
 

  f(p,λ)=f(p)f(λ)=p3(1-λ2)2/2  .                                        (4.48) 
 

This thesis aims to find conditions and restrictions on S21 to achieve sufficient amplitude 

and desired phase responses over a bandwidth. 

 

4.2.1 One unit element and one lumped element 

 
Constant coefficient values are g10=1 and h10=0. Coefficient matrices and equations are 

defined as 

 

Mg=[
g00 g01

1 g11
] ,                                                   (4.49) 

 

Mh=[
h00 h01

0 h11
]  ,                                                  (4.50) 

 

g11 = (1 + h11)
1

2  ,                                               (4.51) 
 

g01 = g00 ∗ g11 − h00 ∗ h11  ,                              (4.52) 
 

h00 = g00 ∗ 𝑚1    ,                                                (4.53) 
 

h01 = g01 ∗ 𝑚2   .                                                 (4.54)    
 

For series capacitor and unit element, m1 is equal to1, and m2 equals 1. 

 

For unit element and shunt inductor, m1 is equal to -1, and m2 is equal to 1. 
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For shunt inductor and unit element, m1 and m2 are equal to -1. 

 

For unit element and series capacitor, m1 equals 1, and m2 equals -1. 

 

4.2.2 One unit element and two lumped elements 

 
Constant coefficient values are g20=1, h20=0, g01=0, and h01=0. Coefficient matrices and 

equations are defined as 

 

𝑀𝑔 = [
𝑔00 0
g10

1

g11

𝑔21

]   ,                                                      (4.55)                                                    

 

𝑀ℎ = [

ℎ00 0

h10

0

h11

ℎ21

]  ,                                                       (4.56)                                                    

 

g10 = (2 ∗ 𝑔00 + ℎ10
2 )

1

2  ,                                       (4.57) 

 

g21 = (1 + h21)
1

2   ,                                             (4.58) 

 

g11 = g21 ∗ g10 − h21 ∗ h10  ,                                     (4.59) 

 

h11 = g11 ∗ m1  ,                                                 (4.60) 

 

h00 = g00 ∗ m1  .                                                 (4.61)  

  

For m1=1, the order of the components in the network is a series capacitor, unit element, 

and shunt inductor. 

 

For m1=-1, the order of the components in the network is a shunt inductor, unit element, 

and series capacitor. 
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4.2.3 Two unit elements and one lumped element 

 
Constant coefficient values are g10=1, h10=0. Coefficient matrices and equations are 

defined as 

 

𝑀𝑔=      [
𝑔00 𝑔01 𝑔02

1 𝑔11 𝑔12
]  ,                                               (4.62) 

 

𝑀ℎ=      [
ℎ00 ℎ01 ℎ02

0 ℎ11 ℎ12
]  ,                                               (4.63) 

 

g01 = g00 ∗ g11 − h00 ∗ h11 ,                                           (4.64) 

 

h01 = 2 ∗ ℎ12

g00 − 𝑚1 ∗ h00

g11 − 𝑚1 ∗ h11
   ,                                         (4.65) 

 

g02 =
g01 ∗ g12 − h01 ∗ h12

g11 − 𝑚1 ∗ h11
    ,                                           (4.66) 

 

h11 = g11 ∗ 𝑚1    ,                                                         (4.67) 

 

h02 = g02 ∗ 𝑚1  .                                                          (4.68)       

 

For m1=1, the order of the components in the network is a unit element, shunt inductor, 

and unit elements. 

 

For m1=-1, the order of the components in the network is a unit element, series capacitor, 

and unit elements. 
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4.2.4 Two unit elements and two lumped elements 

 
Constant coefficient values are g20=1, h20=0, g02=0, and h02=0. Coefficient matrices and 

equations are defined as 

 

𝑀𝑔=  [
g00 g01 0
g10 g11 g12

1 g21 g22

]   ,                                            (4.69) 

 

𝑀ℎ=  [

h00 h01 0
h10 h11 h12

0 h21 h22

]   ,                                           (4.70) 

 

g11 = g21 ∗ g10 − h21 ∗ h10  ,                                     (4.71) 

 

h11 = ℎ22

g10 − 𝑚2 ∗ h10

g21 − 𝑚2 ∗ h21
+ ℎ00

g21 − 𝑚2 ∗ h21

g10 − 𝑚2 ∗ h10
   ,        (4.72) 

 

g12 =
g11 ∗ g22 − h11 ∗ h22

g21 − 𝑚2 ∗ h21
     ,                                    (4.73) 

 

g01 =
g00 ∗ g11 − h00 ∗ h11

g10 − 𝑚2 ∗ h10
    ,                                     (4.74) 

 

h11 = g11 ∗ 𝑚1    ,                                                (4.75) 

 

h01 = g01 ∗ 𝑚2   .                                                 (4.76) 

 

For m1=1 and m2=1, the order of the components in the network is a series capacitor, 

unit element, shunt inductor, and unit element. 

 

For m1=-1 and m2=-1, the order of the components in the network is a shunt inductor, 

unit element, series capacitor, and unit element. 

 

For m1=1 and m2=-1, the order of the components in the network is a unit element, series 

capacitor, unit element, and shunt inductor. 

 

For m1=-1 and m2=1, the order of the components in the network is a unit element, shunt 

inductor, unit element, and series capacitor. 



25 

 

4.2.5 Two unit elements and three lumped elements 

 
Constant coefficients values are g30=1, h30=0, g02=0, h02=0, g01=0, h01=0, g12=0, 

h12=0. Coefficient matrixes are defined in equations (4.42-43). 

 

The equations are defined as 

 

g21 = g31 ∗ g20 − h31 ∗ h20   ,                                          (4.77) 
 

h21 = ℎ10

g31 − 𝑚 ∗ h31

g20 − 𝑚 ∗ h20
+ ℎ32

g20 − 𝑚 ∗ h20

g31 − 𝑚 ∗ h31
   ,              (4.78) 

 

g22 =
g21 ∗ g32 − h21 ∗ h32

g31 − 𝑚 ∗ h31
     ,                                           (4.79) 

 

g11 =
g10 ∗ g21 − h20 ∗ h21 − 𝑔31𝑔00 + ℎ31ℎ00

g20 − 𝑚 ∗ h20
   ,         (4.80) 

 

h11 = g11 ∗ 𝑚   ,                                                              (4.81) 
 

h22 = g22 ∗ 𝑚   .                                                              (4.82) 
   

For m=1, the order of the components in the network is a shunt inductor, unit element, 

series capacitor, unit element, and shunt capacitor. 

 

For m= -1, the order of the components in the network is a series capacitor, unit element, 

shunt inductor, unit element, and series capacitor. 

 

4.3 LPPSN via Shunt Capacitors Separated by UE 

 

In literature, low-pass lossless two-port networks via shunt capacitors separated by unit 

element were studied in [32]. This thesis consists of five different configurations of low 

pass via mixed element networks as phase shifters. Some equations are derived for one 

lumped element and one unit element, two lumped elements and one unit element, one 

lumped element and two unit elements, two lumped elements and two unit elements, three 

lumped elements, and two unit elements. These equations are used to calculate the 

unknown coefficients of g(p,λ) and h(p,λ).  
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For three capacitors and two distributed elements, the coefficient matrix of g polynomial 

(Mg) is defined as 

 

Mg=[

1 g01  g02
g10

0
0

g11
g21

0

g12
g22

g32

]  .                                      (4.83) 

 

 

For three capacitors and two distributed elements, the coefficient matrix of h polynomial 

(Mh) is defined as 

 

Mh=[

0 h01 h02

h10

0
0

h11

h21

0

h12

h22

h32

]    .                                           (4.84) 

 

 

Unknown parameters in g and h are g10, g11, g21, and h10, h11, h21. 

 

The last column represents lumped elements (λ=0), and the first row represents distributed 

elements (p=0) in Mg and Mh. 

 

f polynomial is written from equation (35). 

 

For n=1, k=1,2  

 

  f(p,λ)=f(p)f(λ)=(1-λ2)2/2=(1-λ2) .                                 (4.85) 

 

 

For n=2, k=1,2,3  

 

  f(p,λ)=f(p)f(λ)=(1-λ2)2/2=(1-λ2)  .                                (4.86) 

 

This thesis aims to find conditions and restrictions on S21 parameters to achieve the 

maximum amplitude and desired phase response over bandwidth. 
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4.3.1 One unit element and one shunt capacitor 

 
Constant coefficient values are g00=1, h00=0. Coefficient matrices and equations are 

defined as     

 

Mg=[
1 g01

g10 g11
]  ,                                                            (4.87) 

 

Mh=[
0 h01

h10 h11
]  ,                                                           (4.88) 

 

g10 =
g11

g01 − 𝑚1 ∗ h01
 ,                                                      (4.89) 

 

h11 = g11 ∗ 𝑚2  ,                                                           (4.90) 

 
 

h10 = g10 ∗ 𝑚1 .                                                           (4.91) 
 

The value of m1 is always equal to -1. 

 

For m2=1, the order of the components in the network is shunt capacitor and unit element. 

 

For m2=-1, the order of the components in the network is a unit element and shunt 

capacitor. 

 

4.3.2 One unit element and two shunt capacitors 

 

Constant coefficient values are g00=1, h00=0, g20=0, h20=0. Coefficient matrices and 

equations are defined as 

 

𝑀𝑔 = [
1 g01

g10

0

g11

g21

]  ,                                                   (4.92) 

 

𝑀ℎ = [

0 h01

h10

0

h11

h21

]  ,                                                   (4.93) 

 

g10 =
g11

g01 − 𝑚1 ∗ h01
 ,                                                  (4.94) 
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h10 = g10 ∗ 𝑚1     ,                                                   (4.95) 

 

h21 = g21 ∗ 𝑚2   .                                                     (4.96) 

 

The values of m1 and m2 are equal to -1.  

 

The order of components is shunt capacitor, unit element, and shunt capacitor in network. 

 

4.3.3 Two unit elements and one shunt capacitor 

 

Constant coefficient values are g00=1, h00=0. Coefficient matrices and equations are 

defined as 

 

𝑀𝑔=      [
1 𝑔01 𝑔02

g10
𝑔11 𝑔12

]  ,                                       (4.97) 

 

𝑀ℎ=      [
0 ℎ01 ℎ02

h10 ℎ11 ℎ12
]  ,                                       (4.98) 

 

g11 = g02 ∗ (g01 ∗ g12 − h01 ∗ h12) − ℎ02
2

g12 − 𝑚1 ∗ h12

g01 − 𝑚1 ∗ h01
  ,     (4.99) 

 

h11 =
g11 ∗ g02 + h01 ∗ h12 − 𝑔01 ∗ 𝑔12

h02
     ,                                  (4.100) 

 

g10 =
g11

g01 − 𝑚1 ∗ h01
   ,                                      (4.101) 

 
h10 = g10 ∗ 𝑚1    ,                                           (4.102) 

 
h12 = g12 ∗ 𝑚2   .                                           (4.103) 

 
The m1 and m2 are equal to -1 and +1, respectively.  

 

The order of components is a unit element, shunt capacitor, and unit element in the 

network. 
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4.3.4 Two unit elements and two shunt capacitors 

 
Constant coefficient values are g00=1, h00=0, g02=0,h02=0. Coefficient matrices and 

equations are defined as    

 

𝑀𝑔=      [
1 g01 g02

g10 g11 g12

0 g21 g22

]  ,                                       (4.104) 

 

𝑀ℎ=      [

0 h01 h02

h10 h11 h12

0 h21 h22

]   ,                                      (4.105) 

 

𝛼 = g12 − 𝑚1 ∗ h12       ,                                              (4.106) 
 

𝛽 = g01 − 𝑚1 ∗ h01      ,                                               (4.107) 
 

g11 = g02 ∗ (g01 ∗ g12 − h01 ∗ h12) − ℎ02
2

α

β
+ ℎ02

2
(β) (

𝑔02 ∗ ℎ22

ℎ02
− 𝑔22)

α
   ,    (4.108) 

 

h11 =
g11 ∗ g02 + h01 ∗ h12 − 𝑔01 ∗ 𝑔12

h02
  ,                                        (4.109) 

 

g21 =
g11 ∗ g22 − h11 ∗ h22

g12 − 𝑚1 ∗ h12
     ,                                    (4.110) 

 

g10 =
g11

g01 − 𝑚1 ∗ h01
    ,                                               (4.111) 

 

h10 = g10 ∗ 𝑚1      ,                                                   (4.112) 
       

h22 = g22 ∗ 𝑚2    ,                                                    (4.113) 
 

h21 = g21 ∗ 𝑚3   .                                                      (4.114) 
 

The values of m1 and m3 are always equal to -1. 

 

For m2=1, the order of the components in the network is a unit element, shunt capacitor, 

unit element, and shunt capacitor. 

 

For m2=-1, the order of the components in the network is a shunt capacitor and unit 

element, shunt capacitor, and unit element. 
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4.3.5 Two unit elements and three shunt capacitors 

 
Constant coefficients values are g00=1, h00=0, g20=0, h20=0, g30=0, h30=0, g31=0,  
 
h31=0.  Coefficient matrices are defined in equations (4.82-83). 

 

The equations are defined as 
 

𝛼 = g12 − 𝑚1 ∗ h12    ,                                                 (4.115) 
 

𝛽 = g01 − 𝑚1 ∗ h01   ,                                                  (4.116) 
 

g11 = g02 ∗ (g01 ∗ g12 − h01 ∗ h12) − ℎ02
2

α

β
+ ℎ02

2
(β) (

𝑔02 ∗ ℎ22

ℎ02
− 𝑔22)

α
 ,       (4.117) 

 

h11 =
g11 ∗ g02 + h01 ∗ h12 − 𝑔01 ∗ 𝑔12

h02
    ,                        (4.118) 

 

g21 =
g11 ∗ g22 + h01 ∗ h32 − 𝑔01 ∗ 𝑔32 − ℎ11 ∗ ℎ22

g12 − 𝑚1 ∗ h12
  ,                (4.119) 

 

g10 =
g11

g01 − 𝑚1 ∗ h01
   ,                                          (4.120) 

 

h10 = g10 ∗ 𝑚1  ,                                                    (4.121) 
 

h32 = g32 ∗ 𝑚2  ,                                                   (4.122) 
 

h21 = g21 ∗ 𝑚1  .                                                   (4.123) 
 

 

The values of m1 and m2 are always equal to -1. 

 

The order of components in the network is shunt capacitor, unit element, shunt 

capacitor, unit element, and shunt capacitor. 
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4.4 HPPSN via Series Capacitors Separated by UE 

 

The lossless ladder network with series capacitors separated by transmission line is going 

to be studied in this thesis by using scattering parameters described with two-variable, 

canonic polynomials g(p,λ), h(p,λ), f(p,λ) [34]. 

 

The row and column for the representation of distributed and lumped elements must be 

defined individually in Mg and Mh so that the equations to calculate unknown coefficients. 

Mg and Mh are figured out from equations (3.36-37). 

 

This thesis aims to find conditions and restrictions on S21 parameter to achieve the 

maximum amplitude and desired phase response over the wanted bandwidth.  

 

The equations are used to calculate the unknown coefficients with independent 

coefficients. The equations are defined and written in subsections of this section. The 

equations are defined in subsections for all networks. 

 

4.4.1 One series capacitor and one unit element 

 

Constant coefficients are g10=1, h10=0. The last column represents the lumped elements, 

and the last row represents the unit element. In this column and row, the coefficients are 

defined as independent parameters. The coefficients g00 and h00 are defined as unknown 

parameters. 

 

The coefficient matrices and equations are defined as   
 

Mg=[
g00 g01

1 g11
]   ,                                                 (4.124) 

 

𝑀ℎ=[
h00 h01

0 h11
]  ,                                                  (4.125) 

 

g00 =
g01

g11 − 𝑚2 ∗ h11
  ,                                           (4.126) 
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h00 = g00 ∗ 𝑚2 ,                                                  (4.127) 

 

h01 = g01 ∗ 𝑚1  .                                                (4.128) 

 

The value of m2 is always +1. 

 

For m2=1, the order of the components in the network is a series capacitor and unit 

element. 

 

For m2= -1, the order of the components in the network is a unit element and series 

capacitor. 

 

4.4.2 Two series capacitors and one unit element 

 

Constant coefficients are g20=1, h20=0, g00=1, h00=0. The last column represents the 

lumped elements, and the last row represents the unit element. In this column and row, 

the coefficients are defined as independent parameters. The coefficients g10 and h10 are 

defined as unknown parameters. 

 

The coefficient matrices and equations are defined as    
 

Mg = [
0 g01

g10

1

g11

g21

]   ,                                          (4.129) 

 

Mh = [

0 h01

h10

0

h11

h21

]   ,                                          (4.130) 

 

g10 =
g11

g21 − m2 ∗ h21
  ,                                      (4.131) 

 

h10 = g10 ∗ m2  ,                                             (4.132) 

 

h01 = g01 ∗ m1 .                                             (4.133) 
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The values of m1 and m2 are always equal to +1. The order of the components in the 

network is a series capacitor, unit element, and series capacitor. 

 

4.4.3 One series capacitor and two unit elements 

 

Constant coefficient values are g10=1, h10=0, The last column represents the lumped 

elements, and the last row represents the unit element. In this column and row, the 

coefficients are defined as independent parameters. The coefficients g01, g02 and h01, h02 

are defined as unknown parameters. 

 

The coefficient matrices and equations are defined as    
 

Mg=      [
g00 g01 g02

1 g11 g12
]  ,                                       (4.134) 

 

Mh=      [
h00 h01 h02

0 h11 h12
]  ,                                       (4.135) 

 

g01 = g12 ∗ (g02 ∗ g11 − h02 ∗ h11) − h12
2

g02 − m2 ∗ h02

g11 − m2 ∗ h11
 ,      (4.136) 

 
                

h01 =
g01 ∗ g12 + h02 ∗ h11 − g02 ∗ g11

h12
 ,                    (4.137) 

 

g00 =
g01

g11 − m2 ∗ h11
   ,                                      (4.138) 

 

h02 = g02 ∗ m1  ,                                             (4.139) 
 

h00 = g00 ∗ m2  .                                             (4.140) 
 

The value of m1 is -1, and m2 is equal to +1. The order of the components in the network 

is a unit element, series capacitor, and unit element. 
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4.4.4 Two series capacitors and two unit elements 

 
Constant coefficients are g20=1, h20=0, g00=0, h00=0. The last column represents the 

lumped elements, and the last row represents unit elements. In this column and row, the 

coefficients are defined as independent parameters. The coefficients g10, g11, g01 and 

h10, h11,h01 are defined as unknown parameters. 

 

The coefficient matrices and equations are defined as     
 

𝑀𝑔=      [
0 g01 g02

g10 g11 g12

1 g21 g22

]  ,                                         (4.141) 

 

𝑀ℎ=      [

0 h01 h02

h10 h11 h12

0 h21 h22

]  ,                                         (4.142) 

 

α = g12 − m2 ∗ h12  ,                                                   (4.143) 
 

β = g21 − m2 ∗ h21 ,                                                    (4.144) 
 

g11 = g22 ∗ (g21 ∗ g12 − h21 ∗ h12) − ℎ22
2

α

β
+ ℎ22

2
(β) (

g22 ∗ h02

ℎ22
− g02)

α
 , (4.145) 

 

h11 =
g11 ∗ g22 + h21 ∗ h12 − g21 ∗ g12

h22
    ,                      (4.146) 

 

g01 =
g11 ∗ g02 − h11 ∗ h02

g12 − 𝑚2 ∗ h12
    ,                                     (4.147) 

 

g10 =
g11

g21 − m3 ∗ h21
     ,                                               (4.148) 

 

h02 = g02 ∗ 𝑚1  ,                                                        (4.149) 
 

h01 = g01 ∗ 𝑚2   ,                                                       (4.150) 
 

h10 = g10 ∗ 𝑚3   .                                                       (4.151) 
 

 

The values of m2 and m3 are always equal to +1. 

 

For m1=1, the order of the components in the network is a series capacitor, unit element, 

series capacitor, and unit element 

 

For m1= -1, the order of the components in the network is a unit element, series capacitor, 

unit element, and series capacitor. 
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4.4.5 Three series capacitors and two unit elements 

 
Constant coefficients are g30=1, h30=0, g00=0, g10=0,  g01=0, h10=0, h00=0, h01=0. The 

last column represents the lumped elements, and the last row represents the unit elements. 

In this column and row, the coefficients are defined as independent parameters. The 

coefficients g20, g11, g21 and h20, h11,h21 are defined as unknown parameters. 

 

The coefficient matrices and equations are defined as     
 

Mg=[

0 0  g02

0
g20

1

g11
g21

g31

g12
g22

g32

]  ,                                                  (4.152) 

 

Mh=[

0 0 h02

0
h20

0

h11

h21

h31

h12

h22

h32

]  ,                                             (4.153) 

 

𝛼 = g22 − 𝑚2 ∗ h22     ,                                                (4.154) 

 

𝛽 = g31 − 𝑚2 ∗ h31     ,                                                (4.155) 

 

g21 = g32 ∗ (g31 ∗ g22 − h31 ∗ h22) − h32
2

α

β
+ h32

2
(β) (

g32 ∗ h12

h32
− g12)

α
, (4.156) 

 

h21 =
g21 ∗ g32 + h22 ∗ h31 − g22 ∗ g31

h32
  ,                                        (4.157) 

 

g11 =
g12 ∗ g21 − h21 ∗ h12 − g02 ∗ g31 + h02 ∗ h21

g22 − m2 ∗ h22
  ,                     (4.158) 

 

g20 =
g21

g31 − m2 ∗ h31
   ,                                              (4.159) 

 

h02 = g02 ∗ 𝑚1   ,                                                    (4.160) 

 

h11 = g11 ∗ 𝑚2   ,                                                    (4.161) 

 

h20 = g20 ∗ 𝑚2   .                                                    (4.162) 
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The values of m1 and m2 are always equal +1. 

 

The order of the components in a high-pass network is a series capacitor, unit network, 

series capacitor, unit network, and series capacitor. 
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5. COMPONENT VALUE CALCULATIONS 

 

Networks can be defined with transfer scattering parameters in terms of two independent 

variables (p,λ) and are shown as 

 

T(p,λ)=
1

f(p,λ)
[
σg(-p,-λ) h(p,λ)

σh(-p,-λ) g(p,λ)
] ,                                    (5.1) 

 

 T12=
h(p,λ)

f(p,λ)
, T11=

σg(-p,-λ)

f(p,λ)
, T22=

g(p,λ)

f(p,λ)
,  T21=

σh(-p,-λ)

f(p,λ)
  .                   (5.2) 

 

Transfer scattering parameters are used to define networks containing only lumped 

elements are shown as [37,38] 

 

T(p)=
1

f(p)
[
σg(-p) h(p)

σh(-p) g(p)
]   ,                                        (5.3) 

 

 T12=
h(p)

f(p)
, T11=

σg(-p)

f(p)
, T22=

g(p)

f(p)
,  T21=

σh(-p)

f(p)
  .                   (5.4) 

 

The transfer scattering parameters are used to define networks containing only distributed 

elements are shown as [31] 

 

T(λ)=
1

f(λ)
[
σg(-λ) h(λ)

σh(-λ) g(λ)
]   ,                                     (5.6) 

 

 T12=
h(λ)

f(λ)
, T11=

σg(-λ)

f(λ)
, T22=

g(λ)

f(λ)
,  T21=

σh(-λ)

f(λ)
   .                  (5.7) 

 

Transfer scattering parameters are also defined with the same polynomials g(p,λ),  

h (p,λ) and f(p,λ) like as scattering parameters in Section 4. 

 

Lumped and distributed elements' values are calculated via transfer scattering parameters. 

Transfer scattering matrices for networks via mixed elements are defined as 

 

T(p,λ)= Te(p) TRN(p, λ)   .                                            (5.8) 
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𝑇𝑒(p) define the transfer scattering matrix of the first lumped element in the network in 

equation (5.8). g(p) and h(p) polynomials can be defined according to the type of network 

and lumped element. 

 

T(p,λ)= 𝑇𝑒(𝜆) TRN(p, λ)   .                                            (5.9) 
 

𝑇𝑒(λ) define the transfer scattering matrix of the first distributed component in the 

network via equation (5.9).  

 

After calculating the value of the first lumped element from the current coefficient 

matrices of the network, the transfer scattering parameter of this lumped element Te(p) is 

extracted from the current transfer scattering matrix T(p,λ). The remaining transfer 

scattering matrix can be calculated as 

 

T(p,λ)Te(p)
−1

 =TRN1(p, λ)    .                                     (5.10) 
 

Unit element value can be calculated according to coefficient matrices within the first 

remaining transfer scattering parameters. The second lumped element can be calculated 

after the second remaining transfer scattering parameter TRN2(p,λ) is calculated, after the 

extraction of the transfer scattering parameter of the unit element T(λ) from the first 

remaining transfer scattering parameter TRN1(p,λ) and defined as 

 

TRN1(p, λ)Te(λ)
−1

 =TRN2(p, λ)   .                                      (5.11) 

 

 

 

 

 

 

 

 

 

 

 

 



39 

 

5.1 HPN via Series Capacitors Separated by UE 

 
The network in Figure 5.1 has three series capacitors separated by unit elements that can 

be defined with two independent variables (p, λ) transfer scattering parameters as 

equation (5.1) [37]. The transfer scattering parameters define the networks with only 

lumped elements shown in equation (5.3-4). The transfer scattering parameters determine 

the networks which only contain distributed elements, as shown in equation (5.6-7). 

 

 

 

Figure 5.1 HPN via series capacitors separated by UE 

 

The first element of the network is a series capacitor, so σ = ℎ0𝑛𝜆
/𝑔0𝑛𝜆

  is equal to one. 

𝑛𝜆 determine the number of distributed elements in the network. 

 

The value of the first capacitor can be calculated from coefficient matrices in equation 

(4.152-153) and defined as 

 

C1 =
g1nλ

− σh1nλ

g1nλ
+ σh1nλ

      .                                                    (5.11) 

 

 

For calculation of the second component value, the coefficient matrices Mg
RN1 and Mh

RN1 

are defined as 

 

hx,y
RN1 = hx+1,y +

1

2C1
(hx+2,y − gx+2,y) ,                                      (5.12) 

  

gx,y
RN1 = gx+1,y +

1

2C1
(hx+2,y − gx+2,y) .                                      (5.13) 

 

x values are 0, 1, …, (np-1). np is the number of lumped elements, and y values are 0, 

1,…., 𝑛𝜆 in equations (5.12-13). 
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The second component is a unit element.  The characteristic impedance of the unit 

element is calculated as 

 

Z1 =
(gnp,0 + gnp,1 + ⋯ .+gnp,nλ) + (hnp,0 + hnp,1 + ⋯ .+hnp,nλ)

(gnp,0 + gnp,1 + ⋯ .+gnp,nλ) − (hnp,0 + hnp,1 + ⋯ .+hnp,nλ)
  .       (5.14) 

                                  

 

The characteristic impedance can also be calculated using the study methods [40]. 

 

For calculation of the third component value, coefficient matrices Mg
RN2 and Mh

RN2 are 

defined as 

 

hx,y
RN2 = hx,y

RN1 +
1

2Z1
(hx,y−1

RN1 + gx,y−1
RN1 ) +

Z1

2
(hx,y−1

RN1 − gx,y−1
RN1 )   ,              (5.15) 

 

gx,y
RN2 = gx,y

RN1 −
1

2Z1
(hx,y−1

RN1 + gx,y−1
RN1 ) +

Z1

2
(hx,y−1

RN1 − gx,y−1
RN1 )  ,              (5.16) 

 

x values are 0, 1, …, (np-1). np is the number of lumped elements. y values are 0, 1,…., 

𝑛𝜆 − 1 in equations (5.15-16) 

 
The second lumped element value is calculated as 
 

C2 =
g1nλ−1 − σh1nλ−1

g1nλ−1 + σh1nλ−1
    .                                        (5.17) 

 

Third and last remaining transfer scattering parameter can be calculated like the first 

remaining transfer scattering parameter calculation in equation (5.12-13). The last lumped 

element and distributed element can be calculated via the last remaining transfer 

scattering parameters 
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5.2 LPN via Shunt Capacitors Separated with UE 

  
The calculation of capacitor values is defined in the study [35]. The network in Figure 

5.2 has three shunt capacitors separated by unit elements that can be defined with two 

independent variables transfer scattering parameters in equation (5.1). Transfer scattering 

parameters are used to determine the network with only lumped elements shown in 

equation (5.3-4). Transfer scattering parameters are used to define the network that 

contains only distributed elements, as shown in equation (5.6-7). 

 

 

 

Figure 5.2 LPN via shunt capacitors separated by UE 

 
The first element of the network is a shunt capacitor, so σ = ℎ𝑛𝑝𝑛𝜆

/𝑔𝑛𝑝𝑛𝜆
  is equal to -1. 

𝑛𝜆 determines the number of distributed elements in the network. 𝑛𝑝 determines the 

nuımber of lumped elements in the network. 

 
The value of the capacitor can be calculated as 
 

C1 =
gnpnλ

+ σhnpnλ

gnp−1,nλ
− σhnp−1nλ

  .                                                   (5.18) 

 

For calculation of the second component value, the coefficient matrices Mg
RN1 and Mh

RN1 

are defined as 
 

hx,y
RN1 = hx,y +

C1

2
(hx−1,y + gx−1,y) ,                                      (5.19)  

   

gx,y
RN1 = gx,y −

C1

2
(hx−1,y + gx−1,y) .                                     (5.20) 

 

x is equalt 0,1,….,np-1 and  y is equal 0,1,… 𝑛𝜆 in equations (5.19-20). 
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The second component is a unit element.  The characteristic impedance of the unit 

element is calculated as 

 

Z1 =
(g0,0 + g0,1 + ⋯ .+g0,nλ) + (h0,0 + h0,1 + ⋯ .+h0,nλ)

(g0,0 + g0,1 + ⋯ .+g0,nλ) − (h0,0 + h0,1 + ⋯ .+h0,nλ)
   .         (5.21) 

 

After the characteristic impedance of the unit element is calculated, equations (5.15-16) 

are used to calculate the second remaining transfer scattering parameter. Then, the second 

lumped element value can be calculated. 

 

The value of the second capacitor can be calculated as 

 

C2 =
gnp−1,nλ−1

+ 𝜎2hnp−1,nλ−1

gnp−2,nλ−1
− 𝜎2hnp−2,nλ−1

  ,                                    (5.22) 

 

𝜎2 =
gnp−1,nλ−1

hnp−1,nλ−1
    .                                                             (5.23) 

 

The third and last remaining transfer scattering parameter can be calculated as 

  

hx,y
RN3 = hx,y +

C2

2
(hx−1,y + gx−1,y)    ,                                   (5.24) 

  

gx,y
RN3 = gx,y −

C2

2
(hx−1,y + gx−1,y)   .                                    (5.25) 

 

x value is assigned with 0,1,….,np-2 and y value is assigned with 0,1,… 𝑛𝜆-2 in equations 

(5.24-25). 

 
The last unit element value can be calculated as  
 

Z2 =
(g0,0 + g0,1 + ⋯ .+g0,nλ−1) + (h0,0 + h0,1 + ⋯ .+h0,nλ−1)

(g0,0 + g0,1 + ⋯ .+g0,nλ−1) − (h0,0 + h0,1 + ⋯ .+h0,nλ−1)
   .        (5.26) 

 

The total capacitor value can be calculated as 

 

CT =
gnp−2,0 + σ𝑇hnp−2,0

gnp−3,0 − σ𝑇hnp−3,0
   .                                      (5.27) 

 

σ𝑇 = ℎ𝑛𝑝−2,0/𝑔𝑛𝑝−2,0 is equal to -1 in equation (5.27). 
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The last lumped element value can be calculated as 

 

C3 = CT − C1 − C2   .                                              (5.28) 

 

5.3 HPN via Series Capacitors and Shunt Inductors Separated by UE 

 
The network in Figure 5.3 has two capacitors and one inductor or two inductors, and one 

capacitor separated by unit elements defined with two independent variables transfer 

scattering parameters in equation (5.1). The transfer scattering parameters are used to 

determine the networks with only lumped elements shown in equation (5.3-4). The 

transfer scattering parameters are used to describe the networks with only distributed 

elements shown in equation (5.6-7). 

 

 

 

Figure 5.3 HPN via series capacitors and shunt inductors separated by UE 

 

 

If the first element of the network is a series capacitor, σ = h00/g00  is equal to 1. If the 

first element of the network is a shunt inductor, σ = h00/g00  is equal to -1. 𝑛𝜆 reperesents 

the number of distributed elements in the networks. 𝑛𝑝 represents the number of lumped 

elements in the networks. 

 

The value of the first component can be calculated as 
 

C1 =
g10 − σh10

g00 + σh00
    .                                                       (5.29) 
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If the first component is a series capacitor, the coefficient matrices Mg
RN1 and 

Mh
RN1are defined as 

 

hx,y
RN1 = hx+1,y +

1

2C1
(hx+2,y − gx+2,y)  ,                               (5.30)  

   

gx,y
RN1 = gx+1,y +

1

2C1
(hx+2,y − gx+2,y)  .                             (5.31) 

 

x is 0,1,….,np-1 and y is 0,1,… 𝑛𝜆 in equations (5.30-31). 

 

If the first component is a shunt inductor, the coefficient matrices Mg
RN1 and Mh

RN1 

are defined as 

                        

hx,y
RN1 = hx+1,y +

1

2L1
(hx+2,y + gx+2,y)   ,                                   (5.32)  

   

gx,y
RN1 = gx,+1y −

1

2L1
(hx+2,y + gx+2,y)   .                                 (5.33) 

 

x is 0,1,….,np-2 and  y is 0,1,… 𝑛𝜆-2 in equations (5.32-33). 
 

If the second component is a unit element, the characteristic impedance of the unit 

element is calculated as 

 

Z1 =
(gnp−1,0 + gnp−1,1 + ⋯ .+gnp−1,nλ) + (hnp−1,0 + hnp−1,1 + ⋯ .+hnp−1,nλ)

(gnp−1,0 + gnp−1,1 + ⋯ .+gnp−1,nλ) − (hnp−1,0 + hnp−1,1 + ⋯ .+hnp−1,nλ)
 .     (5.34) 

 

After the characteristic impedance of the unit element is calculated, equations (5.15-16) 

are used to calculate the second remaining transfer scattering parameter. Then, the second 

lumped element value can be calculated. 

 

The value of the capacitor or inductor can be calculated as 

 

C2 =
g10 − 𝜎2h10

g00 + 𝜎2h00
  ,                                                    (5.35) 

 

𝜎2 =
g00

h00
 .                                                                (5.36) 
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The third remaining transfer scattering matrices are calculated with equation (5.30-31) if 

the second lumped element is a series capacitor. The third remaining transfer scattering 

matrices are calculated with equations (5.32-33) if the second lumped element is a shunt 

inductor. 

 

The fourth component is a unit element.  The characteristic impedance of the unit element 

is calculated as 

 

Z2 =
(gnp−2,0 + gnp−2,1 + ⋯ .+gnp−1,nλ) + (hnp−2,0 + hnp−2,1 + ⋯ .+hnp−2,nλ)

(gnp−2,0 + gnp−2,1 + ⋯ .+gnp−2,nλ) − (hnp−2,0 + hnp−2,1 + ⋯ .+hnp−2,nλ)
 .      (5.37) 

 

The last lumped element is calculated as 

 

C3 =
g10 − σh10

g00 + σh00
 ,                                              (5.38) 

 

𝜎2 =
g00

h00
  .                                                        (5.39) 

 

5.4 LPN via Shunt Capacitors and Series Inductors Separated by UE 

 
The network in Figure 5.4 has two capacitors and one inductor or two inductors, and one 

capacitor separated by unit elements that can be defined with two independent variables 

transfer scattering parameters in equation (5.1). The transfer scattering parameters are 

used to define the networks with only lumped elements shown in equation (5.3-4). The 

transfer scattering parameters are used to define the networks with only distributed 

elements shown in equation (5.6-7). 

 

 
 

Figure 5.4 LPN via shunt capacitors and series inductors separated by UE 
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If the first element of the network is a series inductor, σ = ℎnp0/𝑔np0  is equal to 1. If the 

first element of the network is a shunt capacitor, σ = ℎnp0/𝑔np0  is equal to -1. 𝑛𝜆 defines 

the number of distributed elements in the network. 𝑛𝑝 determines the number of lumped 

elements in the network. 

 

The value of the capacitor or inductor can be calculated as 
 

C1 =
gnp0 + σhnp0

gnp−1,0 − σhnp−10
   .                                           (5.40) 

 

If the first component is a shunt capacitor, the coefficient matrices Mg
RN1 and Mh

RN1  

are calculated as 

 

hx,y
RN1 = hx,y +

C1

2
(hx−1,y + gx−1,y)   ,                                    (5.41) 

   

gx,y
RN1 = gx,y −

C1

2
(hx−1,y + gx−1,y)   .                                    (5.42) 

 

x is 0,1,….,np-1 and y is 0,1,… 𝑛𝜆 in equations (5.41-42). 
 

If the first component is a series inductor, the coefficient matrices Mg
RN1 and Mh

RN1  

are calculated as 

 

hx,y
RN1 = hx,y +

C1

2
(hx−1,y − gx−1,y)  ,                                     (5.43)  

   

gx,y
RN1 = gx,y +

C1

2
(hx−1,y − gx−1,y)  .                                     (5.44) 

 

x is 0,1,….,np-2 and y is 0,1,… 𝑛𝜆 − 2 in equations (5.43-44). 

 
The second component is a unit element. The characteristic impedance of the unit element 

is calculated as 

 

Z1 =
(g0,0 + g0,1 + ⋯ .+g0,nλ) + (h0,0 + h0,1 + ⋯ .+h0,nλ)

(g0,0 + g0,1 + ⋯ .+g0,nλ) − (h0,0 + h0,1 + ⋯ .+h0,nλ)
   .              (5.45) 

 

After the characteristic impedance of unit element is calculated, equations (5.15-16) are 

used to calculate second remaining transfer scattering parameter. Then, the second 

lumped element value can be calculated. 
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The value of the capacitor or inductor can be calculated as 

 

C2 =
gnp−1,0 + 𝜎2hnp−1,0

gnp−2,,0 − 𝜎2hnp−2,0
 ,                                        (5.46) 

 

𝜎2 =
gnp−1,0

hnp−1,0
  .                                                       (5.47) 

The third remaining transfer scattering parameters are calculated with equation (5.41-42) 

if the second lumped element is a shunt capacitor. The third remaining transfer scattering 

matrices are calculated with equation (5.43-44) if the second lumped element is a series 

inductor. 

 

The last distributed element value can be defined as  
 

Z2 =
(g0,0 + g0,1 + ⋯ .+g0,nλ−1) + (h0,0 + h0,1 + ⋯ .+h0,nλ−1)

(g0,0 + g0,1 + ⋯ .+g0,nλ−1) − (h0,0 + h0,1 + ⋯ .+h0,nλ−1)
  .        (5.48) 

 

The value of the capacitor or inductor can be calculated as 

 

C3 =
gnp−2,0 + 𝜎3hnp−2,0

gnp−3,,0 − 𝜎3hnp−3,0
 ,                                       (5.49) 

 

𝜎3 =
gnp−2,0

hnp−2,0
   .                                                            (5.50) 
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6. OPTIMIZATION PROCESS 

 

Optimization process is executed within MATLAB [45] to calculate accurate component 

values for a desired transducer power gain and phase response in networks. The nonlinear 

least square method is used for the optimization process. The algorithm in the method is 

Levenberg-Marquardt [16]. 

 

f(x) = min[[F1(x) + F2(x) + ⋯+ Fd(x)] 
2  .                      (6.1) 

 

In equation (6.1), f(x) represents the total error that d is the number of the normalized 

frequency intervals defined at the beginning of the process. The error F(x) is the 

difference between desired value (TPG) and the calculated one (TPGC). The calculation 

process of TPGC is described as 

 

TPGc =
(1 − SG)(1 − SL)|f(p, λ)|

|g(p, λ) − h(p, λ)SG + αSLh(−p,−λ) − αSGg(−p,−λ)|2
  .         (6.2) 

 

Reflection from generator impedance is defined as 

 

SG =
Zg − 1

Zg + 1
       .                                                           (6.3) 

 

Reflection from load impedance is defined as 

 

𝑆𝐿 =
𝑍𝐿 − 1

𝑍𝐿 + 1
     .                                                           (6.4) 
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Zg and ZL are impedance of generator and load impedance in equations (6.3-4), 

respectively. The total error of transducer power gain (TPGerror) can be shown as 

 

TPGerror =  [∑(TPG − TPGC(k))
2
]

l

k=1

   .                          (6.5) 

 

In equation (6.5), 𝑙 is the maximum number of angular frequency intervals. The value of 

𝑙 is selected as 10 for high-pass and low-pass networks for only TPG optimization. TPG 

in the equation (6.5) is equal to 0.98, and TPGC(k) determines a matrix with one row and 

ten columns and represents the calculated value of TPG for each angular frequency value. 

 

The total error of transducer power gain (TPGerror) and phase (Phaseerror) are used in the 

optimization of transducer power gain and phase response in lossless two-port high / low 

pass network as phase shifters, respectively and are described as 

 

𝑇𝑃𝐺𝑒𝑟𝑟𝑜𝑟 = [∑((|f(p(k), λ(k))| − |g(p(k), λ(k))|)2]  ,           (6.6)

l

k=1

 

 

𝑃ℎ𝑎𝑠𝑒𝑒𝑟𝑟𝑜𝑟 = ∑ (
Ʌ

2
− ∠g(p(k), λ(k)))

2

 .                                 (6.7)l
k=1   

 

The total error (Total_error) in design is calculated as  

 

Total_error=𝑇𝑃𝐺𝑒𝑟𝑟𝑜𝑟 + 𝑃ℎ𝑎𝑠𝑒𝑒𝑟𝑟𝑜𝑟    .                                      (6.8) 

 

In equation (6.6-8), 𝑙 is the maximum number of angular frequency values. The value of 

𝑙 are selected as 20 for the high-pass and low-pass networks in the optimization process.  

|f(p, λ)| and |g(p, λ)| are matrices with one row and twenty columns showing the 

magnitude of f (p, λ) and g(p, λ) polynomials. The magnitude of |𝑔(𝑝, λ)| should be equal 

to the magnitude of  |𝑓(𝑝, λ)| for the optimization process of TPG. 
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The restrictions are determined according to S21, as seen in equation (4.7). S21 represents 

the power transformation rate from generator impedance to load impedance. 𝑓(𝑝, λ) 

polynomials are given in equations (4.5-6). Ʌ represents desired phase response. The low-

pass network provides negative half, and the high-pass network compensates positive half 

of the phase response. The difference in phase responses of each network provides desired 

phase response. 

 

For a low-pass network, the total error of transducer power gain  is calculated as 

 

TPGerror = ∑ ((1 − λ(k)2)
n
2 − |g(p(k), λ(k))|)

2
l

k=1

,                     (6.9) 

 

For a low-pass network, the total error of phase response  is calculated as 

 

𝑃ℎ𝑎𝑠𝑒𝑒𝑟𝑟𝑜𝑟 = ∑ (
Ʌ

2
− ∠g(p(k), λ(k)))

2

 ,                                (6.10)

l

k=1

 

 

The total error (Total_error) in design is calculated as in equation (6.8). n represents the 

number of the unit element in equation (6.9). 

 

For the high-pass network, equation (6.6) is changed as 𝑓(𝑝, λ) described in equations 

(4.44-48).  
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If there is only one lumped element in a high-pass network, |𝑓(𝑝, λ)| is equal to w(1-λ2)n/2  

in equation (6.11), and ∠g(p,λ)  (phase) should be equal to 900-Ʌ/2 in equation (6.12). 

The total phase error and TPG in optimization are calculated as  

TPGerror = ∑ (w(k)(1 − λ(k)2)
n
2 − |g(p(k), λ(k))|)

2
l

k=1

,                      (6.11) 

 

𝑃ℎ𝑎𝑠𝑒𝑒𝑟𝑟𝑜𝑟 = ∑ (900 −
Ʌ

2
− ∠g(p(k), λ(k)))

2

 .                                 (6.12)

l

k=1

 

 

The total error (Total_error) in design is calculated as in equation (6.8). If there are two 

lumped elements in a high-pass network, |𝑓(𝑝, λ)| is equal to w2(1-λ2)n/2 in equation 

(6.13), and ∠g(p,λ) should be equal to 1800-Ʌ/2 in equation (6.14). The total error of 

phase and TPG in optimization is written as  

TPGerror = ∑ (𝑤2(k)(1 − λ(k)2)
n
2 − |g(p(k), λ(k))|)

2
l

k=1

,                  (6.13) 

 

𝑃ℎ𝑎𝑠𝑒𝑒𝑟𝑟𝑜𝑟 = ∑ (1800 −
Ʌ

2
− ∠g(p(k), λ(k)))

2

 ,                              (6.14)

l

k=1

 

The total error (Total_error) in design is calculated as in equation (6.8). If there are three 

lumped elements in a high-pass network, |𝑓(𝑝, λ)| is equal to w3(1-λ2)n/2 in equation 

(6.15) and ∠g(p,λ) should be equal to -900-Ʌ/2 in equation (6.16). The total error of phase 

and TPG in optimization is written as  

 

TPGerror = ∑ (𝑤3(k)(1 − λ(k)2)
n
2 − |g(p(k), λ(k))|)

2
l

k=1

,                  (6.15) 

 

𝑃ℎ𝑎𝑠𝑒𝑒𝑟𝑟𝑜𝑟 = ∑ (−900 −
Ʌ

2
− ∠g(p(k), λ(k)))

2

 ,                              (6.16)

l

k=1
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The total error (Total_error) in design is calculated as in equation (6.8). 

 

The command line in MATLAB represents as 

 

Y = lsqnonln(func, v, lowb, upperb, options)                         (6.17) 

 

In equation (6.17), func is a function of the optimization process used to calculate the 

independent coefficients of Mh. V matrix contains the independent coefficients of Mh and 

transmission line delay of the unit element. lowb and upperb are the lower bound and 

upper bound of these values in Y matrix that can be between negative and positive 

infinity. The optimization options are Max Iteration, Max Function Evaluation, Step 

Tolerance, and Function Tolerance [47]. 

 

Step 1 

 

Values of independent coefficients of h(p,λ) and transmission delay of the unit elements 

are assigned randomly between 0 and 1, and the non-linear least square method options 

are determined in Matlab. 

 

Step 2 

 

Independent variables of g(p,0) and g(0,λ) are calculated via equations (3.33) and (3.34), 

respectively. Later, other dependent coefficient variables are calculated. 

 

Step 3  

 

Transducer power gain is calculated via equations (6.2-4). The total error of transducer 

power gain at each frequency value is calculated via equations (6.5) for the high-pass and 

low-pass networks. 
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For the phase optimization process, the total error at each angular frequency value is 

calculated via equations (6.11) for the low-pass networks. The total error is calculated via 

equations (6.12-20) for the high-pass networks. 

 

If the differences between the next calculated error and the current one are less than the 

designated total error in Matlab options (Function Tolerance) or the difference between 

the current variables and the next calculated ones in v matrixis less than designated ones 

in Matlab options (Step Tolerance), the optimization process is ended. Then, the process 

continues with Step 5. Otherwise, continue with Step 4. 

 

Step 4 

 

If differences in both conditions are not less than the designated ones in Matlab options 

(Step or Function Tolerance), independent variables and time delay are calculated with 

the help of the Levenberg- Marquardt algorithm, and the process return to step 2. The 

process won’t return to step 2, if the iteration number in Matlab exceeds the maximum 

function evaluation number defined in Matlab options in Step 1. The optimization process 

is ended with an overdraft of the maximum function evaluation number, and the process 

continues with Step 5. 

 

Step 5 

 

According to optimization values of the independent coefficients of h(p, λ)  and the time 

delay of the unit elements, the independent variables of g(p, 0) and g(0, λ) are calculated 

via equations (3.33) and (3.34), respectively. Later, other dependent coefficient variables 

are calculated. 

 

After calculating g(p,λ) and h(p,λ) coefficients,  the value of lumped and distributed 

components are calculated. 
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Figure 6.1 The calculation process of circuit component values 

 

 

Random numbers are assigned to 

Independent variable of h(p,λ) and time 

delay of unit element. 

Non Linear Least Square options are 

determined. 

Independent variable of g(p,λ)  are 

calculated. Other dependent variable are 

also calculated. 

Total error f(xi) is calculated due to 

restrictions for Transducer Power Gain and 

phase at optimization, individually. 

If |xi-xi+1| < Step Tolerance=10-8 

Or 

If|f(xi)- f(xi+1)|< Function Tolerance=10-8 

The definition of scattering parameters are completed. 

The value of circuit components are calculated. 

If solver iteration number> Max 

iteration=10000 

or 

If Number of function evaluation > 

Max Func.=20000   

Independent variable of h(p,λ) and time delay 

of unit element are calculated again by 

Levenberg-Marquardt algorithm. 

 

YES 
YES 

No 

 

No 

 



55 

 

 

7. HIGH-PASS AND LOW-PASS NETWORKS 

 
There are four different types of networks described in this Section. All the low-pass 

circuits have three parts. The first part has a resistance, and a series inductor called 

generated impedance. The second part has a network via shunt capacitors separated by 

unit elements or series inductors and shunt capacitors separated by unit elements. The last 

part is the load impedance which contains a series inductor, shunt capacitor, and shunt 

resistance. 

 

All high pass circuits have three parts. The first part has resistance with a shunt inductor 

called generated impedance. The second part is a network via series capacitors separated 

by unit elements or shunt inductors and series capacitors separated by unit elements. The 

last part is the load impedance which contains a shunt inductor with a series capacitor and 

resistance. 
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7.1 HPN via Series Capacitors Separated by UE 

 
In Figure 7.1, the circuit has three lumped and two-unit elements. The normalized 

generated impedance has a series resistance (1Ω) and a shunt inductor (1H). The 

normalized load impedance has a shunt inductor (1H), a series capacitor (2F), and series 

resistance (1Ω). 

 

 
 

 
Figure 7.1 Synthesis of HPN via series capacitor separated by UE 

 

The scattering parameters in equations (3.26-3.27) are defined with two independent 

variables (p,λ) g, h, f polynomials as shown in equations (3.32-35).  

 

Random variables are assigned to independent coefficients of h(p,λ) and transmission 

delay of the unit element. These values are optimized with the Non-Linear Least Square 

method in Matlab. Constant values are h30=0 and g30=1. 

 

The normalized angular frequency (WH) values are between one and two, with 0.1 

intervals used in the optimization process. WH is written as 

 

WH=1:0.1:2 . 
 

v matrix represents randomly assigned independent coefficients and transmission delay 

of unit element and written as 

 

v=[0.7513 0.2558 0.5060 0.6991 0.5909 0.9593]  . 
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With v matrix, the independent coefficients of g(p, λ)  (last column-g02, g12, g22, g32) are 

calculated via equations (3.33) for lumped elements and via equation (3.34) for unit 

element (last raw- g32, g31, g30). Roots of g(p) and g(λ) polynomials are chosen in left half 

plane because these polynomials are Hurwitz. 

 

After this calculation, dependent coefficients in matrices of g(p,λ) and h(p,λ) polynomials 

are calculated with equation (4.154-162). Scattering parameters are used to calculate 

transducer power gain with equations (6.2-4). 

 

The optimization process is executed as described in steps in Section 6 to get satisfactory 

results as 

 

Y=[-0.2477 0.1850 -0.0182 0.1 0.2587 0.8059]  . 

 

Y matrix contains independent coefficients of h(p,λ) and transmission delay of the unit 

element, respectively. The transmission delay value of the unit element is 0.8059. The 

equations (3.33-3.34) are used to calculate the independent coefficients of g(p,λ) (g02, g12, 

g22, g32, g31,g32).  

 

The coefficient matrices of g(p,λ) and h(p,λ) are written as 
 

Mh = [

0 0 0.1
0 0.6839 −0.0182

0.9966
0

−0.1913
0.2587

0.1850
−0.2477

]     , 

 

Mg = [

0 0 0.1
0 0.6839 0.3776

0.9966
1

1.7669
2.0316

0.8962
1.0302

]     . 

 

Via equation (3.35), f(p, λ) is defined as 
 

𝑓(𝑝, 𝜆) = 𝑝3(1 − 𝜆2)
2

2     . 
  

The values of lumped elements and distributed elements are calculated via equations in 

Subsection 5.1. 
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The first component is a capacitor in Figure 7.1, and the value of the capacitor can be 

calculated as 

 

C1 =
g12 − σh12

g02 + σh02
= 

0.3776 − 1 ∗ (−0.0182)

0.1 + 1 ∗ 0.1
= 1.9768  ,  

 

σ =
g02

ℎ02
= 1   .                  

 

 

The second component in the network is calculated with coefficient matrices in the first 

remaining transfer scattering parameters. For the second component value calculation, 

the coefficient of the matrix Mg
RN1 and Mh

RN1of the first remaining transfer scattering 

parameters are calculated via equations (5.12-13)  

 

h0,0
RN1 = h0+1,0 +

1

2 ∗ C1
(h0+2,0 − g0+2,0) = 0 +

1

2 ∗ 1.9768
(0.9966 − 0.9966) = 0   , 

 

h1,0
RN1 = h1+1,0 +

1

2 ∗ C1
(h1+2,0 − g1+2,0) = 0.9966 +

1

2 ∗ 1.9768
(0 − 1) = 0.7178 , 

   
 

h2,0
RN1 = h2+1,0 +

1

2 ∗ C1
(h2+2,0 − g2+2,0) = 0 +

1

2 ∗ 1.9768
(0 − 0) = 0 , 

     
 

                                  h0,1
RN1 = h0+1,1 +

1

2 ∗ C1
(h0+2,1 − g0+2,1)                                                   

= 0.6839 +
1

2 ∗ 1.9768
(−0.1913 − 1.7669) = 0.1390 , 

 

h1,1
RN1 = h1+1,1 +

1

2 ∗ C1
(h1+2,1 − g1+2,1) = −0.1913 +

1

2 ∗ 1.9768
(0.2587 − 2.0316) 

           = −0.6846       , 
 

h2,1
RN1 = h2+1,1 +

1

2 ∗ C1
(h2+2,1 − g2+2,1) = 0.2587 +

1

2 ∗ 1.9768
(0 − 0) = 0.2587    , 

 

                h0,2
RN1 = h0+1,2 +

1

2 ∗ C1
(h0+2,2 − g0+2,2)

= −0.0182 +
1

2 ∗ 1.9768
(0.1850 − 0.8962) = 0.0986  , 

 

h1,2
RN1 = h1+1,2 +

1

2 ∗ C1
(h1+2,2 − g1+2,2) = 0.1850 +

1

2 ∗ 1.9768
(−0.2477 − 1.0302) 

         

                    = 0.8294     , 
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h2,2
RN1 = h2+1,2 +

1

2 ∗ C1
(h2+2,2 − g2+2,2) = −0.2477 +

1

2 ∗ 1.9768
(0 − 0)      

= −0.2477 , 
 

g0,0
RN1 = g0+1,0 +

1

2 ∗ C1
(h0+2,0 − g0+2,0) = 0 +

1

2 ∗ 1.9768
(0.9966 − 0.9966) 

                     = 0      , 
 

g1,0
RN1 = g1+1,0 +

1

2 ∗ C1
(h1+2,0 − g1+2,0) = 0.9966 +

1

2 ∗ 1.9768
(0 − 1) 

=0.7178   , 
 

g2,0
RN1 = g2+1,0 +

1

2 ∗ C1
(h2+2,0 − g2+2,0) = 1 +

1

2 ∗ 1.9768
(0 − 0) 

=1    , 
 

        g0,1
RN1 = g0+1,1 +

1

2 ∗ C1
(h0+2,1 − g0+2,1)                                                

   = 0.6839 +
1

2 ∗ 1.9768
(−0.1913 − 1.7669) = 0.139 , 

 

g1,1
RN1 = g1+1,1 +

1

2 ∗ C1
(h1+2,1 − g1+2,1) = 1.7669 +

1

2 ∗ 1.9768
(0.2587 − 2.0316) 

    = 1.2736   , 
 

g2,1
RN1 = g2+1,1 +

1

2 ∗ C1
(h2+2,1 − g2+2,1) = 2.0316 +

1

2 ∗ 1.9768
(0 − 0) = 2.0316    , 

 

g0,2
RN1 = g0+1,2 +

1

2 ∗ C1
(h0+2,2 − g0+2,2) = 0.6839 +

1

2 ∗ 1.9768
(0.1850 − 0.8962) 

     = 0.4580    , 
 

g1,2
RN1 = g1+1,2 +

1

2 ∗ C1
(h1+2,2 − g1+2,2) 

                                            = 0.8962 +
1

2∗1.9768
(−0.2472 − 1.0302)=0.5406   , 

 

g2,2
RN1 = g2+1,2 +

1

2∗C1
(h2+2,2 − g2+2,2) = 1.0302 +

1

2∗1.9768
(0 − 0) = 1.0302     , 

 

Mg
RN1 = [

0 g01 g02

g10 g11 g12

1 g21 g22

] = [
0 0.1390 0.4580

0.7178 1.2736 0.5406
1 2.0316 1.0302

]     , 

 

Mh
RN1 = [

0 h01 h02

h10 h11 h12

0 h21 h22

] = [
0 0.1390 0.0986

0.7184 −0.6846 0.8294
0 0.2587 −0.2477

]    . 
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The second component is a unit element. The characteristic impedance of first unit 

element is calculated as 

 

Z1 =
(g20 + g21 + g22) + (h20 + h21 + h22)

(g20 + g21 + g22) − (h20 + h21 + h22)
 

                               =
(1 + 2.0316 + 1.0302) + (0 + 0.2587 − 0.2477)

(1 + 2.0316 + 1.0302) − (0 + 0.2587 − 0.2477)
  

                                               =1.0054   , 
 

For the third component value calculation, the matrix coefficients  Mg
RN2 and Mh

RN2  are 

calculated via equations (5.15-16) and calculated as 

 

h0,0
RN2 = h0,0

RN1 +
1

2Z1
(h0,0−1

RN1 + g0,0−1
RN1 ) +

Z1

2
(h0,0−1

RN1 − g0,0−1
RN1 ) 

= 0 +
1

2∗1.0054
(0 + 0) +

1.0054

2
(0 − 0) = 0    , 

 

h10
RN2 = h10

RN1 +
1

2Z1
(h1,0−1

RN1 + g1,0−1
RN1 ) +

Z1

2
(h1,0−1

RN1 − g1,0−1
RN1 ) 

                           = 0.7184 +
1

2 ∗ 1.0054
(0 + 0) +

1.0054

2
(0 − 0) = 0.7184  , 

 

h20
RN2 = h20

RN1 +
1

2Z1
(h2,0−1

RN1 + g2,0−1
RN1 ) +

Z1

2
(h2,0−1

RN1 − g2,0−1
RN1 ) 

= 0 +
1

2 ∗ 1.0054
(0 + 0) +

1.0054

2
(0 − 0) = 0  ,  

 

h0,1
RN2 = h0,1

RN1 +
1

2Z1
(h0,1−1

RN1 + g0,1−1
RN1 ) +

Z1

2
(h0,1−1

RN1 − g0,1−1
RN1 ) 

= 0.1390 +
1

2∗1.0054
(0 + 0) +

1.0054

2
(0 − 0) = 0.1390 , 

 

h11
RN2 = h11

RN1 +
1

2Z1
(h1,1−1

RN1 + g1,1−1
RN1 ) +

Z1

2
(h1,1−1

RN1 − g1,1−1
RN1 ) 

= −0.6846 +
1

2 ∗ 1.0054
(0.7184 + 0.7178) +

1.0054

2
(0.7184 − 0.7178)

= 0.0299   , 
   

h21
RN2 = h21

RN1 +
1

2Z1
(h2,1−1

RN1 + g2,1−1
RN1 ) +

Z1

2
(h2,1−1

RN1 − g2,1−1
RN1 ) 

= 2.0316 +
1

2 ∗ 1.0054
(0 + 1) +

1.0054

2
(0 − 1) = 0.2533    ,  

 

g0,0
RN2 = g0,0

RN1 −
1

2Z1
(h0,0−1

RN1 + g0,0−1
RN1 ) +

Z1

2
(h0,0−1

RN1 − g0,0−1
RN1 )  

=  0 −
1

2 ∗ 1.0054
(0 + 0) +

1.0054

2
(0 − 0) = 0    , 
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         g1,0
RN2 = g1,0

RN1 −
1

2Z1
(h1,0−1

RN1 + g1,0−1
RN1 ) +

Z1

2
(h1,0−1

RN1 − g1,0−1
RN1 )      

                              =  0.7178 −
1

2 ∗ 1.0054
(0 + 0) +

1.0054

2
(0 − 0) = 0.7178   , 

 

g2,0
RN2 = g2,0

RN1 −
1

2Z1
(h2,0−1

RN1 + g2,0−1
RN1 ) +

Z1

2
(h2,0−1

RN1 − g2,0−1
RN1 ) 

=  1 −
1

2 ∗ 1.0054
(0 + 0) +

1.0054

2
(0 − 0) = 1  , 

 

g0,1
RN2 = g0,1

RN1 −
1

2Z1
(h0,1−1

RN1 + g0,1−1
RN1 ) +

Z1

2
(h0,1−1

RN1 − g0,1−1
RN1 ) 

=  0.1390 −
1

2 ∗ 1.0054
(0 + 0) +

1.0054

2
(0 − 0) = 0.1390    , 

 

g1,1
RN2 = g1,1

RN1 −
1

2Z1
(h1,1−1

RN1 + g1,1−1
RN1 ) +

Z1

2
(h1,1−1

RN1 − g1,1−1
RN1 ) 

=  1.2736 −
1

2 ∗ 1.0054
(0.7184 + 0.7178) +

1.0054

2
(0.7184 − 0.7178) = 0.5597 , 

 

g2,1
RN2 = g2,1

RN1 −
1

2Z1
(h2,1−1

RN1 + g2,1−1
RN1 ) +

Z1

2
(h2,1−1

RN1 − g2,1−1
RN1 ) 

=  2.0316 −
1

2 ∗ 1.0054
(0 + 1) +

1.0054

2
(0 − 1) = 1.0316   , 

    

Mg
RN2 = [

0 g01

g10

1

g11

g21

] = [
0 0.1390

0.7178
1

0.5597
1.0316

]     , 

    

Mh
RN2 = [

0 h01

h10

1

h11

h21

] = [
0 0.1390

0.7184
0

0.0299
0.2533

]   . 

 

The second lumped element is calculated via the coefficient matrices Mg
RN2 and Mh

RN2 at 

the second remaining transfer scattering parameters and calculated as 

 

C2 =
g11 − σ2h11

g01 + σ2h01
=

0.5597 − (1)(0.0299)

0.1390 + (1)(0.1390)
= 1.2649    ,                       

 

σ2 =
g01

h01
= 1    .                             

 

The calculation of the total capacitor value in network is as follows 
 

CT =
g30 − σ4h30

g20 + σ4h20
=

1 − (1) ∗ 0

0.9966 + (1)(0.9966)
= 0,5017  ,           

            
 

σ4 =
g20

h20
= 1   .         
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The characteristic impedance of last unit element is calculated as 

 

Z2 =
(g20 + g21) + (h20 + h21)

(g20 + g21) − (h20 + h21)
=

(1 + 1.0316) + (0 + 0.2533)

(1 + 1.0316) − (0 + 0.2533)
= 1.2848   . 

 

The third lumped element value is calculated as 
 

1

CT
=

1

C1
+

1

C2
+

1

C3
     , 

 

1

0.5017
=

1

1.9768
+

1

1.2649
+

1

C3
    , 

 

C3 = 1.4340   . 
 

The normalized lumped and unit element values are C1=1.9768, C2=1.2649, C3=1.4340, 

and Z1=1.0054, Z2=1.1848, respectively. Denormalization frequency is   fnorm=1 GHz, and 

denormalization resistance is Rnorm=50Ω. 

 

Denormalized capacitor (Cnb) values are calculated as 

 

Cnb =
C

2 ∗ pi ∗ fnorm ∗ Rnorm
   .                                                (7.1) 

 

Denormalized capacitors values (Cnb) are calculated as with equation (7.1)  
 

Cn1 =
C1

2 ∗ pi ∗ 109 ∗ 50
=

1.9768

2 ∗ pi ∗ 109 ∗ 50
= 6.1988pF   , 

 

Cn2 =
C2

2 ∗ pi ∗ 109 ∗ 50
=

1.2649

2 ∗ pi ∗ 109 ∗ 50
= 4.0265 pF , 

 

Cn3 =
C3

2 ∗ pi ∗ 109 ∗ 50
=

1.4340

2 ∗ pi ∗ 109 ∗ 50
= 4.5644pF    . 

 

b represents the order of the denormalized capacitor values in the network in equation 

(7.1). 

 

Denormalized inductor (Ln) value is calculated as 

 

Ln =
L ∗ Rnorm

2 ∗ pi ∗ fnorm
   .                                                             (7.2) 
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Denormalized inductor value in generator impedance is calculated as 

 

Ln𝑔 =
L ∗ Rnorm

2 ∗ pi ∗ fnorm
=

1 ∗ 50

2 ∗ pi ∗ 109
= 7.9577nH  .   

 

Denormalized inductor value in load impedance is calculated as 

 

LnL =
L ∗ Rnorm

2 ∗ pi ∗ fnorm
=

2 ∗ 50

2 ∗ pi ∗ 109
= 15.915 nH    . 

 

Denormalized capacitor value in load impedance is calculated as 

 

CnL =
C

2 ∗ pi ∗ 109 ∗ 50
=

2

2 ∗ pi ∗ 109 ∗ 50
= 6.3662pF  . 

 

Denormalization resistance and denormalized characteristics impedance of unit element 

(Zn) is calculated as 

 

Zn=Z* Rnorm   .                                                               (7.3) 

 

Denormalization resistance (Zng) in generator impedance is calculated as 

 

Zng=Z* Rnorm  =1*50=50Ω . 

 

Denormalization resistance (ZnL) in load impedance is calculated as 

 

ZnL=Z* Rnorm  =1*50=50Ω . 

 

Denormalization characteristic impedance of first unit element (Zu1) and second unit 

element (Zu2) in the network are calculated as 

 

Zu1=Z1* Rnorm =1.0054*50=50.2717Ω , 

 

Zu2=Z2* Rnorm =1.2848*50=64.2417Ω . 

 

The simulation with these denormalization values is executed in Microwave Office Tool.  

TLIN is used for unit elements in Microwave Office Tool. Electrical length is 450 in 

TLIN.  
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As seen in Figure 7.1, the circuit is simulated in Microwave Office Tool [50]. The 

response of transducer power gain from the generator to load impedance is presented in 

Figure 7.2, which is 0.98 at 1 GHz. 

 

 

 

Figure 7.2 TPG response of HPN via series capacitors separated by UE 
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7.2 LPN via Shunt Capacitors Separated by UE 

 

In Figure 7.3, the circuit has three lumped elements and two-unit elements. The 

normalized generated impedance has a resistance (1Ω) and series inductor (1H). The 

normalized load impedance has a series inductor (2H), a shunt capacitor (1F), and shunt 

resistance (1Ω). 

 

 

 

Figure 7.3 Synthesis of LPN via shunt capacitors separated by UE 

 

The scattering parameters in equations (3.26-3.27) are defined with two independent 

variables (p,λ) g, h, f polynomials as shown in equations (3.32-35).  

 

Random variables are assigned to independent coefficients (h02, h12, h22, h32, h01) of h(p,λ) 

and transmission delay of the unit element. These values are optimized with Non-Linear 

Least Square method in Matlab. Constant values are h00=0 and g00=1. 

 

The values of normalized angular frequency (WL) values are from zero to one with 0.1 

intervals used in the optimization process and written as 

 

WL=0:0.1:1 . 
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Values in v matrix are assigned with random variables between 0 and 1 that the values 

are the independent coefficients of h(p,λ) and transmission delay of the unit element, 

respectively. The values in v matrix are written as 

 

v=[0.8147 0.9058 0.1270 0.9134 0.6324 0.0975]  . 

With these parameters, the independent coefficient variables of g(p, λ)  (g02, g12, g22, g32, 

g01) are calculated via equations (3.33) for lumped elements (last column- g02, g12, g22, 

g32) and via equation (3.34) for unit element( first raw- g02, g01, g00).  Roots of g(p) and 

g(λ) polynomials are chosen in left half plane because the polynomials are strictly 

Hurwitz. 

 

The optimization process is executed as described in Figure 6.1 to get optimized results 

as  

 

Y=[-0.9899 0.3593 -0.8074 -0.9797 2.0435 0.5295]   . 

 

Y matrix contains optimization results of independent coefficients of h(p,λ) and 

transmission delay of the unit element, respectively The transmission delay value of the 

unit element is 0.5295. The equations (3.33-3.34) are used to calculate the independent 

coefficients of g(p,λ) (g02, g12, g22, g32,g01).  

 

After this calculation, dependent variables in coefficient matrices of g(p,λ) and h(p,λ) are 

calculated with equation (4.115-123). Scattering parameters are used to calculate 

transducer power gain with equations (6.2-4). 

 

The coefficient matrices of g(p, λ) and h(p, λ) are written as 
 

Mh = [

0 2.0435 −0.9797
−1.2413 0.6685 −0.8074

0
0

−3.7782
0

0.3593
−0.9899

]      , 

 

Mg = [

1 2.9959 1.3999
1.2413 6.2552 2.5908

0
0

3.7782
0

1.9131
0.9899

]      . 
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Normalized lumped and distributed elements values are calculated as described in 

Subsection 5.2. The component values are C1=0.8713, C2=0.3371, C3=1.2742, 

Z1=1.4911, Z2=3.5483. The normalized frequency of the unit element in Microwave 

Office Tool is 0.2361. 

 

Denormalized lumped element values at 1 GHz are calculated via equation (7.1). 

Denormalized distributed element values are calculated via equation (7.3). Denormalized 

lumped and and unit element values are C1=2.7733 pF, C2=1.0729pF, C3=4.0558 pF and 

Z1=74.5556Ω, Z2=177.4150Ω, respectively. Denormalization resistance and 

denormalized lumped element values at generator impedance are Z=50Ω, L=7.9577nH 

via equation (7.2). Denormalization resistance and denormalized lumped elements values 

in load impedance are Z=50Ω, L=15.915nH via equation (7.2), and C=3.1831 pF.  

 

The simulation is executed with denormalization component values as seen in Figure 7.3 

with Microwave Office Tool at 1 GHz. The response of transducer power gain from the 

generator to load impedance is presented in Figure 7.4, which is 0.9415 at 1 GHz. 

 

 

 

Figure 7.4 TPG response of LPN via shunt capacitors separated by UE 
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7.3 LPN via Series Inductors and Shunt Capacitors Separated by UE 

 

In this part, the circuit has three lumped elements and two-unit elements, as seen in Figure 

7.5. The normalized generated impedance has a resistance (1Ω) and series inductor (1H). 

The normalized load impedance has a series inductor (2H), a shunt capacitor (1F), and 

shunt resistance (1Ω). 

 

 
 

Figure 7.5 Synthesis of LPN via shunt capacitors and series inductors separated by UE 

 

The two independent variable scattering parameters are calculated via equations  

(3.26-3.27) and g(p,λ), h(p,λ), and f(p,λ), polynomials are shown in equations (3.32-35).  

 

Random variables are assigned to independent coefficients (h02, h10, h20, h30, h01) of h(p,λ) 

polynomials and transmission delay of the unit element. These values are optimized with 

Non-Linear Least Square method in Matlab. Constant values are h00=0 and g00=1. 

 

The normalized angular frequency (WL) values are between zero to one with 0.1 intervals 

in the optimization process. WL is defined as 

 

WL=0:0.1:1 . 
 

Values in v matrix are assigned with random variables between 0 and 1 that the values 

are the independent coefficients of h(p,λ) and transmission delay of the unit element, 

respectively. The values in v matrix are written as 

 

v=[0.6892 0.7482 0.4505 0.2838 0.2290 0.9133]     . 
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With these parameters, the independent coefficients of g(p,λ)  (g02, g00, g10, g20,  g30, g01) 

are calculated via equations (3.33) for lumped elements (first column- g00, g10, g20, g30) 

and equation (3.34) for unit element (first raw- g02, g01, g00). Roots of g(p) and g(λ) 

polynomials are chosen in left half plane because these polynomials are strictly Hurwitz. 

 

The optimization process is going to be repeated as described in Section 6 to get optimized 

values as 

 

Y=[-0.7621 02949 -0.1529 -0.7023 -0.3322 0.3408]  . 

 

Y matrix contains independent coefficients of h(p,λ) and transmission delay of the unit 

element, respectively. The transmission delay value of the unit element is 0.3408. The 

equations (3.33-3.34) are used to calculate the independent variables of g(p,λ) (g02, g10, 

g20, g30,g01). g00 is equal to one, and h00 is equal to zero. 

 

After this calculation, dependent coefficients in matrix of g(p,λ) and h(p,λ) are calculated 

via equation (4.35-41). Scattering parameters are used to calculate transducer power gain 

via equations (6.2-4). The coefficient matrices of g(p, λ) and h(p, λ) polynomials are 

written as 

 

Mh = [

0 −0.3322 −0.9023
−0.1529 −0.4679 −2.5976
0.2949

−0.7621
−3.0376

0
0
0

]    , 

 

Mg = [

1 2.1918 1.3469
1.8025 3.9 2.5976
1.6128
0.7621

3.0376
0

0
0

]   . 

 

Normalized lumped and distributed elements values are calculated as described in 

Subsection 5.4. The normalized components values are C1=0.7989, C2=1.6496, 

C3=1.1565, Z1=0.5723, Z2=1.2873. The normalized frequency of the unit element in 

Microwave Office Tool is 0.3669. 

 

Denormalized capacitor value according to 1 GHz is calculated via equation (7.1), and 

denormalized inductor value are calculated with equation (7.2). The Denormalized 

distributed element value is calculated with equation (7.3). Denormalized lumped element 

values and denormalized distributed element values are C1=2.5413pF, L2=13.127nH, 
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C3=3.6812pF and Z1=28.6123Ω, Z2=64.3644Ω, respectively. Denormalization resistance 

and denormalized lumped element values in generator impedance are Z=50Ω and 

L=7.9577nH via equation (7.2), respectively. Denormalization resistance and 

denormalized lumped element values at load impedance are Z=50Ω and L=15.915nH via 

equation (7.2), C=3.1831 pF, respectively. 

 

The simulation is executed with denormalized component values, as seen in Figure 7.5 at 

Microwave Office Tool. The response of transducer power gain from the generator to 

load impedance is presented in Figure 7.6, which is 0.92 at 1 GHz.  

 

 

 

Figure 7.6 TPG of LPN via shunt capacitors and series inductors separated by UE 
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7.4 HPN via Shunt Inductors and Series Capacitors Separated by UE   

 

In Figure 7.7, the circuit has three lumped elements and two-unit elements. The 

normalized generated impedance has a resistance, and load impedance has a series 

capacitor (2H), a shunt inductor (2F), and shunt resistance (1Ω). 

 

 
 

Figure 7.7 Synthesis of HPN via SC and SHI separated by UE 

 

 

Two independent variable scattering parameters are written via equations (3.26-3.27), and 

g(p,λ), h(p,λ), and f(p,λ) polynomials are shown via equations (3.32-35).  

 

Random variables are assigned to independent coefficients (h31, h10, h20, h30, h32) of h(p,λ) 

and transmission delay of unit element. These values are optimized with Non-Linear 

Least Square method in Matlab. Constant values are h00=0 and g00=1. 

 

The normalized angular frequency (WH) values are between one to two with 0.1 intervals 

for optimization. WL is written as 

 

WL=1:0.1:2 . 
 

Values in v matrix are assigned with random variables between 0 and 1. The parameters 

are the independent coefficients of h(p,λ) and transmission delay of the unit element, 

respectively. The values in v matrix are written as 

 

v=[0.1068 0.6538 0.4962 0.7791 0.7150 0.9037] . 
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With v matrix, the independent coefficients of g(p, λ)  (g32, g00, g10, g20,  g30, g31) are 

calculated via equations (3.33) for lumped elements (first column- g00, g10, g20, g30) and 

equation (3.34) for unit element (last raw- g32, g31, g30) Roots of. g(p) and g(λ) polynomials 

are chosen in left half plane because these polynomials are strictly Hurwitz. 

 

The optimization process is going to be repeated as described in Section 6 to get optimized 

values as 

 

Y=[-3.2020 0.5394 0.4235 0.2936 1.0583 0.1] . 

 

Y matrix contains independent coefficients of h(p,λ) and transmission delay of the unit 

element, respectively. The transmission delay value of the unit element is 0.1. The 

equations (3.33-3.34) are used to calculate the independent variables of g(p,λ) (g31, g10, 

g20, g30,g32).  

 

After this calculation, equations (4.69-76) are used to calculate the dependent coefficients 

of g(p,λ) and h(p,λ) polynomials and scattering parameters. Transducer power gain is 

calculated with equation (6.2-4). 

 

The coefficient matrices of g(p,λ) and h(p,λ) are written as 
 

Mh = [

1.0583 0 0
0.2936 5.3106 0
0.4235

0
−1.5246
0.5294

5.7089
−3.2020

]    , 

 

Mg = [

1.0583 0 0
1.8255 5.3106 0
1.9571

1
5.6429

3
5.7089
3.3546

]      . 

 

Normalized lumped and distributed elements values are calculated as described in 

Subsection 5.3. The normalized components values are C1=0.7237, C2=0.6520, 

C3=1.0021 and Z1=0.4684, Z2=3.0710. The normalized frequency of the unit element in 

Microwave Office Tool is 1.2504. 
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Denormalized capacitor value at 1 GHz is calculated with equation (7.1), and 

denormalized inductor value is calculated with equation (7.2). Denormalized distributed 

element value is calculated with equation (7.3). Denormalized lumped element values and 

denormalized distributed element values are C1=2.3037pF, L2=5.1888nH, C3=3.1868pF 

and Z1=23.41Ω, Z2=153.54Ω respectively. Denormalization resistance and denormalized 

lumped element values in generator impedance are Z=50Ω and L=7.9577nH via equation 

(7.2), respectively. Denormalization resistance and denormalized lumped element values 

at load impedance are Z=50Ω and L=15.915nH via equation (7.2), C=3.1831 pF, 

respectively.  

. 

The simulation is executed with denormalized component values, as seen in Figure 7.7 at 

Microwave Office Tool. The transducer power gain from the generator to load impedance 

is presented in Figure 7.8, which is 0.98 at 1 GHz 

 

 

 

Figure 7.8 TPG of HPN via series capacitors and shunt inductors separated by UE 
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8. PHASE SHIFTER NETWORKS 

 

There are two main phase shifter networks. One of the phase shifter networks contains 

series capacitors separated by unit elements for high-pass and shunt capacitors separated 

by unit elements for low-pass. The other network consists of capacitors and inductors as 

lumped elements separated by unit elements. The positive half of desired phase response 

is provided from the high-pass network, and the negative half of desired phase response 

is obtained from the low-pass network. Generator and load impedance contains only 

resistances.  

 
8.1 PSN via Shunt or Series Capacitors Separated by UE 

 

In Figure 8.1, the circuit has three lumped elements and two-unit elements. Normalized 

generated impedance has a resistance (1Ω), and normalized load impedance has a 

resistance (1Ω). 

 

 
 

Figure 8.1 LPPSN via shunt capacitors separated by UE  
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Two independent variable scattering parameters are defined in equations (3.26-3.27). 

g(p,λ), h(p,λ), and f(p,λ)  polynomials are defined in equations (3.32-37).  

 

Independent coefficients (h02, h12, h22, h32, h01) of h(p,λ) and transmission delay of the 

unit element are assigned with random numbers at the beginning of the optimization 

process. The constant values are h00=0 and g00=1. The method in the optimization process 

is Non-Linear Least Square Method and executed in Matlab. The maximum transducer 

power gain response is equal to 1, and the magnitude of S21 should also be equal to 1. 

With this conditions and equation (3.27), |f(p,λ)| / |g(p,λ)| should be equal to 1. 

 

Normalized angular frequency (WL) values are between 0.95 to 1.05 with 0.01 intervals 

at 1 GHz for the optimization process and are written as 

 

WL=0.95:0.01:1.05  . 
 

The independent coefficients of h(p,λ) and transmission delay of the unit element are 

between 0 and  1, respectively. v matrix is written as 

 

v=[0.1818 0.2638 01455 0.1361 0.8693 0.5797]  . 

 

With v matrix, the independent coefficients of g(p,λ)  (g02, g12, g22, g32, g01) are calculated 

via  equations (3.33) for lumped elements (last column- g02, g12, g22, g32) and equations 

(3.34) for unit element (first raw- g02, g01, g00). Roots of g(p) and g(λ) polynomials are 

chosen in left half plane because the polynomials are strictly Hurwitz. 

 

The optimization process is going to be repeated as described in Section 6. Boundaries of 

initial values in matrix v is defined as lower bound (lowb) and upper bound (upperb) 

 

Lowb=[-Inf -Inf -Inf -Inf -Inf 0.01]   , 

 

upperb=[-0.01 Inf Inf Inf Inf Inf]  . 

 

The total error is calculated via equation (6.7) to get optimized values as 

 

Y=[-0.1614 0.0482 0.2232 -0.2659 0.5125 0.0246]  . 
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Y matrix contains independent coefficients of h(p,λ) and transmission delay of the unit 

element, respectively. The transmission delay value of the unit element is 0.1. Equations 

(3.33-3.34) are used to calculate independent variables of g(p,λ) (g02, g12, g22, g32,g01). g00 

is equal to one. After this calculation, equations (4.115-123) are used for the calculation 

of dependent coefficients of g(p,λ) and h(p,λ) polynomials and scattering parameters.  

The coefficient matrix of g(p,λ) and h(p,λ) are written as 
 

Mh = [

0 05125 −0.2659
−0.9108 −0.0615 0.2232

0
0

−0.8317
0

0.0482
−0.1614

]     , 

 

𝑀𝑔 = [

1 2.0814 1.0348
0.9108 2.3625 1.2216

0
0

0.8317
0

0.6846
0.1614

]      . 

 

Normalized lumped and distributed element values are calculated via equations in 

Subsection 5.2. The normalized components values are C1=0.4404, C2=0.8739, 

C3=0.5072 and Z1=1.1274, Z2=1.4664.  

 

Denormalized capacitor values at 100 GHz are calculated via equation (7.1). 

Denormalized inductor values are calculated via equation (7.2). Denormalized distributed 

element values are calculated via equation (7.3). Denormalized lumped element values 

and denormalized distributed element values are C1=1.4020 pF, C2=2.7817 pF, 

C3=1.6146 pF, and Z1=56.3710 Ω, Z2=73.3215 Ω, respectively. Denormalized generator 

impedance is Z=50Ω. Denormalized load impedance is Z=50 Ω. The normalized 

frequency of the unit element in Microwave Office Tool is 31.888 GHz. 

 

Denormalized capacitor values at 100 GHz are calculated via equation (7.1). 

Denormalized inductor values are calculated via equation (7.2). Denormalized distributed 

element values are calculated via equation (7.3). Denormalized lumped element values 

and denormalized distributed element values are C1=0.2804 pF, C2=0.55634 pF, 

C3=0.32292 pF and Z1=56.3710 Ω, Z2=73.3215 Ω, respectively. Denormalized generator 

impedance is Z=50Ω. Denormalized load impedance is Z=50 Ω. The normalized 

frequency of the unit element in Microwave Office Tool is 159.44 GHz. 
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Denormalized capacitor values at 100 GHz are calculated via equation (7.1). 

Denormalized inductor values are calculated via equation (7.2). Denormalized distributed 

element values are calculated via equation (7.3). Denormalized lumped element values 

and denormalized distributed element values are C1=0.14020 pF, C2=0.27817 pF, 

C3=0.16146 pF and Z1=56.3710 Ω, Z2=73.3215 Ω, respectively. Denormalized generator 

impedance is Z=50Ω. Denormalized load impedance is Z=50 Ω. The normalized 

frequency of unit elements in Microwave Office Tool is 318.88 GHz. 

 

Denormalized capacitor values at 100 GHz are calculated via equation (7.1). 

Denormalized inductor values are calculated via equation (7.2). Denormalized distributed 

element values are calculated via equation (7.3). Denormalized lumped element values 

and denormalized distributed element values are C1=0.0701 pF, C2=0.13908 pF, 

C3=0.08073 pF and Z1=56.3710 Ω, Z2=73.3215 Ω, respectively. Denormalized generator 

impedance is Z=50Ω. Denormalized load impedance is Z=50 Ω. The normalized 

frequency of the unit element in Microwave Office Tool is 637.75 GHz. 

 

Denormalized capacitor values at 100 GHz are calculated via equation (7.1). 

Denormalized inductor values are calculated via equation (7.2). Denormalized distributed 

element values are calculated via equation (7.3). Denormalized lumped element values 

and denormalized distributed element values are C1=0.056080 pF, C2=0.11127pF, 

C3=0.064584 pF and Z1=56.3710 Ω, Z2=73.3215 Ω, respectively. Denormalized 

generator impedance is Z=50Ω. Denormalized load impedance is Z=50 Ω. The 

normalized frequency of the unit element in Microwave Office Tool is 797.19 GHz. 

 

Denormalized capacitor values at 100 GHz are calculated via equation (7.1). 

Denormalized inductor values are calculated via equation (7.2). Denormalized distributed 

element values are calculated via equation (7.3). Denormalized lumped element values 

and denormalized distributed element values are C1=0.046733 pF, C2=0.092723pF, 

C3=0.053820 pF and Z1=56.3710 Ω, Z2=73.3215 Ω, respectively. Denormalized 

generator impedance is Z=50Ω. Denormalized load impedance is Z=50 Ω. The 

normalized frequency of the unit element in Microwave Office Tool is 956.63 GHz. 
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Denormalized capacitor values at 100 GHz are calculated via equation (7.1). 

Denormalized inductor values are calculated via equation (7.2). Denormalized distributed 

element values are calculated via equation (7.3). Denormalized lumped element values 

and denormalized distributed element values are C1=0.014020 pF, C2=0.027817 pF, 

C3=0.016146 pF and Z1=56.3710 Ω, Z2=73.3215 Ω, respectively. Denormalized 

generator impedance is Z=50Ω. Denormalized load impedance is Z=50 Ω. The 

normalized frequency of the unit element in Microwave Office Tool is 3188.8 GHz. 

 

In Figure 8.2, the circuit has three lumped and two unit elements. Normalized generated 

impedance has a resistance (1Ω), and normalized load impedance has a resistance (1Ω). 

 

 
 

Figure 8.2 HPPSN via series capacitors separated by UE  

 

The scattering parameters are defined in equations (3.26-3.27). g(p,λ), h(p,λ), and f(p,λ) 

polynomials are written in equations (3.32-37).  

 

Independent coefficients (h02, h12, h22, h32, h31) of h(p,λ) and transmission delay of the 

unit element are assigned with random numbers at the beginning of the optimization 

process. The constant values are h30=0 and g30=1. The method in the optimization process 

is Non-Linear Least Square Method and executed in Matlab. The maximum transducer 

power gain is equal to 1, and the magnitude of S21 equals 1. Via these conditions and 

equation (3.27), |f(p,λ)| / |g(p,λ)| should be equal to 1. 

 

The normalized angular frequency (WL) values are between 0.95 and 1.05 with 0.01 

interval and are written as 

 

WL=0.95:0.01:1.05 . 
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The independent coefficients of h(p,λ) and transmission delay of the unit element are 

between 0 and 1, respectively. v matrix is written as 

 

v=[0.1818 0.2638 0.1455 0.1361 0.8693 0.5797]   . 

 

Independent coefficients of g(p, λ)  (g02, g12, g22, g32, g31) are calculated via equations 

(3.33) for lumped elements (last column- g02, g12, g22, g32) and equation (3.34) for unit 

element( last raw- g32, g31, g30).Roots of g(p) and g(λ) polynomials are chosen in left half 

plane because these polynomials are strictly Hurwitz. 

 

The optimization process is going to be repeated as described in Section 6.  Boundaries 

of initial values in matrix v are defined as lower bound (lowb) and upper bound (upperb) 

 

Lowb=[-Inf -Inf -Inf 0.01 -Inf 0.01]  , 

 

upperb=[Inf Inf Inf Inf Inf Inf]  . 

 

The total error of transducer power gain and phase are calculated via equation (6.10) to 

get optimized results as 

 

Y=[0.1801 0.2694 0.1601 0.0322 0.8593 0.5797]   . 

 

Y matrix contains independent coefficients of h(p,λ) and transmission delay of the unit 

element, respectively. The transmission delay value of the unit element is 0.1707. The 

equations (3.33-3.34) are used to calculate independent coefficients of g(p,λ) (g32, g12, 

g22, g32,g31). g30 is equal to one. 

 

After this calculation, equations (4.141-151) are used to calculate the dependent 

coefficients of g(p,λ) and h(p,λ) polynomials and scattering parameters.  

 

The coefficient matrices of g(p, λ) and h(p, λ) polynomials are written as 
 

Mg = [

0 0 0.0322
0 0.4287 0.2302

1.0297
1

1.3643
2.1841

0.6948
1.0161

]    , 

 

Mh = [

0 0 0.0322
0 0.4287 0.1601

1.0297
1

0.5565
0.8592

0.2694
0.1801

]   .  
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Normalized lumped and distributed elements values are calculated via equations in 

Subsection 5.1. The normalized components values are C1=1.0898, C2=1.0235, 

C3=6.0687, and Z1=1.1274, Z2=1.4664. The normalized frequency of the unit element in 

Microwave Office Tool is 12.5035. 

Denormalized capacitor values at 1 GHz are calculated with equation (7.1). Denormalized 

inductor values are calculated via equation (7.2). Denormalized distributed element 

values are calculated via equation (7.3). Denormalized lumped element values and 

denormalized distributed element values are C1=3.4689 pF, C2=3.2580 pF, C3=19.317 

pF, and Z1=56.3710 Ω, Z2=73.3215 Ω, respectively. Denormalized generator impedance 

is Z=50Ω. Denormalized load impedance is Z=50Ω. The normalized frequency of the 

unit element in Microwave Office Tool is 78.540 GHz. 

 

Desired phase response (900) is provided from these circuits, as seen in Figure 8.1 and 

Figure 8.2. The results are given in Figure 8.3. The phase performance of high-pass and 

low-pass networks is sufficient, with -0.1 error around 1 GHz over 10% bandwidth (89.90 

at 0.95 GHz and 90.000 at 1.05 GHz). 

 

 
 

 
Figure 8.3 PRN via series capacitors or shunt capacitors separated by UE at 1 GHz 
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Transducer power gain responses of high-pass and low-pass networks are given in Figure 

8.4. Transducer power gain is between 0.5889 and 0.5421 in low pass networks over 10% 

bandwidth, and transducer power gain is between 0.4615 and 0.5123 in high pass 

networks over 10% bandwidth for 1 GHz. 

 

 

 
 

Figure 8.4 TPG of the network via SC or SHC separated by UE at 1 GHz 

 

Denormalized capacitor values at 5 GHz are calculated with equation (7.1). Denormalized 

inductor values are calculated via equation (7.2). Denormalized distributed element 

values are calculated via equation (7.3). Denormalized lumped element values and 

denormalized distributed element values are C1=0.69378 pF, C2=0.65161 pF, C3=3.8635 

pF, and Z1=56.3710 Ω, Z2=73.3215 Ω, respectively. Denormalized generator impedance 

is Z=50Ω. Denormalized load impedance is Z=50Ω. The normalized frequency of the 

unit element in Microwave Office Tool is 392.70 GHz. 

 

Desired phase response (900) results are given in Figure 8.5 at 5 GHz. The phase 

performance of high-pass and low-pass networks is sufficient, with -0.1 error around 900 

at 5GHz over 10% bandwidth (89.90 at 4.75 GHz and 90.000 at 5.25 GHz). 
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Figure 8.5 PRN via series capacitors or shunt capacitors separated by UE at 5 GHz 

 

Transducer power gain responses of high-pass and low-pass networks are given in Figure 

8.6. Transducer power gain is between 0.5889 and 0.5421 in low pass networks over 10% 

bandwidth, and transducer power gain changes between 0.4615 and 0.5123 in high pass 

networks over 10% bandwidth for 5 GHz. 

 

 

 

Figure 8.6 TPG of the network via SC or SHC separated by UE at 5 GHz 
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Denormalized capacitor values at 10 GHz are calculated with equation (7.1). 

Denormalized inductor values are calculated via equation (7.2). Denormalized distributed 

element values are calculated via equation (7.3). Denormalized lumped element values 

and denormalized distributed element values are C1=0.34689 pF, C2=0.32580 pF, 

C3=1.9317 pF, and Z1=56.3710 Ω, Z2=73.3215 Ω, respectively. Denormalized generator 

impedance is Z=50Ω. Denormalized load impedance is Z=50Ω. The normalized 

frequency of the unit element in Microwave Office Tool is 785.40 GHz. 

 

Desired phase response (900) results are given with + 1.4 error in Figure 8.7 at 10 GHz. 

The phase performance of high-pass and low-pass networks is sufficient, with -0.2 and 

+0.2 errors around 91.40 at 10 GHz over 10% bandwidth (91.20 at 9.5 GHz and 91.60 at 

10.5 GHz). 

 

 

 

Figure 8.7 PRN via series capacitors or shunt capacitors separated by UE at 10 GHz 
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Transducer power gain responses of high-pass and low-pass networks are given in Figure 

8.8. Transducer power gain is between 0.6245 and 0.536 in low pass networks over 10% 

bandwidth, and transducer power gain is between 0.4344 and 0.534 in high pass networks 

over 10% bandwidth for 10 GHz. 

 

 

 

Figure 8.8 TPG of the network via SC or SHC separated by UE at 10 GHz 

 

 

 

 

 

 

 

 

 

 

 

 



85 

 

Denormalized capacitor values at 20 GHz are calculated with equation (7.1). 

Denormalized inductor values are calculated via equation (7.2). Denormalized distributed 

element values are calculated via equation (7.3). Denormalized lumped element values 

and denormalized distributed element values are C1=0.17344 pF, C2=0.16290 pF, 

C3=0.96586 pF, and Z1=56.3710 Ω, Z2=73.3215 Ω, respectively. Denormalized generator 

impedance is Z=50Ω. Denormalized load impedance is Z=50Ω. The normalized 

frequency of the unit element in Microwave Office Tool is 1570.8 GHz. 

 

Desired phase response (900) results are given with - 0.1 error in Figure 8.9 at 20 GHz. 

The phase performance of high-pass and low-pass networks is sufficient with + 0.1 error 

around 89.90 over 10% bandwidth at 20 GHz (89.90 at 19 GHz, 90.000 at 21 GHz). 

 

 

 

Figure 8.9 PRN via series capacitors or shunt capacitors separated by UE at 20 GHz 
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Transducer power gain responses of high-pass and low-pass networks are given in Figure 

8.10. Transducer power gain is between 0.5889 and 0.5421 in low pass networks over 

10% bandwidth, and transducer power gain is between 0.4615 and 0.5123 in high pass 

networks over 10% bandwidth at 20 GHz. 

 

 

 

 

Figure 8.10 TPG of the network via SC or SHC separated by UE at 20 GHz 
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Denormalized capacitor values at 25 GHz are calculated with equation (7.1). 

Denormalized inductor values are calculated via equation (7.2). Denormalized distributed 

element values are calculated via equation (7.3). Denormalized lumped element values 

and denormalized distributed element values are C1= 0.13876pF, C2=0.13032 pF, 

C3=0.77269 pF, and Z1=56.3710 Ω, Z2=73.3215 Ω, respectively. Denormalized generator 

impedance is Z=50Ω. Denormalized load impedance is Z=50Ω. The normalized 

frequency of the unit element in Microwave Office Tool is 1963.5 GHz. 

 

Desired phase response (900) results are given with + 0.1 error in Figure 8.11 at 25 GHz. 

The phase performance of high-pass and low-pass networks is sufficient, around 90.10 

over 10% bandwidth at 25 GHz (900 at 23.75 GHz, 900 at 26.25 GHz). 

 

 

 

Figure 8.11 PRN via series capacitors or shunt capacitors separated by UE at 25 GHz 
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Transducer power gain responses of high-pass and low-pass networks are given in Figure 

8.12. Transducer power gain is between 0.587 and 0.540 in low pass networks over 10% 

bandwidth, and transducer power gain is between 0.4615 and 0.5123 in high pass 

networks over 10% bandwidth at 25 GHz. 

 

 
 

 
Figure 8.12 TPG of network via SC or SHC separated by UE at 25 GHz 
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Denormalized capacitor values at 30 GHz are calculated with equation (7.1). 

Denormalized inductor values are calculated via equation (7.2). Denormalized distributed 

element values are calculated via equation (7.3). Denormalized lumped element values 

and denormalized distributed element values are C1= 0.11563pF, C2=0.10860 pF, 

C3=0.64391 pF, and Z1=56.3710 Ω, Z2=73.3215 Ω, respectively. Denormalized generator 

impedance is Z=50Ω. Denormalized load impedance is Z=50Ω. The normalized 

frequency of the unit element in Microwave Office Tool is 2356.2 GHz. 

 

Desired phase response (900) results are given in Figure 8.13 at 30GHz. The phase 

performance of high-pass and low-pass networks is sufficient around 900 over 10% 

bandwidth at 30 GHz (900 at 28.5 GHz, 900 at 31.5 GHz). 

 

 
 

Figure 8.13 PRN via series capacitors or shunt capacitors separated by UE at 30 GHz 
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Transducer power gain responses of high-pass and low-pass networks are given in Figure 

8.14. Transducer power gain is between 0.588 and 0.542 in low pass networks over 10% 

bandwidth, and transducer power gain is between 0.4615 and 0.5123 in high pass 

networks over 10% bandwidth at 30 GHz. 

 

 

 

 
 

Figure 8.14 TPG of the network via SC or SHC separated by UE at 30 GHz 
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Denormalized capacitor values at 100 GHz are calculated with equation (7.1). 

Denormalized inductor values are calculated via equation (7.2). Denormalized distributed 

element values are calculated via equation (7.3). Denormalized lumped element values 

and denormalized distributed element values are C1= 0.034689pF, C2=0.032580 pF, 

C3=0.19317 pF, and Z1=56.3710 Ω, Z2=73.3215 Ω, respectively. Denormalized generator 

impedance is Z=50Ω. Denormalized load impedance is Z=50Ω. The normalized 

frequency of the unit element in Microwave Office Tool is 7854 GHz. 

 

Desired phase response (900) results are given in Figure 8.15 at 100 GHz. The phase 

performance of high-pass and low-pass networks is sufficient, with -0.1 error around 900 

over 10% bandwidth at 30 GHz (89.90 at 95 GHz, 900 at 105 GHz). 

 

 

 

Figure 8.15 PRN via series capacitors or shunt capacitors separated by UE at 100GHz 
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Transducer power gain responses of high-pass and low-pass networks are given in Figure 

8.16. Transducer power gain is between 0.588 and 0.542 in low pass networks over 10% 

bandwidth, and transducer power gain is between 0.4615 and 0.5123 in high pass 

networks over 10% bandwidth at 100 GHz. 

 

 

 

Figure 8.16 TPG of the network via SC or SHC separated by UE at 100 GHz 

 

Results for TPG response of networks at center frequency 1 GHz to 100 GHz are 

insufficient for long-range coverage areas in communication systems where insertion loss 

is lower than 2.688 dB for 10% narrowband. For octave band from 0.6 GHz to 1.2 GHz 

at center 1 GHz, insertion loss is lower than 1.267 dB, as seen in Figure 8.17. Loss of 

power causes reductions in distance between transmitter and receiver for reliable 

communication. Because of its low-rate power capability, this type of design can be used 

indoors or outdoors, like in short-range communication of self-driving cars. Typically, 

for long-range communication, insertion loss should be less than 10 dB and 20 dB, which 

means 10 % and 1 % power loss while power is transformed from the generator to load 

impedance. Although this network provides low-rate power capability, phase responses 

are sufficient that phase error is ±0.50 around 89.940 at 1 GHz for 10% narrowband. For 

%40 bandwidth, phase response -0.170 at 0.8 GHz and + 0.760 at 1.2 GHz. The insertion 

loss is better than 2. 055 dB. For octave bandwidth, phase response -0.300 at 0.6 GHz and 

+ 0.760 at 1.2 GHz. The insertion loss is better than 1.267 dB. As seen in the results, 
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insertion loss and phase errors increase as bandwidth increases, as seen in Figure 8.19. 

The low phase error rate provides a high concentration of radiation signal to desired areas 

with minimum interference. Moreover, concentration on desired areas and minimization 

of interference increases the 5G smart antenna wireless communication data rate. 

 

 

 

Figure 8.17 Insertion loss of network via SC or SHC separated by UE at 1 GHz 

 

 
 

Figure 8.18 PRN via SC or SCH separated by UE over octave bandwidth at 1 GHZ 
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A low-pass and high pass via only lumped elements as 900 phase shifters at three stage T 

form network and 1800phase shifters are examined, and mathematical equations are 

defined to calculate component values for desired phase response in the study [21]. Due 

to these equations, component values for high-pass and low-pass networks are computed 

at 1 GHz center. Component values for the three-stage T-type high-pass network are 

C1=7.6846 pF, L2=11.254 nH, and C3=7.6847 pF. The generator and load impedance 

values are 50 Ω. Component values for three stage T-type low-pass network are 

L1=3.2962 nH, C2=2.2508 pF, and L3=3.2962 nH. The generator and load impedance 

values are 50 Ω. Figure. Phase response and insertion loss of this circuit are indicated in 

Figure 8.20 and Figure 8.21. This design has a maximum +0.30 phase error around 900 at 

center 1 GHz for %10 bandwidth, and insertion loss is better than 72.78 dB.  This design 

has +2.870 error at 0.8 GHz, and + 1.890 error at 1.2 GHz around 900 at center 1 GHz for 

%40 bandwidth, and insertion loss is better than 27.47 dB. This design has max +36.010 

at 0.6 GHz and + 1.890  at 1.2 GHz around 900 at center 1 GHz for octave bandwidth, and 

insertion loss is better than 27.47 dB. 

 

The design of lossless two-port high/low pass via series capacitors and shunt capacitors 

separated by unit elements has better phase responses at three different bandwidths. Still, 

the study's design has better insertion loss rates [36]. 

 

 
 

Figure 8.19 High/low pass via lumped elements as 900 phase shifters at 1 GHz 
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Figure 8.20 PRN via lumped elements over octave bandwidth at 1 GHz 

 

 
 

Figure 8.21 ILN via lumped elements over octave bandwidth at 1 GHz 

 

Low/high pass networks via lumped elements as 900 phase shifter is designed ±2 phase 

errors with diode switches for octave bandwidth in the study [44].  

 

 

 

 

 



96 

 

The design consists of a resonator, two shunt transmission lines, and a reference line in 

Figure 8.22. Phase variations are ±20 between 2.85 GHz and 7.15 GHz around 900 at 

center 5 GHz. The insertion loss is better than 10 dB at 129 % bandwidth with the 

additional effect of switch elements in the study [48]. 

 

 

 

Figure 8.22 A broadband 900 phase shifter via series resonator and transmission line 

 

 Component values are calculated at 5 GHz center frequency for lossless high/low pass 

network via series and shunt capacitors separated by transmission lines. The phase 

response is indicated in Figure 8.23, and insertion loss is shown in Figure 8.24. Phase 

responses are 89.940 at 2.85 GHz and 90.450 at 7.15 GHz at 5 GHz, but insertion loss is 

better than 1.158 dB. As seen, the phase response is better, but insertion loss is higher in 

lossless high/low pass networks. 

 

 

 

Figure 8.23 PRN via SC or SHC separated by UE over 129% bandwidth at 5 GHz 
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Figure 8.24 ILN via SC or SHC separated by UE over 129% bandwidth at 5 GHz 

 

A Shiffman phase shifter is designed for 900 phase shifting at Ku-band (12 GHz to 18 

GHz) and contains 4 port networks with a reference line and a coupled line defined time 

delay in the study [19]. Insertion loss is better than 10 dB, and phase variations are less 

than -90 at 12 GHz and + 110 at 18 GHz. 

 

Denormalized capacitor values at 15 GHz are calculated with equation (7.1) for a high 

pass network via series and shunt capacitors separated by transmission lines. 

Denormalized inductor values are calculated via equation (7.2). Denormalized distributed 

element values are calculated via equation (7.3). Denormalized lumped element values 

and denormalized distributed element values are C1= 0.021326pF, C2=0.21719 pF, 

C3=1.2878 pF, and Z1=82.8783 Ω, Z2=69.2864 Ω in high pass, respectively. 

Denormalized generator impedance is Z=50Ω. Denormalized load impedance is Z=50Ω. 

The normalized frequency of the unit element in Microwave Office Tool is 1178.1 GHz. 

 

Denormalized capacitor values at 15 GHz are calculated with equation (7.1) for low pass 

network via series and shunt capacitors separated by transmission lines. Denormalized 

inductor values are calculated via equation (7.2). Denormalized distributed element 

values are calculated via equation (7.3). Denormalized lumped element values and 

denormalized distributed element values are C1= 0.093456 pF, C2=0.18545 pF, 

C3=0.10763 pF, and Z1=56.3710 Ω, Z2=73.3215 Ω in low pass, respectively. 
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Denormalized generator impedance is Z=50Ω. Denormalized load impedance is Z=50Ω. 

The normalized frequency of the unit element in Microwave Office Tool is 478.90 GHz. 

 

The phase response of high/low pass lossless two-port network via series capacitors and 

shunt capacitors separated by transmission line is 90.75 at 12 GHz, 91.22 at 18 GHz, and 

91.01 at 15 GHz center frequency in Figure 8.25. The component values Insertion loss is 

better than 1.936 dB in Figure 8.26 and higher than the study in [19]. In all studies shown 

in this Subsection 8.1 and Subsection 8.2, this design has fewer variations in narrowband 

and wideband and higher insertion loss. A decrease in phase variations causes an 

increment in insertion loss. 

 

 
 

Figure 8.25 PRN via SC or SHC separated by UE over Ku-band at 15 GHz 
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Figure 8.26 ILN via SC or SHC separated by UE over Ku-band at 15 GHz 
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8.2 PSN via Capacitors and Inductors Separated by UE 

 

In Figure 8.27, the circuit has three lumped elements and two-unit elements. Normalized 

generated impedance has a resistance (1Ω), and normalized load impedance has a 

resistance (1Ω). 

 

 
 

Figure 8.27 LPPSN via mixed lumped elements separated by UE at 1GHz 
 

The scattering parameters are defined in equations (3.26-3.27). g(p,λ), h(p,λ), and f(p,λ) 

polynomials are written in equations (3.32-37).  

 

Independent coefficients (h02, h10, h20, h30, h01) of h(p,λ) and the transmission delay of the 

unit element are assigned with random numbers. These variables are optimized in Matlab. 

The constant values are h00=0 and g00=1. The method of the optimization process is Non-

Linear Least Square Method. The maximum transducer power gain is equal to 1, and the 

magnitude of S21 should also be equal to 1. With this condition and equation (3.27), |f(p,λ)| 

/ |g(p,λ)| should be equal to 1. 

 

The normalized angular frequency (WL) values are between 0.95 and 1.05 with 0.01 

intervals in the optimization process and written as 

 

WL=0.95:0.01:1.05 . 
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Variables in v matrix are assigned with random values between 0 and 1 that represent 

independent coefficients of h(p,λ) and transmission delay of the unit element, 

respectively. v matrix is written as 

 

v=[0.4314 0.9106 0.1818 0.2638 0.1455 0.1361]  . 

 

With v matrix, independent coefficients of g(p,λ)  (g02, g10, g20, g30, g01) are calculated via 

equation (3.33) for lumped elements (first column- g00, g10, g20, g30) and equation (3.34) 

for unit element (first row- g02, g01, g00). g(p) and g(λ) polynomial roots are chosen in left 

half plane because the polynomials are strictly Hurwitz. 

 

The optimization process is repeated as described in Section 6. Boundaries of initial 

values in matrix v are defined as lower bound (lowb) and upper bound (upperb) 

 

Lowb=[-Inf -Inf -Inf -Inf -Inf 0.01] , 

 

upperb=[-0.00001 Inf Inf Inf Inf Inf] . 

 

 The total error of phase and transducer power gain is calculated via equation (6.7) to get 

optimized results as 

 

Y=[-0.0250 0.1359 0.1734 0.2639 0.1698 0.0122]    . 

 

Y matrix contains independent coefficients of h(p,λ) and transmission delay of the unit 

element, respectively. The transmission delay value of the unit element is 0.0122. The 

equations (3.33-3.34) are used to calculate independent variables of g(p,λ) (g02, g10, g20, 

g30,g01).  

 

After this calculation, equations (4.35-41) are used to calculate dependent coefficients in 

g(p,λ) and h(p,λ) polynomials and scattering parameters.  
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The coefficient matrix of g(p,λ) and h(p,λ) are written as 
 

Mh = [

0 0.1698 0.2639
0.1734 −0.8769 −0.5785

−0.1359
−0.0250

−0.2124
0

0
0

]    , 

 

Mg = [

1 2.0242 1.0342
0.7313 1.4509 0.5785
0.2524
0.0250

0.2124
0

0
0

]     . 

 

Normalized lumped and distributed elements values are calculated via equations in 

Subsection 5.4. The normalized components values are C1=0.1287, L2=0.9047, 

C3=0.4292 and Z1=1.8995, Z2=1.2491. The normalized frequency of the unit element in 

Microwave Office Tool is 10.2539. 

 

Denormalized capacitor values at 1 GHz are calculated via equation (7.1). Denormalized 

inductor values are calculated via equation (7.2). Denormalized distributed element 

values are calculated via equation (7.3). Denormalized lumped element values and 

denormalized distributed element values are C1=0.40971 pF, L2=7.1994 nH, C3=1.3663 

pF, and Z1=1.2393 Ω, Z2=0.9547 Ω, respectively. Denormalized generator impedance 

value is Z=50 Ω. Denormalized load impedance value is Z=50 Ω. The normalized 

frequency of the unit element in Microwave Office Tool is 64.409 GHz. 

 

Denormalized capacitor values at 1 GHz are calculated via equation (7.1). Denormalized 

inductor values are calculated via equation (7.2). Denormalized distributed element 

values are calculated via equation (7.3). Denormalized lumped element values and 

denormalized distributed element values are C1=0.081942 pF, L2=1.4399 nH, 

C3=0.27325 pF, and Z1=61.9653 Ω, Z2=47.7354 Ω, respectively. Denormalized generator 

impedance value is Z=50Ω. Denormalized load impedance value is Z=50Ω. The 

normalized frequency of the unit element in Microwave Office Tool is 322.04 GHz. 

 

Denormalized capacitor values at 1 GHz are calculated via equation (7.1). Denormalized 

inductor values are calculated via equation (7.2). Denormalized distributed element 

values are calculated via equation (7.3). Denormalized lumped element values and 

denormalized distributed element values are C1=0.040971 pF, L2=0.71994 nH, 

C3=0.31663 pF, and Z1=61.6953 Ω, Z2=47.7354 Ω, respectively. Denormalized generator 
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impedance value is Z=50Ω. Denormalized load impedance value is Z=50Ω. The 

normalized frequency of the unit element in Microwave Office Tool is 644.09 GHz. 

 

Denormalized capacitor values at 1 GHz are calculated via equation (7.1). Denormalized 

inductor values are calculated via equation (7.2). Denormalized distributed element 

values are calculated via equation (7.3). Denormalized lumped element values and 

denormalized distributed element values are C1=0.020485 pF, L2=0.35997 nH, 

C3=0.06831 pF, and Z1=61.9653 Ω, Z2=47.7354 Ω, respectively. Denormalized generator 

impedance value is Z=50Ω. Denormalized load impedance value is Z=50Ω. The 

normalized frequency of the unit element in Microwave Office Tool is 1288.26 GHz. 

 

Denormalized capacitor values at 1 GHz are calculated via equation (7.1). Denormalized 

inductor values are calculated via equation (7.2). Denormalized distributed element 

values are calculated via equation (7.3). Denormalized lumped element values and 

denormalized distributed element values are C1=0.016388 pF, L2=0.28798 nH, 

C3=0.054650 pF, and Z1=61.9653 Ω, Z2=47.7354 Ω, respectively. Denormalized 

generator impedance value is Z=50Ω. Denormalized load impedance value is Z=50Ω. 

The normalized frequency of the unit element in Microwave Office Tool is 1610.2 GHz. 

 

Denormalized capacitor values at 1 GHz are calculated via equation (7.1). Denormalized 

inductor values are calculated via equation (7.2). Denormalized distributed element 

values are calculated via equation (7.3). Denormalized lumped element values and 

denormalized distributed element values are C1=0.013657 pF, L2=0.23998 nH, 

C3=0.045542 pF, and Z1=61.9653 Ω, Z2=47.7354 Ω, respectively. Denormalized 

generator impedance value is Z=50Ω. Denormalized load impedance value is Z=50Ω. 

The normalized frequency of unit elements in Microwave Office Tool is 1932.3 GHz. 

 

Denormalized capacitor values at 100 GHz are calculated via equation (7.1). 

Denormalized inductor values are calculated via equation (7.2). Denormalized distributed 

element values are calculated via equation (7.3). Denormalized lumped element values 

and denormalized distributed element values are C1=4.0971 fF, L2=0.071994 nH, 

C3=13.663 fF, and Z1=61.9653 Ω, Z2=47.7354 Ω, respectively. Denormalized generator 
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impedance value is Z=50Ω. Denormalized load impedance value is Z=50Ω. The 

normalized frequency of the unit element in Microwave Office Tool is 6440.9 GHz. 

, 

In Figure 8.28, the circuit has three lumped and two-unit elements. The normalized 

generated impedance has a resistance (1Ω), and the normalized load impedance has a 

resistance (1Ω). 

 

 

 
Figure 8.28 HPPSN via mixed lumped elements separated by UE at 1GHz 

 

The scattering parameters are defined in equations (3.26-3.27). g(p,λ), h(p,λ), and f(p,λ) 

polynomials are defined in equations (3.32-37).  

 

Independent parameters (h32, h10, h20, h30, h31) in the coefficient matrix of h(p,λ) and the 

transmission delay of unit elements are assigned with random numbers. These variables 

are optimized in Matlab. The constant values are h00=0 and g00=1. The method in the 

optimization process is Non-Linear Least Square Method. The maximum transducer 

power gain is equal to 1, and the magnitude of S21 should also be equal to 1. Via equation 

(3.27), |f(p,λ)| / |g(p,λ)| should be equal to 1. 

 

The normalized angular frequency (WL) values are between 0.95 to 1.05 with 0.01 

intervals and are written as 

 

WL=0.95:0.01:1.05 . 
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The random variables in v matrix are written as 

 

v=[0.4314 0. 9106 0.1818 0.2638 0.1455 0.1361]  . 

 

With these parameters, the independent coefficients of g(p,λ)  (g32, g10, g20, g30, g31) are 

calculated via equations (3.33) for lumped elements (first column- g00, g10, g20, g30) and 

equation (3.34) for unit element (last row- g32, g31, g30).Roots of g(p) and g(λ) polynomial 

are chosen in left half plane because these polynomials are strictly Hurwitz. 

 

The optimization process is executed as described in Section 6. Boundaries of initial 

values in matrix v are defined as lower bound (lowb) and upper bound (upperb) 

 

Lowb=[-Inf -Inf -Inf 0.00001 -Inf  0.01]    , 

 

upperb=[Inf Inf Inf Inf Inf Inf]     . 

 

The total error of phase and transducer power gain is calculated via equation (6.10) to get 

optimized results as 

 

Y=[0.4315 0.9108 0.1823 0.2617 0.1426 0.1436]   . 

 

Y matrix contains independent coefficients of h(p,λ) and transmission delay of the unit 

element, respectively. The transmission delay value of the unit element is 0.1436. The 

equations (3.33-3.34) are used to calculate independent variables of g(p,λ) (g32, g10, g20, 

g30,g31). g00 is equal to one. 

 

After this calculation, equations (4.76-81) are used to calculate the dependent coefficients 

of g(p,λ) and h(p,λ) polynomials and scattering parameters. 

 

The coefficient matrix of g(p, λ) and h(p, λ) polynomials are written as 
 

Mh = [

0.5971 0 0
0.3328 2.3046 0
0.4387

0
0.8056
0.4277

1.9209
0.4760

]   , 

 

 

Mg = [

0.5971 0 0
1.2409 2.3046 0
1.6353

1
3.2418
2.0971

1.9209
1.1075

]   . 
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Normalized lumped and distributed elements values are calculated via equations in 

Subsection 5.3. The normalized components values are C1=1.0831, L2=1.0194, 

C3=2.9187, Z1=1.8995, Z2=1.2491. The normalized frequency of the unit element in 

Microwave Office Tool is 0.8709. 

 

Denormalized capacitor values at 1 GHz are calculated via equation (7.1). Denormalized 

inductor values are calculated via equation (7.2). Denormalized distributed element 

values are computed via equation (7.3). Denormalized lumped element values and 

denormalized distributed element values are C1=3.4476 pF, L2=8.8286 nH, C3=9.2906 

pF, and Z1=94.9748 Ω, Z2=62.4559 Ω., respectively. Denormalized generator impedance 

is Z=50Ω. Denormalized load impedance is Z=50Ω. The normalized frequency of the 

unit element in Microwave Office Tool is 5.47036 GHz. 

 

Transducer power gain responses of high-pass and low-pass networks are given in Figure 

8.29. Transducer power gain changes between 0.962 and 0.978 for the high-pass network. 

Transducer power gain changes between 0.949 and 0.933 for low-pass networks over 

10% bandwidth at 1 GHz. 

 

 

 

Figure 8.29 TPG of network via mixed lumped elements separated by UE at 1 GHz 
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The total phase response of high-pass and low-pass networks is 89.80, as seen in Figure 

8.30. The phase response of high-pass and low-pass networks is insufficient, with +2.20 

and -1.80 phase errors around 1 GHz over 10% bandwidth (92.10 at 0.95 GHz and 880 at 

1.05 GHz). 

 

 
Figure 8.30 PRN via mixed lumped element separated by UE at 1 GHz 

 

Denormalized capacitor values at 5 GHz are calculated via equation (7.1). Denormalized 

inductor values are calculated via equation (7.2). Denormalized distributed element 

values are calculated via equation (7.3). Denormalized lumped element values and 

denormalized distributed element values are C1=0.68952 pF, L2=1.7657 nH, C3=1.8581 

pF, and Z1=94.9748 Ω, Z2=624559 Ω., respectively. Denormalized generator impedance 

is Z=50Ω. Denormalized load impedance is Z=50Ω. The normalized frequency of the 

unit element in Microwave Office Tool is 27.351 GHz. 

 

Transducer power gain responses of high-pass and low-pass networks are given in Figure 

8.31. Transducer power gain changes between 0.962 and 0.978 for the high-pass network. 

Transducer power gain changes between 0.949 and 0.933 for low-pass networks over 

10% bandwidth at 5 GHz. 
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Figure 8.31 TPG of network via mixed lumped elements separated by UE at 5 GHz 

 

The total phase response of high-pass and low-pass networks is 89.80, as seen in Figures 

8.32. The phase response of high-pass and low-pass networks is sufficient, with +2.20 and 

-1.80 phase errors around 5 GHz over 10% bandwidth (92.10 at 4.75 GHz and 880 at 5.25 

GHz). 

 

 

 
Figure 8.32 PRN via mixed lumped element separated by UE at 5 GHz 
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Denormalized capacitor values at 10 GHz are calculated via equation (7.1). Denormalized 

inductor values are calculated via equation (7.2). Denormalized distributed element 

values are calculated via equation (7.3). Denormalized lumped element values and 

denormalized distributed element values are C1=0.34476 pF, L2=0.88286 nH, 

C3=0.92906 pF, and Z1=94.9748 Ω, Z2=62.4559 Ω, respectively. Denormalized generator 

impedance is Z=50Ω. Denormalized load impedance is Z=50Ω. The normalized 

frequency of the unit element in Microwave Office Tool is 54.703 GHz. 

 

Transducer power gain responses of high-pass and low-pass networks are given in Figure 

8.33. Transducer power gain changes between 0.962 and 0.978 for the high-pass network. 

Transducer power gain changes between 0.949 and 0.933 for low-pass networks over 

10% bandwidth at 10 GHz. 

 

 

 

Figure 8.33 TPG of network via mixed lumped elements separated by UE at 10 GHz 
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The total phase response of high-pass and low-pass networks is 89.80, as seen in Figures 

8.34. The phase response of high-pass and low-pass networks is sufficient, with +2.30 and 

-1.80 phase errors around 10 GHz over 10% bandwidth (92.20 at 9.5 GHz and 880 at 10.5 

GHz). 

 

 

 

Figure 8.34 PRN via mixed lumped element separated by UE at 10 GHz 
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Denormalized capacitor values at 20 GHz are calculated via equation (7.1). 

Denormalized, inductor values are calculated via equation (7.2). Denormalized 

distributed element values are calculated via equation (7.3). Denormalized lumped 

element values and denormalized distributed element values are C1=0.17238 pF, 

L2=0.44143 nH, C3=0.46453 pF, and Z1=94.9748 Ω, Z2=62.4559 Ω., respectively. 

Denormalized generator impedance is Z=50Ω. Denormalized load impedance is Z=50Ω. 

The normalized frequency of the unit element in Microwave Office Tool is 109.41GHz. 

 

Transducer power gain responses of high-pass and low-pass networks are given in Figure 

8.35. Transducer power gain changes between 0.962 and 0.978 for the high-pass network. 

Transducer power gain changes between 0.949 and 0.933 for low-pass networks over 

10% bandwidth at 20 GHz. 

 

 

 
Figure 8.35 TPG of network via mixed lumped elements separated by UE at 20 GHz 
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The total phase response of high-pass and low-pass networks is 89.80, as seen in Figures 

8.36. The phase response of high-pass and low-pass networks is sufficient, with +2.20 and 

-1.80 phase errors around 20 GHz over 10% bandwidth (92.10 at 19 GHz and 880 at 21 

GHz). 

 

 

 
Figure 8.36 PRN via mixed lumped element separated by UE at 20 GHz 
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Denormalized capacitor values at 25 GHz are calculated via equation (7.1). Denormalized 

inductor values are calculated via equation (7.2). Denormalized distributed element 

values are calculated via equation (7.3). Denormalized lumped element values and 

denormalized distributed element values are C1=0.13790 pF, L2=0.35314 nH, 

C3=0.37162 pF, and Z1=94.9748 Ω, Z2=62.4559 Ω, respectively. Denormalized generator 

impedance is Z=50Ω. Denormalized load impedance is Z=50Ω. The normalized 

frequency of the unit element in Microwave Office Tool is 136.76 GHz. 

 

Transducer power gain responses of high-pass and low-pass networks are given in Figure 

8.37. Transducer power gain changes between 0.962 and 0.978 for the high-pass network. 

Transducer power gain changes between 0.949 and 0.933 for low-pass networks over 

10% bandwidth at 25 GHz. 

 

 
 

Figure 8.37 TPG of network via mixed lumped elements separated by UE at 25 GHz 
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The total phase response of high-pass and low-pass networks is 89.80, as seen in Figures 

8.38. The phase response of high-pass and low-pass networks is sufficient, with +2.10 and 

-1.80 phase errors around 25 GHz over 10% bandwidth (92.10 at 23.75 GHz and 880 at 

26.25 GHz). 

 

 

 

Figure 8.38 PRN via mixed lumped element separated by UE at 25 GHz 
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Denormalized capacitor values at 30 GHz are calculated via equation (7.1). Denormalized 

inductor values are calculated via equation (7.2). Denormalized distributed element 

values are calculated via equation (7.3). Denormalized lumped element values and 

denormalized distributed element values are C1=0.11492 pF, L2=0.29429 nH, 

C3=0.30969 pF, and Z1=94.97448 Ω, Z2=62.4559 Ω., respectively. Denormalized 

generator impedance is Z=50Ω. Denormalized load impedance is Z=50Ω. The 

normalized frequency of the unit element in Microwave Office Tool is 164.11 GHz. 

 

Transducer power gain responses of high-pass and low-pass networks are given in Figure 

8.39. Transducer power gain changes between 0.962 and 0.978 for the high-pass network. 

Transducer power gain changes between 0.949 and 0.933 for low-pass networks over 

10% bandwidth at 30 GHz. 

 

 

 

Figure 8.39 TPG of network via mixed lumped elements separated by UE at 30 GHz 
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The total phase response of high-pass and low-pass networks is 89.80, as seen in Figure 

8.40. The phase response of high-pass and low-pass networks is sufficient, with +2.20 and 

-1.80 phase errors around 30 GHz over 10% bandwidth (92.10 at 28.5 GHz and 880 at 31.5 

GHz). 

 

 

 

Figure 8.40 PRN via mixed lumped element separated by UE at 30 GHz 
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Denormalized capacitor values at 100 GHz are calculated via equation (7.1). 

Denormalized inductor values are calculated via equation (7.2). Denormalized distributed 

element values are calculated via equation (7.3). Denormalized lumped element values 

and denormalized distributed element values are C1=0.034476 pF, L2=0.088286 nH, 

C3=0.092906 pF, and Z1=94.9748 Ω, Z2=62.4559 Ω., respectively. Denormalized 

generator impedance is Z=50Ω. Denormalized load impedance is Z=50Ω. The 

normalized frequency of the unit element in Microwave Office Tool is 5470.3 GHz. 

 

Transducer power gain responses of high-pass and low-pass networks are given in Figure 

8.41. Transducer power gain changes between 0.962 and 0.978 for the high-pass network. 

Transducer power gain changes between 0.949 and 0.933 for low-pass networks over 

10% bandwidth at 100 GHz. 

 

 

 

Figure 8.41 TPG via mixed lumped elements separated by UE at 100 GHz 
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The total phase response of high-pass and low-pass networks is 89.80, as seen in Figure 

8.42. The phase response of high-pass and low-pass networks is sufficient, with +2.20 and 

-1.80 phase errors around 100 GHz over 10% bandwidth (92.10 at 95 GHz and 880 at 105 

GHz). 

 

 

 

Figure 8.42 PRN via mixed lumped element separated by UE at 100 GHz 

 

In response, networks on all central frequencies at 10% desired bandwidth have a 

maximum ± 2.2 phase errors, and insertion loss is lower than 11.76 dB at 1.05 GHz, as 

seen in Figure 8.33. In this design, increasing in bandwidth is proportional to phase error. 

As seen in Figure 8.34, the phase error is ± 4 around 1 GHz. Reliable communication is 

available at 10% narrowband at this design for long wireless communication with an 

acceptable phase error rate and high power handing capability. In long ranges, smart 

antennas direct radiation signals to desired directions electronically to provide fast 

tracking for radar systems and commercial communication systems, including at high 

central frequencies. Two types of phase shifters show an inverse relation between 

transducer power gain and phase responses. Network via series capacitors and shunt 

capacitors separated by transmission line has the advantage of low phase variations in 

broadband and narrowband. Still, it has higher insertion loss than described studies 

[19,26,44,48] and network via mixed lumped elements separated by the transmission line. 
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Network via mixed lumped elements separated by transmission line phase shifter has low 

insertion loss at 10% bandwidths and higher phase error rate than network via series 

capacitors and shunt capacitors separated by the transmission line. Moreover, the phase 

error rate is dramatically increased with bandwidth. 

 

This design has a maximum +0.30 phase error around 900 at center 1 GHz for %10 

bandwidth, and insertion loss is better than 72.78 dB.  This design has +2.870 error at 0.8 

GHz, and + 1.890 error at 1.2 GHz around 900 at center 1 GHz for %40 bandwidth, and 

insertion loss is better than 27.47 dB. This design has max +36.010 at 0.6 GHz and + 1.890  

at 1.2 GHz around 900 at center 1 GHz for octave bandwidth, and insertion loss is better 

than 27.47 dB.  Results are calculated due to mathematical equations in the study [26]. 

The phase response of this study is indicated in Figure 20, and insertion loss is shown in 

Figure 21 at SubSection 8.1. 

 

Component values of lossless two-port high/low pass network via mixed lumped 

elements separated by unit elements are defined in Figure 27 and Figure 28. This design 

has + 2.270 phase error at 0.95 GHz, and -1.05 at 1.05 GHz around 89.830 at center 1 GHz 

for %10 bandwidth, and insertion loss is better than 11.76 dB.  This design has +12.390 

phase error at 0.8 GHz and -5.530 error at 1.2 GHz around 89.830 at center 1 GHz for %40 

bandwidth, and insertion loss is better than 10.51 dB. This design has  +39.340 phase error 

at 0.6 GHz, and -5.530 phase error at 1.2 GHz around 89.830 at  1 GHz frequency center 

for octave bandwidth in Figure 43, and insertion loss is better than 5.166 dB in Figure 44. 

 

The design of a lossless two-port high/low pass network via mixed lumped elements 

separated by unit elements has sufficient phase responses and insertion loss rate at only  

10% bandwidth. Still, it is not as good as the study's design [26]. The design has better 

insertion loss rates than a two-port lossless high/low pass network via series capacitors 

and shunt capacitors separated by unit elements in all rate bandwidth. 
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Figure 8.43 PRN via mixed lumped element separated by UE over octave bandwidth 

 

 

 

Figure 8.44 ILN via mixed lumped element separated by UE over octave bandwidth 
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The design consists of a resonator, two shunt transmission lines, and a reference line as 

seen in Figure 8.22. Phase variations are ±20 between 2.85 GHz and 7.15 GHz around 900 

at center 5 GHz. The insertion loss is better than 10 dB at 129 % bandwidth with the 

additional effect of switch elements in the study [19]. 

 

Component values of lossless two-port high/low pass network via mixed lumped 

elements separated by unit elements are calculated for 5 GHz center frequency. That 

phase response is indicated in Figure 8.45, and insertion loss is shown in Figure 8.46. 

Phase responses are 135.310 at 2.85 GHz and 82.480 at 7.15 GHz at 5 GHz center 

frequency, but insertion loss is better than 4.357 dB. As seen, phase response and insertion 

loss are insufficient for 129% bandwidth. The design is appropriate for only %10 

bandwidth.  

 

 

 

Figure 8.45 PRN via mixed lumped element separated by UE over 129% bandwidth 
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Figure 8.46 ILN via mixed lumped element separated by UE over 129% bandwidth 

 

A Schiffman phase shifter is designed for 900 phase shifting at Ku-band (12 GHz to 18 

GHz) and contains 4 port networks with a reference line and a coupled line defined time 

delay in the study [19]. Insertion loss is better than 10 dB, and phase variations are less 

than -90 at 12 GHz and + 110 at 18 GHz. 

 

Denormalized capacitor values at 15 GHz for the high pass network are calculated via 

equation (7.1). Denormalized inductor values are calculated via equation (7.2). 

Denormalized distributed element values are calculated via equation (7.3). Denormalized 

lumped element values and denormalized distributed element values are C1=0.22985 pF, 

L2=0.58851 nH, C3=0.61905 pF, and Z1=94.9748 Ω, Z2=62.4559 Ω., respectively. 

Denormalized generator impedance is Z=50Ω. Denormalized load impedance is Z=50Ω. 

The normalized frequency of the unit element in Microwave Office Tool is 82.030 GHz. 

 

Denormalized capacitor values at 15 GHz for the low pass network are calculated via 

equation (7.1). Denormalized inductor values are calculated via equation (7.2). 

Denormalized distributed element values are calculated via equation (7.3). Denormalized 

lumped element values and denormalized distributed element values are C1=0.03336 pF, 

L2=0.48820 nH, C3=0.081642 pF, and Z1=61.9653 Ω, Z2= 47.7354 Ω., respectively. 
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Denormalized generator impedance is Z=50Ω. Denormalized load impedance is Z=50Ω. 

The normalized frequency of unit elements in Microwave Office Tool is 827.80 GHz. 

 

 Phase response of high/low pass lossless two-port network via mixed lumped elements 

separated by transmission lines is 102.280 at 12 GHz, 84.250 at 18 GHz, and 89.840 at 5 

GHz center frequency in Figure 8.47. Insertion loss is better than 10.17 dB in Figure 8.48 

and higher than the study in [19]. This design has fewer phase variations over narrowband 

and tolerable insertion loss. However, this design has high rate phase variations in 

broadband. 

 

 

 

Figure 8.47 PRN via mixed lumped element separated by UE over Ku-band 

 

 

 

Figure 8.48 ILN via mixed lumped element separated by UE over129% bandwidth 
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Phase response and insertion loss of high/low pass lossless two-port network via mixed 

lumped elements separated by transmission lines are good as in the study [19]. 
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9. CONCLUSION 

 

Phased-array antennas are used in many communication and radar systems in civilian or 

military applications such as global positioning, flight control, missile prevention and 

collision avoidance systems. 

 

One of the elements used in a phased-array system is a switched line, reflection, loaded 

line or high pass / low pass phase shifter. In addition to the size advantage, high pass / 

low pass phase shifters are also the best choice if power consumption and phase-to-

bandwidth capacities are compared to other phase shifters. 

 

In the literature, there are many studies on high pass / low pass phase shifters. In these 

studies, topologies of high pass and low pass sections are determined at the beginning and 

element value expressions are derived. After completing the design, the results are 

checked if the desired phase shift is achieved, select another topology if not provided. 

This means to derive new element value expressions for this new topology and re-design. 

Furthermore, the connections between lumped elements will disrupt the performance of 

the phase shifter at high frequencies and result in a different phase shift than desired. 

 

In many applications, circuits containing lumped elements are preferred because of their 

small sizes. But it is not possible to avoid losses caused by the connections between 

lumped elements at high frequencies. However, the use of these connections as circuit 

elements will improve the performance of the circuit. Therefore, it becomes inevitable to 

use circuits with mixed (lumped and distributed) elements at high frequencies. 

 

In this thesis, high pass / low pass sections of the phase shifter consist of mixed elements. 

Therefore, connections between lumped elements do not cause deterioration in the 

performance but are used as a circuit element to achieve the desired phase shift. In the 

sections, four different mixed element structures are used, two of them are high pass 

mixed element lossless two-port and two of them are low pass mixed element lossless 

two-port. In one of the high pass networks, inductors and capacitors are separated by 

distributed elements, and in the other high pass network series capacitors are separated 
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by distributed elements. In one of the low pass networks, inductors and capacitors are 

separated by distributed elements, and in the other low pass network shunt capacitors are 

separated by distributed elements. 

 

To be able to completely define a mixed element network, all the elements of coefficient 

matrices Mh and Mg must be calculated. In the literature, the coefficient matrices Mh and 

Mg of the selected three mixed element networks are obtained, and in the thesis these 

solutions are used. The coefficient matrices Mh and Mg defining the mixed element 

network with series capacitors separated by distributed elements are obtained in this 

thesis, and these solutions are used to form the coefficient matrices Mh and Mg. 

 

In the thesis, the subject is to obtain phase shifting properties of mixed element high pass 

and low pass mixed element networks. It is necessary for a phase shifter to get the desired 

phase shift and maximum possible output signal level. For this purpose, firstly, phase 

equations of the mentioned structures are derived, and then a procedure is defined to 

calculate the coefficient matrices of the mixed element structure to be able to get the 

desired phase shift and maximum output signal level. In the defined design procedure, 

free parameters of the coefficient matrix Mh are initialized by the designer, and the 

remaining coefficients of Mh and all the coefficients of Mg are calculated.  

 

As mentioned above, in this thesis, firstly, the necessary phase and amplitude response 

equations are obtained. Now it is necessary to calculate the component values of the high 

pass and low pass sections. Two different component value calculation process are 

utilized. In one of the methods, transfer scattering matrices are used. Briefly, from the 

calculated Mh and Mg matrices, the value of the first extracted component is calculated. 

Then transfer scattering matrix of the extracted component is computed. After 

multiplying the inverse of the transfer scattering matrix of the first component and the 

total transfer scattering matrix, scattering matrix of the remaining network is obtained. 

Then the value of the second extracted component is calculated, and the procedure is 

repeated until getting the termination resistance. 
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In the thesis, another component value calculation procedure is described. In this method, 

after calculating the first extracted component by using the coefficients of Mh and Mg, 

all the coefficients of Mh and Mg of the remaining network are separately calculated by 

means of the derived equations. It is seen that the precision of this method is better than 

the method described above. 

 

Component values calculated via the proposed approached are normalized. So, it is 

necessary to calculate the real component values by means of the denormalization 

frequency and impedance values. In the thesis, denormalization impedance value is 

selected as 50 ohm, and 1 GHz, 5 GHz and 10 GHz are selected as denormalization 

frequency values. It is seen that the performances of the designed sections are the same 

at different working frequencies. So, it is enough to design high pass and low pass sections 

by specifying the desired phase shift, then the designed sections can be used at different 

real working frequencies after denormalization of all component values, it is not 

necessary to design all the sections for each real working frequency. 

 

It is clear from the phase and gain graphics obtained in the design examples that the phase 

precision of the sections containing capacitors separated by distributed elements is better 

than that of the sections containing inductors, capacitors separated by distributed 

elements. But the gain performance of the sections containing inductors, capacitors 

separated by distributed elements is better than that of the sections containing capacitors 

separated by distributed elements. 
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