
KADIR HAS UNIVERSITY

SCHOOL OF GRADUATE STUDIES

DEPARTMENT OF

ADMINISTRATIVE SCIENCES

 MASTER OF SCIENCE

ISTANBUL, SEPTEMBER, 2022

ENSEMBLE OF FEATURE SELECTION MODELS

FOR MALWARE DATASETS

FARUK CÜREBAL

F
A

R
U

K
 C

Ü
R

E
B

A
L

M

A
S

T
E

R
 O

F S
C

IE
N

C
E

 T
H

E
S

IS
 2022

ENSEMBLE OF FEATURE SELECTION

MODELS FOR MALWARE DATASETS

FARUK CÜREBAL

 ADVISOR: Prof. Dr. HASAN DAĞ

A thesis submitted to

the School of Graduate Studies of Kadir Has University

in partial fulfilment of the requirements for the degree of

Master of Science in

Cyber Security

Istanbul, September, 2022

APPROVAL

This thesis titled ENSEMBLE OF FEATURE SELECTION MODELS FOR MAL-

WARE DATASETS submitted by FARUK CÜREBAL, in partial fulfillment of the

requirements for the degree of Master of Science in Cyber Security is approved by

Prof. Dr. Hasan Dağ (Advisor) .
Kadir Has University

Prof. Dr. Mustafa Bağrıyanık .
Istanbul Technical University

Assist. Prof. Dr. E. Fatih Yetkin .
Kadir Has University

I confirm that the signatures above belong to the aforementioned faculty members.

. .

Prof. Dr. Mehmet Timur Aydemir

Dean of School of Graduate Studies

Date of Approval: 06.09.2022

ii

DECLARATION ON RESEARCH ETHICS AND

PUBLISHING METHODS

I, FARUK CÜREBAL; hereby declare

• that this Master of Science Thesis that I have submitted is entirely my own

work and I have cited and referenced all material and results that are not my

own in accordance with the rules;

• that this Master of Science Thesis does not contain any material from any

research submitted or accepted to obtain a degree or diploma at another edu-

cational institution;

• and that I commit and undertake to follow the “Kadir Has University Aca-

demic Codes and Conduct" prepared in accordance with the “Higher Education

Council Codes of Conduct".

In addition, I acknowledge that any claim of irregularity that may arise in relation to

this work will result in a disciplinary action in accordance with university legislation.

FARUK CÜREBAL

. .

06.09.2022

iii

To my family

iv

ACKNOWLEDGEMENT

I would like to thank my my thesis supervisor Prof. Dr. Hasan Dağ for his guidance

throughout this project. I also would like to thank Prof. Dr. Mustafa Bağrıyanık

and Assist. Prof. Dr. E. Fatih Yetkin for their invaluable feedbacks.

I am extremely thankful to Dr. Aykut Çayır, Kadir Has University, for all his

technical and moral support throughout the project.

I would like to thank my friends Ferhat Demirkıran, İsmail Erbaş, Kağan Ceylan

and Muhammet Kaya for their endless support. In my most desperate moments, I

always found their support by my side.

I also express my deepest gratitude to my parents, Mustafa and Kadriye Cürebal,

and my sisters Dilek and Fatma Cürebal for their lifelong supports. I could not have

done this without them.

v

ENSEMBLE OF FEATURE SELECTION MODELS FOR MALWARE

DATASETS

ABSTRACT

While the development of technology has made our lives easier, our dependence on

it has also increased. Cybercriminals develop various types of malware to exploit

this dependence. Thus, malware classification is essential for security researchers

and incident response teams to take action against them and accelerate mitigation.

In this study, we selected seven feature selection methods considering their popu-

larity, effectiveness, and complexity: LOFO Importance (Leave One Feature Out) ,

FRUFS (Feature Relevance based Unsupervised Feature Selection), AGRM (A Gen-

eral Framework for Auto-Weighted Feature Selection with Global Redundancy Min-

imization), MI (Mutual Information), Chi-square test, mRMR (Minimum Redun-

dancy and Maximum Relevance), BoostARoota. We performed all the experiments

in this study using XGBoost (Extreme Gradient Boosting), RF (Random Forest),

and HGB (Histogram-Based Gradient Boosting) machine learning classifiers and ac-

curacy, F1-score, and AUC-score (Area under the ROC Curve) evaluation metrics.

We measured the parameter sensitivities of these feature selection methods having

adjustable parameters on two high-dimensional datasets: the Microsoft Malware

Prediction dataset and the API Call Sequences dataset. These feature selection

methods and parameters are FRUFS (model-c, random-state), BoostARoota (clf,

iters), and LOFO (model). Only the ‘model’ parameter of the LOFO algorithm

significantly affects the accuracy and F1-score evaluation metric results among the

adjustable parameters. We then compared these seven feature selection algorithms

using two high-dimensional malware datasets: the Microsoft Malware Prediction

dataset and the API Import dataset. Overall results show that AGRM obtained

better metric results than other feature selection methods. Behind AGRM, FRUFS,

LOFO, MI, and mRMR achieved the best results in different metrics. Compared

to MI and mRMR, LOFO is much less used in the malware domain, while FRUFS

vi

has not been used before. Since AGRM performs better and FRUFS and LOFO

are newer than other algorithms, we decided to continue our work with these three

feature selection methods. Finally, we combined three selected feature selection

methods, LOFO Importance, FRUFS, and AGRM, to find the most important fea-

tures and work with fewer features by reducing the multidimensionality. We trained

three feature subsets from these feature selection methods with three models, XG-

Boost, RF, and HGB classifiers, using a stacking ensemble on the Microsoft Malware

Prediction dataset and the API Import dataset. From the nine prediction proba-

bilities we obtained, we eliminated the prediction probabilities containing the same

information by setting a threshold in the correlation matrix. We gave the final

prediction probabilities we obtained to the SVM (Support Vector Machine) meta

classifier. Our model obtained an average of 1.2% better classification accuracy

than the selected three feature selection methods on one of the well know malware

datasets (Microsoft Malware Prediction dataset). For the API Import dataset, our

model obtained an average 8% better classification accuracy than LOFO and FRUFS

feature selection algorithms, and AGRM could not be used in that comparison due

to insufficient RAM. Therefore, our proposed model was trained with fewer features

and got better results.

Keywords: Feature Selection, Ensemble, FRUFS, AGRM, LOFO, Malware Clas-

sification

vii

KÖTÜCÜL YAZILIM VERİ KÜMELERİ İÇİN ÖZNİTELİK SEÇİM

MODELLERİNİN TOPLULUĞU

ÖZET

Teknolojinin gelişmesi hayatımızı kolaylaştırırken, ona olan bağımlılığımız da arttı.

Siber suçlular, bu bağımlılıktan yararlanmak için çeşitli kötü amaçlı yazılım türleri

geliştirmektedirler. Bu nedenle, güvenlik araştırmacıları ve olay müdahale ekip-

lerinin bunlara karşı önlem alması ve sistemlere verilebilecek zararları en aza in-

dirmesi için kötü amaçlı yazılım sınıflandırması çok önemlidir. Bu çalışmada, popüler-

lik, etkinlik ve karmaşıklıklarını göz önünde bulundurarak yedi öznitelik seçim yön-

temi seçtik: LOFO Importance (Leave One Feature Out), FRUFS (Feature Rele-

vance based Unsupervised Feature Selection), AGRM (A General Framework for

Auto-Weighted Feature Selection with Global Redundancy Minimization), MI (Mu-

tual Information), Ki-kare testi (Chi-square test), mRMR (Minimum Redundancy

and Maximum Relevance) ve BoostARoota. Bu çalışmadaki tüm deneyleri XG-

Boost (Extreme Gradient Boosting), RF (Random Forest) ve HGB (Histogram-

Based Gradient Boosting) makine öğrenimi sınıflandırıcıları ve doğruluk, F1-skor

ve AUC-skor (ROC eğrisinin altında kalan alan) değerlendirme ölçütlerini kulla-

narak gerçekleştirdik. Bu öznitelik seçim yöntemlerinden ayarlanabilir parametre

sahibi olanlarının parametre duyarlılıklarını, iki yüksek boyutlu veri kümesinde

ölçtük: Microsoft Kötü Amaçlı Yazılım Tahmini veri kümesi ve API Çağrı Dizileri

veri kümesi. Bu öznitellik seçim yöntemleri ve parametreleri: FRUFS (model-c,

random-state), BoostARoota (clf, iters) ve LOFO’dur (model). LOFO algorit-

masının sadece ’model’ parametresi, ayarlanabilir parametreler arasında doğruluğu

ve F1-skor değerlendirme metrik sonuçlarını önemli ölçüde etkiler. Daha sonra iki

yüksek boyutlu kötü amaçlı yazılım veri kümesi kullanarak bu yedi öznitelik seçim

algoritmasını karşılaştırdık: Microsoft Kötü Amaçlı Yazılım Tahmini veri kümesi ve

API Import veri kümesi. Genel sonuçlar, AGRM’nin diğer öznitelik seçim yöntem-

lerinden daha iyi metrik sonuçlar elde ettiğini göstermektedir. AGRM’nin arkasında,

viii

FRUFS, LOFO, MI ve mRMR, farklı metriklerde en iyi sonuçları elde etti. MI

ve mRMR ile karşılaştırıldığında, LOFO kötü amaçlı yazılım alanında çok daha

az kullanılırken, FRUFS daha önce hiç kullanılmadı. AGRM’nin daha iyi perfor-

mans göstermesi, FRUFS ve LOFO’nun diğer algoritmalardan daha yeni olması

nedeniyle çalışmalarımızı bu üç öznitelik seçim yöntemiyle sürdürmeye karar verdik.

Son olarak, en önemli öznitelikleri bulmak ve çok boyutluluğu azaltarak daha az

öznitelikle çalışmak için seçilen üç öznitelik seçim yöntemini, LOFO, FRUFS ve

AGRM’yi kombine ettik. Microsoft Kötü Amaçlı Yazılım Tahmini veri kümesinde

ve API İçe Aktarma veri kümesinde bir yığınlama topluluğu kullanarak, XGBoost,

RF ve HGB sınıflandırıcıları olmak üzere üç modelle bu öznitelik seçme yöntem-

lerinden üç öznitelik alt kümesini eğittik. Elde ettiğimiz dokuz tahmin olasılığından

aynı bilgiyi içeren tahmin olasılıklarını korelasyon matrisinde bir eşik belirleyerek

elimine ettik. Elde ettiğimiz son tahmin olasılıklarını SVM (Support Vector Ma-

chine) meta sınıflandırıcısına verdik. Modelimiz, iyi bilinen kötü amaçlı yazılım veri

kümelerinden birinde (Microsoft Kötü Amaçlı Yazılım Tahmini veri kümesi) seçilen

üç öznitelik seçim yönteminden ortalama 1,2% daha iyi sınıflandırma doğruluğu elde

etti. API Import veri seti için modelimiz, LOFO ve FRUFS öznitelik seçim algorit-

malarından ortalama 8% daha iyi sınıflandırma doğruluğu elde etti ve yetersiz RAM

nedeniyle AGRM bu karşılaştırmada kullanılamadı. Bu nedenle önerilen modelimiz

daha az öznitelikle eğitilmiş ve daha iyi sonuçlar elde edilmiştir.

Anahtar Sözcükler: Öznitelik Seçimi, Topluluk, FRUFS, AGRM, LOFO, Kötücül

Yazılım Sınıflandırma

ix

TABLE OF CONTENTS

ACKNOWLEDGEMENT . v

ABSTRACT . vi

ÖZET . viii

LIST OF FIGURES . xi

LIST OF TABLES . xii

LIST OF SYMBOLS . xiv

LIST OF ACRONYMS AND ABBREVIATIONS xv

1. INTRODUCTION . 1

2. RELATED WORK . 3

2.0.1 Feature Selection . 3

2.0.2 Stacking Ensemble . 5

2.0.3 Correlation Matrix 5

3. METHODOLOGY . 6

3.0.1 Datasets . 6

3.0.2 Our Proposed Model 7

4. Experiments and Results . 9

4.0.1 Experimental Setup 9

4.0.2 Preprocessing . 9

4.0.3 Parameter Sensitivity 10

4.0.4 Feature Selection Comparison 18

4.0.5 Model Comparison 22

4.0.6 Results . 26

4.0.7 Limitations . 30

5. CONCLUSIONS AND FUTURE WORK 31

REFERENCES . 33

CURRICULUM VITAE . 37

x

LIST OF FIGURES

Figure 3.1 Our proposed model . 8

Figure 4.1 Lofo feature selection. 23

Figure 4.2 FRUFS feature selection. 24

Figure 4.3 AGRM feature selection. 25

Figure 4.4 Correlation matrix for Microsoft dataset. 25

Figure 4.5 Correlation matrix for API Import (Trinh 2021) dataset. 26

xi

LIST OF TABLES

Table 4.1 Random State value change effect for Microsoft dataset. 11

Table 4.2 Random State value change effect for API call sequences dataset

(Oliveira 2019). 12

Table 4.3 Classifier change effect for Microsoft dataset 13

Table 4.4 Classifier change effect for API call sequences dataset (Oliveira

2019). 14

Table 4.5 Iteration change effect for Microsoft dataset 15

Table 4.6 Iteration change effect for API call sequences dataset (Oliveira

2019). 16

Table 4.7 Estimator model change effect for Microsoft dataset 17

Table 4.8 Estimator model change effect for API call sequences dataset

(Oliveira 2019). 18

Table 4.9 Feature selection comparison results with Xgboost model for Mi-

crosoft dataset. 19

Table 4.10 Feature selection comparison results with Random Forest model

for Microsoft dataset. 19

Table 4.11 Feature selection comparison results with Hist Gradient Boosting

model for Microsoft dataset. 20

Table 4.12 Feature selection comparison results with Xgboost model for API

call sequences dataset (Oliveira 2019). 20

Table 4.13 Feature selection comparison results with Random Forest model

for API call sequences dataset (Oliveira 2019). 21

Table 4.14 Feature selection comparison results with Hist Gradient Boosting

for API call sequences dataset (Oliveira 2019). 21

Table 4.15 Model comparison results for Microsoft dataset. 26

Table 4.16 Model comparison results with LOFO feature selection for Mi-

crosoft dataset. 27

Table 4.17 Model comparison results with FRUFS feature selection for Mi-

crosoft dataset. 27

xii

Table 4.18 Model comparison results with AGRM feature selection for Mi-

crosoft dataset. 28

Table 4.19 Model comparison results for API Import (Trinh 2021) dataset. . 28

Table 4.20 Model comparison results with LOFO feature selection for API

Import (Trinh 2021) dataset. 29

Table 4.21 Model comparison results with FRUFS feature selection for API

Import (Trinh 2021) dataset. 29

xiii

LIST OF ACRONYMS AND ABBREVIATIONS

AGRM A General Framework for Auto-Weighted Feature Selection via

Global Redundancy Minimization
AUC Area under the ROC Curve

Chi Chi-square test

CPU Central processing unit

FRUFS Feature Relevance based Unsupervised Feature Selection

GPU Graphical processing unit

HGB Histogram-Based Gradient Boosting

LOFO Leave One Feature Out

MI Mutual Information

mRMR Minimum Redundancy and Maximum Relevance

RAM Random Access Memory

RF Random Forest

SVM Support Vector Machine

XGBoost Extreme Gradient Boosting

xv

1. INTRODUCTION

With the development of information technologies, technology has become more

accessible and a massive part of our lives. We do most of our daily tasks with it. This

usage of technology has brought some serious vulnerabilities as well as advantages.

Cybercriminals (called "hackers") who are experts in information technologies have

recently increased usage of their immense knowledge and abilities to exploit those

vulnerabilities. Malicious software (malware) is their most significant assistant in

this way (Demirkıran et al. 2021).

Malware is any software crafted by cybercriminals to steal sensitive information,

damage, or destroy computer systems. Given their powerful and devastating effects,

it is hardly surprising that researchers have done much work in this area. Some of

these studies are in their correct classification(Kalash et al. 2018).

Ransomware is one of the malware and is used by cybercriminals, often with fake

emails with malicious links. According to Pandasecurity, ransomware attacks in-

creased by more than 140% in the 3rd quarter of 2021 alone (Pandasecurity 2022).

According to Cost of a Data Breach Report released by IBM in 2021 the total cost of

a ransomware breach averaged $4.62 million excluding ransom in 2021(IBM 2021).

These findings highlight the importance of malware classification.

The importance of malware classification is obvious, and it is also critical to classify

it quickly. Security researchers and incident responders need to be able to react fast

when classifying malware in order to take precautions and get immediate solutions.

In this study, by reducing the number of features to the minimum possible number,

we obtain results close to or even better than those obtained from training the entire

dataset. The importance of this work is that our proposed model allows us to work

with high accuracy classification results with significantly fewer features.

1

Our main contributions to this study can be outlined as follows:

• We have built Innovative and multi-stage model for malware classification.

• We have leveraged most used and up-to-date feature selection methods in

malware classification.

• We have compared parameters sensitivity of feature selection methods by pa-

rameter adjustment.

• We have used a correlation matrix to eliminate ensemble models carrying close

prediction probabilities.

• To the best of our knowledge, we have used the FRUFS feature selection

method for the first time in the field of malware in this study.

This paper is structured as follows: Section 2 presents the related work. Section

3 presents the description of the datasets and our proposed model. In Section 4,

experiments and results are presented, and lastly, the conclusion and future work

are given in Section 5.

2

2. RELATED WORK

2.0.1 Feature Selection

When the number of data increases seriously, its quality decreases gradually and

that number of data may include irrelevant features that researchers want to elim-

inate (Venkatesh and Anuradha 2019). Feature selection is an important method

for dealing with irrelevant and redundant features (Li et al. 2017; Alelyani et al.

2018). Researchers have often used feature selection in the literature to reduce

multidimensionality and eliminate redundant features in the field of malware (Ko-

mashinskiy and Kotenko 2010; Moonsamy et al. 2011; Fang et al. 2019; Lin et al.

2015).

In this study, we examined seven different feature selection methods.

AGRM stands for A General Framework for Auto-Weighted Feature Selection via

Global Redundancy Minimization is a novel, auto-weighted feature selection method

to find minimum global redundancy (Nie et al. 2018). We coded the algorithm

proposed in the article by using the Python Cvxpy library. Cvxpy is an open-source

Python library for convex optimization problems (Diamond and Boyd 2016; Agrawal

et al. 2018).

LOFO (Leave One Feature Out) Importance is one feature selection method that

calculates the importance of a given list of features by removing each feature from

the list one by one and evaluating the model’s performance according to the chosen

metric mentioned in a Github link.1 The researchers have become successful in the

Microsoft Malware Prediction data science competition in Kaggle by using LOFO

Importance on Microsoft Malware Prediction 2019 dataset (Çayır et al. 2019).
1https://github.com/aerdem4/lofo-importance

3

In the other study, using the LOFO Importance method on the DREBIN (Arp et al.

2014) dataset, the researchers obtained higher classification results than the whole

dataset with fewer features (Roseline and Geetha 2021). Therefore we leveraged

LOFO Importance algorithm in our tests to improve our results .

FRUFS (Feature Relevance based Unsupervised Feature Selection) is an unsuper-

vised feature selection method that uses supervised models to evaluate feature im-

portance mentioned in a Github link 2 . To the best of our knowledge, we have used

the FRUFS feature selection algorithm for the first time in the field of malware in

this study.

MI (Mutual Information) measures the amount of information that can be obtained

from and the reduction in uncertainty of the other variable when the value of one

variable is known (Witten and Frank 2002; MacKay et al. 2003). Researchers used

mutual information to select the best features for malware’s dynamic analysis and

classification (Moshiri et al. 2017). In the other study, researchers used mutual

information to select prominent features to build an Android malware detection

system (John and Vinod 2018).

The Chi-square test is one of the feature selection methods used in many studies to

select the best features. The researchers used this method to detect android malware

(Dhalaria and Gandotra 2020; Lu et al. 2013).

mRMR (Minimum Redundancy and Maximum Relevance) is a feature selection

method to find the minimum related features for a given dataset first introduced

by (Ding and Peng 2005) since then used in many machine learning applications

(Vinod et al. 2013, 2012).

BoostARoota is an XGBoost-based feature selection algorithm mentioned in a Github

link 3 .
2https://github.com/atif-hassan/FRUFS
3https://github.com/chasedehan/BoostARoota

4

2.0.2 Stacking Ensemble

In this study, we used a stacking ensemble model (Wolpert 1992; Whalen and Pandey

2013; Ma et al. 2018; Zhou 2012) to combine our prediction probabilities in the

best way. Many studies in the literature use the stacking ensemble in malware

classification.

Researchers used the stacking ensemble method to classify malware families and

improved their results (Yan et al. 2018). The other study by (Feng et al. 2018) also

used stacking ensemble for malware detection and family classification for android

dataset and achieved good results. Moreover, many other researchers used ensemble

models (Wang et al. 2018; Gupta and Rani 2020; Idrees et al. 2017) to choose the

best models and improve their results.

2.0.3 Correlation Matrix

The correlation matrix is very helpful in understanding the correlations between

features. We used a correlation matrix in this study to see the correlations of

prediction probabilities from the models in the ensemble and eliminate redundant

ones. There are studies in the literature where the correlation matrix is used in this

way. Researchers (Guizani and Ghafoor 2020) used the correlation matrix to see the

highly correlated features and eliminated those features to obtain better results for

detecting malware in IoT-based networks. In the other study, researchers (Moussas

and Andreatos 2021) used the correlation matrix in the same way for the image

dataset to detect and classify malware.

5

3. METHODOLOGY

We compared the seven feature selection algorithms mentioned in the related work

section using RF, HGB, and Xgboost models according to accuracy, F1, and AUC-

score metrics. We decided to continue with LOFO, FRUFS, and AGRM feature

selection algorithms according to the results shown in 4.9,4.10,4.11.

3.0.1 Datasets

Dataset selection is important in seeing how effective our model is when classifying

malware. This study aimed to establish an innovative architecture using feature

selection methods, an ensemble model, and a correlation matrix. We also created a

data preprocessing pipeline to apply to datasets in this study. It is important to use

more than one dataset to see the effect of data preprocessing. For this reason, two

different malware datasets were used in this study. In addition, it is important to

use multidimensional malware datasets to see the effect of feature selection methods

on malware datasets. For this reason, these two different malware datasets were

selected from multidimensional ones.

Microsoft Malware Prediction Dataset . Microsoft held two significant mal-

ware prediction competitions on Kaggle in 2015 and 2019(Çayır et al. 2019). Mi-

crosoft’s endpoint protection solution, Windows Defender, collected the Malware

Prediction 2019 dataset used in this study4 . In total, the dataset has 84 features

and approximately 8.9 million samples. The target variable that means malware

detected is HasDetections and MachineIdentifier is the unique identifier of each ma-

chine.
4https://www.kaggle.com/competitions/microsoft-malware-prediction/data

6

1.55M API IMPORT DATASET . This dataset consists of 1.55 million samples

of 1000 API import features extracted from JSON format of the EMBER dataset

2017 v2 and 2018, of which 800,000 are malware and 750,000 benign (Trinh 2021).

API Call Sequences Dataset. The dataset consists of 42,797 malware API

call sequences and 1,079 goodware API call sequences extracted from the ’calls’

elements of Cuckoo Sandbox reports (Oliveira 2019). The dataset has 102 features,

and ’malware’ is the target variable.

3.0.2 Our Proposed Model

This study proposes a multi-stage, creative and innovative solution to malware clas-

sification. This model is an architecture where many methods that we think are

effective in malware classification work in harmony. The first of these methods,

feature selection, eliminates redundant features that are ineffective in classification.

In addition, to increase the efficiency of the study, three different and up-to-date

feature selection methods were chosen and aimed to be used for better classification

results. The number of features that each feature selection method considers most

important for the classification is different from each other. Each feature selection

method gives a graph listing the effects of features on classification. We selected

different amounts of features from each feature selection method, taking advantage

of their obvious variation in graphs.

In the ensemble model design section, three different machine learning algorithms

were trained with three different subsets from three different feature selection meth-

ods. As an ensemble method, the stacking ensemble method was chosen to obtain

a more powerful model for synthesizing these models. For this reason, powerful

and complex models XGBoost classifier, Random Forest Classifier, and Histogram

Based Gradient Boost classifier were used. Eventually, we trained the final pre-

diction probabilities we obtained with SVM (Support Vector Machine) due to its

relatively simple structure as a meta classifier.

7

In our correlation matrix design part, we select the best models by passing the

prediction probabilities obtained from different models in the stacking ensemble

stage through the correlation matrix. Thanks to the correlation matrix, we also look

at the correlations of the prediction probabilities from each model and eliminate the

models that give very close prediction probabilities to each other. Because these

models carry the same information, if we give each of them, we can cause the final

model to make a biased choice. In this way, even if subsets from different feature

selection models come close to each other, they cannot pass through the correlation

matrix. The Figure 3.1 shows our proposed model.

Figure 3.1 Our proposed model

8

4. Experiments and Results

4.0.1 Experimental Setup

We have conducted initial experiments in the Google Colab platform for the small

chunk size of the train set. The computer we used in that platform had a Tesla K80

GPU with 12 GB RAM. We increased the chunk amount to ensure our results were

similar for larger samples. For this reason, we continued our tests on the computer

with 32 GB RAM and 2 GPU (GeForce GTX 1080 Ti) with 12 GB RAM per GPU.

4.0.2 Preprocessing

Data can sometimes be missing, noisy, and inconsistent. Data preprocessing is the

process of optimizing data to overcome these difficulties.

In this study, we created a data preprocessing pipeline, and we applied this pipeline

to both datasets. In this pipeline, we used the CategoricalImputer to replace the

missing categorical values with the most frequent category and the MeanMedianIm-

puter to replace the missing numeric values with the median value of the variable.

Moreover, we used RareLabelEncoder to group categories with less than 5% obser-

vations and the MeanEncoder to replace the categories with the mean value of the

target variable for each category. Finally, we used StandardScaler to standardize

features by removing the mean and scaling to unit variance.

We applied the same data preprocessing process to all datasets in a pipeline to avoid

bias in the results.

9

4.0.3 Parameter Sensitivity

Feature selection is a nice way to reduce high dimensionality, and many feature

selection algorithms are available today. What distinguishes these feature selection

algorithms from each other is whether it has a built-in learner or what parameters

it has, and how it handles the problem. In order to use them most efficiently, the

optimum values of these parameters should be found.

FRUFS. Some parameters of the FRUFS feature selection algorithm are as follows:

model-c : The estimator model to be used in classification,

default=DecisionTreeClassifier().

We compared the results by assigning four machine learning algorithms to the model-

c parameter: Random Forest, Hist Gradient Boosting, Xgboost, and Decision Trees.

However, we observed that the parameter gives the same feature subsets for four

different algorithms. Therefore, the parameter did not affect the results.

random-state : Parameter for reproducible output,

default=None.

We randomly selected three values, 0, 11, and 25, for the random state parameter and

observed how the accuracy, f1-score, and AUC-score metric results would change.

Table 4.1 shows that changing the random state parameter values for the Microsoft

dataset changes the feature subset chosen by the Frufs feature selection algorithm,

and the results differ.

10

Table 4.1 Random State value change effect for Microsoft dataset.

Model Accuracy F1-score AUC score

random-state = 0

Random Forest 56.85% 0.607549 0.595030

Hist Gradient Boosting 57.98% 0.596011 0.613642

Xgboost 58.30% 0.605487 0.620324

random-state = 11

Random Forest 57.30% 0.620613 0.591833

Hist Gradient Boosting 58.90% 0.602130 0.616203

Xgboost 58.67% 0.610601 0.618399

random-state = 25

Random Forest 57.30% 0.618580 0.595313

Hist Gradient Boosting 57.83% 0.596894 0.614468

Xgboost 58.48% 0.610185 0.620436

Table 4.2 shows how changing the random state parameter value affects the clas-

sification results of machine learning models on the API call sequences dataset.

We observed that the random state parameter value has little effect on the chosen

feature subset and classification results.

11

Table 4.2 Random State value change effect for API call sequences dataset
(Oliveira 2019).

Model Accuracy F1-score AUC score

random-state = 0

Random Forest 97.58% 0.987726 0.884893

Hist Gradient Boosting 98.45% 0.992108 0.960628

Xgboost 98.35% 0.991605 0.948662

random-state = 11

Random Forest 97.58% 0.987726 0.883162

Hist Gradient Boosting 98.42% 0.991984 0.968259

Xgboost 98.42% 0.991984 0.946463

random-state = 25

Random Forest 97.58% 0.987726 0.882333

Hist Gradient Boosting 98.47% 0.992232 0.968734

Xgboost 98.35% 0.991605 0.948662

BoostARoota. Some parameters of the BoostARoota feature selection algorithm

are as follows:

clf : The estimator model to be used in feature selection process,

default = XGBClassifier().

For the clf parameter, we determined Decision Trees, Random Forest, and the default

value Xgboost machine learning algorithms and compared the results. We observed

that Hist Gradient Boosting could not be assigned directly as a classifier to the

BoostARoota feature selection algorithm, so we used Decision Trees instead.

The table 4.3 shows the effect of the change in the classifier parameter on the feature

selection and classification results in the Microsoft dataset.

12

The results showed that better accuracy and AUC score were obtained when the

estimator was Xgboost, and a better f1-score was obtained when the estimator was

Random Forest.

Table 4.3 Classifier change effect for Microsoft dataset .

Model Accuracy F1-score AUC score

clf = Decision Tree

Random Forest 61.12% 0.615194 0.655031

Hist Gradient Boosting 60.77% 0.592150 0.663720

Xgboost 61.58% 0.606604 0.669471

clf = Random Forest

Random Forest 61.22% 0.625091 0.655708

Hist Gradient Boosting 60.72% 0.592054 0.658661

Xgboost 60.90% 0.600204 0.664985

clf = Xgboost

Random Forest 60.85% 0.611607 0.655714

Hist Gradient Boosting 61.18% 0.592067 0.670607

Xgboost 61.32% 0.604853 0.669686

The table 4.4 shows the effect of the change in the classifier parameter on the feature

selection and classification results in the API call sequences dataset (Oliveira 2019).

According to the results, the best results in all three metrics were obtained when

the estimator was Xgboost, and the classifier was Hist Gradient Boosting.

13

Table 4.4 Classifier change effect for API call sequences dataset (Oliveira 2019).

Model Accuracy F1-score AUC score

clf = Decision Tree

Random Forest 97.95% 0.989604 0.909643

Hist Gradient Boosting 98.58% 0.992747 0.970097

Xgboost 98.55% 0.992619 0.958562

clf = Random Forest

Random Forest 97.95% 0.989604 0.900956

Hist Gradient Boosting 98.47% 0.992236 0.971921

Xgboost 98.47% 0.992242 0.962106

clf = Xgboost

Random Forest 97.95% 0.989604 0.905959

Hist Gradient Boosting 98.75% 0.993631 0.973207

Xgboost 98.52% 0.992495 0.962211

iters: The number of iterations to find best features, [default=10] - int (iters > 0).

The iters parameter of the BoostARoota feature selection algorithm allows us to

specify how many iterations the algorithm makes to find the best features. We com-

pared the results by giving the iter parameter values of 5, 10, and 15, respectively.

The table 4.5 shows the effect of the iteration change on the classification results on

the Microsoft dataset. According to the results, the classifiers got the best results

at the value of iter 5.

14

Table 4.5 Iteration change effect for Microsoft dataset .

Model Accuracy F1-score AUC score

iters = 5

Random Forest 61.48% 0.635094 0.658002

Hist Gradient Boosting 61.82% 0.607758 0.672340

Xgboost 62.18% 0.616477 0.675118

iters = 10

Random Forest 60.70% 0.612426 0.655413

Hist Gradient Boosting 61.10% 0.592670 0.664373

Xgboost 61.85% 0.608517 0.670882

iters = 15

Random Forest 60.85% 0.617302 0.656996

Hist Gradient Boosting 61.42% 0.596601 0.662661

Xgboost 62.18% 0.610553 0.672213

The table 4.6 shows the effect of the iteration change on the classification results on

the API call sequences dataset (Oliveira 2019). According to the results, the best

results in all three metrics were obtained with the Hist Gradient Boosting model

when the iters value was 5.

15

Table 4.6 Iteration change effect for API call sequences dataset (Oliveira 2019).

Model Accuracy F1-score AUC score

iters = 5

Random Forest 97.58% 0.987726 0.890639

Hist Gradient Boosting 98.12% 0.990467 0.956042

Xgboost 97.97% 0.989720 0.933760

iters = 10

Random Forest 97.58% 0.987726 0.889130

Hist Gradient Boosting 98.05% 0.990094 0.942470

Xgboost 97.88% 0.989215 0.927225

iters = 15

Random Forest 97.58% 0.987726 0.886947

Hist Gradient Boosting 97.92% 0.989452 0.950948

Xgboost 97.90% 0.989340 0.925599

LOFO. The LOFO feature selection algorithm has only one parameter called

model, which can affect the results if adjusted.

model = The estimator model, default LightGBM().

We assigned the model parameter of the LOFO feature selection algorithm as the

default parameter, which is LightGBM, Random Forest, Hist Gradient Boosting,

and Xgboost, and compared the classification results. The table 4.7 shows the

effect of changing the LOFO feature selection algorithm’s model parameter on the

Microsoft dataset classification results. According to the results, the best accuracy

and AUC-score results were obtained with the LightGMB estimator model and

Xgboost classifier. The best F1-score was obtained with the Xgboost estimator

model and Random Forest classifier.

16

Table 4.7 Estimator model change effect for Microsoft dataset .

Model Accuracy F1-score AUC score

model = LightGBM

Random Forest 59.00% 0.661157 0.630664

Hist Gradient Boosting 59.40% 0.602740 0.633044

Xgboost 60.10% 0.630213 0.638619

model = Random Forest

Random Forest 58.20% 0.587771 0.627283

Hist Gradient Boosting 54.90% 0.538383 0.585691

Xgboost 56.60% 0.537313 0.616889

model = Hist Gradient Boosting

Random Forest 59.40% 0.661667 0.615337

Hist Gradient Boosting 55.80% 0.570039 0.587531

Xgboost 58.90% 0.628054 0.610240

model = Xgboost

Random Forest 59.70% 0.665560 0.618779

Hist Gradient Boosting 58.40% 0.594542 0.602850

Xgboost 60.00% 0.638989 0.633474

The table 4.8 shows the effect of changing the LOFO feature selection algorithm’s

model parameter on the API call sequences dataset (Oliveira 2019) classification

results. According to the results, while there was no change in the accuracy and

F1-score metrics, there was a slight change in the Auc score, and the highest result

was obtained when the estimator model was Random Forest.

17

Table 4.8 Estimator model change effect for API call sequences dataset (Oliveira
2019).

Model Accuracy F1-score AUC score

model = LightGBM

Random Forest 97.70% 0.988366 0.914779

Hist Gradient Boosting 98.60% 0.992886 0.966446

Xgboost 98.60% 0.992886 0.954119

model = Random Forest

Random Forest 97.70% 0.988366 0.843309

Hist Gradient Boosting 98.60% 0.992886 0.969872

Xgboost 98.50% 0.992374 0.944462

model = Hist Gradient Boosting

Random Forest 97.70% 0.988366 0.901829

Hist Gradient Boosting 98.60% 0.992886 0.927240

Xgboost 98.30% 0.991357 0.924124

model = Xgboost

Random Forest 97.70% 0.988366 0.893952

Hist Gradient Boosting 98.60% 0.992886 0.957278

Xgboost 98.50% 0.992374 0.954519

4.0.4 Feature Selection Comparison

In that section, we compared the previously selected seven feature selection methods

using the RF, HGB, and Xgboost models according to the accuracy, F1, and AUC-

score metrics.

Table 4.9 shows the accuracy, F1-score, and AUC-score metric results obtained

by training Xgboost model with the feature subsets from seven feature selection

algorithms.According to the results, FRUFS feature selection algorithm obtained

18

higher scores than other algorithms in accuracy and AUC-score evaluation metrics.

Table 4.9 Feature selection comparison results with Xgboost model for Microsoft
dataset.

Feature Selection Accuracy F1-score AUC score

MRMR 61.65% 0.609470 0.669637

MI 61.82% 0.610360 0.669408

Chi 55.65% 0.566683 0.577591

LOFO 61.80% 0.609407 0.672903

FRUFS 62.00% 0.609455 0.674751

AGRM 61.45% 0.609225 0.673089

BoostARoota 60.45% 0.592058 0.663276

Table 4.10 shows the accuracy, F1-score, and AUC-score metric results obtained by

training Random Forest model with the feature subsets from seven feature selec-

tion algorithms.According to the results, MI, AGRM, and FRUFS, feature selection

methods, obtained higher accuracy, F1, and AUC-score metrics scores, respectively.

Table 4.10 Feature selection comparison results with Random Forest model for
Microsoft dataset.

Feature Selection Accuracy F1-score AUC score

MRMR 61.05% 0.627629 0.657565

MI 61.20% 0.631704 0.655036

Chi 55.20% 0.562927 0.563948

LOFO 60.98% 0.630882 0.654814

FRUFS 61.00% 0.623370 0.658435

AGRM 61.18% 0.646000 0.658104

BoostARoota 60.17% 0.599044 0.653551

Table 4.11 shows the accuracy, F1-score, and AUC-score metric results obtained

by training Xgboost model with the feature subsets from seven feature selection

algorithms.According to the results, LOFO, AGRM, and FRUFS, feature selection

methods, obtained higher accuracy, F1, and AUC-score metrics scores, respectively.

19

Table 4.11 Feature selection comparison results with Hist Gradient Boosting
model for Microsoft dataset.

Feature Selection Accuracy F1-score AUC score

MRMR 60.95% 0.604757 0.663874

MI 61.25% 0.594241 0.663521

Chi 56.17% 0.586654 0.572309

LOFO 62.20% 0.606660 0.673703

FRUFS 61.72% 0.604495 0.668783

AGRM 61.50% 0.614035 0.668321

BoostARoota 60.65% 0.587742 0.660465

Table 4.12 shows the accuracy, F1-score, and AUC-score metric results obtained

by training Xgboost model with the feature subsets from seven feature selection

algorithms. According to the results, mRMR feature selection algorithm obtained

higher scores than other algorithms in accuracy and F1-score evaluation metrics and

AGRM feature selection algorithm obtained highest AUC-score.

Table 4.12 Feature selection comparison results with Xgboost model for API call
sequences dataset (Oliveira 2019).

Feature Selection Accuracy F1-score AUC score

MRMR 98.67% 0.993253 0.936882

MI 98.42% 0.991986 0.937804

Chi 98.15% 0.990604 0.930925

LOFO 98.30% 0.991353 0.931381

FRUFS 98.35% 0.991603 0.943601

AGRM 98.38% 0.991731 0.949674

BoostARoota 98.08% 0.990220 0.919080

Table 4.13 shows the accuracy, F1-score, and AUC-score metric results obtained by

training Random Forest model with the feature subsets from seven feature selection

algorithms. According to the results, AGRM feature selection algorithm obtained

higher scores than other algorithms in accuracy and F1-score evaluation metrics and

MI feature selection algorithm obtained highest AUC-score.

20

Table 4.13 Feature selection comparison results with Random Forest model for
API call sequences dataset (Oliveira 2019).

Feature Selection Accuracy F1-score AUC score

MRMR 97.95% 0.989604 0.879658

MI 97.95% 0.989604 0.898228

Chi 97.58% 0.987726 0.813777

LOFO 97.58% 0.987726 0.868362

FRUFS 97.58% 0.987726 0.886301

AGRM 98.10% 0.990358 0.866954

BoostARoota 97.58% 0.987726 0.861085

Table 4.14 shows the accuracy, F1-score, and AUC-score metric results obtained by

training Hist Gradient Boosting model with the feature subsets from seven feature

selection algorithms. According to the results, AGRM feature selection algorithm

obtained highest scores than other algorithms in accuracy, F1-score and AUC-score

evaluation metrics.

Table 4.14 Feature selection comparison results with Hist Gradient Boosting for
API call sequences dataset (Oliveira 2019).

Feature Selection Accuracy F1-score AUC score

MRMR 98.62% 0.993000 0.966180

MI 98.65% 0.993125 0.964656

Chi 98.28% 0.991229 0.955930

LOFO 98.47% 0.992238 0.955439

FRUFS 98.58% 0.992745 0.957516

AGRM 98.78% 0.993756 0.967066

BoostARoota 97.97% 0.989709 0.925956

Overall results show that AGRM, LOFO,FRUFS, mRMR and MI feature selection

methods give better scores. When we compare the LOFO, FRUFS, and AGRM

feature selection methods with MI and mRMR, we see that they are newer methods

and have not been used much, especially in the field of malware. Especially since

AGRM is based on convex optimization, it is interesting to see how successful this

21

new feature selection algorithm will be in this area.

For these reasons, we decided to continue our work with LOFO, FRUFS, and AGRM

feature selection algorithms.

4.0.5 Model Comparison

After applying preprocessing to datasets (the Microsoft Malware Prediction dataset

and the API Import dataset), we divided them as 75% train and the remaining 25%

test set. We applied selected three feature selection methods for each dataset, and

we obtained feature subsets.

The Figure 4.1 shows the best features selected by the LOFO feature selection. The

features are sorted according to their effects in the classification. The LOFO feature

selection algorithm has selected the best 50 features out of 81 for the Microsoft

Malware Prediction dataset.

22

Figure 4.1 Lofo feature selection.

The Figure 4.2 shows the best features selected by the FRUFS feature selection. The

features are sorted according to their effects in the classification. FRUFS feature

selection algorithm draws a horizontal blue line on the graph, showing the most

effective features to choose from. FRUFS has selected the best 67 features out of 81

for the Microsoft Malware Prediction dataset.

23

Figure 4.2 FRUFS feature selection.

The Figure 4.3 shows the graph created by the AGRM feature selection algorithm af-

ter the feature selection process. The horizontal part of the graph shows the number

of features, and the vertical part shows the lambda value used in feature selection.

AGRM feature selection algorithm is a method based on convex optimization. The

algorithm finds the best features when the lambda value approaches its optimum

value. The point on the graph where the lambda value stabilizes gives the number

of best features. The algorithm also presents the best features in a list. We have

selected the top 10 features by looking at the graph.

24

Figure 4.3 AGRM feature selection.

The Figure 4.4 shows the correlations of the predictions made by XGboost, Random

Forest, and Hist Gradient Boosting models by training them with feature subsets

from the LOFO, FRUFS, and AGRM feature selection algorithms.Predictions with

high correlation, especially above 0.9, show that models carry information close to

each other. For this reason, we determined the threshold 0.9 and gave the predictions

between 0.8 and 0.9, which will make the main difference to the meta classifier.We

used SVM (Support Vector Machine) as a meta classifier as a simple model.

Figure 4.4 Correlation matrix for Microsoft dataset.

The Figure 4.5 shows the correlations of the predictions made by XGboost, Random

Forest, and Hist Gradient Boosting models by training them with feature subsets

from the LOFO, FRUFS feature selection algorithms. Highly correlated prediction

probabilities above 0.9 were eliminated as other correlation matrix.

25

Figure 4.5 Correlation matrix for API Import (Trinh 2021) dataset.

4.0.6 Results

In this section, we will present the results of our tests on two different data sets. Ta-

bles 4.15,4.16,4.17,4.18 represent the test results of the Microsoft Malware prediction

dataset.

Table 4.15 shows the accuracy, F1-score, and AUC-score metric results from train-

ing the Microsoft malware prediction dataset with three different models and our

proposed model without using any feature selection method. According to the re-

sults, for Microsoft Prediction dataset, If we evaluate the other three models among

themselves, Hist Gradient boosting in accuracy, Random Forest in F1-score, and

Xgboost in AUC score got the best results. Our proposed model obtained higher

values than other models in all three different evaluation metrics.

Table 4.15 Model comparison results for Microsoft dataset.

Model Accuracy F1-score AUC score

Xgboost 62.00% 0.609455 0.674736

Random Forest 61.38% 0.616149 0.659116

Hist Gradient Boosting 62.15% 0.612986 0.674070

Our Model 62.83% 0.617639 0.684048

Table 4.16 shows the accuracy, F1-score, and AUC-score metric results obtained by

training three different models with the feature subset from the LOFO feature selec-

tion algorithm. According to the results, our proposed model has higher accuracy

and AUC score results than the other three models, while it has a slightly lower

result close to them in the F1-score metric.

26

Table 4.16 Model comparison results with LOFO feature selection for Microsoft
dataset.

Model Accuracy F1-score AUC score

Xgboost 61.80% 0.609407 0.672903

Random Forest 60.98% 0.630882 0.654814

Hist Gradient Boosting 62.20% 0.606660 0.673703

Our Model 62.83% 0.617639 0.684048

Table 4.17 shows the accuracy, F1-score, and AUC-score metric results obtained

by training three different models with the feature subset from the FRUFS feature

selection algorithm. According to the results, our proposed model has higher ac-

curacy and AUC score results than the other three models, while it has a slightly

lower result close to them in the F1-score metric.

Table 4.17 Model comparison results with FRUFS feature selection for Microsoft
dataset.

Model Accuracy F1-score AUC score

Xgboost 62.00% 0.609455 0.674751

Random Forest 61.00% 0.623370 0.658435

Hist Gradient Boosting 61.72% 0.604495 0.668783

Our Model 62.83% 0.617639 0.684048

Table 4.18 shows the accuracy, F1-score, and AUC-score metric results obtained

by training three different models with the feature subset from the AGRM feature

selection algorithm. According to the results, our proposed model has higher ac-

curacy and AUC score results than the other three models, while it has a slightly

lower result close to them in the F1-score metric.

27

Table 4.18 Model comparison results with AGRM feature selection for Microsoft
dataset.

Model Accuracy F1-score AUC score

Xgboost 61.45% 0.609225 0.673089

Random Forest 61.18% 0.646000 0.658104

Hist Gradient Boosting 61.50% 0.614035 0.668321

Our Model 62.83% 0.617639 0.684048

Tables 4.19,4.20,4.21, represent the test results of the API Import dataset. Since

the dataset is very large, we carried out the studies in this dataset on Google Colab

Pro plus platform. Although we have 51 GB of RAM on this platform, we could not

make the feature selection process more than 50000 chunk-size due to insufficient

ram. Also, due to insufficient ram, we had to remove the AGRM feature selection

method for this dataset. The results were obtained by training the models with the

best 100 features selected from 1000 features of 50000 chunk-size.

Table 4.19 shows the accuracy, F1-score, and AUC-score metric results from training

the API Import dataset with three different models and our proposed model without

using any feature selection method. According to the results, HGB algorithm did

the best on all three metrics. Considering that we have reduced the feature number

to one in 10 and cannot increase the chunk size due to insufficient ram, our model

results are successful.

Table 4.19 Model comparison results for API Import (Trinh 2021) dataset.

Model Accuracy F1-score AUC score

Xgboost 83.47% 0.854885 0.926443

Random Forest 71.80% 0.807377 0.817660

Hist Gradient Boosting 86.60% 0.886296 0.941192

Our Model 85.60% 0.875163 0.926504

Table 4.20 shows the accuracy, F1-score, and AUC-score metric results obtained

by training three different models with the feature subset from the LOFO feature

selection algorithm. According to the results, our proposed model obtained higher

28

values than other models in all three different evaluation metrics.

Table 4.20 Model comparison results with LOFO feature selection for API
Import (Trinh 2021) dataset.

Model Accuracy F1-score AUC score

Xgboost 77.48% 0.842510 0.876663

Random Forest 69.27% 0.794310 0.780962

Hist Gradient Boosting 79.05% 0.852465 0.894891

Our Model 85.60% 0.875163 0.926504

Table 4.21 shows the accuracy, F1-score, and AUC-score metric results obtained

by training three different models with the feature subset from the FRUFS feature

selection algorithm. According to the results, our proposed model obtained higher

values than other models in all three different evaluation metrics.

Table 4.21 Model comparison results with FRUFS feature selection for API
Import (Trinh 2021) dataset.

Model Accuracy F1-score AUC score

Xgboost 74.45% 0.822877 0.780374

Random Forest 71.15% 0.801990 0.698672

Hist Gradient Boosting 76.72% 0.835367 0.792859

Our Model 85.60% 0.875163 0.926504

29

4.0.7 Limitations

We encountered some limitations while conducting this study. In this section, we

will address these limitations.

Our first limitation is AGRM feature selection algorithm requires a lot of ram due

to its structure. Since the API Import dataset contains 1000 features, we carried

out our work on the Google Colab pro plus environment. Finally, we decided not to

use AGRM feature selection method with this dataset because it stopped working

after a certain period.

Another limitation we encountered is that although we were able to obtain results

from other feature selection methods for the API Import dataset, we could not reach

the 50000 chunk-size amount for AGRM due to the insufficient amount of ram.

30

5. CONCLUSIONS AND FUTURE WORK

In this study, we selected seven feature selection methods considering their popular-

ity, effectiveness, and complexity. We measured the parameter sensitivities of these

feature selection methods having adjustable parameters. We observed that only the

‘model’ parameter of the LOFO algorithm significantly affects the accuracy and F1-

score evaluation metric results among the adjustable parameters. We then compared

these seven feature selection algorithms and observed that AGRM obtained better

metric results than other feature selection methods and behind AGRM, FRUFS,

LOFO, MI, and mRMR achieved the best results in different metrics. Considering

AGRM performs better, and FRUFS and LOFO are newer than other algorithms,

we decided to continue our work with these three feature selection methods.

Then we proposed a creative and state-of-the-art ensemble model for malware datasets.

We evaluated the performance of our model with the accuracy, F1-score and AUC

score metrics for two high-dimensional malware datasets. Our model achieved bet-

ter results in all three metrics, Accuracy, F1-score, and AUC score (Area under the

ROC Curve) obtained from models without using feature selection for the Microsoft

Malware Prediction dataset. Our model got better accuracy and AUC score metrics

than Feature Selection methods.

For the API Import dataset, the results of the models without using feature selection

are better than the feature selection methods. However, our model results are higher

than the results obtained by the feature selection methods. That shows us the

strength of our proposed model. Feature selection methods are ineffective on this

dataset. Based on our assumption, the reason for this inefficiency is that the dataset

has lots of features and samples, a large amount of ram is required for large chunk

sizes, and our experimental setup is insufficient.

31

Our proposed model’s significant success is based on the ensemble’s strength, dimen-

sionality reduction power of feature selection, and increasing prediction diversity due

to the correlation matrix.

In the future, we are planning to increase RAM size and hence chunk size to obtain

more reliable and robust results and deploy our model to an antivirus scanner.

32

33

REFERENCES

 Agrawal, Akshay, Robin Verschueren, Steven Diamond, and Stephen Boyd.
2018. “A Rewriting System for Convex Optimization Problems.” Journal of
Control and Decision 5 (1): 42–60.

https://doi.org/10.1080/23307706.2017.1397554.

 Alelyani, Salem, Jiliang Tang, and Huan Liu. 2018. “Feature Selection for

Clustering: A Review.” In Data Clustering, 29–60. Chapman and Hall/CRC.

 Arp, Daniel, Michael Spreitzenbarth, Malte Hübner, Hugo Gascon, and
Konrad Rieck. 2014. “Drebin: Effective and Explainable Detection of
Android Malware in Your Pocket.” In Proceedings 2014 Network and
Distributed System Security Symposium, 23–26. Reston, VA: Internet
Society.

Unal, Ugur and Yenidoğan, Işıl and Dag, Hasan and Cayir, Aykut. 2020.
“Use Case Study: Data Science Application for Microsoft Malware
Prediction Competition on Kaggle.” In International Conference on Data
Science, Machine Learning and Statistics.

Demirkıran, Ferhat, Aykut Çayır, Uğur Ünal, and Hasan Dağ. 2022. “An
Ensemble of Pre-Trained Transformer Models for Imbalanced Multiclass

Malware Classification.” Computers & Security 121 (October): 102846.
https://doi.org/10.1016/j.cose.2022.102846.

Dhalaria, Meghna, and Ekta Gandotra. 2020. “Android Malware Detection

Using Chi-Square Feature Selection and Ensemble Learning Method.”
In 2020 Sixth International Conference on Parallel, Distributed and Grid
Computing (PDGC), 36–41. IEEE.

Diamond, Steven, and Stephen Boyd. 2016. “CVXPY: A Python-Embedded
Modeling Language for Convex Optimization.” Journal of Machine
Learning Research: JMLR 17 (1): 2909–13.

34

Ding, Chris, and Hanchuan Peng. 2005. “Minimum Redundancy Feature
Selection from Microarray Gene Expression Data.” Journal of
Bioinformatics and Computational Biology 03 (02): 185–205.

https://doi.org/10.1142/s0219720005001004.

Fang, Zhiyang, Junfeng Wang, Jiaxuan Geng, and Xuan Kan. 2019.
“Feature Selection for Malware Detection Based on Reinforcement

Learning.” IEEE Access: Practical Innovations, Open Solutions 7: 176177–
87. https://doi.org/10.1109/access.2019.2957429.

Feng, Pengbin, Jianfeng Ma, Cong Sun, Xinpeng Xu, and Yuwan Ma. 2018.

“A Novel Dynamic Android Malware Detection System with Ensemble
Learning.” IEEE Access: Practical Innovations, Open Solutions 6: 30996–
11. https://doi.org/10.1109/access.2018.2844349.

Guizani, Nadra, and Arif Ghafoor. 2020. “A Network Function
Virtualization System for Detecting Malware in Large IoT Based
Networks.” IEEE Journal on Selected Areas in Communications 38 (6):

1218–28. https://doi.org/10.1109/jsac.2020.2986618.

Gupta, Deepak, and Rinkle Rani. 2020. “Improving Malware Detection
Using Big Data and Ensemble Learning.” Computers & Electrical
Engineering: An International Journal 86 (106729): 106729.
https://doi.org/10.1016/j.compeleceng.2020.106729.

IBM. 2021. “Cost of a Data Breach Report 2021.”

 Idrees, Fauzia, Muttukrishnan Rajarajan, Mauro Conti, Thomas M. Chen,
 and Yogachandran Rahulamathavan. 2017. “PIndroid: A Novel Android

 Malware Detection System Using Ensemble Learning Methods.”
 Computers & Security 68: 36–46. https://doi.org/10.1016/j.cose.2017.03.011

John, Meenu Mary, and P. Vinod. 2018. “Statistical Approach Using Meta

Features for Android Malware Detection System.” In Advances in
Intelligent Systems and Computing, 269–79. Singapore: Springer
Singapore.

35

Kalash, Mahmoud, Mrigank Rochan, Noman Mohammed, Neil D. B. Bruce,
Yang Wang, and Farkhund Iqbal. 2018. “Malware Classification with
Deep Convolutional Neural Networks.” In 2018 9th IFIP International
Conference on New Technologies, Mobility and Security (NTMS), 1–5.
IEEE.

Komashinskiy, Dmitriy, and Igor Kotenko. 2010. “Malware Detection by

Data Mining Techniques Based on Positionally Dependent Features.”
In 2010 18th Euromicro Conference on Parallel, Distributed and Network-
Based Processing, 617–23. IEEE.

Li, Yun, Tao Li, and Huan Liu. 2017. “Recent Advances in Feature Selection
and Its Applications.” Knowledge and Information Systems 53 (3): 551–77.
https://doi.org/10.1007/s10115-017-1059-8.

Lin, Chih-Ta and Wang, Nai-Jian and Xiao, Han and Eckert, Claudia. 2015.
“Feature Selection and Extraction for Malware Classification.” Journal of
Information Science and Engineering 31 (3): 965–92.

Lu, Yu, Pan Zulie, Liu Jingju, and Shen Yi. 2013. “Android Malware
Detection Technology Based on Improved Bayesian Classification.”
In 2013 Third International Conference on Instrumentation,
Measurement, Computer, Communication and Control, 1338–41. IEEE.

Ma, Zhiyuan, Ping Wang, Zehui Gao, Ruobing Wang, and Koroush Khalighi.

2018. “Ensemble of Machine Learning Algorithms Using the Stacked
Generalization Approach to Estimate the Warfarin Dose.” PloS One 13
(10): e0205872. https://doi.org/10.1371/journal.pone.0205872.

MacKay, David J. C. 2003. Information Theory, Inference and Learning
Algorithms. Cambridge, England: Cambridge University Press.

Moonsamy, Veelasha and Tian, Ronghua and Batten, Lynn. 2011. “Feature
Reduction to Speed up Malware Classification.” In Nordic Conference on
Secure IT Systems, 176–88. Springer.

36

Moshiri, Ehsan, Azizol Bin Abdullah, Raja Azlina Binti Binti, Zaiton Muda.
2017. “Malware Classification Framework for Dynamic Analysis Using
Information Theory.” Indian Journal of Science and Technology 10 (21): 1–
10. https://doi.org/10.17485/ijst/2017/v10i21/100023.

Moussas, Vassilios, and Antonios Andreatos. 2021. “Malware Detection
Based on Code Visualization and Two-Level Classification.” Information
(Basel) 12 (3): 118. https://doi.org/10.3390/info12030118.

Nie, Feiping, Sheng Yang, Rui Zhang, and Xuelong Li. 2018. “A General
Framework for Auto-Weighted Feature Selection via Global Redundancy
Minimization.” IEEE Transactions on Image Processing: A Publication of
the IEEE Signal Processing Society 28 (5): 2428–38.
https://doi.org/10.1109/TIP.2018.2886761.

Oliveira, Angelo. 2019. “Malware Analysis Datasets: API Call Sequences.”
IEEE Dataport. https://doi.org/10.21227/tqqm-aq14.

Pandasecurity. 2022. “73 Ransomware Statistics Vital for Security in 2022.”
https://www.pandasecurity.com/en/mediacenter/security/ransomware-
statistics/.

Roseline, S. Abijah, and S. Geetha. 2021. “Android Malware Detection and
Classification Using LOFO Feature Selection and Tree-Based
Models.” Journal of Physics. Conference Series 1911 (1): 012031.
https://doi.org/10.1088/1742-6596/1911/1/012031.

Trinh, Quynh. 2021. “1.55m Api Import Dataset for Malware Analysis.”
IEEE Dataport. https://doi.org/10.21227/98jc-y909.

Venkatesh, B., and J. Anuradha. 2019. “A Review of Feature Selection and
Its Methods.” Cybernetics and Information Technologies 19 (1): 3–26.
https://doi.org/10.2478/cait-2019-0001

P., Vinod, V. Laxmi, and M. S. Gaur. 2012. “REFORM: Relevant Features
for Malware Analysis.” In 2012 26th International Conference on
Advanced Information Networking and Applications Workshops, 738–44.
IEEE.

37

Vinod, P., V. Laxmi, M. S. Gaur, S. Naval, and P. Faruki. 2013. “MCF:
MultiComponent Features for Malware Analysis.” In 2013 27th
International Conference on Advanced Information Networking and
Applications Workshops, 1076–81. IEEE.

Wang, Wei, Yuanyuan Li, Xing Wang, Jiqiang Liu, and Xiangliang Zhang.
2018. “Detecting Android Malicious Apps and Categorizing Benign Apps
with Ensemble of Classifiers.” Future Generations Computer Systems:
FGCS 78: 987–94. https://doi.org/10.1016/j.future.2017.01.019.

Whalen, Sean, and Gaurav Pandey. 2013. “A Comparative Analysis of
Ensemble Classifiers: Case Studies in Genomics.” In 2013 IEEE 13th
International Conference on Data Mining, 807–16. IEEE.

Witten, Ian H., and Eibe Frank. 2002. “Data Mining: Practical Machine
Learning Tools and Techniques with Java Implementations.” SIGMOD
Record 31 (1): 76–77. https://doi.org/10.1145/507338.507355.

Wolpert, David H. 1992. “Stacked Generalization.” Neural Networks: The
Official Journal of the International Neural Network Society 5 (2): 241–

59. https://doi.org/10.1016/s0893-6080(05)80023-1.
 Yan, Jinpei, Yong Qi, and Qifan Rao. 2018. “Detecting Malware with an

 Ensemble Method Based on Deep Neural Network.” Security and
Communication Networks 2018: 1–16. https://doi.org/10.1155/2018/7247095.

Zhou, Zhi-Hua. 2012. Ensemble Methods: Foundations and Algorithms.
Caithness, UK: Whittles Publishing.

38

CURRICULUM VITAE

Personal Information

Name Surname : FARUK CÜREBAL

Education

Undergraduate Education : Electrical and Electronics Engineering, Anadolu

University Istanbul, Turkey
Foreign Language Skills : English

Work Experience

Companies and Dates : KPMG Turkey October 2020 – Present

	son.pdf
	REFERENCES
	CURRICULUM VITAE
	Personal Information
	Education
	Work Experience

