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THE EFFECT OF LINK MODIFICATIONS ON NETWORK
SYNCHRONIZATION

ABSTRACT

A major issue in studying complex network systems, such as neuroscience and power
grids, is understanding the response of network dynamics to link modifications. The
notion of network G(G, f, H) refers to diffusively coupled identical oscillators, where
isolated dynamics are chosen to be chaotic. As a consequence of the diffusive nature,
a globally synchronized state emerges as an invariant synchronization subspace, and
it will be locally stable above critical coupling strength. Furthermore, the real part
of the second minimum eigenvalue of the Laplacian matrix is inverse proportional to
the critical coupling strength. Thus, we can use it to determine the synchronizability
between two networks. Due to the asymmetry of the Laplacian matrix of a directed
graph, adding directed links might cause a decrease in the real part of the second
minimum eigenvalue of the Laplacian. If, after adding a link to a graph in a given
network, the real part of the second minimum eigenvalue of the Laplacian matrix
increases, it is called the enhancement of synchronization. Otherwise, it is called
the hindrance of synchronization. In this research, we explore how the stability of
synchronization at diffusively coupled oscillators is affected by link modifications for
the networks created using particular motifs, i.e., cycle and star motifs. We consider
a weakly connected directed graph consisting of two strongly connected components
connected by directed link(s) (called cutset). We study the synchronization transi-
tions in such networks when new directed link(s) between the components, in the
opposite direction of the cutset, is added and strongly connects the whole network.
We explore which properties of underlying graphs and their connected components

may hinder or enhance the synchronization.

Keywords: Laplacian matrix, spectral gap, Braess’s paradox, eigenvalue

perturbation, network perturbation



BAGLANTISAL DEGISIMLERIN AG SENKRONIZASYONUNA ETKISI

OZET

Norobilim ve gli¢ sebekeleri gibi karmagik ag sistemlerini ¢alisirken, ag senkroniza-
syonun kenar degigikliklerine tepkisini anlamak oldukca 6nemlidir. G(G, f, H) ag
kavrami, bu arastirma boyunca difiizyon ile yayilan, kuple olmus, 6zdes ve izole
dinamikleri kaotik segilmig salinicilara (osilator) atifta bulunur. Diflizyonun dogasi
geregi, global olarak senkronize durumda, degismez bir senkronizasyon alt uzay1 or-
taya c¢ikar ve bu senkronize durum, etkilesme sabiti kritik degerin tizerinde iken yerel
olarak kararhidir. Ayrica, Laplasyen matrisinin ikinci minimum o6zdegerinin gercek
kismi, kritik etkilesme kuvvetiyle ters orantihidir. Boylece, onu iki ag arasindaki
senkronizasyonu belirlemek icin kullanabiliriz. Yonlii bir ¢izgenin Laplasyen ma-
trisinin asimetrisi nedeniyle, yonli baglantilarin eklenmesi, Laplasyen matrisinin
ikinci minimum o6zdegerinin gercek kisminda bir azalmaya neden olabilir. Belirli bir
agdaki bir ¢izgeye bir baglant1 eklendikten sonra, Laplasyen matrisinin ikinci mini-
mum Ozdegerinin gercek kismi artarsa, buna senkronizasyonun iyilestirilmesi denir.
Aksi takdirde, senkronizasyon engeli olarak adlandirilir. Bu aragtirmada, belirli mo-
tifler, yani halka ve yildiz motifleri kullanilarak olusturulan aglar i¢in baglant1 mod-
ifikasyonlarindan, difiizyonla yayilan, kuple olmus, 6zdes salinicilarda senkroniza-
syon kararhiliginin nasil etkilendigini aragtiriyoruz. Yonli kenar(lar) (kesme olarak
adlandirilir) ile birbirine baglanan, giiglii sekilde bagh iki bilesenden olugan zayif
baglantili yonlii ¢izgeleri ele aliyoruz. Bu tiir aglardaki senkronizasyon gegislerini,
kesme setinin zit yoniinde bilegenler arasinda yeni yonlii kenar(lar) eklendiginde
ve tim ag1 giiclii bir sekilde bagladiginda inceliyoruz. Temel cizgelerin ve bunlarin
baglantili bilegenlerinin hangi 6zelliklerinin senkronizasyonu engelleyebilecegini veya

gelistirebilecegini aragtiriyoruz.

Anahtar Sozciikler: Laplasyen matrisi, spektral aralik, Braess paradoksu,

ozdeger pertiirbasyonu, ag pertiirbasyonu

vi
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1. INTRODUCTION

1.1 Motivation

Complex systems consisting of coupled units appear in many fields ranging from
neuroscience (Ermentrout and Terman, 2010, p. 241) to engineering (Newman,
2018, pp. 17-99). To analyze such systems, the first question that we can ask is
how the single dynamical system works, e.g., isolated animal species, AC power
generator, a neuron, and whose evolutions in time. Subsequently, how the whole
system behaves when we take many such dynamical systems and allow them to

interact with each other (Figure 1.1).

Figure 1.1: Real-world Examples of Complex Systems

We consider the network of dynamical systems. Hence, the notion of network
G(G, f, H) refers to diffusively coupled identical oscillators throughout this survey,
and it encapsulates the information of three components. The first component is the
graph G. When a diffusion scheme forms the next state of a given oscillator using
the difference between the current state and the input state, the underlying graph
structure dictates the input states, i.e., linked oscillators to the given oscillator. The

second component is the isolated dynamics f. Each oscillator has identical behav-



ior, and isolated dynamics are chosen to be chaotic, meaning the small variations of
oscillators’ initial conditions cause the divergence of nearby trajectories. The last
component is the coupling function H, which describes the functional aspects of in-
teractions, i.e., the physical rule about how the interactions occur. Due to particular
interest, the coupling function is chosen as identity, and the research is focused on

structural aspects of interactions.

For such models, prey-predator dynamics might emerge from the competition in
ecological networks, or to transmit a signal in power grids, the phases of alternating
currents generated by different generators are required to act coherently in time.
The emergent phenomenon when the units act coherently in time (“adjustment of
rhythms due to an interaction” (Pikovsky, Rosenblum and Kurths, 2001, p. xviii).)
is called synchronization. C. Huygens, a physicist, discovered this phenomenon dur-
ing his works on pendulum clocks in the XVII century. Since then, the synchroniza-
tion of networks and understanding the critical transitions between synchronization
and desynchronization have become essential to interpret the processes encountered

in basic science, technology, and engineering problems.

Although synchronization is a well-known subject now (Pikovsky, Rosenblum and
Kurths, 2001, pp. 1-23), it still has many unexplained parts, such as the effects of
topological revisions on the general structure of networks. For instance, perturbing
a network by adding a new connection was assumed to increase the network’s con-
nectivity and consequently increase the network’s synchronizability. Yet, a German
mathematician Dietrich Braess discovered that this might not be true in general.
The experiment discovered goes as follows: Suppose there exist two choices from
‘start’ to ‘end,” namely road A and road B, as given in Figure 1.2. Let T" denote the
number of travelers that uses the road. Since both roads have equal time spent, the
travelers are in equilibrium when road A and road B have 1000 travelers each. The
total travel time is 30 minutes. Then, the orange-color junction is added to relax
the traffic flow, as given in Figure 1.3. Travelers noticed that if they choose the
T/100 roads merged by the junction, they will spend at most 20 minutes at each
T/100 road. Thus, every traveler decides to use 7/100 roads, and the total travel



time becomes 40 minutes. In conclusion, Braess’s paradox states that adding one or
more roads to a road network can slow down overall traffic flow (Braess, 1968, pp.

258-268).

A A
Start enmd s E
B

B

Total Nuwber of Travelers: 2000 Total Travel Time = 30 ming

Figure 1.2: Braess’s Paradox Before Modification

A
S o & S ) e
M M
B B
Total Travel Time = 40 mins

Figure 1.3: Braess’s Paradox After Modification: When the orange road is added,

the total travel time becomes 40 minutes.

Recently, it has been proved that some cases for directed networks exist such that
improving the network structure may lead to functional failures similar to Braess’s
paradox (Poignard, Pade and Pereira, 2019, pp. 1919-1942). These functional
failures present themselves in real life as the long-lasting synchronized firing during
the neural activity, which may trigger an epilepsy crisis or the phase differences
between alternating currents in power grids which may cause regional blackouts.
Even though it is vital to determine when these functional failures occur exactly,

there is still a lack of rigorous results due to the high complexity of such problems.

In this research, we explore how the stability of synchronization at diffusively coupled
oscillators is affected by link modifications for the networks created using particular

motifs, i.e., cycle and star motifs. There exists a comparison of the synchronizability



between two networks via their critical coupling strengths. The comparison will be
reduced to the underlying graph structure if isolated dynamics and the coupling
function are the same for such two networks. More precisely, the spectral properties
of the Laplacian matrix (i.e., the real part of the second minimum eigenvalue of
the Laplacian) representing the network determine the synchronizability between
two networks. Moreover, the critical coupling strength is inverse proportional to
the real part of the second minimum eigenvalue of the Laplacian matrix. Thus,
if after adding a link to a graph in a given network, the real part of the second
minimum eigenvalue of the Laplacian matrix increases, it is called the enhancement
of synchronization. Otherwise, it is called the hindrance of synchronization. This
research gives an exact prescription to see if a modification enhances or hinders
the synchronization based on underlying graph parameters for the first time. It
is unknown for now how much of these results can be generalized. Nevertheless,
the prediction of stability transitions of the synchronization may help the sanation
and control of the system’s state before function loss and provides bases for the

application of optimized modifications.

1.2 Literature Review and Contributions

In the past decades, research revealed that the interaction structure of the network
plays a crucial role in the function of coupled dynamics (Eroglu, Lamb and Pereira,
2017, pp. 207-243). Such networks can be translated as a combination of certain
motifs, such as trees or cycles, and these motifs dictate the dynamical behavior and
provide the resilience of the overall system. Predicting the impact of the network
structure on the dynamics is an intricate nonlinear problem that leads to many
unexpected results. Indeed, in some situations improving the network structure
may lead to functional failures, e.g., Braess’s paradox (Eldan, Racz and Schramm,

2017, pp. 584-611), and synchronization loss (Pade and Pereira, 2015, pp.1-6).

Many phenomena, including synchronization, random walks, and cascade failure,
intrinsically depend on the spectral properties of the underlying graph. Thus, the

problem resides first in understanding the spectral changes.



Although certain correlations between network structure and dynamics have been
observed in experimental (Hart et al, 2015, p. 022804) and numerical investigations
(Nishikawa and Motter, 2010, pp. 10342-10347), most of these results are concerned
with small modifications to the network. Such as the addition of new links of small
weights. There is a lack of rigorous results to determine the relationship between the
network structure and its dynamic properties. Most of the results in this direction
rely on the perturbation theory of eigenvalues to determine which structural changes

are detrimental to the network dynamics.

Many interesting questions are clearly not uncovered via perturbation theory. In
fact, previous results relying on perturbation theory suggest that desynchronizing
the network by adding new links is unusual, and most perturbations would actually
lead to better, more stable synchronization (Poignard, Pade and Pereira, 2019, pp.
1919-1942). To understand this problem, we need to unveil the full nonlinear picture

and deal with large changes in the topology.

In this research, we will focus on an important motif generally appearing in com-
plex networks. We will consider a cycle coupled with a star. Even if both motifs
are typical and have a fully developed spectral theory by themselves (Brouwer and
Haemers, 2011, pp.8-10), understanding their interaction and completely character-

izing the spectrum when both are connected remains an open problem.

1.3 Organization

The sections of the thesis are organized as follows:

e Chapter 2: Dynamical Systems
We give fundamental definitions of dynamical systems and introduce two ex-

amples of strange attractors, namely the Lorenz and Rossler Models.

e Chapter 3: Synchronization
We discuss the local stability of global synchronization for two coupled sys-
tems and for n—dimensional diffusively coupled identical oscillators. Then,
we present a comparison of synchronizability in complex networks via graphs’

spectra.



Chapter 4: Graph Theory We investigate some fundamentals of graph

theory and revisit some spectral properties of a graph.

Chapter 5: Unexpected Emergent Behavior in Network Dynamics

We present our problem setting, i.e., the cycle-star motif, and state our graph-
theoretical results. Then, we explore the synchronizability behavior of given
networks generated by the cycle-star motif using the reduction of synchroniz-

ability in complex networks to the spectral properties of underlying graphs.

Chapter 6: Proofs of The Main Results
In Section 6.2, we discuss the techniques that are used in the proofs of the
theorems. We then prove Theorem B in Section 6.3. Finally, we prove Theorem

C in Section 6.4.

Chapter 7: Conclusions
We provide some informal results of our findings and state some open problems

for further investigations.



2. DYNAMICAL SYSTEMS

In this section, we provide fundamental definitions of dynamical systems and intro-

duce two examples of strange attractors, namely the Lorenz and Rossler Models.

2.1 Fundamental Definitions of Dynamical Systems

Definition 2.1.1. Consider R" (n > 0). Let ¢ € R and = be a point in R". A

dynamical system is a function
¢ R xR"— R"

(t, ) = o(t, x)

(2.1)

that satisfies
e ¢(0,z) =z for all x € R™.
o O(ta, d(t1,x)) = ¢(t1 + to, ) for all x € R™ and for ¢y, ¢y € R.

Definition 2.1.2. The orbit or trajectory of z, is the set {¢(¢t,zo) : ¢ € R}.
Let t =ty € R. In this case,
¢ R" = R"

(2.2)
x — o(tg, )

Definition 2.1.3. When time variable ¢ is fixed, the function ¢ is called time-t

map. (Discretization of a continuous-time system.)

Definition 2.1.4. (Wiggins, Golubitsky, 2003, p. 28) Let A C R", where A # 0.
Then, A is invariant with respect to ¢ if for every point in A, the entire orbit of xg

lies in A, i.e., ¢(t,zg) € A for all t € R.

Definition 2.1.5. & := % = f(z) is called the system of ordinary differential

equations.



dt
dl’z(t) .
7t = f2 ([El(t>,$2(t), 7xn(t>>’ (23)
d,(t)
7 = fn (.ﬁl]l(t), xg(t), 7'rn(t))7
where
1 fi(zy,2e, - 2)
f 1;2 _ fg(.ﬁEl,:ﬁE%..- ,-Tn) 7 fz Rn—)R(Z:L 7n)‘ (24)
Tn PR IR Ay

We consider the flow ¢(¢, z) generated by C” (r > 1) ! autonoumous vector fields on
R",

,_dx

Ti=— = f(z), (2.5)

and we assume that it exists for all £ > 0. We also assume that there is a compact
set A C R™ invariant under ¢(t,z), i.e., ¢(t,A) C A for all t € R. We have the

following definitions.

Definition 2.1.6. (Wiggins, Golubitsky, 2003, p. 736) The flow ¢(¢,x) is said to
have sensitive dependence on initial conditions on A if there exists € > 0 such

that, for any = € A and any neighborhood U of x, there exists y € U and ¢t > 0 such
that |o(t,2) — 6(t,y)| > .

Definition 2.1.7. (Wiggins, Golubitsky, 2003, p. 107) A closed invariant set
A C R" is called an attracting set if there is a neighborhood U of A such that
o(t,U) C U and M=op(t,U) = A for all t > 0.

VIf f(z,t) is C" (r > 1) in z and ¢, then solutions through any xy € R™ exist and
are unique on some time interval. (Proof: Picard-Lindel6f Theorem (Hirsch, Smale and
Devaney, 2013, pp. 385-294))



Definition 2.1.8. (Wiggins, Golubitsky, 2003, p. 108) A positive invariant compact
subset B C R" is called an absorbing set if there exist a bounded subset U of R"
with B C U and t;; > 0 such that ¢(¢t,U) C B for all ¢ > t.

Definition 2.1.9. (Wiggins, Golubitsky, 2003, p. 110) A closed invariant set A is
said to be topologically transitive if, for any two open sets U,V C A, there exists

t € R such that ¢(t,U) NV # 0.
Definition 2.1.10. An attractor is a topologically transitive attracting set.
Definition 2.1.11. (Wiggins, Golubitsky, 2003, p. 736) A is said to be chaotic if
(i) ¢(t,x) has sensitive dependence on initial conditions on A.
(ii) ¢(t,z) is topologically transitive on A.
Consider the C" (r > 1) vector field
= f(z),z eR" (2.6)

Let z(t,x0) be a trajectory of equation (2.6) satisfying x(0, x¢) = zo. Consider the

orbit structure of the linearization of equation (2.6) about x(¢,x¢) given by

£=Df(z(t)E, EeR" (2.7)

Let X(t;x(t,x9)) be the fundamental solution matrix of Eq. (2.7) and let e # 0
be a vector in R™. Then the coefficient of expansion in the direction e along the

trajectory through z( is defined to be

Az, €) = | X (t; z(t, z0))el|

Y

le]l (2.8)
where ||.|| = v/ (., .).

Definition 2.1.12. (Wiggins, Golubitsky, 2003, p. 726) The Lyapunov expo-

nent in the direction e along the trajectory through xzq is

o1
X (X (t; xo(t, x0)), o, €) = tlggo " log A¢(, €) (2.9)

Definition 2.1.13. A chaotic orbit is a bounded aperiodic orbit that has at least
one positive Lyapunov exponent. (We define the Lyapunov exponent of a flow as

the Lyapunov exponent of its time-7" map for 7' = 1. )



Definition 2.1.14. (Wiggins, Golubitsky, 2003, p. 740) Suppose A C R" is an

attractor. Then A is called a strange attractor if it is chaotic.

Theorem 2.1.15. (Pereira, 2011, p. 43) Let B be a compact subset of the open
set U. Consider Equation (2.6) and let f be differentiable. Let 2y € B and suppose
that every solution z : [0,7] — U with 2(0) = x( lies entirely in B. Then this

solution is defined for all (forward) time ¢ > 0.

2.2 Two Famous Examples of Strange Attractors

Tucker introduced a computer-assisted proof of the existence of a strange attractor
for the Lorenz model in 1999 (Tucker, 1999, pp. 1197-1202). Still, showing a
dynamical system to possess a strange attractor is rather compelling. Instead, let
us show the chaotic behavior of orbits when the model has at least one positive

Lyapunov exponent.

2.2.1 Lorenz model
Edward Lorenz introduced the Lorenz model in 1963 to model atmospheric convec-

tion as follows:

=0y —x)
y=z(y—2)—y (2.10)
i=—Pz4+xy

where o, 7, and ( are real positive parameters of the system.

When parameters are selected as o = 10, 7 = 28, and § = 8/3, the model has
sensitive dependence on initial conditions, i.e., the model has at least one posi-
tive Lyapunov exponent as shown in Figure (2.1), (2.2). The maximum Lyapunov

exponent is found as Ye: & 0.9 for these parameters.

On the other hand, when all Lyapunov exponents are negative in the model where

o=>5,v=28, f=28/3, a fixed point occurs as shown in Figure 2.3.
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Figure 2.1: Lyapunov exponents of Lorenz model for varying o where v = 28 and

B =8/3.

When o = 10, the maximum Lyapunov exponent is Xqe =~ 0.9.
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Figure 2.2: A chaotic trajectory of Lorenz model where 0 = 10, v = 28, § = 8/3 and
xo9 = 0.1,y9 = 0.1, 2y = 0.1. Blue-color corresponds to the initial point, orange-color

corresponds to the final point.
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Figure 2.3: A fixed point in Lorenz model where 0 = 5, v = 28, = 8/3 and

xo = 0.1,y9 = 0.1, 29 = 0.1. Blue-color corresponds to the initial point, orange-color

corresponds to the final point.
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2.2.2 Rossler model
Otto Rossler introduced the Rossler model in 1976 as follows:
T=Y—z
Z=b+z(r—c)
where a, b, and ¢ are real positive parameters of the system.
When parameters are selected as a = 0.2, b = 0.2, and ¢ = 5.7, the model has
sensitive dependence on initial conditions, i.e., the model has at least one posi-

tive Lyapunov exponent as shown in Figure (2.4), (2.5). The maximum Lyapunov

exponent is found as e & 0.07 for these parameters.

On the other hand, when all Lyapunov exponents are negative in the model where

a=0.2,b=0.2, c =4, a periodic orbit occurs as shown in Figure 2.6.

— x(X,0.1, )
1T — xix,01,e)
x(X,0.1, )

T T T T T T T
3.0 35 4.0 4.5 5.0 5.5 6.0

Figure 2.4: Lyapunov Exponents of Rossler Model for varying ¢ where a = 0.2 and

b= 0.2. When ¢ = 5.7, the maximum Lyapunov exponent is ;e =~ 0.07.
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3. SYNCHRONIZATION

In this section, we discuss the local stability of global synchronization for two coupled
systems and generalize it to n—dimensional diffusively coupled identical oscillators.
Then, we present a comparison of synchronizability in complex networks via graphs’
spectra. Thus, we reduce the problem of synchronizability in complex networks
to the spectral analysis of underlying graphs. We omitted some basic definitions
of graph theory to preserve the continuity of the topic but we present them in
detail in the next section. Note that, we briefly refer complete synchronization as

synchronization throughout this chapter.

3.1 Synchronization Between Two Coupled Systems

We consider two fully diffusively coupled identical m-dimensional systems

jﬁ'l = f(fl?l) + @H(x'g — fﬂl)

i‘g = f(ﬂ?z) + @H(l‘l — $2)

(3.1)

where f : R™ — R™ is the isolated dynamics, © is the overall coupling strength,
H : R™ — R™ is the generalized coupling function. We set H(0) = 0 in order to
generate the synchronization subspace such that x; = x5 is invariant for all coupling
strengths ©. Note that, the diffusive coupling term vanishes for non-trivial coupling

strengths and the system behaves as if the overall coupling strength © = 0.

We will show the locally asymptotic stability of globally synchronized state, i.e.,

Tim [|, () — x(t)|] = 0, (3.2)
where ||.|| =/ (.,.),

for sufficiently strong coupling strengths ©. Suppose coupling function is identity

operator, i.e., H = I. We define the difference variable z := x; — x5. Thus,

Z :L'Ul —jZQ

=f(z1) — f(xq9) — 202z

(3.3)
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Using Taylor expansion near x; = x5, we get
fxa(t)) =f(21(1)) = Df (1 (1)) (w2(t) — 21 (2))
+O([|l1(8) = 22(1)]1*) (3.4)
fla2(t)) =f(21(8) = Df(z1(t))=(t) + O(||=(t)]1*)
where D f(xy(t)) is the Jacobian matrix of f(x) at x4(¢). Thus,

%~ DI (1) ~ 2012 + O ). (35

When we exclude the term O(]|z]|?) in equation (3.5), we call this expression as the

first variational equation. If we introduce a new variable
w(t) = e*©z(t) (3.6)
then,

W(t) = 20e* 2 (t) + e*®4(t)
= 20w[Df(z1(t)) — 201]e**'2 (3.7)
= [Df (z:1(t))]Jw

Let ¢(z1(t)) be the fundamental matrix for the variational equation, then any solu-

tion to the system may be described by z(t) = ¢(z1(t))z(0).

Let A be the maximal Lyapunov exponent of the orbit z1(¢). Then,
|w(t)|| < Ce, for some constant C' > 0. (3.8)
Since w(t) = e2©%2(t), it follows that
2(t)]] < Cel*—20) (3.9)
and thus,

A
90—5

(3.10)

which implies that it is possible to determine the critical coupling using the maximal
Lyapunov exponent of the system and if the system has © > O, synchronization is

stable under small perturbations (Eroglu, Lamb and Pereira, 2017, pp. 207-243).

15



3.2 Network Dynamics
Henceforward, we can set a network, nodes of which are n identical oscillators, and

their individual equation of motion corresponds to the dissipative dynamical system.

Let the network of these oscillators interact through a diffusive coupling that is
proportional to the difference of state vectors x;(t) — x;(t), where 4, j represent the

nodes of the network.

We consider a triplet G = (G, f, H), where G is a weighted digraph (discussed in
details in Section 4), and f, H € C1(R") for [ > 1. The triplet G defines a system of
ODEs of the form

N
= f(x)+0Y AyH(z;—z;), i=12..N, (3.11)

j=1
where © > 0 is called the coupling strength. Each variable x; represents a node
of the graph G, the function f describes the isolated dynamics at each node, and
the function H, called the coupling function. We call the triplet G or its associated
system of ODEs (3.11) a network of diffusively coupled (identical) systems.

3.3 Synchronization in Complex Networks

The interaction term in equation (3.11) can be written in terms of Laplacian matrix

L.

n

D AylH () — H(x)] = 3 AyH(r)) = H(z) Y Ay

j=1 j=1

= ZAin(xj) —d;H(x;)

where d; = ZZ A;; is the in-degree of the ith node, ¢;; is the Kronecker delta, and

L;j = 6;;d; — A;j. Therefore, equation (3.11) is equivalent to the following form

i = f(2:) — O LiH(z;), (3.12)

j=1

where > L;; = 0.
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We define the synchronization manifold as
M :={(z1,...,an): a1 =--=azny€U}. (3.13)

We say a network G synchronizes if there exists an open neighborhood V' C R of
M such that the forward orbit of any point in V' converges to M. In other words,
the synchronization manifold attracts its nearby orbits. It is shown (Pereira et al,

2014, pp. 501-525) that for a network G with a coupling strength ©, if
1. The graph G has a spanning diverging tree (see 4.2.8).

2. There exists an inflowing open ball U C R! which is invariant with respect to
the flow of the isolated system & = f(z), and we have ||Df(z)| < K for some
K >0 and for all x € U.

3. We have H(0) = 0. Moreover, all the eigenvalues of DH(0) are real and

positive.

then there exists ©, > 0 such that when © > O., G synchronizes. We call O, the

critical coupling strength. It is given by

o,=—"__ (3.14)

ﬁRe(Ag) ’

where \s is the second minimum eigenvalue of the Laplacian matrix, p = p(f, DH(0))

and § :=mino (DH (0)) are constants which only depend on f and/or DH (0).

Equation (3.14) with assumptions stated above gives us a criterion to compare syn-

chronizability in networks. More precisely, we have the following definition.

Definition 3.3.1. Consider two networks G, = (G, f1, H1) and Gy = (Ga, fa, Ha)
that satisfy the assumptions above. Let ©.(G;) and ©.(Gs) be the critical coupling
strengths of G; and G,, respectively. We say G; is more synchronizable than G, if

O.(G1) < O.(G2).

Having ©.(G1) < ©.(G2) means that G; synchronizes for a larger range of © than
Go. Let us now consider the case that two networks G; and G, only differ in their
topology, i.e. having the same isolated dynamics and coupling functions while the

graph structures can be different. In this case, following equation (3.14), the second
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minimum Laplacian eigenvalue of the underlying graphs of the networks determine
which one is more synchronizable. Indeed, let consider two networks G, = (G, f, H)
and G = (Ga, f, H) that satisfy the assumptions above. Moreover, let \y(G;) and
A2(G2) be the second minimum eigenvalues of Gy and Gs, respectively. Then, the

network G is more synchronizable than G, if and only if A\o(G1) > Ao (Go).

Before discussing our results of synchronization in networks with cycle-star motifs,

we present some results in graph theory in the next section.
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4. GRAPH THEORY

Graph theory surveys the diagrammatic abstraction of the pairwise relations between
units (Figure 4.1). Graphs and their spectral properties provide general models and
results applicable to diverse real-world systems. In this section, we investigate some
fundamentals of graph theory, present our models and discuss how the perturbation,

i.e., link addition(s), affects these models.
4.1 Basic Definitions and Matrices Associated to a Graph

Definition 4.1.1. (Bondy and Murty, 1976, p. 2; West, 2001, p. 2) A graph G
is a triple (V, E,1¢) consisting of a vertex set V(G), an edge set E(G), and the
incidence function 1 : E — V@ that associates with each edge of G two vertices

(not necessarily distinct) of G .

Example 4.1.2.

The graph H as a triple: The graph H as a diagram:

V(H) = {U1,U2,03,U4}

E(H) = {61762763,64,65766}

4

(e2)
(es)

Vi(es) = {2, v0) )
e Figure 4.1: The graph H
(es)

Definition 4.1.3. (Bondy and Murty, 1976, p. 3) An edge with identical ends is
called a loop, and an edge with distinct ends is called link. Two or more links with

the same pair of ends are said to be parallel edges.
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Definition 4.1.4. (Bondy and Murty, 1976, p. 3) A graph G is called simple if it
has no loops or parallel edges (¢ is an injection of E into the set of subsets in V).

(See Figure 4.2).

In this study, simple graphs are considered where mention of 1 is omitted, and the
edges are viewed as a set of subsets of V with two elements. Thus, the graph G
is defined as G = (V, E) where V' = {vy,...,v,|n is the number of vertices} is the

vertex set and E = {ey,...,e,} CV x V is the edge set.

Definition 4.1.5. A directed graph, also called a digraph, G = (V, E) consist of
vertices and ordered pairs of edges such that the pair e, = (i,j) € E represents the
kth edge directed from vertex j (the tail of e;) to vertex i (the head of e;) and an

edge may also have a weight w associated with it.

Definition 4.1.6. The graph is called undirected if the edge set is not ordered
(E CV x V such that (¢,j) € E if and only if (j,7) € E).

(a) Undirected simple graph (b) Directed simple graph

Figure 4.2: Simple Graphs

Definition 4.1.7. (Bondy and Murty, 1976, p. 4) A path is a simple graph whose
vertices can be arranged in a linear sequence in such a way that two vertices are

adjacent if they are consecutive in the sequence, and are nonadjacent otherwise.

Definition 4.1.8. (Bondy and Murty, 1976, p. 5) An undirected graph is con-
nected if, for every partition of its vertex set into two nonempty sets X and Y,
there is an edge with one end in X and one end in Y. Otherwise, the graph is

disconnected.
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Definition 4.1.9. (Agaev and Chebotarev, 2006, pp. 1424-1450; Veerman and
Lyons, 2020, pp. 3-4)

(i) A digraph G is strongly connected if for every ordered pair of vertices (3, j),

there is a path from i to j.

(ii) A digraph G is unilaterally connected if for every ordered pair of vertices

(1,7), there is a path from i to j or a path from j to i.

(iii) A digraph G is weakly connected if the underlying undirected graph is

connected.
(iv) A digraph G is not connected if it is not weakly connected.

As an alternative to diagrammatic representation of a graph, one might represent a

graph in the form of a matrix.

Definition 4.1.10. Given a graph G the adjacency matrix of G is Ag = [a;;] €
M,,, where

w if (j,71) e £
0 otherwise
and w > 0,w € R is the weight of the directed edge starting from vertex j and

ending at vertex ¢ which is the convention used in this research.
The element on the 7th row and jth column of a matrix A is denoted a;;.

Definition 4.1.11. In a directed graph the in-degree of a vertex i denotes the
number of edges directed to the vertex i and out-degree of a vertex i denotes the
number of edges leaving the vertex 7. The in-degree of a vertex 7 is denoted by
di=>_a. (4.2)
J
Definition 4.1.12. (Chebotarev and Agaev, 2013, pp. 1134-1141) A diverging tree
is a weakly connected digraph in which one vertex (called the root) has indegree

zero and the remaining vertices have indegree one.

Definition 4.1.13. In-degree matrix Dg is a diagonal matrix whose (i, 7)-entry

is the in-degrees of the vertex ¢ of G.
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Definition 4.1.14. L is the (combinatorial in-degree) Laplacian matrix defined
by Lg := Dg— Ag where Dg is the in-degree matrix and Ag is the adjacency matrix

of graph G.

By definition, the adjacency and Laplacian matrices of graph G are real.
Definition (4.1.6) implies that adjacency and Laplacian matrices of undirected graph
are symmetric, A = AT ie., a;; = a;;.

When a graph under consideration is dense, representing the graph with matrices is
more practical than listing. Aside from the practical use of matrix representations,
spectral properties, e.g., the characteristic polynomial, eigenvalues, and eigenvectors
of matrices associated with the graph, indicate structural properties, e.g., connec-
tivity and partitioning. In this study, only the Laplacian spectrum is visited due to
applicational purposes, even though it is possible to consider other spectra, such as

the spectrum of the adjacency matrix.
4.2 Laplacian Spectrum of a Graph

Definition 4.2.1. (Brouwer and Haemers, 2011, p. 3) The characteristic poly-
nomial of G is that of L, that is, the polynomial py, defined by pp(\) = det(A\ —L).

Definition 4.2.2. (Horn and Johnson, 2012, p. 44) Let L € M,,. If a scalar A and
a nonzero vector x satisfy the equation

Lr=Xx, ze€C" x#0,AeC (4.3)
then X is called an eigenvalue of L and x is called an eigenvector of L associated
with A\. The pair A,z is an eigenpair for L.

Definition 4.2.3. (Horn and Johnson, 2012, p. 45) The Laplacian spectrum of
L € M, is the set of all A € C that are eigenvalues of L; this set is denoted by o(L).

Definition 4.2.4. The spectral gap of L is the the second smallest (with respect

to the real-part ordering) eigenvalue Ay of all A € C.

Definition 4.2.5. (Meyer, 2000, p. 510) The algebraic multiplicity of is the

number of times it is repeated as a root of the characteristic polynomial, i.e.,
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algmulty(N;) = a; if and only if (x — A\)® -+ (z — As)* = 0 is the characteris-

tic equation for L.

Definition 4.2.6. (Meyer, 2000, p. 510) When algmult; (X\;) = 1, A is called simple

eigenvalue.
Lemma 4.2.7. Zero is always the eigenvalue of L.

Proof. All the rows of L sum to zero by definition, L := D — A. Thus, all ones vector

1 is an eigenvector with the corresponding eigenvalue zero,i.e., L.1 =0=0.1. [

Theorem 4.2.8. If G has a spanning diverging tree, the zero eigenvalue of the

Laplacian matrix L is simple.
Proof. (Agaev and Chebotarev, 2006, pp. 1424-1450) ]

Theorem 4.2.9. (Gershgorin, (Horn and Johnson, 2012, p. 387)) Let A = [a;5] €
M, let

Ri(A) =) layl, i=1,...n (4.4)
1#]

denote the deleted absolute row sums of A, and consider the n Gershgorin discs
Disc(ay, R;) :={z € C: |z —ay| < Ri(A)}, i=1,...n (4.5)
The eigenvalues of A are in the union of Gershgorin discs

G(A) = U{z e C: |z —ay| < Ri(A)} (4.6)

Furthermore, if the union of k of the n discs that comprise G(A) forms a set G (A)
that is disjoint from the remaining n — k discs, then Gy(A) contains exactly k

eigenvalues of A, counted according to their algebraic multiplicities.
Proof. (Horn and Johnson, 2012, pp. 388-389) O

Corollary 4.2.10. If X is an eigenvalue of L,

AeG(L), G(L)= O Disc(d;, d;) (4.7)

=1

which implies R(\) > 0.
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Corollary 4.2.11. Using Lemma (4.2.7) and Corollary (4.2.10) which is a result of

Gershgorin Disc Theorem, the Laplacian spectrum of L € M,, given by

where eigenvalues of L enumerated in increasing order.

Corollary 4.2.12. Since Laplacian matrix L(G) of an undirected graph G is real
(Note (4.1)) and symmetric (Note (4.1)), the Laplacian spectrum is real. Further-
more, L(G) is positive semidefinite and singular (see Corollary (4.2.11)). Thus, the
Laplacian spectrum L(G) of an undirected graph G is given by

0=XA<X...< A (4.9)

4.3 Some Special Graphs and Their Laplacian Spectra
Let consider some finite, undirected, and simple graphs and their Laplacian spectra
which are the building blocks of our models (Figure 4.3). In this section, we write

multiplicities as exponents.

Definition 4.3.1. (Bondy and Murty, 1976, p. 4) A complete graph K, on n
vertices is a simple graph in which any two vertices are adjacent.

o(Lg,) = {0}, n"1}

(Brouwer and Haemers, 2011, p. 8).

Definition 4.3.2. (Bondy and Murty, 1976, p. 4) A graph is bipartite if its vertex
set can be partitioned into two subsets X and Y so that every edge has one end in
X and one end in Y. If G[X, Y] is simple, bipartite and every vertex in X is joined
to every vertex in Y, then G is called a complete bipartite graph K, ,,.
o(Lk,,,) = {0 m" 1 n™ 1 (n+m)'}

(Brouwer and Haemers, 2011, p. 8).

Definition 4.3.3. (Bondy and Murty, 1976, p. 4) A star graph S, is a complete
bipartite graph K ,,—; on m vertices.

o(Lg,, ) ={0',1m2 ml}

(Brouwer and Haemers, 2011, p. 8).
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Definition 4.3.4. (Bondy and Murty, 1976, p. 4) A path P, on n vertices is a
simple graph whose vertices can be arranged in a linear sequence in such a way that
two vertices are adjacent if they are consecutive in the sequence, and are nonadjacent
otherwise.

o(Lp,) =2 —2cos(mj/n) where (j =0, -+ ,n—1)

(Brouwer and Haemers, 2011, p. 9).

Definition 4.3.5. (Bondy and Murty, 1976, p. 4) A cycle C,, on n vertices (n > 3)
is a simple graph whose vertices can be arranged in a cyclic sequence in such a
way that two vertices are adjacent if they are consecutive in the sequence, and are
nonadjacent otherwise.

o(L¢,) =2 —2cos(2mj/n) where (j =0,--- ,n—1)

(Brouwer and Haemers, 2011, p. 8).

PLPINA,

Figure 4.3: K4, Cy, Py, Sy, respectively.
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5. UNEXPECTED EMERGENT BEHAVIOR IN
NETWORK DYNAMICS

5.1 Problem Setting: Cycle-Star Motif

Let G be an arbitrary weighted directed graph whose nodes are labeled by 1,..., n.
We assume that G is unilaterally connected. Then the zero eigenvalue of Lg is simple.
The real parts of all the non-zero eigenvalues of Lg are positive by Corollary 4.2.11.

Let A1, ..., A\, be the eigenvalues of L, ordered according to their real parts, i.e.

We discuss how perturbing G can affect its spectral gap. We consider three models,
namely model I, model II, and model III, and study them case by case in Theorems
A, B and C. Model I is a special case of model II, and model II is a special case of
model III. However, the more specific the model is, the stronger results are proved

in the mentioned theorems.

(a) The unperturbed graph G. (b) The perturbed graph G,.
Figure 5.1: Model I: Breaking the master-slave through hub coupling. We add
a directed link from the hub of the star to the cutset node (the red-color edge)
where the cutset node refers to the node which cutset edge starts from. The weakly
connected directed graph becomes the strongly connected directed graph consequent

to the perturbation shown by the red arrow.

Let us start with model 1. Let C,, (n > 3) and S,, (m > 4) be undirected cycle
and star graphs, respectively. Label the nodes of C,, and S,, by 0,...,n — 1 and
0,...,m — 1, respectively, such that the hub of the star is labelled by 0. Consider a

unilaterally connected digraph G consisting of two strongly connected components
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C, and S,, which are connected together by a directed edge starting from node 0
of the cycle and ending at the hub of the star. Suppose that we perturb this graph
by adding a directed link with weight d; > 0 starting from the hub of the star and
ending at node 0 of the cycle (see Figure 5.1). Denote this perturbed graph by G,

and let Lg, = Lg (d9) be the corresponding Laplacian matrix. Moreover, define

Definition 5.1.1. Consider arbitrary integers n > 3 and m > 4, and an arbitrary

real number w > 0. Then

1. for any integer 0 <[ < n, we define

=2 (1 — cos l—”) . (5.1)

n

2. we define /3, , and £}, , as the roots of the quadratic polynomial A\>—(m + w) A+

w, i.e.

i,w:%{m+wi\/(m+w)2—4w] (5.2)

Remark 5.1.2. By virtue of Taylor’s theorem, we can approximate «; for sufficiently
small % by a; ~ li—’f Regarding 8%, when (m + w)2 > 4w, we can approximate (3
by m 4+ w, and 3, by

BB . w

moaw +
m,w

N (5.3)
Before we proceed to our first result, let us give some intuition about this definition.
The parameter w in 6$,w stands for the sum of the weights of all the cutset edges
starting from the cycle and ending at the star. In the case of model I and II, we
assume w = 1, but for model III, we deal with arbitrary w. As it is shown later
(see Proposition 5.2.3), the spectrum of the unperturbed Laplacian Lg is {a; :
where 0 < I < n and [ is even} U {f,,,,,1, 3} ,}. Thus, the spectral gap of L¢ is

given by min{as, 3, ,,}. Although the a;’s for odd I do not appear as the eigenvalues

of L¢g, they play an important role in our theory.

Here is our main result on the model I:
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Theorem A (Model I). Assume 3, ¢ {a; : 0 <1 < n}. Consider an arbitrary
perturbation 69 > 0 and the corresponding Laplacian Lg, = Lg (do). Then, all the

eigenvalues of Lg, are real. Moreover, we have
1. Zf ap < ﬂn_m,li then )\2 (LGp) < /\2 (Lg)

2. Zf 577_1,1 < oq, then Ao (LGP) > Ao (Lg)

70

S a2=Br;,1

0.02
c
s
© - 0.01
()]
E =
2 O
o <
o ~
o £0.00 |
(0] —_
< O
5 2
8 - —0.01
5 }
(0]
K
'_

-0.02

20 40 60 80 100
The size of the star subgraph, m

Figure 5.2: A comparison between the Theorem A and the realizations of \o(G) —

X2(G,) for chosen sizes of cycle and star subgraphs where dy = 1.

Remark 5.1.3. Note that the assumption 3,,, ¢ {a;: 0 <1 < n} in this theorem

(and also in the next theorem) is a generic assumption.

In model II, we consider the same unperturbed digraph G as in model I (see Figure
(5.3)), but the perturbed graph G, is generalized. The perturbed graph G, in model
IT is given by adding m directed edges starting from each node of the star and ending
at node 0 of the cycle. Let 6; > 0 be the weight of the edge starting from node 1.
Thus, model II is reduced to model I by setting §; = 0 for = 1,...,m — 1. In this

strand, we define

28



(a) The unperturbed graph G. (b) The perturbed graph G,,.
Figure 5.3: Model II: Breaking the master-slave through multiple couplings. We

add links from some nodes of the star to the cutset node of the cycle.

Definition 5.1.4. Let §; > 0,7 =0,...,m — 1, be the weight of the perturbation
edge starting from node ¢ of the star and ending at node 0 of the cycle. We define
32: (50,...,(57”,1), and § := 50+(51—|— +5m71-

Obviously, & = 0 if and only if § = 0. Note also that § = 0 corresponds to the

unperturbed graph G. We now state our next main result:

Theorem B. [Model II] Assume 3, ; ¢ {a;: 0 <1 < n}. Consider a perturbation
0 # 0 and let La, = Lg (5) be the corresponding Laplacian. Then, the following
hold.

1. (Local perturbation) Let 0 # 0 be a sufficiently small perturbation. Then, all

the eigenvalues of L, are real, and

(a) If y < then Ao (LG,,) < X2 (Lg).

77_1,17
(b) If ﬁr:z,l < Oq, then A\ (LGP> > A (Lg>
2. (Global perturbation) Let § # 0 be an arbitrary perturbation. We have

(a) If a < B, 1, then Re (A2 (Lg,)) < A2 (Lg).

771,17
(b) Assume the condition § < dof3;) ; is satisfied. Then, all the eigenvalues of

Lg, are real, and the statements (1a) and (1b) of this theorem also hold

for the perturbation 6.

Remark 5.1.5. Note that, by setting 6 = dp, Theorem A directly follows from
Theorem B.
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Remark 5.1.6. In spite of Theorem A for which the main statements hold for a
perturbation of an arbitrary size, in Theorem B, we require a condition on the per-
turbation, i.e. § < 60@;1, to make the statements for perturbations of arbitrary
size. Roughly speaking, this is due to the possibility of the emergence of non-real
eigenvalues. Indeed, as it is shown in the proof of Theorem B, for small perturba-
tion & # 0, the perturbed Laplacian L, has two real eigenvalues in the interval
(tn_1,00). However, as & varies and gets larger in size, these two real eigenvalues
may collide and become a pair of complex conjugates. In this case, we can think of
the scenario in which the real part of these eigenvalues decreases such that for some
sufficiently large perturbation §, these eigenvalues become the spectral gap of Le,.

By assuming 6 < 6o, ;, we indeed avoid this scenario.

(a) The unperturbed graph G. (b) The perturbed graph G,.

Figure 5.4: Model III: Breaking the generalized master-slave through multiple cou-
plings. We add links from some nodes of the star to the one cutset node of the cycle

where multiple cutset nodes exist.

We now discuss model III. In this model, we consider a more general version of the
unperturbed graph of the previous two models. Consider again the graph C),, and S,,
as above, and let G be a unilaterally connected digraph consisting of two strongly
connected components C,, and .S, which are connected together by n directed edges
starting from each node of the cycle and ending at the hub of the star. Let w; > 0,
where i = 0,...,n — 1, be the weight of the edge starting from node ¢ of the cycle.

Without loss of generality, assume wqy > 0. We also define

Definition 5.1.7. Let w; be as mentioned above. We define w = (wy, ..., w,_1)

and w = wy + wy + -+ + Wy_1.
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It is shown later that A (Lg) = min{ay, f,, ,,}. Regarding the perturbation in the
case of model III, we consider the same family of perturbations as we considered
in model II: for every 0 < ¢ < m — 1, there exists a perturbation edge with weight
d; > 0 starting from node ¢ of the star and ending at node 0 of the cycle (see Figure
5.4). Let 6 and 0 be as in Definition 5.1.4. For given m, n, w, &, and ¢, in the case
that ay # 3, ,,, we also define

S =S (m,n,w,dy,0) =08 — 0 ~ %0z sz cos — (5.4)

a3 — (m+w)ag +w “

As it is shown later, the sign of S determines if the characteristic polynomial of Lg,,
i.e. det (LGP — A ), decreases or increases at the point A = as. Our last result is as

follows.

Theorem C. [Model IIT] Assume 3, ,, ¢ {a;: 0 <1 < n}. Consider a perturbation
0 # 0 and let Lag, = Lg (5) be the corresponding Laplacian. Then, the following
hold.

1. (Local perturbation) Let & # 0 be sufficiently small. Then, all the eigenvalues

of Lg, are real, and we have
(a) If ay < B, and S < 0, then As (Lg,) < X2 (L)
(b) If ay < f,,,, and S > 0, then Xy (Le,) = X2 (Le).
(c) If0 < B, < o, then Xy (Lg,) > A2 (Lg).

(d) If oy < B, < a2 and S w; cos (2—4i)0 > 0, where § = 7 —
cos™ (6"”“ ) then As (Lg,) > X2 (Lg).

() f oy < B, < az and S w; cos (2—-i)0 < 0, where § = 7 —
cos ™ (22472) then X, (La,) < s (Lo)

2. (Global perturbation) Let 6 # 0 be an arbitrary perturbation and assume
Qg < B;L,w'

(a) If S <0, then Re (A2 (Lg,)) < X2 (Le).

(b) Ifs > 0, then Re ()\2 (LGP)) < X (Lg)
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5.2 The Laplacian L of the Unperturbed Graph and Its Spectrum
Denote the Laplacian matrices of the cycle C,, and the star S,, by L¢, and Lg,,,
respectively. Then

Le¢, 0
Lg = , (5.5)
—C Lg, + D¢
where
2 -1 0 0 -1
-1 2 -1 0
0 -1 " " T m—1 -1}
LCn = . s LSm =
. -_. ~_' -_. ~.. 0 _1m_1 I(mfl)x(mfl)
0 —1
-1 0 0o -1 2
(5.6)
Moreover, for models I and II, we have
1 015 (n— 1 015 (m—
O — 1x(n—1) 7 DC y 1x(m—1) 7 (57)
Om—1)x1  Om=1)x(n-1) Om—1)x1  Om=1)x(m—-1)
and for model III, we have
Wy Wi v Wy w 01 % (m—
- 0o W 1 Do — 1x(m—1) (5.8)
Om—1)xn Om-1x1 Om—1)x(m-1)

The triangular form of Lg implies o(Lg) = o(L¢,) Uo(Ls,, + D¢). Thus, to study
o(Lg), we need to investigate each of o(L¢, ) and o(Lg, + D¢) individually. In this

strand, we have the following lemmas.

Lemma 5.2.1. 0(L¢,) = {a : where 0 < [ < n and [ is even}. Moreover, the
multiplicity of all the eigenvalues except for 0 and 4 (the eigenvalue 4 appears only

when n is even) is 2.
Proof. (Brouwer and Haemers, 2011, p. 8). O

Lemma 5.2.2. Let C and D¢ be as in (5.8). Then, o(Ls,, +Dc) = {80, 1, B0}
where 3%, are as in (5.2). Moreover, the eigenvalues ,, ,, and 3}, are simple, and

the eigenvalue 1 is of multiplicity m — 2.
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Proof. This lemma is a special case of Lemma A.0.2 which is proved in Appendix.

]

The previous two lemmas determine the spectrum of the unperturbed Laplacian L.

Proposition 5.2.3. We have 0(Lg) = {oy : where 0 < [ < n and [ is even} U
{Brwr 1 B}

Remark 5.2.4. In this research, we assumed that m > 4, i.e. the star S, has at

least four nodes. It is straightforward to show that for any m > 4 and w > 0, we

have 3., , < 1 and 4 < 3} ,. On the other hand, 0 < a; = 2 (1 —cosZ) <4, for

all 0 <[ < n. This means that ﬁ;j’w is a simple eigenvalue of L.
5.3 The Laplacian Lg, of the Perturbed Graph
Consider model TII and observe that the perturbed Laplacian matrix Lg, is given

by

Lcn -+ DA —A

Lg, := : (5.9)
-C Ls,, + D¢
where C' and D¢ are as in (5.8),
do 01 <+ Ome J 015 (n—
A= " ' and  Dp = 1x(n=1)
O(n—1)xm Om—1x1 Om—1)x(n—1)

(5.10)

Notation 5.3.1. For the sake of convenience, we set Ly := L¢, + Da and Ly :=

L. + De.
Using this notation, Laplacian (5.9) is written as

L —-A
Le,= | . (5.11)
—C L

The Laplacian Lg, of the perturbed graph of model II is of the form (5.11), where
C and D¢ are as in (5.7), and A and Dx are given by (5.10).
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The Laplacian Lg, of the perturbed graph of model I is also of the form (5.11),
where C' and D¢ are as in (5.7), and A and Da are given by

do 015 (m—1) and  Da— o O1x(n—1)

Om—1)x1 On=1)x(m-1) Om—1)x1 On=1)x(n—1)
(5.12)

A:

Here (model I), we have §y = 4.

Notice that, in all these three models, despite the unperturbed Laplacian Lq, the
perturbed Laplacian Lg, does not have a triangular form. Due to this reason,

analysis of the spectrum of L, requires further work.

5.4 Synchronization in Networks with Cycle-Star Topology

We consider the following settings for the model given in Figure (5.3): Two networks
G = (G, f,H) and G, = (G,, f, H) generated where G and G, are the unperturbed
and the perturbed graphs, respectively. The chosen isolated dynamics f is the
Lorenz oscillator given by equation (2.10) where the parameters are o = 10, v = 28,
3 = 8/3. Here, H is the identity function on R3. For the described setting, equation
(3.14) can be written as O, = m, where k is the largest Lyapunov exponent of
the corresponding attractor (Eroglu, Lamb and Pereira, 2017, pp. 207-243). We
numerically find that x ~ 0.9. So, the expected values of ©.(G) and ©.(G,) are
calculated accordingly. We examine two experiments to reveal how link addition(s)
can lead to synchronization in the network G, or break the synchronization in the
initial network G (see Figure 5.5 and 5.6). Networks of coupled chaotic oscillators

in model IT are simulated to show the synchronization error at a given time, which

can be given approximately as

= §% llt) — 0]

.YZJ(t
(n+m)?

(5.13)

ij=1
where n, m are the number of nodes of the cycle and the star subgraphs, respectively.

5.4.1 Hindering synchronization

In order to examine the hindrance of synchronization due to link addition(s), the
overall coupling constant © is selected such that ©.(G) < © < 0.(G,) (see Figure
5.5). Note that such © values only exist when A\o(G) > A\2(G,) due to the order
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relations of synchronizability stated above. When the selected © is above the ©.(G),
the trajectories synchronize for the network G. Then, the system is perturbed by
adding link(s) at a given time ¢. Since the selected © is below the ©.(G,), the system

losses its synchronization thereafter.

In model II, the sizes of the cycle and star subgraphs are set to n = 15 and m = 15.
The weights of the cutset and perturbation edges are wy = 1 and §; = 1, where
1 =20,1,--- ,m — 1. Each component of all initial states is randomly selected from

the uniform distribution over the [3.5,5).

40{ — L
Lpert R

30 4 pef U\Ox; —_—
L/L\l 0=17.0 & O\ DRON

201 &N
V -

101

O L T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Time 1e6

Figure 5.5: Hindrance of Synchronization due to link additions: Networks of coupled

chaotic oscillators in model II are simulated to show the synchronization error at

-0l

A Ry pewm where n, m are the number

a given time, which is given as £ =
of nodes of the cycle and the star subgraphs, respectively. After the red links are
added to the system at time=0.5 x 10°, the synchronization loss occurs where the

overall coupling constant © is selected as ©.(G) < © < 0.(G,).

5.4.2 Enhancing synchronization

In order to examine the enhance of synchronization due to link addition(s), the
overall coupling constant © is selected such that ©.(G,) < © < ©.(G) (see Figure
5.6). Note that such © values only exist when A\y(G,,) > A2(G). When the selected
© is below the ©.(G), the trajectories cannot synchronize for the network G. Then,
the system is perturbed by adding link(s) at a given time t. Since the selected © is

above the ©.(G,), the system gets into synchronization thereafter.

In model II, the sizes of the cycle and star subgraphs are set to n =9 and m = 15.
The weights of the cutset and perturbation edges are wy = 1 and J; = 1, where
1 =0,1,--- ,m — 1. Each component of all initial states is randomly selected from

the uniform distribution over the [3.5,5).
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Figure 5.6: Enhance of Synchronization due to link additions: Networks of coupled

chaotic oscillators in model II are simulated to show the synchronization error at

llzi(t)—z; (D]

a given time, which is given as £ = 3, .| (T

where n, m are the number
of nodes of the cycle and the star subgraphs, respectively. After the red links are
added to each system at time=0.5x 10°, the synchronization occurs where the overall

coupling constant © is selected as ©.(G,) < © < 0.(G).

Therefore, hindrance and enhancement of synchronization due to link additions

manifest themselves in simulations as predicted by our theorems.
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6. PROOFS OF THE MAIN RESULTS

6.1 Proofs of the Main Results

In this section, we prove Theorem B and Theorem C. Note that, Theorem A follows
from Theorem B (See Remark 5.1.5). Furthermore, model II can be considered as a
special case of model III. Thus, we first introduce the main concepts and notations

that we use in the proofs mainly based on model III.

Definition 6.1.1. Let w, dy and ¢ be real, and m and k be positive integers.

Consider M € R.

1. We define p: A — u(X) by

= p(A) = (6.1)

d — O\
=y(\) = 6.2
y =y N —(m+w)A+w (6.2)
2. For any k > 3, we define
A—2 1

1 A—2 1 0
Qr = Qi (\) = 1 : (6.3)

0 SO

1 A—2
kxk

The next two lemmas investigate the matrix Qx(\) for different values of A > 0. See

(Hu and O’Connell, 1996, pp. 1511-1513) for the proofs? .
Lemma 6.1.2. Assume 0 < A < 4 and let 6 = 7 — cos™'(252). We have

1. det(Q) = W sinthr)o,

sin 0

2Regarding Lemma 6.1.2, the formulas in (Hu and O’Connell, 1996, pp. 1511-1513) are
not totally correct. In this research, we have used the corrected ones. Note also that 6 in
this research is not the same as in (Hu and O’Connell, 1996, pp. 1511-1513)
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2. the matrix R = Q; " exists for 0 # kl—j_rl (l=1,...,k), and is given by

cos(k+1—1]i—j])0 —cos(k+1—i—j)0

By = 2sinfsin (k + 1) 0 ’

for 1 <i,j <k.
(6.4)

Lemma 6.1.3. Assume A > 4 and let § = cosh™' (252). Then

1. for A > 4, we have det(Qy) = —Sinl;(nkh;l)g‘

2. for A =4, we have det(Qx) =k + 1.

3. The inverse matrix R = Q,;l exists for all A > 4, and is given by

i+j cosh(k+1—|i—j])0—cosh(k+1—i—j)0
2sinh @sinh (k+1) 46 '

Rij = (—1) for 1 < i,j < k.

(6.5)

Recall ¢y is defined by (5.1). By Lemmas 6.1.2 and 6.1.3, and a straightforward

calculation, we have

Lemma 6.1.4. The matrix @,_1(\) is invertible if and only if A # o for | =

1,....,n—1.

6.2 Our Approach for Investigating the Spectrum of the Perturbed Lapla-
cian Lg,

In this section, we discuss the method that we use to investigate the spectrum of

the perturbed Laplacian Lg,. We directly apply this method to study model III

and then use the results to investigate the models I and II.

Recall that the perturbed Laplacian of model III is given by

L, —A
Le,= | , (6.6)
O L,

where L, and L, are as in Notation 5.3.1, and the matrices C' and A are given by
(5.8) and (5.10), respectively. Our study of the eigenvalues of L¢, is based on the

following lemma.

Lemma 6.2.1. Consider the perturbed Laplacian L¢, given by (6.6). For A € R,

we have
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1. if X ¢ o(Ly), then det (Lg, — AI) = det(Ly — AI) - Py (X), where Pi(\) =
det(M,), for My = My(\) = Ly — A — C (Ly — XI) " A,

2. if A ¢ o(Ly), then det (Lg, — M) = det (Ly — AI) - Py (\), where Py()) =
det(My), for My = My(N) = Ly — M — A(Ly — XI) ' C.

3. for i = 1,2, we have that \g ¢ o(L;) is an eigenvalue of L¢, with algebraic
multiplicity k, if and only if Bi(\o) = P/(Ao) = --- = 4fi(Xg) = 0, and
45 (o) # 0.

Remark 6.2.2. Lemma 6.2.1 allows us to count the multiplicity of Ay € o(L¢,)
when \g ¢ o(L;1) No(Ly). However, this lemma may give information about the
multiplicity of \g when \g € o(L1)No(Lz) as well. This is important for us since we
have such eigenvalues in our models. Let A\ be such an eigenvalue. Since \g € o (L),
the matrix (L; — A\gI)~! does not exist. However, depending on the matrices C' and
A, the expression limy_,y, Y ()\), where Y/(\) := C(L; — A\oI)™*A, may exist. This
allows us to define M; and P, at A = A\ by taking the limit A — X\y. Now, if Y ()
at A = Xg is smooth enough, then the multiplicity of Ay as an eigenvalue of Lg, is
[ + k, where [ is the multiplicity of A\g as an eigenvalue of L; and k is the integer
that satisfies Py(Ag) = P{(X\g) = -+ = d;/\;}jl (Ao) =0, and dd/\lzl (Ao) # 0. Analogous
holds when Ay € (L) but A (L, — M)~ C is well-defined and smooth enough at
A=A

According to Lemma 6.2.1, an eigenvalue A of L¢, that is not in o(L;) No(Ly) must
satisfy Pi(A) = 0 or Py(\) = 0. The proofs of our results are based on the analysis

of these two equations. Sections 6.2 and 6.2.1 are dedicated to this analysis.

Before we proceed further, let us show that A = 1 is an eigenvalue of Lg, for any

arbitrary ¢.

Lemma 6.2.3. For arbitrary ¢, we have 1 € (Lg,). Moreover, the (algebraic and

geometric) multiplicity of 1 is at least m — 2.

Proof. Recall that Lg, = ( f -4 ) It follows from the proof of Lemma A.0.2

—C L
(see relation (A.4)) that there exist m—2 linearly independent left eigenvectors v such
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that v" Ly, = v". Moreover, any such a vector v is of the form v = (0, vy, -+ ,Vp_1) €
R™ (the first entry is zero). Consider the vector u := (0,v) € R**™. Taking into
account that, except for the first row, all the entries of C' are zero (see (5.8)), we

obtain

L, —-A

UTLGP = (len7UT>
—C Ly

= (01><n,UTL2> =u'.

This means that for such vs, the corresponding vectors u are left eigenvectors of Lg,

associated with the eigenvalue 1. This proves the lemma. O]

Analysis of P,. In this section, we investigate the matrix My(\) and the function
Py(X\) := det(Mz(N)) introduced in Lemma 6.2.1 for model III. We first need to
analyze the matrix Ly — Al and its inverse:
Lemma 6.2.4. Recall p from (6.1). We have

1. the function p is well-defined at X ¢ {5, ., B}

m,w)

2. for N\e R\ 0(La) = {Bp s 1, B}, we have

-1

.

(L apt= [ MO - [ " et .
-1 (1-N1I 451 LI+ (1j‘A)211T

(6.7)

Proof. The first part of the statement is straightforward. The second part follows
from Lemma A.0.1. O

We now start to calculate My = My(X\) = Ly —A —A (Ly — M) ™' C. The expression
(Ly — XI)7" is well-defined at A ¢ o(Ly) = {8
calculation and using relation (6.7), for A ¢ o(Ls), we have A (Ly — \I)~' C = yC,

o L B} By a straightforward
where y = y()\) is given by (6.2). Note that y, and therefore yC, is well-defined
and smooth at A = 1. In other words, although (Ly — A1) is not defined at A = 1
(because 1 € (L)), the expression A (Ly — AI)~" C can be defined at A = 1, and
so do the matrix M, and the function P,. This was discussed earlier in Remark

6.2.2. We give the following lemma to emphasize on this property.
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Lemma 6.2.5. The function P(\) = det(M;) is well-defined and smooth at A ¢
B B}

Having A (L, — M)~ C = yC, we obtain

2-A+o-woy | —1—wiy —way -+ Wnoy —1—wu 1y
—1
My =My (\) = 7
0(n—3)X1 _Qn—l
-1
(6.8)

where ,,_1 = Q,_1()) is the symmetric tridiagonal matrix given by (6.3). Applying
Lemma A.0.1 on this matrix, for A ¢ {8, ., B} such that Q,_1(A) is invertible
(recall that, by Lemma 6.1.4, the matrix @,,—1(\) is invertible if and only if A # «;

foril=1,...,n—1), we obtain
Py (\) = det (My) = (=1)""" det (Qu-1) [ (8, A) =y (w, N)], (6.9)
where
EW0,N)=2=-A+0+Riu+Rip1+Ro11+ Rocin-, (6.10)

for which R = (Rij>1gij§n—1 is the inverse of @),,_1, and

n—1
=1 W, A) :wo—zwi [Rir + Rin] (6.11)
i=1
Lemmas 6.1.2 and 6.1.3 give some formulas for R = Q,',. Substituting these
formulas in (6.10) and (6.11) gives
Lemma 6.2.6. For the functions ¢ (4, ) and ¥ (w, A), we have
§ — 2sinf tan %7, 0<A<4andf=m—cos ! (252),
§=E8(6,N) =9 6+ 2 -[(-1)"—1], A =4,
6 + Zsinh8 7 1)" — coshnd], A >4 and 0 = cosh™'(252),
and
coslﬂ Z:’L:_Ol Wy CO8 (% - Z) 9, 0O<A<4and =7 — COS_1(¥),
Z?:_ol (—1)i Wy, n is even, A =4,
Y =1 (W) = 2?701 (—1)" w; 1-2], nis odd, \ = 4,

Cogh cosh BE > 01 (=1)" w; cosh (2 —14)0, n is even, A > 4 and § = cosh™*(252),
(=

— Sz Sy (—1) w; sinh (2 —4) 6, n is odd, A > 4 and 6 = cosh™'(252).



Proof. For A # 4, the proof is a straightforward calculation by substituting (6.4)
and (6.5) into (6.10) and (6.11). For the case of A = 4, the proof follows from taking
the limit of the formulas for the cases A # 4 as A\ — 4 and using L’Hopital’s rule. [

This lemma together with relation (6.9), gives some formulas for P>(\) when P,
is well-defined (A ¢ {3, ., Bh.w}) and Q,_1()) is invertible, i.e. A # a for | =
1,...,n—1. However, we can use (6.9) to calculate P, at A = a; by taking lim P5(\)
as A — aq. By this trick, we have that (6.9) is well-defined and smooth at every real

A EA B B}

To make the analysis of P, simpler, we consider two different cases of 0 < A < 4
and A > 4. For the first case, let § = 7 — cos™!(252), and define p(§) := P2(\(0)) =
P5(2[1 — cos0]). For 0 < 6 < 7 such that 2[1 — cos 8] & {f,, ., B} this gives

ng n—1

sin n# sin -
p(0) =2[cosnd — 1] +6 - g 2y - - Zwlcos (5 — z) 0. (6.12)

Observe that p (0) = limy_,o+ p(f) = 0. With a straightforward calculation, we can

also obtain:

Lemma 6.2.7. Recall oy given by (5.1) and assume oy = 2 (1 — cos ‘X ) & B Brow

where [ € Z is as specified below. Then
1. for even 0 <1 <n — 1, we have p(%) = 0.
2. for odd 1 <1 < n—1, we have p(Z) = ZZ szsm’l—”.

3. foreven 1 <[ <n —1, we have

P <%T) = [ —waZ cos Zl—ﬂ] . (6.13)

6.2.1 Analysis of P,
In this section, we investigate the matrix M; and the function P;(\) = det(M;(N))

introduced in Lemma 6.2.1 for model III. We start with analyzing the matrix L; — A/
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and its inverse. Note that

240—A] =1 Oixm-z -1

Li— M\ = : (6.14)
O(n—3)x1 —Qn—

Lemma 6.2.8. Let A\ > 0 be real. Then, the matrix L; — Al is invertible if and
only if A # oy and £(0,A) # 0, where 1 <[ < n —1is even and £(6, \) is given by
(6.10).

Proof. Assume @),,_; is invertible. Applying Lemma A.0.1 on matrix (6.14) gives
det (Ly — M) = (=1)" " det (Qn_1) £ (5, \).
This proves the lemma for the case that (),,_; is invertible.

Now, we consider the case that @,_; is singular. It follows from Lemma 6.1.4
that@,_1(\) is invertible if and only if A # «; for [ = 1,...,n — 1. Equivalently
()1 is singular if and only if 0 < A = 2[1 — cosfy| < 4 and sinnfy = 0 (see also

Lemmas 6.1.2 and 6.1.3). By virtue of Lemma 6.2.6, for A = 2[1 — cos 6], we obtain

sin n6

. , . nf
det (L1 — M) = olin&)det (L1 = \I) = 0113@10 00 ~<(5 - 2sm9tan7> = 2(cosnby —1).
Thus, when @Q,,_; is singular, L1 — A\I is invertible if and only if cosnfy # 1, i.e.

A # a; where 2 <[ <n —1is even. This ends the proof. O

For real A > 0, assume & (§,\) # 0 and consider the case that R = Q,!, exists.
Then, L; — A is invertible, and by Lemma A.0.1, we have

6_1 _f—er

(Ly = A\I)7' =
_g_lr —R—i-f_lTTT

where r = (Rll + Rln—l, Rzl + Rgn_l, R ,Rn_ll + Rn_ln_l)T. This giVGS

m—ltw—A—20| _j_sv __ sy . _j_dwav
M, =M, (\) = 3 € € 3 :
1, | (1— N1

where ¢ = 1 (w, A) is given by (6.11). Then, by virtue of Lemma A.0.2, we have
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Lemma 6.2.9. For real A > 0, assume R = Q, ', exists, and & (§,\) # 0. Then,

A # 1 is an eigenvalue of L¢, if and only if

/\2—[m+w—M])\+w—5—¢:O, (6.15)

£ §

or equivalently, one of the following holds:

)\:1<m+w—\/(m+w)2—4w+w> (6.16)

2 §

or

A:

N —

 aw g HE= NG
<m+w+\/(m+w) 4w + ¢ )

Remark 6.2.10. If A ¢ {3, ., B .}, then relation (6.15) can be derived from the

equation { — yp = 0 (see (6.9)), and vice versa. In other words, if A # ;. ,, then
relation (6.15) does not give any further information about the eigenvalue A other
than what P, = 0 gives, where P, is given by (6.9). However, since P; is not defined
at (5., (because p is not defined at these points), we still require (6.15) to analyze

A = BE(m,w).

6.3 Proof of Theorem B
Throughout this section, we assume that wg =1 and w; = 0, where 1 <7 <n — 1.
Moreover, we have that 6 > dy > 0. Note that, to adapt this proof for Theorem A,

it is sufficient to assume d = dg. We start with the following definition.

Definition 6.3.1. Recall Definition 5.1.1. Assume 3, ; ¢ {a; : 0 <1 < n} and let

Kk > 2 be the even integer such that 3, € (a2, ).
1. Define Jg- 1= (qp_2, ax).
2. Let 2 <1 <n—2 be even. We define

J (06171,061), if2<i< K,
l:
(o, ayy1), fr<li<n-—2.

3. Define Jg+ := (avp—1,00).

4. For the sake of convenience, we define the set of indices Z := {7, T} U{l :

0 <l <nand!iseven}.
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Remark 6.3.2. Note that when k = 2, there does not exists J; for 2 <[ < k.
Remark 6.3.3. Notice that §,,, >m >4, and so B3, | € Ja+.

Considering eigenvalues with their multiplicities, the perturbed Laplacian Lg, has
n + m eigenvalues. The next lemma describes where these n 4+ m eigenvalues are

located.

Lemma 6.3.4. Let § # 0 be an arbitrary perturbation that satisfies § < 001
Then, all the n +m eigenvalues of the perturbed Laplacian L, of model IT are real

and given by the union of the following four disjoint groups (see also Remark 6.3.6).

1. Lg, has || + 1 real eigenvalues given by {oy : where 0 < I < n —

1 and [ is even}.
2. Lg, has m — 2 of repeated eigenvalue A = 1.

3. Recall the set Z. Each interval J, for v € Z and v # S contains exactly one
real eigenvalue of L, (except possibly for the m — 2 eigenvalues 1 counted in

item (2)). We have | 5] of these intervals, and so L, has | 5] real eigenvalues

given by these intervals.

4. The interval Jz+ contains two real eigenvalues of the perturbed Laplacian Lg, .

Thus, Lg, has 2 eigenvalues given by Jg+.
Remark 6.3.5. Observe that (|52 + 1) + (m—2) + [2] +2=n+m.

Remark 6.3.6. The sets of the eigenvalues given by items (1) and (2) might not
be disjoint, i.e. «; = 1 for some even [. The same may happen for (2) and (3),
i.e. the eigenvalue in J, given by item (3) equals to 1. The eigenvalue 1 in such
scenarios are counted separately from the m — 2 eigenvalues 1 given in item (2). In

such scenarios, the multiplicity of eigenvalue 1 is m — 1.
The proof of Lemma 6.3.4 is postponed to Section 6.3.1. We now prove Theorem B.

Part (1) of Theorem B follows from Theorem C which is proved later in Section 6.4.
Here, we show that part (1) of Theorem B satisfies the corresponding assumptions of

Theorem C. Recall S given by (5.4). Setting wy = 1 and w; = 0, where 1 <i < n—1,
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gives

062[6(042—7”)"‘(50—5]

g
(a2 = B) (a2 — B1)

(6.17)

and

n—1 —

0 -2
5 w; Cos (g — z) 0 = cos %, where 0 =m—cos! <6mlT) . (6.18)
i=0

Take into account that dg < § and as < 4. When ay < B;M, we have S < 0. On the

other hand, when a; < 3, ; < ag, we have - < 0 < 27” and so cos "79 < 0, where ¢
is as above. Therefore, part (1a) of Theorem B follows from parts (1a) and (1e) of
Theorem C, and part (1b) of Theorem B follows directly from part (1c) of Theorem

C.

Part (2a) of Theorem B is a consequence of part (2a) of Theorem C, since, as

mentioned above, when as < (8 we have S < 0.

m, 15
Let us now prove part (2b) of Theorem B. First, assume ay < By,1- This implies
k > 2. Thus, by Lemma 6.3.4, Lg, has a unique eigenvalue in the interval J, =
(a1, ap) which is indeed the spectral gap of Lg,. Denote it by Ay (LGP). Since the
spectral gap of the unperturbed Laplacian Lg is oo, we have Ao (LGP) < X2 (Lg)-

This shows that, in the case an < f3

m,1?

the statement of part (1a) of Theorem B
holds for arbitrary perturbation 0 that satisfies § < 0001

Now, assume f3,,; < ap. This implies £ = 2, i.e. Jg- = (0,a2). According to
Lemma 6.3.4, Lg, has a unique eigenvalue in the interval Jz- = (0, ) which is
indeed the spectral gap of Lg,. Denote it by Ay (3) Note that the spectral gap of
the unperturbed graph Lg is Ay (0) = 3, ;. Following Lemma 6.2.9, we have

m,1°

4[5 80Ms (3)]
: ,

AQ(S):% m+1—\/(m+1)2—4+ (6.19)

A2 (5)-2

where £ = ¢ (0,X (6)) = 6 —2sinftan "2 and § = m — cos™ (=5

). Observe that
when § = 0 (and consequently, § = & = 0), A2 (0) = f3,, satisfies this relation.
According to (6.19), the proof follows from this observation that for a given §, we

have Az (8) > A2 (0), A2 (6) = A2 (0) and As (6) < Az (0) if and only if the expression
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§ — doAa (6)
§

be negative, zero and positive, respectively.

(6.20)

First, consider the case a; < Ay (0) = 3, < . It is easily seen that 3, | < 8, ~
0.21 for all m > 4. Thus, having a; = 2 (1 — CoS %) < ﬂn_%l < 0.21 yields n > 7
which implies ap = 2 (1 — cos %’T) < 1. Note also that as § changes, A, (3) remains

in (0, ) (this is a consequence of part (3) of Lemma 6.3.4). Therefore
0 — (50)\2 (S) >0 — 50 + 50 [1 - 042] > max{(5 — (50, 50 [1 — 042]}. (621)

Thus, the numerator of (6.20) is positive for any § # 0. Regarding the denomi-
nator of (6.20), note that £(0,4,,;) > 0 when oy < 3, < as. We claim that
19 ((5, A2 (3)) > 0 for all §. Taking into account that ¢ is a smooth function of (&, \)
for A # ay, the claim will be proved once we show that Ay(0) > ay holds for any §

and also £ does not vanish as § varies.

We first show that A\y(d) > ay for all 6. Assume the contrary; there exists 5 and
correspondingly 81 and &) for which )\Q(ST) = «y. However, lims_, 5 £ = co. On the
other hand, the numerator of (6.20) converges to 5*—58041 > 0. Therefore, as § — 47,
expression (6.20) converges to zero which, by (6.19), implies that )\Q(ST) = B,,1 and
80 3,1 = ai. This contradicts the assumption 3, ; ¢ {a; : 0 <1 < n} of Theorem

B. Thus, \»(0) < a; for all 6.
Since a; < A2(6) < as for all 4, we have that sinftan? < 0, where § = 7 —
)\2(3)—2

2

cos™1( ). This yields £ > § for all § which means that it cannot vanish as &
varies. Therefore, the numerator and denominator of (6.20) are both positive. It
then follows from (6.21), that when oy < 3, < o, we have \y(Lg,) < Aa(Lg), as

desired.

Now, we consider the case 0 < Ay (0) = 3,,; < a;. We first show that X\o(d) < a; for
all 5. Assume the contrary; there exists 5" and correspondingly 6t and (58 for which
)\Q(ST) = «ay. However, lims_, 5+ ¢ = —00. On the other hand the numerator of (6.20)

converges to o7 — (55041 > 0 (note that ay <1 for all n > 3). Therefore, as § — o,
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expression (6.20) converges to zero which, by (6.19), implies that /\2(5T) = B and
80 f3,,1 = ai. This contradicts the assumption 3, ; & {a; : 0 <1 < n} of Theorem
B. Thus, M\y(d) < ay for all 6.

It is easily seen that £(0, 3,,,) < 0when 0 < 3, ; < a;. We claim that £(0, 5, ;) <0
for all 5. Note that ¢ is a smooth function for A # a;. On the other hand, we have
shown that A\y(8) < oy for all . Thus, to prove the claim, we need to show that ¢
does not vanish as § varies. Assume the contrary; there exists 5" and correspondingly
6t and 6] such that as § — ST, we have £(, /\Q(ET)) — 0. By (6.19), this requires the

numerator of (6.20) to vanish at ST, ie o — 58)\2(5T) = 0. However, by A\2(d) < oy

and taking into account that a; <1 for all n > 3, we obtain
5t — 5T (ST) > max {5* 54l [1 o (3*)] } > 0. (6.22)

This contradicts the assumption of vanishing £ at il Therefore, we have £(0, 5, ;) <
0 for all 6. It then follows from (6.21), that when 0 < 8, ; < i, we have As(Lg,) >
Xo(L¢), as desired. This finishes the proof of part (2b) and the proof of Theorem B.

6.3.1 Proof of Lemma 6.3.4
So far, we have used Lemma 6.3.4 to prove Theorem B. We are now in the position

of proving this lemma.

The proof of Lemma 6.3.4 is based on Lemma 6.2.7. In the setting of Theorems A
and B, we assume wy = 1 and w; = 0 for i = 1,...,n — 1. In this case, (6.12) is

written as

sin nd

p(0) =2[cosnd — 1]+ [0 —y] - (6.23)

sinf -

Then, Lemma 6.2.7 gives

Lemma 6.3.7. For 0 < X <4, let § =7 — cos™'(252). Consider p given by (6.23).
Then

1. for even 0 <1 <n—1, we have p(%r) =0.

2. for odd 1 <1<n—1, we have p(‘Z) = —4.
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3. for even1 <1l <n—1, we have

Sl n 5— ]_—n)\ (m—MX)d+6d—d
PAn) ™ sntz y_sin%” N —(m+1)A+1

n

(6.24)

Proof of part (1) of Lemma 6.3.4. The proof directly follows from part (1) of Lemma
6.3.7. o

Proof of part (2) of Lemma 6.3.4. The proof directly follows from Lemma 6.2.3 and

its proof. O

Proof of part (3) of Lemma 6.3.4. We first investigate p’ (%) given by (6.24). The
expression A” — (m 4 1) A+ 1 is positive if and only if A < 3, or A > | > 4. For

A = 2[1 — cos Z], when [ is even, this gives

N—(m+1DX+1>0, iflisevenand2<1<k,
N—(m+1)A+1<0, iflisevenand x <l<n-—1.

When A € J,, for v # 7, we have that A < 4 < m. On the other hand, d, < ¢.
This implies that when ¢ > 0, we have (m — X)d + 9 — dp > 0. Taking into account

that sin%7r > ( for all 0 <1 <n —1, we obtain

)<0, if [is even and 2 <[ < &,

)>0, if [isevenand Kk <l <n—1.

We have that p' () = 0 if and only if § = 0. This, together with item (1) of Lemma

6.3.7, gives

Proposition 6.3.8. Any point of {a; : where 0 <1 < n —1and [ is even} is a

multiple eigenvalue of L with multiplicity 2, and a simple eigenvalue of Lg, .

For even [, when 2 <[ < k, we have p/ (l—“) < 0. This means that p(0) is positive

n

for 6 close to %r and 0 < %r On the other hand, p (M) = —4 < 0. Thus, by the

n
intermediate value theorem, the function p has a root in the interval <M l—“)

This implies that Lg, has a real eigenvalue in J;. Analogously, for even [ and when

Ir (+)7m
n

=, ) which means

k <l < n—1, the function p has a root in the interval (

that Lg, has a real eigenvalue in J;.
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At § = 0 (when there is no perturbation), the interval Jz- has the eigenvalue B
As 6 changes, the eigenvalue By, starts to move. However, since a2 and «, are
simple roots, this eigenvalue cannot leave the interval Jg- = (,—2, o). This means

that Lg, has a real root in Jg-.

We have shown that each interval J, for v € Z and v # S contains at least one real
eigenvalue of Lg,. To finish the proof, we need to show that each of these intervals
has exactly one eigenvalue (apart from m — 2 eigenvalues 1 counted in item (2) that
might be located in one of these intervals). Note that, we have already counted
n+m—2= 2] +1+m— 2+ 2] real eigenvalues of Lg,. The matrix L, has
n + m eigenvalues. Thus, the proof of part (3) of this lemma is done after we prove

part (4) of this lemma below. O

Proof. [Proof of part (4) of Lemma 6.3.4] So far, we have shown that the matrix
Lg, has at least n + m — 2 eigenvalues located outside of the interval Jg+, and as
0 varies, none of these eigenvalues enters this interval. Notice that for arbitrary
0 > 0, when n is even, p(@) < 0, and when n is odd, p(@) = 0 and
P’ (@) # 0. This means that if there is any real eigenvalue located in Jg+, then it
cannot leave this interval as 6 changes. As shown below, for sufficiently small § # 0,
the interval Jg+ has exactly two real eigenvalues. On the other hand, Lg, is a real
matrix. Therefore, if it possesses non-real eigenvalues, then they need to appear as
pairs (complex conjugates). This means that, for a given §, we either have two real
eigenvalues in Jg+ or none. Therefore, the proof of part (4) of Lemma 6.3.4 is done
if we show that, under the condition § < 505;271, the interval Jg+ has at least one

real eigenvalue.

First, we show that when § # 0 is sufficiently small, the interval Jg+ has exactly
two real eigenvalues. For even n, this is obvious since at 6 = 0, we have two

cigenvalues A = 4 and A\ = S ,, and so, as 0 varies and remains sufficiently small,

m,1»
these two eigenvalues might move but they remain in Jz+ and do not collide (so,
they remain real). The case of odd n is similar; since for § # 0, we have p’ (a,,_1) > 0
and p(—4) < 0, the intermediate value theorem implies that there is a root in the

interval (ay,—1,4). On the other hand, the eigenvalue 3, € (4,00) of Lg might

50



move as ¢ varies but as far as ¢ is sufficiently small, it does not collied with the
eigenvalue that we just found in the interval (a,_1,4). Therefore, we have that for

small 6 # 0, the interval Jg+ contains exactly two real eigenvalues of Lg, .

We now prove that Jsz+ has at least one real root when § < 506;2’1. Evaluating (6.9)
at A > 4, gives

d — oA
N—(m+DA+1]’

sinhnf |[2sinhf

_(_ n—1 .
Py (A) = (=1) sinh @ |sinhnd

[(=1)" — coshnf] + 6 —

where 6 = cosh™'(252). Note that A — (m 4 1) A + 1 vanishes at A = 3, ;. Thus,

when § < dof3;), ,, we have

+00, for even n, as A — (B} ,) ",
lim Py (A) = o (6.25)
—00, for odd n, as A — (B ,) .

When n is even, we have P, (4) = W < 0. Taking (6.25) and the fact that
P is smooth on (an—1, £, 1) into account (see Lemma 6.2.5), the intermediate value

theorem implies the existence of a real root of P, in (4, 8;,,) C Js+, as desired.

For the case of odd n, we have p(@) =0 and p’(@) > 0. Thus, for A > a,,_1
and close to ay,—1, we have P»(\) > 0. Taking (6.25) and the fact that P, is smooth
on (an-1, 53,5 ,) into account (see Lemma 6.2.5), the intermediate value theorem
implies the existence of a real root of P, in (a1, 6;071) C Ja+, as desired. This ends

the proof. n

6.4 Proof of Theorem C

6.4.1 Proof of part (1) of Theorem C

We first prove that for sufficiently small §, all the eigenvalues of Lg, are real. It
is known that the roots of a polynomial (in our case, the characteristic polynomial
of Lg,) depends continuously on the coefficients of that polynomial. Therefore,
if {\; (3) : 4 =1,...,n+m} is the spectrum of L¢,, then \; (3) is a continuous
function of §. It is a direct consequence of the implicit function theorem that if \; (0)
is a simple eigenvalue of L, then for sufficiently small §, we have that )\, (3) is real.
Thus, to prove our statement, we need to investigate how multiple eigenvalues of

the unperturbed Laplacian Lg behaves as 0 varies.
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Recall Proposition 5.2.3. According to Remark 5.2.4 and the assumption 3, ¢
{ar : 0 <1 < n} of the theorem, we have that 3, , and 3] , are simple eigenvalues
of Lg. Note that 1 € {oy : 0 <1 <n, and [ is even} if and only if % is an integer.
First, assume g ¢ 7Z. In this case, the multiplicity of all the eigenvalues «; except
for 0 and 4 (the eigenvalue 4 appears only when n is even) is 2. However, it follows
from Lemma 6.2.7 that, for each even [, as 0 varies, one of the two eigenvalues q;
remains as an eigenvalue of Lg, for small arbitrary 0, and the other eigenvalue moves
continuously. This means that from each of the multiple eigenvalues «;, two real
eigenvalues get born. On the other hand, following Lemma 6.2.3 and its proof, the
eigenvalue 1 remains an eigenvalue of L, with multiplicity m — 2. This implies that
when § ¢ Z and 0 is sufficiently small, all the eigenvalues of L¢, are real. The case
of ¢ € Z is similar. With the same conclusion, except for [ = ¢, i.e. a; =1, two
real eigenvalues get born from each eigenvalue oy, where [ = 1,...,n—1. Regarding
a; = 1 (note that the multiplicity of 1 as an eigenvalue of L in this case is m), we
have that a; = 1 remains an eigenvalue of Lg, with multiplicity m — 1 and a new
real eigenvalue gets born from it. This proves that when § is sufficiently small, all

the eigenvalues of Lg, are real.
The rest of the proof of part (1) of Theorem C is based on the following lemma
Lemma 6.4.1. Consider p and S given by (6.12) and (5.4), respectively. We have
1. The expressions S and p' (27”) have the same sign.
2. Assume ay < B, . Then, for any arbitrary &, we have p (%) < 0.

3. For sufficiently small §, we have p (37“) < 0.

Proof. The first part follows from the relation p/ (2) = 59 (see relation (6.13)).
For the other two parts, note that by Lemma 6.2.7 and for odd 1 < [ < n — 1,

2 1 : :
we have p(Z) = —4 — = D i wisin 4x  Regarding the case [ = 1, assumption

ay < B, implies that ay < 1 (see Remark 5.2.4) and therefore oy < 1. Thus,
§ — dooy > 0, and therefore, y = y(ay) = —2%4___ >~ (. On the other hand,

a?—(m+w)ai+w
sin%r >0fori=0,...,n—1and so Z;:ol w; sin%7r > 0. This implies p (;—r) < 0 for

any 6.
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< 4 which holds when

2y 317r
) D ' w; sin 3%
n

¢ is small enough. O]

Proof of parts (1a) and (1b) of Theorem C. Since as < f;,

m,w’

the spectral gap of
Lg is as. It follows from Lemma 6.2.7 that p (27”) = 0 for all . On the other
hand, p (%) and p (37”) are both negative for sufficiently small 6. Therefore, by
intermediate value theorem, the eigenvalue that gets born from as, as § varies is
located in the interval (ao, az) if p/ ( ) > 0, and is located in (o, o) if p/ ( ) < 0.
On the other hand, by part (1) of Lemma 6.4.1, we have that p' (2£) and S have
the same sign. This proves parts (1a) and (1b) of Theorem C. O

Proof of parts (1c), (1d) and (1e) of Theorem C. Since 3, ,, < s, the spectral gap

of Lg is B,,,- So, we need to see how S5, (5) changes as & varies. By (6.16), for

sufficiently small & # 0, we have that o (5) > By if (5—6oi7;,w)w

B () < B 1 w > 0. Note that, 6 — dof3,,,, > 0, since § > 9o and

(8,0 )

£(0.Bmuw)

< 0, and

Brw < 1. Thus, all we need to do is to investigate the sign of

Note that & ((5, B;MU) and & (0, B,;’w) have the same sign provided that § is sufficiently
small and §(O B, ) # 0. Following Lemma 6.2.6, f(() B w) = —2sinftan %> ”9
where 6§ = ™ — cos™ (’Bmw ). It is easily seen that{(O B ) <0if0 <3, , <a,
and & (O, 6;“1“) > 0if a; < 8, < az. On the other hand, by Lemma 6.2.6,

n—1
1 n
E w;cos | ——1)0,
os%e = (2 )

U (W, By ) = -

where 6 = W—cos_l(ﬁm—“’) Note that cos % < 0if ay < f,,,, < a2, and cos % > 0

2
fori=0,...,n — 1, and therefore Z?:_OI w; COS (g — z) 0 > 0. We have

if 0 < B,,, < ar. Moreover, when 0 < B;W < a1, we have that cos (— - z) 0 >0

ﬁgg“j::; <0 if0<B, <o,

%é":) >0 if ay < B, <as, and Z;:Ol w; COS (% — 2) 0 <0,
i%?;j:) <0 ifo<f,, <a, and S w; cos (2—i)6>0.

This ends the proof of parts (1c), (1d) and (1le) of Theorem C. O
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Proof of part (2) of Theorem C. Since ay < B, ,,, We have Ay (L) = a (see Propo-

sition 5.2.3). On the other hand, by Lemma 6.4.1, S and p’ (27“) have the same sign.
If S <0, since p (g) < 0 (see Lemma 6.4.1), the intermediate value theorem implies
that L, has an eigenvalue (p has a root) smaller than ay. Denote this eigenvalue
by A (3) When the perturbation is small, this eigenvalue is indeed the spectral gap
of Lg,, as discussed in the proof of part (1a). However, for large perturbation, there
is the possibility of the emergence of non-real eigenvalues of Lg,. In such a scenario,
there might be complex conjugates eigenvalues of Lg, whose real part decreases and
becomes smaller than A (3) This means that the spectral gap is not necessarily a

real number, however, since A (3) < (g, we always have Re ()\2 (LG,,)) < X2 (Lg)-

This proves part (2a) of the theorem.

The proof of part (2a) is similar. For small perturbations, as discussed in the proof
of part (1b) of the theorem, we have that g (LGP) = ay. In fact, s is an eigenvalue
of Lg, for arbitrary 0. However, as we discussed above, there is a possibility of the
emergence of non-real eigenvalues for L, when the perturbation 0 is large. Thus,
this might be the case that the real parts of these non-real eigenvalues reduce, and
they become the spectral gap of Lg,. In any case, the property Re (/\2 (LGP)) <
X2 (L¢) always holds. This proves part (2b) of the theorem. O

o4



7. CONCLUSION

7.1 Informal Statements of Our Results

We consider three models, namely model I, II, and III, illustrated in Figures 7.1, 7.2,
and 7.3, respectively. These three models have a master-slave structure. Indeed, the
unperturbed graph in all these models consists of a cycle graph C),, a star graph
Sm, and cutset edge(s) starting from the cycle and ending at the hub of the star.
We perturb these networks and break the master-slave structure by adding directed

link(s) from the star to the cycle (red-color edges in the figures).

(a) The unperturbed graph G. (b) The perturbed graph G,.
Figure 7.1: Model I: Breaking the master-slave through hub coupling. We add
a directed link from the hub of the star to the cutset node (the red-color edge)
where the cutset node refers to the node which cutset edge starts from. The weakly
connected directed graph becomes the strongly connected directed graph consequent

to the perturbation shown by the red arrow.

(a) The unperturbed graph G. (b) The perturbed graph G,.
Figure 7.2: Model II: Breaking the master-slave through multiple couplings. We

add links from some nodes of the star to the cutset node of the cycle.
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(a) The unperturbed graph G. (b) The perturbed graph G,,.

Figure 7.3: Model III: Breaking the generalized master-slave through multiple cou-
plings. We add links from some nodes of the star to the one cutset node of the cycle

where multiple cutset nodes exist.

We define the adjacency matrix of G by Ag = (4;;), where A;; > 0 is the weight
of the directed edge starting from node j and ending at node i. We define the
Laplacian matrix of G by Lg := Dg — Ag, where Dg is a diagonal matrix whose

(i,1)-entry is the in-degrees of the node 7 of G.

Let Lg and Lg, represent the Laplacians of the unperturbed and perturbed graphs
of each of these models, respectively. Let Ay(Lg) and Ay(Lg,) be the associated
spectral gaps. Our results explain how the perturbation affects the spectral gap
of the Laplacian matrices of these models. Assume §y > 0 is the weight of the
perturbation edge starting from the hub and § > 0 is the sum of the weights of all
the perturbation edges. In model I, we have d; = §, and in the other two models,

dp < 0.

All these models are discussed precisely in previous sections. Here, we rather give

an informal version of our main results.

Theorem A’. [Informal statement| Consider model I illustrated in Figure 7.1. Let
the perturbation 6 > 0 be arbitrary (it does not need to be sufficiently small). We

have
1. Although Lg, is not necessarily symmetric, all of its eigenvalues are real.

2. Let m and n be the sizes of the star and cycle, respectively. There exists a
critical m. = m.(n) (for large m and n, it is estimated by m. ~ % — 1) such

T2

that Ay (Lgp) < A2 (Lg) if and only if m < m..
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Theorem B’. [Informal statement] Consider model II illustrated in Figure 7.2. We

have

1. Under a local perturbation, the statement of Theorem A’ is valid for model II
as well. Indeed, when ¢ > 0 is sufficiently small, all the eigenvalues of Lg, are
real and, the perturbation decreases the spectral gap if and only if the size of

the star is smaller than the critical value m.(n).

2. Let p:= %0. This ratio can be seen as a measure for the perturbation that the
cycle receives from the hub of the star relative to the perturbation it receives
from the leaves of the star. We have p < 1, and by setting p = 1, the model
IT reduces to model I. Under a global perturbation (§ be arbitrary), we prove
that not only the statement of Theorem A’ is valid for model II when p = 1
but also it is valid when p > K, where 0 < K < 1 is a constant given in

Section 5.

3. According to the previous item, under a global perturbation, if p > K holds,
all the eigenvalues of L, are real. Non-real eigenvalues may appear when this
condition fails. However, we can still prove that, for perturbations of arbitrary
size (whether or not p > K holds), we have Re (A2 (Lg,)) < A2 (L¢) if the size
of the star is smaller than a critical value m.(n) (this critical value is different

from the previous one and for large m and n it is estimated by m, ~ % —1).

Theorem C’. [Informal statement] Consider model III illustrated in Figure 7.3.

We have

1. Under a local perturbation, all the eigenvalues of L¢, are real. When A\y(L¢) =
Xo(Lg,), i.e., A2(Lg) belongs to the upper left block of Lg, the spectral gap
decreases or does not change after perturbation. These two characteristic
behaviors can be classified using the parity of the function .S given in equation
(5.4), the arguments of which depend on the sizes of cycle and star, the total
and individual weights of cutset edges, the topology of cutset (which nodes
of the cycle are connected to the star), and the sizes of the perturbation &

and dp. On the other hand, when \y(Lg) = Aao(Ls,,+p.. ), the decrease of the
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spectral gap due to the perturbation occurs if A\o(Ls,,+p.) is in the interval
between the spectral gap of a path with size n and the spectral gap of a cycle
with size n and if the summation in le, whose arguments depend on the sizes
of cycle and star, the topology of cutset, the total and individual weights of
cutset edges, has odd parity.

2. Under a global perturbation and when A\y(Lg) = A2(Lc, ), the real part of the
spectral gap decreases or strictly decreases after perturbation depending on

the parity of the function S given in equation (5.4).

7.2 Discussions

In this research, we have investigated the effect of link modifications on network
synchronization and have revealed the emergent synchronization loss due to link
additions. Even though the existence of such cases is proved by Poignard et al.
(Poignard, Pade and Pereira, 2019, pp. 1919-1942), there was a lack of rigorous
prescription to detect when link additions hinder the synchronization depending on

the graph parameters.

We presented a classification scheme depending on the underlying graph parameters.
Despite the fact that this research only includes some motifs, it examines not only
sufficiently small perturbations but it also includes wide range of perturbations for
all sized networks and discovers different settings. Thus, one can predict rigorously
for particular settings when the synchronization loss occurs due to link additions
via this study. Since cycle and star are fundamental motifs in many networks, this

research might provide a basis for future generalizations.
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APPENDIX A: TECHNICAL LEMMAS

Lemma A.0.1. Consider the block matrix ( 2 i ) and assume D is invertible.
Define £ := A — BD~!'C. Then

1. det ( 2 ’ ) = det (D) x det (E).

-1
2. Assume F is invertible. Then, ( 2 B ) = <

E-1 —E-1BD- !
D

—-D-1cg~1 p-l4pD-lCcE-'BD!

Proof. See, e.g. (Meyer, 2000, p. 475) m

Lemma A.0.2. For m > 4, let Xy, X1,..., X,,_1 be real-valued functions defined

on a subset of R, and consider the m x m matrix

MM(A)(m)\+XO()\) “1+X;1(A) —14+Xo(A) - —1+Xp1 (V) )

1- N1

]-mfl

Let Ay € R, and assume that all the functions X; are defined at \,.

1. There exists 0 # v € R™ such that M(\g)v = 0 if and only if A\g = 1 or A = \g

satisfies

m—1

N—[l4+m+XoWA+1+ > X () =0. (A1)

=0

2. Assume that there exists 1 < ¢ < m —1 such that X;(1) # 1. Then, the vector
subspace E'8M C R™ (resp. E' € R™) of all the solutions v of the equation
M(1)v =0 (resp. v' M(1) = 0) has m — 2 dimensions.

3. Let v = (vo,v1,...,Um_1) € R™ Then, any v € E"8" satisfies the property
vo = 0. Moreover, if there exists 1 < i < m — 1 such that X;(1) # 1, then, any

v € B satisfies the property vy = 0 too.

Proof. For v = (vg,v1,...,0m_1) € R™ we have M(\)v = 0 if and only if

[m — A+ Xo(N]vo+ 37 [-1+ X;(\)]v; =0, and (A.2)

vo+(1—=Nwv;, =0, foralll<i<m-—1. (A.3)



This implies that for A = 1, the equation M (1)v = 0 has a solution v if and only if

v € Eright for

EHsht.— fy e R™| wp =0 and ((v1,v2, - ,0m-1),(X1 (1) = 1,..., X;m_1 (1) = 1)) = 0},

where (-, -) is the standard Euclidean inner product in R™~1.

If M(1)v =0, for A # 1, has a solution v, then it follows from (A.3) that vy # 0 and

v; = 12, for all 1 <4 < m — 1. Substituting this into (A.2), and multiplying the

derived equation by 1 — A give (A.1). This proves part (1).

Part (2) follows from (A.4). To prove part (3), let v € E*. By v"M(1) = 0,
we have that if there exists 1 < i < m — 1 such that X;(1) # 1, then vy = 0
and v; + vy + -+ + v,,-1 = 0. The set of all vs satisfying these properties is a

(m — 2)-dimensional subspace of R™. This finishes the proof of the lemma. O
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