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NETWORK RECONSTRUCTION FROM DATA

ABSTRACT

Dynamical networks, including power grids, food webs, climate networks, and neu-

ron networks, described by dynamical units oscillating on complex networks, are

fundamental components of our everyday lives. The ability to regulate network dy-

namics is crucial for predicting, thus, controlling these systems’ behavior to acquire

the desired functionality. Neuron networks are an important class of dynamical net-

works for human wellness since the changes in the interaction can lead to undesired

pathological situations. For instance, epileptic seizures are associated with emergent

neural network synchronization when dynamic network parameters change. Conse-

quently, it is vital to anticipate critical transitions to neuronal synchronization and

invent predictive technologies to detect early warning signals to prevent potential

tragedies. In the case of neuron network dynamics, consisting of intrinsic neuron

function and the coupling scheme between neurons, the critical transitions to syn-

chronization are not directly determinable. Therefore, the governing equation must

be recovered from the observations of the nodes for forecasting the critical transi-

tions due to parameter changes. Therefore, the governing equation must be recov-

ered from the observations of the nodes for forecasting the critical transitions due

to parameter changes. This PhD thesis develops a dynamical network reconstruc-

tion approach from time series observations by integrating mean-field approaches

from dynamical systems theory with statistical learning tools. The proposed recon-

struction approach assumes a neuroscientific setting and accessibility to all nodes’

data while the local dynamics of the nodes, the coupling function between them and

the interaction structure are unknown. Our methodology accurately identifies them

using relatively short time series and is independent of the network size, which is

vital since it is generally impossible to have long real-world observations, and real

networks are large. Finally, the reconstructed model allows us to predict the emer-

gent collective behavior of dynamical networks considering parameter change, which
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is crucial to avoid undesired behaviors for real-world applications such as epilepsy

seizures.

Keywords: network dynamics, data, reconstruction, neuron networks,

chaos, synchronization, collective behavior
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VERİ GÜDÜMLÜ AĞ YENİDEN YAPILANDIRMASI

ÖZET

Güç şebekeleri, ekosistem, iklim, nöron ağları ve bir hastalığın küresel ölçekte yayıl-

ması gibi hayatımızın temel bileşenlerinin bir ortak noktası vardır: karmaşık ağlar

üzerinde etkileşen dinamik birimler olarak modellenebilmeleri. Pek çok örnekte, kar-

maşık sistemlerden elde edilen veriler doğal bir ağ yapısını temsil eder veya sistem

özünde ağ yapısında olmasa bile bir ağ gibi modellenebilir. Ağ dinamiğini bilmek,

bu karmaşık sistemlerden istenen işlevselliği elde etmek, dolayısıyla gelecekteki du-

rumunu tahmin etmek ve kontrol etmek için çok önemlidir. Örneğin beynimizdeki

nöron ağlarının etkileşimindeki normal olmayan değişiklikler patolojik durumlara

yol açabileceğinden, bu ağlar insan sağlığı için önemli bir dinamik ağ sınıfını oluş-

tururlar. Epilepsi krizleri nöron ağlarının etkileşimlerinin değişmesi ile beliren ağ

senkronizasyonu ile ilişkilidir. Bu tip istenmeyen nöronal senkronizasyona kritik

geçişleri önceden tahmin etmek ve erken uyarı sinyallerini tespit edecek teknolojileri

icat etmek hayati önem taşır. Nöronların iç dinamikleri ve aralarındaki bağlantı

şemasından oluşan nöron ağlarında, senkronizasyona kritik geçiş doğrudan belirlen-

emez. Bu nedenle amaç, parametre değişikliklerinden kaynaklanan kritik geçişleri

tahmin etmek için ağ dinamiğinin denklemini her bir düğümden elde edilen ölçüm

verisinden öğrenmektir. Bu doktora çalışması, dinamik sistemler teorisinden orta-

lama alan yaklaşımlarını istatistiksel öğrenme araçlarıyla birleştirerek zaman serisi

gözlemlerinden dinamik bir ağı yeniden yapılandırma yaklaşımı sunar. Önerilen veri

güdümlü yeniden yapılandırma yaklaşımı iki temel varsayımda bulunur: sinirbilim-

sel bir model ve tüm düğümlerin verisine tam erişim. Buna karşılık, düğümlerin iç

dinamikleri, aralarındaki bağlantı yapısı ve etkileşim şekli bilinmez. Sinirbilimsel

koşullar, nöronların iç dinamiğinin kaotik davranış göstermesi, zayıf bir etkileşimde

olmaları ve ölçekten bağımsız bir ağ ile temsil edilmeleri olarak sıralanır. Metodolo-

jimiz tüm bilinmeyenleri nispeten kısa zaman serileri kullanarak doğru bir şekilde

öğrenir ve ağ boyutundan bağımsızdır. Kısa süreli ölçüm ve büyük ağlarda başarı
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gerçek dünya örneklerine yaklaşabilmemiz için önemli iki kısıt olarak ele alınmıştır.

Sonuç olarak, veriden öğrenilmiş ağ modeli tüm parametreleri kontrol edebilmemize

ve karmaşık ağın kolektif davranışını tahmin edebilmemize izin verir.

Anahtar Sözcükler: ağ dinamiği, veri, yeniden yapılandırma, nöral ağlar,

kaos, senkronizasyon, kolektif davranış
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1. INTRODUCTION

We are surrounded by complex networks composed of many interacting units that

form an intricate interaction structure by individually interacting with one or many

others. Examples of complex systems are power grids consisting of generators and

loads, a climate system of interacting spatially-diverse weather patterns and the

brain and its neuronal networks. On the other hand, recent technological advances

have made collecting large amounts of data from such complex systems possible.

However, more than data availability is needed to understand a complex system’s

behavior better. A major scientific challenge is to develop methods for understand-

ing the mechanism behind the collective dynamics of a complex network so that

we could be able to predict critical transitions. Throughout the thesis, we seek to

reveal the network structure among units and the rules that govern the underlying

dynamics from spatiotemporal data. Reconstructing network dynamics from data

is crucial for predicting the changes in the dynamics of complex systems such as

neuron networks. For instance, synchronization is the most prominent collective be-

havior observed due to neuronal interactions. Some brain disorders like Parkinson’s,

Alzheimer’s and epilepsy are associated with abnormal neural network synchroniza-

tion (Rakshit et al., 2018). Modeling and analyzing the emergent behavior of a

complex network became the main direction of the research on network dynamics.

Then, the reverse questions were addressed by the researchers from the natural sci-

ences (Timme and Casadiego, 2014). However, previous research has shown that the

reconstruction is possible under strong constraints such as the need for lengthy data

or small system size. This study presents a recovery scheme blending theoretical

model reduction and sparse recovery to identify the governing equations and the

interactions of weakly coupled chaotic maps on complex networks, easing unrealistic

constraints for real-world applications. Learning dynamics and connectivity lead

to detecting critical transitions for parameter changes. We apply our technique to
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realistic neuronal systems with and without noise on a real mouse neocortex and

artificial networks. Before briefly reviewing background material of the thesis study,

some relevant history will be given in this section.

Dynamics, as a branch of physics, began in the mid-1600s with the invention of

differential equations by Newton. He discovered laws of motion and universal grav-

itation. By combining them, specifically, by solving the two-body problem, he ex-

plained Kepler’s laws of planetary motion. The two-body problem was calculating

the Earth’s motion around the sun. Extension of Newton’s analytical methods to

solve the three-body problem (sun, earth and moon) had been tried by subsequent

generations of mathematicians and physicists. Finally, it was seen that solving this

problem by obtaining explicit formulas for the motions of three bodies is impossi-

ble. Poincare made a breakthrough with his work in the late 1800s by approaching

the problem in a qualitative rather than a quantitative way. He developed a geo-

metric approach by asking questions from a qualitative perspective, like the solar

system’s stability instead of the planets’ exact positions. Although Poincare was

the first person to realize the possibility of chaos, most of the effort spent nonlinear

oscillations in the first half of that century. Works of nonlinear oscillators helped

both the development of new technologies such as laser and the invention of new

mathematical techniques (Strogatz, 2000).

The history of dynamics has a milestone in the 1950s: the invention of the high-

speed computer. Lorenz discovered chaotic motion in 1963 (Lorenz, 1963) utilizing

the developments of nonlinear systems. He was working on a simplified atmosphere

model and found that the solutions to his model never settled down to equilibrium or

to a periodic state. Also, he realized the sensitive dependence on initial conditions

and the amplification of tiny measurement errors in the state of the atmosphere.

Moreover, he found the structure in the chaos and is called fractal today (Strogatz,

2000).

Modern dynamical systems is a well-developed branch of mathematics and physics.
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It is used to model real-world phenomena for future state prediction, optimization,

control and physical understanding. Today, data-driven approaches are leading the

improvements in analysis and understanding of dynamical systems. There are abun-

dant data while governing equations are still elusive for many fields such as climate,

epidemiology and neuroscience. Parallel to the developments in data science, data-

driven dynamical systems field is evolving rapidly (Brunton and Kutz, 2019).

This thesis study includes four chapters. Introduction chapter introduces the fun-

damental theories of dynamical systems based on discrete-time systems. Then, the

basics of statistical learning tools are described to set the stage for the model dis-

covery of dynamical systems in a data-driven way. The last section is devoted to

synchronization phenomena from coupled dynamical systems to complex networks

by giving the main elements of the network theory. Theory and Modeling chapter

of the thesis provides the main neuroscientific setting by introducing the dynamical

system to mimic neuron behavior, used networks, reduction theorem from dynamical

systems and the proposed methodology for network reconstruction. Results of the

numerical experiments and example dynamical systems are given in Results chapter.

The last chapter presents the conclusions and main discussions on open questions

in the field.

1.1 Dynamical Systems

In this chapter we will investigate the fundamentals of discrete dynamical systems.

1.1.1 Discrete dynamical systems

We consider dynamical systems of the form

x(t+ 1) = f(x(t)) (1.1)

where x 2 R and for some smooth function f : R ! R. These systems are also

known as iterated maps or simply maps. The initial value of x at initial time (t = 0)
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is given for the iteration. As an example, consider the logistic map

x(t+ 1) = rx(t)(1� x(t)) (1.2)

which is a discrete-time analog of the logistic equation for population growth and

r � 0 is the intrinsic growth rate (Strogatz, 2000). As shown in Fig. 1.1, Eq. (1.2)

gives a parabola with a maximum of r/4 at x = 1/2.

Figure 1.1 Logistic map for r = 3.95. 50 iterates are plotted.

We focus on the properties of fixed points corresponding to a steady state observed

in a realistic system. The stability of fixed points is essential since a real-world

system is constantly exposed to small perturbations (Alligood et al., 2000). x = x
⇤

is a fixed point if it satisfies f(x⇤) = x
⇤. If the system reaches x⇤, then it remains at

x
⇤ and does not change over time. The stability of x⇤ is determined by considering

the dynamics close to that fixed point. A nearby orbit is chosen as x = x
⇤ + ⌘

where ⌘ represents a small distance from the fixed point. As time evolves growing

or decaying of ⌘ will determine the stability or instability (Newman, 2010).

x
⇤ + ⌘(t+ 1) = x(t+ 1) = f(x⇤ + ⌘(t)) = f(x⇤) + f

0(x⇤)⌘(t) +O(⌘(t)2) (1.3)

where f 0(x⇤) is the derivative of f evaluated at x⇤ and O(⌘(t)2) denotes quadratically

small terms in ⌘. Since f(x⇤) = x
⇤, by neglecting O(⌘(t)2) terms, Eq. (1.3) reduces
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to

⌘(t+ 1) = f
0(x⇤)⌘(t) (1.4)

Thus, we obtain the linearized map in Eq. (1.4) with eigenvalue or multiplier � =

f
0(x⇤). By writing a few terms explicitly, the solution of this linear map can be

found: ⌘(1) = �⌘(0), ⌘(2) = �⌘(1) = �
2
⌘(0), and in general ⌘(t) = �

t
⌘(0). Note

that � is just a simple number which can be found if x⇤ and f is provided. The

distance ⌘ from the fixed point will decay as t ! 1 if |f 0(x⇤)| < 1 and the fixed

point is linearly stable. Conversely, if |f 0(x⇤)| > 1, then the fixed point is unstable.

This analysis of the fixed points is linear stability analysis. One can generalize these

results to systems with two or more variables. Consider a two-dimensional discrete

time dynamical system as

x(t+ 1) = f(x(t), y(t)) (1.5)

y(t+ 1) = g(x(t), y(t))

A fixed point at (x⇤
, y

⇤) satisfies f(x⇤
, y

⇤) = x
⇤ and g(x⇤

, y
⇤) = y

⇤. By neglecting

the quadratic terms again, the time evolution of (⌘x, ⌘y) which is close to the fixed

point in two-dimensional space is written as

⌘x(t+ 1) = f
(x)(x⇤

, y
⇤)⌘x(t) + f

(y)(x⇤
, y

⇤)⌘y(t) (1.6)

⌘y(t+ 1) = g
(x)(x⇤

, y
⇤)⌘x(t) + g

(y)(x⇤
, y

⇤)⌘y(t) (1.7)

where f
(x), g(x) and f

(y), g(y) are the derivatives of f and g with respect to x and y.

By combining Eqs. (1.6) and (1.7) we write them in the matrix form

⌘(t+ 1) = J⌘(t) (1.8)

where ⌘ is the two-dimensional vector (⌘x, ⌘y) and J is the Jacobian matrix

J =

0

@
@f
@x

@f
@y

@g
@x

@g
@y

1

A,
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where the partial derivatives are all calculated at the fixed point (x⇤
, y

⇤) (Newman,

2010). The linearization is given by the derivative at the fixed point in one dimen-

sional case, now it is provided by a matrix for higher-dimensional case (Alligood

et al., 2000). We highly desire to linearize the nonlinear dynamical system near

a fixed point, since the system turns into eigenvector coordinates where the dy-

namics become decoupled. The dynamics are characterized by the eigenvalues and

the eigenvectors of the matrix J and there are many techniques for the analysis,

prediction or control of such systems (Brunton and Kutz, 2019).

1.1.2 Chaos

Chaos is identified by three ingredients:

1. “Aperiodic long-term behavior" meaning as t ! 1 the trajectories do not

settle down to fixed points or periodic orbits.

2. “Deterministic" meaning that the system shows irregular behavior due to its

nonlinearity, it has no random or noisy inputs.

3. “Sensitive dependence on initial conditions" meaning that nearby (starting very

close) trajectories will separate exponentially fast (Strogatz, 2000).

Robert May worked on a version of the logistic difference equation in the 1970s. He

discovered that using different values for the nonlinear parameter could change the

system’s behavior completely (Gleick, 1987). The results of his calculation using a

bifurcation diagram, as shown in Fig. 1.2(a), state that simple mathematical models

also exhibit complicated behavior (May, 1976).

Fig. 1.2(a) shows the bifurcation diagram of logistic map for the range 0  r  4.

Then, the control parameter r is fixed at some certain values and the results are

plotted as time series. For 1 < r < 3, system reaches a nonzero steady state and

it can be seen in Fig. 1.2(b) for r = 2.8 as time series. For r = 3.3 in Fig. 1.2(c),

we see period-2 cycle. In Fig. 1.2(d), for r = 3.5 we see that the previous cycle has

doubled its period to period-4. As seen in the bifurcation diagram, for many values
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of r, system does not settle down to a fixed point or a periodic orbit. For these

values, the motion is aperiodic for long-term as seen in Fig. 1.2(d) and this is the

discrete-time version of chaos (Strogatz, 2000).

Figure 1.2 a) Bifurcation diagram of logistic map. Time series results for b)
r = 2.8, c) r = 3.3, d)r = 3.5 and e)r = 3.9.

The logistic map analysis will be continued by showing the sensitive dependence on

the initial conditions. Suppose we have a point x(t) and a neighboring point is chosen

as x(t)+�(t) where � is a small separation vector of initial length k�(0)k = 10�15. We

will check two neighboring orbits’ separation from growing of � after t iterations. If

k�(t)k = k�(0)ket�), then � is called as Lyapunov exponent and a positive exponent

causes separation of the close orbits exponentially fast.

To compute �, a formula is derived by taking logarithms and noting that �(t) =
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f
t(x(0) + �(0))� f

t(x(0))

� ⇡
1

t
ln

����
�(t)

�(0)

����

=
1

t
ln

����
f
t(x(0) + �(0))� f

t(x(0))

�(0)

����

=
1

t
ln |(f t)0(x(0))| (1.9)

in the limit �(0) ! 0. By the chain rule, the logarithm is expanded as:

(f t)0(x(0)) =
t�1Y

i=0

f
0(xi) (1.10)

Then,

� ⇡
1

t
ln

����
t�1Y

i=0

f
0(xi)

����

=
1

t

t�1X

i=0

ln |f 0(xi)|. (1.11)

We present Lyapunov exponent results for logistic map computed numerically with

Eq. (1.11) in Fig. 1.3. One can compare this results with the bifurcation diagram

in Fig. 1.2(a). Lyapunov exponent � is negative for r < 3.57. Chaos can be seen

near r ⇡ 3.57, where � becomes positive for the first time. Even tough Lyapunov

exponent increases generally after that value, there exist some dips caused by the

windows of periodic motion (Strogatz, 2000).
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Figure 1.3 Lyapunov exponents of the logistic map versus bifurcation parameter
r. The exponent increases and hits 0 at period-2 and becomes positive in the

chaotic region.

1.2 Statistical Learning

Statistical learning refers to a set of tools for understanding complex datasets. These

tools are classified as supervised and unsupervised mainly. Supervised statistical

learning involves modeling data to predict an output based on one or more inputs.

Unsupervised statistical learning aims to discover relationships and structure from

data when there is no supervising output (James et al., 2014).

The term statistical learning is fairly new, but many concepts like classic curve

fitting under the discipline are old (James et al., 2014). Least-squares is used to

fit astronomical data by Legendre in 1805 (Legendre, 1805) and its theory as an

optimization problem is fully developed by Gauss in 1821 (Gauss, 1823). Classic

curve fitting with the method of least squares as one of the most fundamental tools

in data science is the earliest form of regression. Regression techniques mainly shape

data science and some of these techniques which are mostly used in the thesis will

be given throughout this section.
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1.2.1 Linear regression

Linear regression is a widely used statistical learning tool to predict a quantitative

response. Y is predicted by the linear model

Ŷ = �̂0 +
pX

j=1

Xj�̂j (1.12)

where X
T = (X1, X2, · · · , Xp) is the given vector of inputs. Two unknown parame-

ters �0 and �j are the intercept and slope terms, respectively. It is common to have

the constant variable 1 in X, then including �0 in �, we rewrite the linear model

Eq. (1.12) in vector form as an inner product:

Ŷ = X
T
�̂. (1.13)

where X
T denotes vector or matrix transpose and �̂ is known as the model coeffi-

cients or parameters (James et al., 2014; Hastie et al., 2009). Our aim is to find the

linear model fits the training data well. We find the coefficients � to minimize the

residual sum of squares

RSS(�) =
NX

i=1

(yi � x
T
i �)

2 (1.14)

and it is called classic least squares. RSS(�) is a quadratic function of the model

parameters which means it has minimum, but may not be unique. We rewrite

Eq. (1.14) as

RSS(�) = (y �X�)T (y �X�) (1.15)

Least squares error function is differentiated w.r.t � and we obtain

X
T (y �X�) = 0 (1.16)

The unique solution is given by

�̂ = (XT
X)�1

X
T
y (1.17)

where X
T
X is nonsingular (Hastie et al., 2009).
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1.2.2 Over- and under-determined systems

Typically, the linear system we want to solve is massively over- or under-determined

in data science problems. Over-determined systems have more constraints (equa-

tions) than unknown variables (Fig. 1.4(a)). Thus, the linear system is approxi-

mately solved to minimize a given error function. Under-determined systems have

more unknowns than constraints (Fig. 1.4(b)), so there exist an infinite number of

solutions, and to obtain a unique solution, some conditions must be applied. To

solve Ax = b for over- and under-determined systems, `1 or `2 norms can be used,

and the choice of the norm has a profound impact on the optimal solution achieved

(Brunton and Kutz, 2019).

Figure 1.4 Regression framework for a) over-determined system and b)
under-determined system.

1.2.3 Shrinkage methods

The aim is to use a technique that constrains the coefficient estimates, or shrinks

them towards zero to obtain an interpretable model. Shrinking the regression coef-

ficients decrease their variance (James et al., 2014). The two best-known shrinkage

methods are presented as Ridge regression and the Lasso.

Ridge regression. A penalty term is added to the residual sum of least squares
NX

i=1

(yi � �0 �

pX

j=1

xij�j)
2 + �

pX

j=1

�
2
j (1.18)

where � is penalty term which controls the amount of shrinkage. Selecting a good

value for � is vital, a large penalty term will decrease the magnitudes of the coeffi-
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cients (Hastie et al., 2009).

The least absolute shrinkage and selection operator (Lasso). The penalty

term in Eq. (1.18) will shrink the estimated coefficients towards zero but any of them

will not be set exactly to zero in Ridge regression. When the number of variables

is large, it is challenging to interpret a model since Ridge regression includes all

predictors in the final model. The lasso coefficients minimize

NX

i=1

(yi � �0 �

pX

j=1

xij�j)
2 + �

pX

j=1

|�j| (1.19)

which uses `1-norm to penalize the coefficients (James et al., 2014). The `1-norm of

a coefficient vector is k�k1 =
P

|�j|. By forcing some of the coefficients to be equal

to zero, Lasso performs variable selection and generates interpretable models.

1.2.4 Sparse identification of nonlinear dynamics (SINDy)

Discovering the nonlinear nature of a model from data is a challenging problem since

there are many possible model structures. The sparse identification of nonlinear

dynamics (SINDy) states the fact that many dynamical systems

d

dt
x = f(x) (1.20)

have only a few terms in the space of candidate right-hand side functions. Then,

the model for the dynamical system is generalized by the function f :

f(x) ⇡
pX

k=1

 k(x)⇠
k (1.21)

where  (x) = [ 1(x), 2(x), ..., p(x)] is the library of basis functions. Only a few

active terms characterize data that comes from natural systems on a well-chosen

basis; most of the coefficients ⇠k are zero (Brunton and Kutz, 2019). To find inter-

pretable models sparsity concept is beneficial. This idea was used in a compressed

sensing framework for the first time as the sparsity requirement is satisfied (Wang,

Yang, Lai, Kovanis and Grebogi, 2011). If we have prior knowledge to decide the

basis, sparse regression is instrumental in avoiding overfitting and noise (Brunton
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et al., 2016). For discrete time dynamical systems, SINDy algorithm is formulated

as

xt+1 = f(xt) (1.22)

and the data matrix of derivatives is avoided entirely (Brunton and Kutz, 2019).

LASSO (Tibshirani, 1996) as a sparse regression method is used to obtain sparse

models. Sequentially-thresholded least-squares (STLS) is another method imple-

mented in the Python package of SINDy (de Silva et al., 2020) and used in SINDy

framework. In STLS, Ridge regression is used and � is fixed as 0.05 (Eq, (1.18)).

Sparsity is obtained by masking out elements of �̂ that are below a given thresh-

old and an interpretable dynamical model is obtained. This threshold is called as

sparsity parameter and it is the single hyper-parameter of STLS.

1.2.5 Logistic regression

In many cases, the response variable is qualitative and they are referred as categorical.

To predict the qualitative response of an observation is classifying that observation,

since a class is assigned to the observation. In the case of a qualitative response,

linear regression is not appropriate since we do not want to model this response.

Logistic regression models the probability that the response belong to a particular

class. Logistic function is used

p(X) =
e
�0+�1X

1 + e�0+�1X
(1.23)

Maximum likelihood method is used to estimate the model coefficients (James et al.,

2014).

1.3 Coupled Dynamical Systems

Consider two identical discrete maps with x(t+1) = f(x(t)) and y(t+1) = f(y(t)).

Suppose, in the independent case, the dynamics of each variable is chaotic. Now, we

introduce an interaction between the two maps by adding a term on the right-hand
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side of the equation which contains both variables as (Pikovsky et al., 2001)

x(t+ 1) = f(x(t)) + ↵(f(y(t))� f(x(t)))

y(t+ 1) = f(y(t)) + ↵(f(x(t))� f(y(t))) (1.24)

where ↵ is the coupling strength. By rewriting Eq. (1.24) in matrix form, we obtain
2

4x(t+ 1)

y(t+ 1)

3

5 =

2

4(1� ↵) ↵

↵ (1� ↵)

3

5

2

4f(x(t))

f(y(t))

3

5 . (1.25)

There is no unique way to add an interaction between two maps, for instance, we

could couple them as (Lloyd, 1995),

x(t+ 1) = f(x(t)) + ↵(y(t)� x(t))

y(t+ 1) = f(y(t)) + ↵(x(t)� y(t)). (1.26)

For the varying positive coupling parameter ↵ in Eq. (1.25), one can describe the

observations qualitatively. In ↵ = 0 case, the system becomes two isolated discrete

maps. Two maps can be coupled weakly or relatively strong depending on the value

↵. If the coupling parameter is considered as a bifurcation parameter and assume we

increase it gradually from zero, we observe a complex bifurcation structure. After a

critical ↵ value, the system synchronizes which we will discuss later (Pikovsky et al.,

2001).

1.4 Synchronization

Synchronization is related to the study of dynamical stability (Newman, 2010). Any

oscillator can be used to model many systems of scientific interest. Radio commu-

nication, fireflies flashing, birds flapping their wings, clapping of a large audience,

the heart itself, pathologically shaking limbs due to Parkinson’s disease and firing

of brain cells - a common feature of these systems is they have rhythms. They

interact with their surroundings weakly or strongly and adjust their rhythm with

the rhythms of others. Rhythm adjustment due to an interaction is the source of

synchronization (Pikovsky et al., 2001).
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We introduced Logistic map as the simplest chaotic system in Section 1.1.1. In this

section, two-coupled logistic map model will be given to describe the synchronization

transition phenomenologically. We rewrite the Eq. (1.24) for logistic map as

x(t+ 1) = x(t)r(1� x(t)) + ↵[y(t)r(1� y(t))� x(t)r(1� x(t))]

y(t+ 1) = y(t)r(1� y(t)) + ↵[x(t)r(1� x(t))� y(t)r(1� y(t))] (1.27)

where r = 3.6. In the context of this thesis, we say a system of two coupled oscillators

x and y synchronizes if the following two properties hold (Eroglu et al., 2017):

• If x(0) = y(0), then x(t) = y(t) for all t.

• If x(0) is close to y(0), then limt!1[x(t)� y(t)] = 0.

Initial conditions are x(0) = 0.54 and y(0) = 0.55. Two coupled maps are iter-

ated for 10000 steps and after transient, final 100 steps are taken for the analysis.

Fig. 1.5 shows the synchronization error between two time series which is given by
1
T kx(t) � y(t)k with respect to a series of ↵ values. For this particular system, we

see synchronization in the range 0.38  ↵  0.81 as the difference between two

time series disappears. Inset in Fig.1.5 shows ↵ = 0.4 case as time series. We see

transition to synchronization after a very short time.

Figure 1.5 Two coupled logistic maps for r = 3.6. As synchronization error
between two time series tends to zero, critical coupling parameter region for

synchronization is determined. Inset shows the transition for ↵ = 0.4
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One can model the pathologically synchronized firing neurons during an epileptic

seizure with complex networks of coupled oscillators so that the coupling could cause

the synchronization.

1.5 Complex Networks

The roots of network science go back to 1736 for one of the oldest proofs in graph

theory. The problem was to find a route that goes through all seven bridges of

Königsberg while never crossing the same bridge twice. Leonard Euler proved that

such a path does not exist and he was the first who solved a mathematical problem

using a graph. To understand a complex system, one need to know the nature of the

interacting components first, in other words, the connectivity structure (Barabási

and Pósfai, 2016). The basics of the network science used throughout this thesis

will be given in this section.

1.5.1 Basics

A network is a collection of nodes joined by links (Newman, 2010). The link (i, j)

which joins the nodes i and j represent the relation between these nodes. This rela-

tion can be social, physical, conceptual, chemical, biological or any other, therefore

networks allow studying interrelations in a wide range of systems by providing a

general theoretical framework (Menczer et al., 2020).

The adjacency matrix A is a way to represent a network mathematically. A is a

matrix with elements

Aij =

8
><

>:

1 if there is a link between nodes i and j

0 otherwise
(1.28)

In some cases, links have strength, weight or value, and such weighted networks’

elements of adjacency matrices are equal to the weights of the corresponding links.

The weighted nature of the networks is given by different widths of lines in the

graphical representation. In directed networks, each link has a direction and is shown
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by an arrow pointing from one node to another. The number of links connected to a

node is the degree of that node, and it is denoted by ki for node i. For an undirected

network of n nodes, the degree of node i is given by (Newman, 2010; Menczer et al.,

2020)

ki =
nX

j=1

Aij. (1.29)

The graph Laplacian is another matrix to represent a network mathematically and is

related to the adjacency matrix. We will explain this matrix by considering diffusion

processes on networks. Diffusion is a useful way of thinking about spreading of any

quantity across a network simply. Suppose modeling a commodity moves along the

links and there is an amount of  i of it at node i. Then, the amount of commodity

moving from j to i in a small interval of time is given by

C( j �  i)dt (1.30)

where C is diffusion constant. The rate of changing at  i is given by

d i

dt
= C

X

j

Aij( j �  i), (1.31)

and with the adjacency matrix in Eq. (1.31) only neighboring nodes of node i are

appeared in the sum. Then, we rewrite the equation by splitting the two terms

d i

dt
= C

X

j

Aij j � C i

X

j

Aij = C

X

j

Aij j � C iki

= C

X

j

(Aij � �ijki) j (1.32)

where �ij is the Kronecker delta (equal to 1 if i = j and 0 otherwise). In matrix

form

d 

dt
= C(A�D) (1.33)

where  vector has the elements  i, A is the adjacency matrix and D is the diagonal

matrix which has the node degrees along its diagonal such:
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D =

0

BBBBBB@

k1 0 0 . . .

0 k2 0 . . .

0 0 k3 . . .

...
...

... . . .

1

CCCCCCA

By defining L = D �A, Eq. (1.32) is written as

d 

dt
+ CL = 0 (1.34)

If the Laplacian operator r
2 is replaced by the matrix L in Eq. (1.34), it becomes

ordinary diffusion equation, therefore L is called the graph Laplacian. The elements

of the Laplacian matrix is written as

Lij =

8
>>>>><

>>>>>:

ki if i = j

�1 if i 6= j and there is a link (i, j)

0 otherwise

(1.35)

Therefore, we can write Lij = �ijki � Aij (Newman, 2010).

One of the most fundamental properties of networks is degree distribution. pk is the

fraction of the nodes with degree k in a network, and we plot k vs pk to see the

frequency of node degrees. Distribution of the form

pk = Ck
�↵ (1.36)

where C is a constant and ↵ is the exponent are called power laws and networks

with power law degree distributions are called scale free networks (Newman, 2010).

If each node in a network is connected to other nodes, then the network has the

maximum number of links and it has the maximum density. However, in most

real-world networks, the actual number of links is typically much smaller than the

maximum. This property is called sparsity and as a natural feature it helps to deal

with network structure (Menczer et al., 2020).
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1.5.2 Network dynamics

The network dynamics of weakly coupled and identical n oscillators with interaction

akin to diffusion is described by

xi(t+ 1) = f(xi(t)) +
nX

j=1

wijH(xi(t),xj(t)) + ⌘i(t) (1.37)

where xi 2 Rm, f : Rm
! Rm represents the isolated dynamics of nodes and we

assume it is chaotic (Barzel and Barabási, 2013). H is a diffusive coupling func-

tion (H(x,x) = H(0) = 0 and H(x,y) = �H(y,x)). W = [wij] 2 Rn⇥n is the

adjacency matrix of weighted and directed network where wij � 0 is the interac-

tion strength from node-j to node-i. The noise term, ⌘i(t), is uniformly distributed

k⌘i(t)k  ⌘0 for all nodes where ⌘0 is noise intensity. This network dynamics,

Eq. (1.37), is used to model numerous real-world applications including brain net-

works (Izhikevich, 2007), power grids (Dörfler et al., 2013; Motter et al., 2013),

superconductors (Watanabe and Strogatz, 1994), and cardiac pacemaker cells (Win-

free, 2001). Diffusive nature of the interaction allows represent the coupling in terms

of the Laplacian matrix.
nX

j=1

wij[H(xj)�H(xi)] =
nX

j=1

wijH(xj)�H(xi)
nX

j=1

wij (1.38)

=
nX

j=1

wijH(xj)� kiH(xi)

=
nX

j=1

(wij � �ijki)H(xj)

where ki =
P

j wij is the incoming degree of node i and �ij is the Kronecker delta.

By introducing the Laplacian matrix, L with Lij = �ijki � wij we obtain,

xi(t+ 1) = f(xi(t))�
nX

j=1

LijH(xj) (1.39)

Then we can rewrite Eq. (1.39) in a compact form as,

X(t+ 1) = F (X(t))� (L⌦H)(X(t)), (1.40)

where X = [x1, · · · ,xn]T , F (X) = [f(x1), · · · ,f(xn)]T and ⌦ is the Kronecker

product (Pereira et al., 2013).
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A synchronized oscillator network corresponds to a limit cycle of the network dy-

namics. As explained in the fixed points, limit cycles can be stable or unstable, and

stability is determined similarly. We check the response of the system to small per-

turbations. Also, the mathematics to check the stability of the synchronous states is

very similar to fixed points. Assume a dynamical system given by Eq. (1.37) and a

periodic limit-cycle solution xi(t) = s(t) for all i. We can linearize the system if the

solution is perturbed. Then, we expand the linearized solution as a combination of

the eigenvectors of an appropriate matrix depending on the nature of the interaction

between nodes. If that matrix is an adjacency matrix or Laplacian matrix, then the

result based on the eigenvectors becomes a set of n decoupled systems. These iso-

lated oscillating systems must be stable if the whole network is to be stable. To find

a condition for the stability of the synchronized state, we need to define a master

stability function using Lyapunov exponent (Newman, 2010).

1.5.3 Master stability function

Consider the function h : Rm
⇥ Rm

! Rm. We say that h is diffusive if

h(x, x) = h(0) = 0 and h(x, y) = �h(y, x)

We again consider the model to a general diffusive coupling

xi(t+ 1) = f(xi(t)) + �

nX

j=1

wijh(xj,xi) (1.41)

where � is the coupling strength. We perform the analysis close to synchronization

xi = s+ ⇠i so

h(xj,xi) = h(s+ ⇠j, s+ ⇠i) = h(s, s) +D1h(s, s)⇠j +D2h(s, s)⇠i

but since the coupling is diffusive

D2h(s, s) = �D1h(s, s)

we get

h(xj,xi) = H(s)(⇠j � ⇠i) +R(⇠i, ⇠j)
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where H(s) = D1h(s, s) and R(⇠i, ⇠j) contains quadratic terms. Then, the first

variational equation about the synchronization manifold

⇠i(t+ 1) = Df(s(t))⇠i(t) + �

nX

j=1

wijH(s)(⇠j(t)� ⇠i(t)) (1.42)

= Df(s(t))⇠i(t)� �H(s)
nX

j=1

Lij⇠j(t). (1.43)

All blocks have the same form which are different only by �i, the ith eigenvalue of

L. Then we obtain the parametric equation for the modes

u(t+ 1) = [Df(s(t))� H(s(t))]u(t)

where  = ��i. By fixing , we compute the maximum Lyapunov exponent ⇤() as

ku(t)k  Ce
⇤()t

.

The map

 7! ⇤() (1.44)

is called master stability function. Notice that if ⇤() < 0 when  > �c�2 then

kuk ! 0. For more details on the master stability function Eq. 1.44, see e.g.,

(Huang et al., 2009; Schultz et al., 2016).

21



2. THEORY AND MODELING

2.1 Modeling the Brain

Neural networks are described by chaotic isolated dynamics (Korn and Faure, 2003),

weakly interacting nodes (Preyer and Butera, 2005) and interaction through scale-

free type networks (Werner, 2010). To mimic neuron behavior, we use Rulkov maps,

ui(t+ 1) =
�

1 + ui(t)2
+ vi(t) (2.1)

vi(t+ 1) = vi(t)� ⌫ui(t)� �

where the fast variable ui is the membrane potential and the slow variable vi is the

ion concentration variation (Wang, Chen and Perc, 2011). The constant parameters

� = 4.1 and ⌫ = � = 0.001 are fixed for chaotic bursting dynamics (Rulkov, 2002).

The regimes of neuronal behavior of the map for different � parameters are shown

in Fig. 2.1. The mean duration of the bursts is very sensitive to � value.

Figure 2.1 Bursting behavior generated by Rulkov map for � = 2.0, 4.1, 4.3 and
4.5. Left panel shows the u variable and right panel shows v variable. Isolated

Rulkov maps are simulated 12000 time steps and discarded the first 10000 steps as
transient.

Electrical coupling between neurons correspond u-coupled Rulkov maps diffusively

by:

H(xi,xj) = [h(ui, uj), 0] (2.2)
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where xi 2 R2 with h(ui, uj) = uj � ui.

2.2 Reduction Theorem

A low-dimensional reduction of Eq. (1.37) is key for our network dynamics recon-

struction approach. The reduction theorem applies a mean-field approach that relies

on two main statements: (i) the statistical behavior of nodes’ dynamics (frequency

distribution of states) must be preserved and (ii) a large portion of nodes must be

interacting with at least a few nodes in the network. These statements are satisfied

with the given assumptions for the reduction theorem: chaotic local dynamics of ex-

panding maps and weak coupling (to preserve the nodes’ state distribution against

fluctuations due to the interactions or external noise) and scale-free networks (most

of the nodes have small degrees k ⇠ n
✏, and some nodes are hubs with degrees

k ⇠ n
1
2+✏ where ✏ is an arbitrarily small number), which also mimic brain network

dynamics. Using the theorem, the coupling term of Eq. (1) can be reduced as follows:
nX

j=1

wijH(xi,xj) ⇡ ki

Z
↵H̃(xi,xj)dµ(xj)

= ki↵(Ṽ (xi) + C̃) = kiV (xi) + C

where V is the effective coupling function, ki =
P

j wij is the incoming degree of

node i, H = ↵H̃ , ↵ is a multiplier for the coupling function, µ is a physical measure

of the isolated dynamics, C is the integration constant and the integral takes into

account the cumulative effect of interactions on node-i. As the coupling term is

reduced as a function of an invariant measure µ, the reduction theorem works for a

system in a steady state. Furthermore, to apply this mean-field approach-based re-

duction theorem, the statistical properties of individual dynamical systems must be

preserved, which is satisfied by chaotic oscillators and weak coupling (Ref. (Pereira

et al., 2020)). Then Eq. (1.37) can be written as

xi(t+ 1) = f(xi(t)) + kiV (xi(t)) + C + i(t) + ⌘i(t) (2.3)

where i(t) is a small fluctuation for an interval of time that is exponentially large

and depends on the state of neighbors of the ith node.
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2.3 Network Reconstruction

2.3.1 Literature

The network dynamics reconstruction from data is a very active research field (Gao

and Yan, 2022; Wang et al., 2016; Nitzan et al., 2017; Stankovski et al., 2017; Timme

and Casadiego, 2014; Casadiego et al., 2017). Various methods were proposed to in-

fer the connectivity matrix under some constraints, such as the need for a system to

be at steady-state (Gardner et al., 2003) or requiring prior knowledge about the dy-

namics (Timme, 2007; Shandilya and Timme, 2011; Yu et al., 2006) or the coupling

strength (Ren et al., 2010). In addition to the studies that reveal the connectiv-

ity matrix by control signals or analytical solutions, statistical learning approaches

such as compressed sensing were also introduced to learn entire unknown dynam-

ics (Wang, Yang, Lai, Kovanis and Harrison, 2011; Wang et al., n.d.), which also

infers the connectivity structure. On the other hand, there are available regression-

based approaches that can learn network topology using short time series (Casadiego

et al., 2017); however, it is impossible to detect the critical transitions with only

the connectivity. However, statistical learning techniques are not extendable for

large networks or require long time series measurements. A natural question is then

whether revealing the network dynamics of weakly interacting chaotic oscillators

would be possible using relatively short data without requiring knowledge of the

system’s nodal behavior and coupling scheme. This question is especially relevant

in weak coupling regimes, in which the synchronization regime is unstable and the

decay of correlation is exponential for chaotic oscillators, meaning that similarity

measures cannot capture the interaction topology.

2.3.2 Proposed methodology

To learn isolated dynamics f and coupling function H , we first need to classify

nodes regarding their degrees. According to the reduction theorem, nodes with a

similar in-degree must have a similar governing equation. To identify the governing
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equations of each node independently from other nodes, we use sparse regression,

particularly the Sparse Identification of Nonlinear Dynamical Systems (SINDy) tech-

nique (Brunton et al., 2016). We denote the data collection of node-i by Eq.(1.37) as

Xi = [xi(1), . . . ,xi(T � 1)]T and X
0
i = [xi(2), . . . ,xi(T )]T . SINDy performs a sparse

regression for the linear equation X
0
i =  (Xi)⌅i to solve for ⌅i = [⇠1i , . . . , ⇠

p
i ]

T ,

which is a vector of coefficients that defines the dynamics, where  = [ 1, . . . , p]

represents a library of basis functions and is applied to xi as

 (Xi) =

candidate functions of x
���������������������������!2

4
 1(xi(1))  2(xi(1)) ...  p(xi(1))
 1(xi(2))  2(xi(2)) ...  p(xi(2))

...
... ... ...

 1(xi(T�1))  2(xi(T�1)) ...  p(xi(T�1))

3

5

??????y

tim
e

where p is the number of candidate functions in the library  . Sparse regression’s

goal is to determine the dynamics with a small number of functions in  by finding

active coefficients in ⌅i. Consequently, we obtain a predicted model for each node

only using the associated node’s own data, and we expect to learn similar models

for the nodes with similar in-degree ki. A distance matrix is obtained by normalized

Euclidean distance to classify the predicted models dij = (⌃p
k=1

1
Vk

|⇠
k
i � ⇠

k
j |

2)1/2,

where | · | is absolute value, Vk is the variance of the predicted coefficients of the kth

function in  . Assume ⌅i and ⌅j are two predicted models of nodes-i and j, which

are presented as a linear combination of some functions within the library . We get

smaller dij for a similar pair of nodes i and j, while dij will be large for distinct nodes,

such as a low-degree node and a hub. The histogram P (D) is obtained by the row-

sum of the distance matrix Di =
P

j dij, which provides an excellent classification

for model similarities in terms of their degrees (Fig. 2.2 (a)). The low-degree nodes

are expected to be located in the highest bin of the histogram since the network has

many low-degree nodes. The models recovered for low-degree nodes are determined

as our f with a negligible fluctuation i. Contrarily, the distance Di is expected

to be large for the hub nodes as they are the rarest. Therefore, hubs are located in

the lowest bin of the histogram P (D) (Fig. 2.2 (a)). Note that the success of the

reconstruction depends on the separability of the low-degree nodes and hubs with

respect to their degrees, which means the network topology plays an important role

here (Eroglu et al., 2020).
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Figure 2.2 Illustration of the reconstruction scheme. (a) Performing sparse
regression on each observation gives predicted models for each node. Nodes with

the same in-degree are reconstructed with the same predicted models, which allow
us to classify nodes concerning their in-degrees. As low-degree nodes are abundant
and represent the isolated dynamics with a negligible noise, learning f is possible.
Discarding the local dynamics, f , from the hub’s data gives the dominant coupling
effect on the hub. Therefore, the coupling function H can be learned. (b) After
learning f and H , the problem is defined as a linear problem for each node by

subtracting the local dynamics, which obtains the remaining interaction effect for
each node. Sparse regression on the remaining interaction dynamics of node-i
where i = 1, . . . , n entirely reconstructs the dynamical networks. Nonzero G

T
i

elements are the incoming connections for ith node.

We obtain the cumulative coupling effect on the hub by discarding learned isolated

dynamics contribution from the identified hub node’s data as X
0
h � f(Xh) where

h denotes the hub node. We fit a function to the cumulative coupling effect on

the hub and learn the coupling function H with a possible linear shift due to the

integration constant C. The size of the linear shift can be easily estimated using

H(0) = 0. Inferring the interaction function is vital to reveal the network (Liu

and Barabási, 2016), and learning H from such reduced dynamics increases the

feasibility of our approach. Defining Y (t) = X(t+ 1)� F (X(t)), Eq. (2.3) can be

written as Y = GX where G = �(L⌦H). Finally, we complete the reconstruction

by learning sparse matrix G 2 Rmn⇥mn, by solving the linear equation Y
T = X

T
G

T

using sparse regression, namely Least Absolute Shrinkage and Selection Operator

(LASSO)(Tibshirani, 1996), as suggested in Ref. (Han et al., 2015). LASSO adds

the `1 regularization penalty to the least-squares loss function to find the sparse
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coefficients (the links), and it is assessed as a compressed sensing approach (Candes

et al., 2006). Note that the linear equation can also be solved with `2-norm for long

time series, however, as we are interested in short data (in the case of the length

of the time series T < mn) the compressed sensing approach must be employed

(Candes et al., 2006). Consequently, we learn the connectivity matrices G and L as

seen in Fig. 2.2 (b). It is also important to note that learning the equations of all

nodes by a single sparse regression without the reduction theorem is only possible

for relatively small networks. The library extension, due to network size, causes

a statistically correlated data matrix that quickly fails on reconstruction (Novaes

et al., 2021; de Silva et al., 2020).

2.3.3 Library of basis functions

Although prior knowledge about the dynamical system is always helpful in con-

structing a basis library, it is impossible to access the information for all cases.

Nevertheless, many functions can be accurately estimated using high-order polyno-

mials. For instance, in this work, we mainly studied with the Rulkov maps defined

as follows,

u(t+ 1) =
�

1 + u(t)2
+ v(t) (2.4)

v(t+ 1) = v(t)� ⌫u(t)� �

Using a basis library containing only polynomials, it is possible to reconstruct an

imperfect model for the Rulkov map, which generates quite an accurate time series

to the original one (Fig. 2.3). For the Rulkov map, only the non-polynomial term

is the rational one, 1
1+u2 , which is absent in the library. However, this rational term

can be expanded in a power series as follows,

1

1 + x2
=

1X

n=0

(�x
2)n = 1� x

2 + x
4
� x

6 + x
8 + · · · (2.5)

therefore, it is possible to model the Rulkov map with polynomials roughly. As

the power expansion’s convergent interval is [�1, 1], the predicted model diverges

when the orbit is out of the given interval. However, such convergence problems can
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be solved by normalizing the time series into the associated space. The interesting

dynamics for our study is the bursting regime which can be modeled without the

normalization Fig. 2.3 (b); therefore, we skip this step, but the model becomes very

complicated with many higher-order polynomial terms.

Figure 2.3 The predicted time series of a reconstructed Rulkov model using a
candidate functions library containing only polynomials. a) predicted u-variable of

the model b) a bursting regime package zoomed from the black rectangle in a).

In order to avoid complicated models containing many polynomial terms and possi-

ble inaccurate predictions, we prepared a standard library including common func-

tions, such as geometric series and trigonometric functions. Although unreasonably

increasing the number of functions in the library is undesired, adding such non

polynomial terms generally terminates a large number of polynomials. Thus, our

computational cost mostly becomes cheaper using the following standard candidate

library:

 =


1,Pd(x),

�
sin(ix), cos(ix)

 r
i=1

,

n 1

xi
,

1

1± xi
,

1

(1± x)i

oq

i=1

�

where d is the degree of the polynomials, and for instance P2(x) is:

P2(x) = [u, v, u2
, uv, v

2].

Our main strategy is to start d = r = q = 1, and increase them slowly to estimate

the model with the minimum number of candidate functions. The first step of our
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reconstruction algorithm aims to learn the local dynamics by classifying the inferred

model equations due to their similarity. Here, we illustrate the reconstructed models

on the mouse neocortex network using coupled Rulkov maps (Table 2.1) through

a set of selected nodes’ with respect to their degrees ki (k0 = 0, k46 = k136 = 4,

and k218 = 26). As node-0 has no incoming links, we reconstructed only the Rulkov

map dynamics. Node-46 has 4 incoming links, the inferred coefficients for it do not

reflect the exact governing equation, but one can say that its governing equations

are similar to node-136, which also has 4 incoming links. The most distinct model

belongs to node-218, which is the hub of this particular network.

Table 2.1 Table for the inferred coefficients of the corresponding candidate
functions for some of the selected nodes. We present only nonzero functions for

any node.
node

id

1 u v · · · cos(u) 1
1�u

1
1+u2

0 -0.000 -0.000 1.000
... 0.000 -0.000 4.100

...
...

...
...

...
...

...
...

46 0.000 -0.015 1.005
... 0.005 0.000 4.093

...
...

...
...

...
...

...
...

136 -0.000 -0.015 1.006
... 0.000 -0.000 4.101

...
...

...
...

...
...

...
...

218 -0.714 0.098 0.783
... 0.016 0.001 4.075

The first step of the reconstruction algorithm is to classify nodes, which uses a

distance between nodes’ coefficients. We define the distance metric as,

dij = (⌃p
k=1

1

Vk
|⇠

k
i � ⇠

k
j |

2)1/2 (2.6)

where | · | is absolute value, Vk is the variance of the predicted coefficients of the

k-th function in  . As an example, we compute the pairwise distances of the

29



learnt models given in Table 2.1: As numerically shown in Table 2.2, dij is small for

Table 2.2 Pairwise distances of the predicted models for some of the selected
nodes.

node id 0 46 136 218

0 0.000 2.830 2.105 18.351

46 2.830 0.000 1.925 16.808

136 2.105 1.925 0.000 16.979

218 18.351 16.808 16.979 0.000

the nodes with the same or similar degrees, such as the distance is 1.925 between

46 (k46 = 4) and 136 (k136 = 4), while the distance is large for different predicted

models, such as the distance is 18.351 between 46 (k46 = 4) and 218 (k218 = 26).

2.3.4 A toy example

We present a step-by-step reconstruction algorithm using weakly coupled chaotic

maps on a directed and weighted network of size n = 20, shown in Fig. 2.4(a).

The network is heterogeneous; the low-degree nodes are abundant, and the hub is

the rarest, as illustrated in the network’s in-degree distribution in Fig. 2.4(b). The

network has Rulkov maps interacting with each other through their u-components

diffusively:

ui(t+ 1) =
�

1 + ui(t)2
+ vi(t)�

nX

j=1

Lijuj(t) (2.7)

vi(t+ 1) = ui(t)� ⌫ui(t)� �

where the constant parameters � = 4.1 and ⌫ = � = 0.001 are fixed for chaotic

bursting dynamics. We first simulate the system 15000 time steps and discard the

first 14000 steps as a transient. We should note that the local dynamics (Rulkov

map), the coupling function (u-coupling) and the connectivity matrix (Lij) are all

unknowns during the procedure; however, we present every piece of information in

this toy model to show the method rigorously.

Fig. 2.4(c) shows the 2-dimensional data coming from the hub and one of the low
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degree nodes. We present the return maps of the same nodes in Fig. 2.4(d), the

dispersion of the hub node due to the dominant coupling effect can be seen. On the

other hand, we compute the pairwise Pearson correlation coefficients sij between the

time series, see Fig. 2.4(e). Then we obtain the histogram P (S), Fig. 2.4(f), by the

row-sum of the correlation matrix in Fig. 2.4(e). Given the chaotic nature of the

Rulkov maps, correlations between time series does not give any information about

the network connectivity. Therefore, it is impossible to identify a low-degree node

or the hub. The reconstruction procedure is given by the following steps:

1. Classification of the nodes. The separability of low-degree nodes and hubs

is crucial since the reconstruction procedure is not applicable if we cannot clas-

sify which nodes are low-degree or hubs at the beginning of the reconstruction

recipe. The classification leads us to learn the isolated dynamics f and the

coupling function H as follows: we, first, assume that the coupling is weak,

meaning that if we classify the low-degree nodes, we can consider their dynam-

ics as local dynamics f with some small fluctuations. If we classify which node

is the hub and f , then we can learn the coupling function H by discarding

f(xh(t)) from the hub’s time series xh(t + 1) using the cumulative effect of

interactions. Therefore, our first aim is to classify the nodes regarding their

degrees.

For the classification, we first learn a governing equation for each time series

using sparse regression methods with a basis composed of candidate functions.

After obtaining the n predicted models, we measure the difference between

the models using normalized Euclidean distance between the coefficients of

predicted models, dij. A distance matrix D = [dij] summarizes the mismatches

between the predicted models. Fig. 2.4(g). The row-sum of the distance matrix

Di =
P

j dij gives a histogram P (D), and each bin of the histogram contains

nodes with a similar degree (Fig. 2.4(h)). It does also not contain the exact

in-degree distribution of the network (Fig. 2.4(b)), however, allows for the

low-degree and hub node identification.

It is also important to note that weak coupling is also crucial to avoid possible
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synchronization in the network dynamics. If the system is synchronized, the

time series will be identical; in other words, all the predicted models will be

identical. This will make the classification impossible. Therefore, the weak

coupling is quite crucial for this algorithm to work as desired.

2. Learning the local dynamics. To mimic brain network dynamics, we

assume that the connectivity matrix W = [wij] represents a scale-free network

whose degree distribution follows a power law; in other words, most of the

nodes have small degrees k ⇠ n
✏, and some nodes are hubs with degrees k ⇠

n
1
2+✏ where ✏ is an arbitrarily small number. Therefore, the highest bin of

the histogram (the most abundant frequencies) contains the low-degree nodes’

models since there are many low-degree nodes (the orange bar in Fig. 2.4 (h)).

As it is likely to have nodes having incoming links, ki > 0, in the set of

low-degree nodes, the models can contain some small fluctuations. Thus, we

average the predicted coefficients of the low-degree nodes’ models to infer the

local dynamics as accurately as possible.

3. Learning the coupling function. Using the scale-free network topology

assumption as in the previous section, we understand that the lowest bin of the

histogram (the rarest frequencies ) contains the most different models, which

belong to the hubs (the blue bar in Fig. 2.4(h)). Then discarding the local

dynamics of the hub (f(xh(t)) from the hub measurement (xh(t + 1)) gives

the dominant coupling effect, which we aim to learn. Fig. 2.4(i) presents the

remaining coupling effect. We fit a function to the data and learn an approxi-

mate coupling function plus an integration constant arising from the reduction

theorem. To be more precise with the integration constant, for instance, if the

diffusive coupling function is given as h(x, y) = �(y) � �(x) then the effec-

tive coupling V for the expending maps is V =
R
h(x, y)dµ(y) = ��(x) + C

where C is the integration constant, which we call a possible linear shift for

the numerically recovered effective coupling V . This is easy to estimate from

the fitted coupling (Fig. 2.4 (i)) since we assume that �(0) = 0. Therefore,

the appearing linear shift is the integration constant C, and its value can vary

for different dynamical networks. Furthermore, the effective coupling is an ap-
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proximation, which becomes exact when the network model is considered as a

directed star graph with the link directions from low-degree nodes to the hub

at the thermodynamical limits as n ! 1. We have an approximated effec-

tive coupling for tree-like graphs, as scale-free graphs, under our assumptions

related to node degrees (mentioned above). The size of the bounded fluctua-

tion term i in the reduction (Eq. (2.3)) can be considered as the measure of

approximation.

Here, the weak coupling and chaotic dynamics assumptions take an important

role again for more general networks to preserve the statistical behavior of the

nodes’ dynamics. Although using chaotic oscillators helps to keep the state

distribution of the states stable, this property can be destroyed by a large cou-

pling. Therefore, if the network is denser, then the coupling constant should

be scaled to a smaller coupling strength for our reduction theorem to work.

For instance, if the hubs are rare in a scale-free network, the coupling strength

must be scaled by n
1/2. If all the nodes are hubs, in other words, if the net-

work is all-to-all connected, then the coupling strength must be scaled by n.

In our work, we scaled the weights in W with n
1/2, as we considered scale-free

networks (containing many low-degree nodes and rare hubs) since the work

focuses on reconstructing brain networks. It is also important to remind that,

for the node classification step, the synchronization of the nodes disallows the

reconstruction since the machine learning-based methods cannot distinguish

the data source between synchronized oscillators. Consequently, the chaotic

oscillators also play an important role here since if we have periodic and iden-

tical oscillator networks, any positive coupling strength can synchronize the

model, which is undesired for the reconstruction part. Therefore, the weak

coupling strength and the chaotic dynamical regime are crucial assumptions

for the theory and also for the numerical steps to learn the coupling function

H .

4. Learning the connectivity matrix. After learning the functions f and H ,

we define Y = X(t+1)�F (X(t)), so Eq. ((2.3)) can be written as Y = GX

where G = �(L ⌦ H). Therefore, learning the links becomes a regression
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problem by solving the linear equation Y
T = X

T
G

T . Here we employ a com-

pressed sensing approach using `1-norm, called LASSO, to solve the equation

since we are interested in reconstructing large network dynamics from short

data. In other words, we aim to solve the problem when the length of the time

series < m ⇥ n where m is the dimension of the local dynamics and n is the

system size. The problems under this condition are called underdetermined

regression problems. Finally, we identify the exact Laplacian matrix of the

network by solving the linear equation (Fig. 1 (j)).

Note that, in the previous steps of the procedure, the potential interaction

functions of two nodes (or higher-order interactions if the hypernetworks are

interested) are not involved in the basis library. Meaning that the size of the

library is not grown exponentially. Therefore, the algorithm does not require

a longer time series to reconstruct the network dynamics as the network size,

n, is increasing. In this last step, we also only sparsely solve a linear equation

where G 2 Rmn⇥mn, which is a square matrix.
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Figure 2.4 A scheme for the proposed reconstruction methodology on a small
network of size n = 20. As the network is unknown initially, its links were

illustrated indistinctly.
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2.4 Synthetical Networks

The scale-free networks are generated using the algorithm in Ref. (Bollobás et al.,

2003), and weights are assigned uniformly from the interval [0.8, 1.2]. The algo-

rithm creates undesired self-loops and multiple edges, so first we remove them. The

algorithm we use to generate directed scale-free networks has three probabilistic

parameters: ↵ and � are the probabilities of adding a new node connected to an ex-

isting node chosen randomly according to the in-degree and out-degree distribution,

respectively. � is the probability of adding an edge between two existing nodes. By

different parameter settings sparsity level of the network may be tuned.

2.5 Real Networks

2.5.1 Mouse neo-cortex network

We choose a neuronal connectivity consisting 1029 nodes representing a small volume

of a young adult mouse neocortex (Kasthuri et al., 2015). The network has 1700

synapses (links) which are manually labeled from a image data-set and the data

can be found in the public repository (Vogelstein et al., 2018). The network is

directed and contains multi-edges between some nodes. We considered the number

of these multi edges between nodes as weights. Furthermore, the network contains

19 disconnected parts, we removed them and kept only the giant component. The

resulting weighted and directed network has n = 987 nodes and m = 1536 links,

which is illustrated in Fig. 2.5 (a) with its in-degree distribution in Fig. 2.5 (b).

We downscale entries of the connectivity matrix by a small constant 0.1, and then

normalize by in-degree of hub, kh, so that the network is not synchronized.
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Figure 2.5 (a) Pre-processed directed and weighted mouse neo-cortex network.
The sizes of the nodes denote their in-coming degrees and the thickness of the
arrows denote their weights. (b) In-degree distribution of the associated real

network.

2.5.2 Macaque monkey visual cortex network

We tried our procedure on a real monkey visual cortex network that is not a scale-

free type (Markov et al., 2014; Vogelstein et al., 2018). The network consists of 91

nodes and 581 undirected and unweighted edges, which is illustrated in Fig. 2.6(a)

with its degree distribution in Fig. 2.6(b). It is impossible to classify nodes by degree

in a network with such a degree distribution, failure to classify nodes results in an

unable to learn local dynamics and identify the hub. So, we assume we know the

local dynamics and which node is the hub. When we continue with this preliminary

information, the reduction theorem allows us to learn the coupling function smoothly

and see full reconstruction.
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Figure 2.6 (a) Undirected and unweighted macaque monkey visual-cortex
network. (b) Degree distribution of the associated real network.
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3. RESULTS

3.1 Experiments

We use two standard indices to assess the reconstruction performance of our proce-

dure: the fraction of the false negatives out of the positives (FNR) and the fraction

of false positives out of the negatives (FPR). These metrics correspond to two types

of errors in network reconstruction: missing a link where a link indeed exists (false

negatives) or assigning a link between two nodes when they are not connected (false

positives):

FNR =
FN

P
and FPR =

FP

N

where FN evaluates errors on the non-zero terms (P ) of the correct matrix (under-

estimation) and FP evaluates errors of the zero terms (N) (overestimation). We

count FN and FP links by
P

i,j ⇥(|Lij � L̂ij| > ✏) to assess the accuracy of the link

strengths where L̂ij is the predicted Laplacian and ✏ is a tolerance value set as 10

times smaller than the smallest nonzero value in L. We use a fixed tolerance value

as ✏ = 0.0001 for all analyses.

3.1.1 Noise-free case

Following the reconstruction scheme, the nodes are classified using the similarity

histogram Fig. 3.1(a) for ⌘0 = 0, while the pairwise Pearson correlations do not show

any information about the degrees (inset in Fig. 3.1(a)). The difference between

return maps of a low-degree node and the hub is illustrated in Fig. 3.1(b). In our

reconstruction scheme, we assume that a low-degree node can be taken as an isolated

node to estimate local dynamics f . Effective coupling V (x) is found approximately

[0.1(u + 1), 0], meaning that ↵ is 0.1 and the linear shift is 1 on u-variable due to

H(0) = 0 (Fig. 3.1(c)). Finally, we learn the network topology by solving the linear
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equation Y = GX using the learned f and H̃ . We measure the reconstruction error

using the fraction of the false negatives (positives) out of the positives (negatives),

FNR (FPR). The FNR (FPR) equals 0 for perfect reconstruction. Here, we

use the ground truth Laplacian matrix to assess the accuracy of the reconstruction.

When the ground truth is not available, the learned model can be evaluated by the

cross-validation techniques. The reconstruction error is found to be almost zero for

a data length larger than T > 200 (Fig. 3.1(d)).
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Figure 3.1 Reconstruction procedure for weakly electrically coupled Rulkov maps
on a real mouse neocortex network. (a) Node-similarity histogram determines the

low-degree nodes (orange bar) and the hub (red bar). Inset: Histogram P (S)
presents the correlations between the original time series. It is impossible to infer
the connectivity structure from the correlations due to the chaotic nature of the
Rulkov maps. (b) The return maps of a low-degree node and the hub are slightly

different due to weak coupling effect. (c) The effective coupling, V (u), shifts
through the horizontal direction due to the integral constant 1. (d) FNR for

different lengths of time series. FPR are zero for all time series lengths.

40



We compare the return maps of a low-degree node and a hub node’s dynamics with

an isolated Rulkov map under the effect of weak coupling in Fig 3.2.

Figure 3.2 a) The return map of the hub’s data and isolated Rulkov map to show
the weak coupling effect. b) The return map of one of the low-degree nodes shows

that these nodes oscillate almost with the isolated local dynamics.

Furthermore, a systematical evaluation of our approach according to penalty terms

and time series lengths is performed. When the number of nodes n times the dimen-

sion of the local dynamics m exceeds the time series length nm > T , it corresponds

to an underdetermined linear problem. Even for short data (T ⇡ 200), a successful

reconstruction is possible with a small penalty term when mn = 1974 (Fig. 3.3).

Note that if the problem is overdetermined nm < T , then `2-norm regression can

be used for faster computations.

Figure 3.3 (a) The reconstruction performance for different time series lengths
and a series of penalty terms as FNR and (b) as FPR.
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3.1.2 Noise effect

To measure the robustness of our methodology against noise, we systematically

perform the reconstruction procedure for various ⌘0 values (Eq. (1.37)) on synthetic

as well as real mouse neocortex networks. The reconstruction approach is robust to

small noise intensities for the real-world example (Fig. 3.4). The average robustness

of the reconstruction procedure over 50 different directed and weighted random

scale-free networks is given in Fig. 3.5.

Figure 3.4 Noise effect on reconstruction performance on real network as FNR

and FPR.

As the system size grows, the reconstruction performance reduces with respect to

FNR for increasing noise intensity ⌘0 (Fig. 3.5(a)), since the noise becomes more

dominant than the weak coupling, which prohibits learning H using the coupling

effect. As similar to real-world application, FPR results are also negligibly small

for the noise induced reconstruction case (Fig. 3.5(b)).

42



FP
R

FN
R

η0η0

n = 200
n = 400
n = 600
n = 800
n = 1000

n = 200
n = 400
n = 600
n = 800
n = 1000

0.0003

0.0002

0.0001

0.0

0.0004

0 0.002 0.0040 0.002 0.004

0.0

0.04

0.08

0.12 (a) (b)

Figure 3.5 Average noise effect on reconstruction performance illustrated using
(a) FNR and (b) FPR for 50 realizations of simulations using random scale-free
networks of system sizes n = 200, 400, 600, 800 and 1000. Time series length is

fixed as 500 during all the simulations. The shaded regions represent the
corresponding standard deviations.

3.1.3 Comparison between sparse regression methods

We compare two optimizers to perform sparse regression; LASSO and STLS.

In the final step of our reconstruction approach, we find a sparse solution for w, it

corresponds to L in our case. From the algorithmic point of view, fine-tuning of

the hyper-parameters, penalty term for LASSO and sparsity parameter for STLS,

is essential to improve the accuracy. These two parameters are not equivalent,

however we can make a similar interpretation between them (Mehta et al., 2019).

The length of the time series determines the problem type since our network size

is fixed in the experiments. The time series length lower than the network size

(T < nm = 987 ⇥ 2 = 1974) correspond to an under-determined case for the real

network we use.

Fig. 3.6 presents the reconstruction performance for different time series lengths and

two hyperparameters as FNR and FPR. We compare FNR values to evaluate the

performance of LASSO and STLS in Fig. 3.6(a) and Fig. 3.6(c), since FPR values

are always very small. The results show that LASSO overcomes STLS for shorter

time series. Since the `1-norm penalized solution, is a generalization of compressive
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sensing approach, it provides a unique solution for underdetermined cases (Donoho,

2006). On the other hand, if there is long enough data, STLS becomes a fast

alternative to the LASSO from an algorithmic point of view and works very well

for our problem. We took one under-determined case (T = 300) to compare the

performance of two different sparsity promoting methods in Fig. 3.7. If we have

limited data, we see full reconstruction by LASSO but not by STLS.

(b)

(c) (d)

(a)

Figure 3.6 (a) FNR and (b) FPR with respect to a list of penalty terms for
LASSO. (c) FNR and (d) FPR with respect to a list of sparsity parameters for
STLS. 10 different lengths of time series are used to compare the performance.
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Figure 3.7 FNR with respect to a list of penalty term for Lasso and sparsity
parameter for STLS. (T = 300) case is used as a short time series example. There

is no full reconstruction region for STLS.

3.1.4 Sparsity effect

In addition to the lack of sufficient data, the sparsity condition of the Laplacian

matrix should be satisfied to solve the linear regression problem within the com-

pressed sensing framework. We present results in this direction based on synthetical

networks. We use two different parameter setting as [↵ = 0.41, � = 0.05, � = 0.54]

and [↵ = 0.2, � = 0.5, � = 0.3] to obtain Laplacian matrices at different sparsity lev-

els. The former (default) setting’s power exponent is approximately 2 and generates

denser networks, while the latter’s power exponent is approximately 1 and generates

sparser networks. As seen in Fig. 3.8, we see full reconstruction in sparser networks

since the Laplacian matrix meets the sparsity condition for the compressive sensing

approach (Candes et al., 2006).
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Figure 3.8 FNR against noise for sparse and dense networks of sizes (a) n = 600,
(b) n = 800 and (c) n = 1000. All points show an average error over 10 different

realizations of scale free networks and shaded regions present standard deviations.
Time series length is 500, which corresponds to underdetermined cases for all three

network sizes.

3.1.5 Cross validation of inferred Laplacian matrices

In the main results, we use the ground-truth Laplacian matrix to show the perfor-

mance of the reconstruction for various hyper-parameters and data lengths. How-

ever, it is unlikely to know the true matrix to evaluate the methodology’s suc-

cess in real-world problems. Therefore, it is important to assess the reconstruc-

tion outcome when the real matrix is absent using a cross-validation technique.

To illustrate the cross-validation approach, we obtained predicted time series of

length 500 using inferred Laplacian matrices for various hyper-parameters (penalty

term) � = 0.008, 0.003 and 0.0003. Out of those three parameters, the outcome for

� = 0.0003 gives the best-fit, Fig. 3.9(a).
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Figure 3.9 a) Comparison between measurement of a node and test time series.
Each � parameter corresponds to different connectivity matrices. We simulate the
inferred models and obtain test time series. b) Cross validation of the inferred time

series based on obtained connectivity matrices for a series of penalty terms.

To find the best hyper-parameters in large network dynamics, we use an error func-

tion

E =
1

n

nX

i=1

 
1

T

TX

t=1

⇣
yi,t � ŷi,t

⌘2
!

(3.1)

where yi = xi(t + 1) � f(xi) and ŷ denotes the predicted one. Then we optimize

the hyper-parameters, which minimize the error. The parameters yielding the most

accurate results can be used as the optimal hyper-parameter (Fig. 3.9(b)).
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3.1.6 Other dynamical systems

We provide reconstruction analysis for Hénon map and Tinkerbell map.

Hénon map.

u-component coupling. We use Hénon map as f in Eq. (1.39), a discrete-time

dynamical system exhibit chaotic behavior:

ui(t+ 1) = 1� ↵ui(t)
2 + vi(t)�

nX

j=1

Lijuj(t) (3.2)

vi(t+ 1) = �ui(t)

where ↵ = 1.4 and � = 0.3 are fixed during the simulations. Hénon maps are coupled

through their u-components weakly. Initial positions are taken from the interval

[0, 0.1] randomly uniformly for each map. We iterate over 11000 steps and discard

the first 10000 steps as a transient. Our procedure reveals the local dynamics as

Hénon map, interaction function as diffusive coupling for u�component, and finally,

the correct Laplacian matrix from time series data.
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Figure 3.10 Reconstruction procedure for weakly u-coupled Hénon maps on a
real network. First, we learn a model for each node’s time series data to classify
them. (a) The histogram P (D) based on the pairwise Euclidean distance matrix.
While the highest bin of the histogram gives us f , the lowest bin identifies the
hub. The inset histogram emphasizes that the pairwise correlations of the time

series observations do not provide any information about the network connectivity
due to the chaotic dynamics. (b) The return maps of a low degree node and hub

show the coupling effect slightly due to weak coupling. In (c), we plot the
dominant coupling effect on the hub to see the model of H . (d) shows FNR and

FPR for different lengths of time series. 200 data points are enough for full
reconstruction of the network dynamics with 987 nodes.

u-component coupling with sinusoidal function. We use the same f but different

coupling function H in this example:

ui(t+ 1) = 1� ↵ui(t)
2 + vi(t)�

nX

j=1

Lij sin(2⇡uj(t)) (3.3)

vi(t+ 1) = �ui(t)

Initial positions are taken from the interval [0, 0.01] randomly uniformly for each

map. We iterate over 12000 steps and discard the first 10000 steps as a transient.

Fig. 3.11 shows the reconstruction results of sine-coupled Hénon maps. We simply

added trigonometric functions to the candidate function library in the first step of

our procedure and fully reconstructed the network connections by learning the local
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dynamics as Hénon map and the coupling function as sine function.

Figure 3.11 Reconstruction procedure for weakly sin u-coupled Hénon maps on a
real network. First, we learn a model for each node’s time series data to classify
them. (a) The histogram P (D) based on the pairwise Euclidean distance matrix.
While the highest bin of the histogram gives us f , the lowest bin identifies the
hub. The inset histogram emphasizes that the pairwise correlations of the time

series observations do not provide any information about the network connectivity
due to the chaotic dynamics. (b) The return maps of a low degree node and hub
show the coupling effect slightly due to weak coupling. In (c), we plot the the

dominant coupling effect on the hub to see the model of H . (d) shows FNR and
FPR for different lengths of time series. 300 data points are enough for full

reconstruction of the network dynamics with 987 nodes.

Tinkerbell Map. Tinkerbell map coupled through their u-component diffusively

is given by:

ui(t+ 1) = ui(t)
2
� vi(t)

2 + aui(t) + bvi(t)�
nX

j=1

Lijuj(t) (3.4)

vi(t+ 1) = 2ui(t)vi(t) + cui(t) + dvi(t)

where a = 0.9, b = �0.6013, c = 2.0 and d = 0.5 are fixed during the simulations to

ensure a fully chaotic regime. Data is generated from u-coupled Tinkerbell maps by

iterating over 11000 steps and dropping the first 10000 time steps as a transient. We
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successfully reveal the local dynamics of the Tinkerbell map, interaction function

and finally the Laplacian matrix from time series.

Figure 3.12 Reconstruction procedure for weakly u-coupled Tinkerbell maps on a
real network. First, we learn a model for each node’s time series data to classify
them. (a) The histogram P (D) based on the pairwise Euclidean distance matrix.
While the highest bin of the histogram gives us f , the lowest bin identifies the
hub. The inset histogram emphasizes that the pairwise correlations of the time

series observations do not provide any information about the network connectivity
due to the chaotic dynamics. (b) The return maps of a low degree node and hub

show the coupling effect slightly due to weak coupling. In (c), we plot the
dominant coupling effect on the hub to see the model of H . (d) shows FNR and

FPR for different lengths of time series. 300 data points are enough for full
reconstruction of the network dynamics with 987 nodes.

As seen in figures 3.10(c), 3.11(c) and 3.12(c), the horizontal shift between the

fitted curve on the data (red) and the predicted H curve (black) varies for each

dynamical system. This observation is compatible with the reduction theorem,

which is analytically proven only for expanding maps (Eroglu et al., 2020). We show

that even if the theorem is not rigorously proven for the Rulkov map, Hénon map

or Tinkerbell map, the methodology accurately works. For the coupling, H(x, y) =

y � x, v(x) =
R
H(x, y)dm(y) is found as �x plus a constant. These constants

are found as 1 for coupled Rulkov maps, �0.3 for coupled Hénon maps and 0.1
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for coupled Tinkerbell maps. For sinusoidal coupling, H(x, y) = sin 2⇡y � sin 2⇡x,

v(x) =
R
H(x, y)dm(y) is found as � sin 2⇡x plus a constant and it is 0 for sin-

coupled Hénon maps.

3.2 Prediction of Critical Transitions

Although we recover the true network structure, the reduction theory approximates

the isolated dynamics f and coupling function H with small bounded fluctuations.

As the local dynamics is chaotic and we consider possible noise effect, time evolution

forecasting of the given system can diverge from the original system. However, as

we recovered the network dynamics with high accuracy for the given data as,

X(t+ 1) = F (X(t)) + �GX(t), (3.5)

where � is the coupling control parameter and initially it is � = 1 for the recon-

structed model. Then, it is possible to detect critical coupling strength factor �c

to predict the emergent behavior of the dynamical network by fully analytical tech-

niques if the reconstructed coupling function is identity matrix (Eroglu et al., 2017).

For general coupling functions, master stability function (Pecora and Carroll, 1998)

or connection graph method (Belykh et al., 2004) can be performed for the detection.

3.3 Why is the Reduction Theorem Crucial to Reconstruct Large Net-

works?

A fully-algorithmic approach is to apply any sparse optimization technique directly

to the entire multi-variable time series. Only up to a certain size networks can

be recovered by this method. By the reduction theorem, we learn local dynamics

from low degree nodes and interaction dynamics from the hub. We are not looking

for a sparse linear combination of functions within a massive library of all possible

functions. Therefore, there is no limit on network size in our approach. In this

section, we will show this with a simple example:

Assume we have a network with 5 nodes. If node 1 has links coming from the nodes
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0, 4 and 5 as seen in Fig. 3.13, then the dynamics of node 1 is written simply in

Laplacian matrix form:

Figure 3.13 5-nodes network as an example.

x1(t+ 1) = f(x1(t)) + 3H(x1(t))�H(x0(t))�H(x4(t))�H(x5(t)) (3.6)

where xi 2 Rm. Eq.(3.6) is in the form of a linear combination of the connections,

allowing any sparse regression algorithm to capture the parameters correctly in case

of a well-defined basis library. For one single equation, it seems pretty feasible,

but for a 5-nodes network, each has m components, we have 5m equations to be

discovered. Suppose we set the basis composed of polynomials up to second-degree

and all quadratic combinations of all variables due to a piece of prior knowledge

about the coupling function. This example setting has 9 functions for m = 3. In

that case, our basis includes 45 features for this particular example. If we do not

have prior knowledge, we use an extensive library that includes more candidate

functions. We performed experiments in this direction to see the limitations. The

results showed that a purely algorithmic equation-based learning approach fails as

the network size, that is, the basis grows. Results of Novaes et al. validated our

conclusions, they showed that adding new functions to the basis due to increase of

network size (up to 20-nodes) effects badly the reconstruction (Novaes et al., 2021).

Furthermore, in the final sparse regression step, our problem turns into a linear

equation as y = Ax, where y 2 RT , A 2 RT⇥n and x 2 Rn. Here, y is the
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data, and the length of the data is T , n is the network size, and we focus on the

underdetermined cases (T < n) since data availability is always limited. From

the perspective of compressed sensing, the measurement matrix A should satisfy

some conditions to converge the sparsest solution for x by `1-norm. One of these

conditions can be summarized as the time series length scales with the network size,

so if the measurement matrix has more columns, longer measurements are needed.

It is given by the relation:

T ⇡ O(Klog(n/K))

where K is the network’s sparsity measure (number of nonzero entries) (Brunton

and Kutz, 2019). If the number of columns is determined by the basis functions

that include all possible pairwise interactions, not the network size, this means the

need for a longer time series. On the other hand, the uncertainty of the interaction

function is an obstacle to inferring the exact connection matrix (Liu and Barabási,

2016). Finding H and therefore reducing the dimension of the optimization problem

for full reconstruction broadens the applicability and distinguishes our work.

3.4 Sparse Recovery on a Real Data

The authors in Ref. (Cherevko et al., 2016) proposed a generalized Van der Pol-

Duffing equation to model blood flow in the cerebral vessels. They obtained patient-

specific clinical experimental data during the neurosurgical operations in Meshalkin

Research Institute of Circulation Pathology (Novosibirsk, Russia). The measure-

ment contains velocity and pressure data obtained at different stages of the oper-

ations and belongs to two different malformations: arterial aneurysms (AA) and

arteriovenous malformations (AVM).
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Figure 3.14 The upper panels show blood flow pressure (a) and velocity (b) of
one of AA patients, while the lower panels show one of AVM patient’s pressure (c)

and velocity (d)

They used coefficient inverse methods to fit their model on the data, and these

methods are computationally expensive in terms of real-time clinical data process-

ing. We use SINDy (Brunton et al., 2016) to fit a simplified linear model (3.7) for

each clinical patient-specific pressure data and to speed up the model construction

process. Now, the aim is to find an equation of form ẋ(t) = f(x(t)). We have

the linear equation Ẋ = ⇥(X)⌅ to solve for ⌅. Since the measurement Ẋ is not

available, we approximate them numerically for the left-hand side of the equation.

p̈(t) + a ṗ(t) + b p = ✏u(t) (3.7)

Fig. 3.15 displays the predicted pressure obtained by the proposed model in P-V

plane with clinical pressure for one AA and AVM patient. It showed that the sparse

recovery approach could predict a pressure model which replicated the real pressure

observations before, during and after surgery.
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Figure 3.15 Pressure - velocity plane for one patient’s before (blue), during
(orange) and after (green) surgery data: (a-c) patient with AA; (d-f) patient with
AVM. Dark curves present the simulated pressure data from the proposed model.
Predicted data show a counterclockwise current which validates the circulation in

arteries.

The mean squared error between the ground-truth time series and the predicted

time series is a common measure to assess the model accuracy as:

mse(p, p̂) =
1

ns

ns�1X

i=0

(p� p̂i)
2
, (3.8)

where ns is the number of samples, p is the ground-truth pressure and p̂ is the

modeled pressure. Four different training sample sizes, the number of observations in

a measurement, are used for evaluating the forecasting performance of the predicted

model. As seen in Fig. 3.16(a), the test sample size for each case is almost the same.
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SINDy is applied to the training set, the inferred models are simulated forward

in time and obtain predicted series. Fig. 3.16(b) shows the mean squared error

calculated between the predicted series and test sets. The length of the training set

affects the forecasting accuracy as expected.

Figure 3.16 Forecasting performance of the proposed model on AA patients.

We will split the data into two parts to discover models independently and see how

unique the predicted coefficients are.

Figure 3.17 a) Predicted coefficients of the learnt model on AA patients. b)
Splitted pressure data collected before surgery of one of the AA patients.

Furthermore, we test whether the fitted parameter values of Eq. (3.7), regarded as

a data-dimensionality reduction, can be used for automatic classification of blood-

flow pathologies. To this end we apply the logistic regression to patients data to

discriminate flow with AA, AVM, and in surgically treated vessels. We encode these
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groups as quantitative response variables:

Y =

8
>>>>><

>>>>>:

0 if AA patient

1 if AVM patient

2 if treated patient

(3.9)

Fig. 3.18 shows the results based on different subsets of 3 features. We apply logistic

regression on randomly selected 80% of the patients and test our model on the

remaining 20%. The average accuracy over 100 random selections are 0.75 ± 0.19

when a and b are used, 0.48 ± 0.23 when b and d are used and 0.36 ± 0.21 when a

and d are used in the training.

Figure 3.18 Data contains model coefficients based on 5 AA patients before
surgery, 5 AVM patients before surgery and 10 AA and AVM patients after

surgery data. The black lines are the decision boundaries.

Fig. 3.19 shows the results based on the training with 3 features. The average

accuracy over 100 random selections are 0.73±0.2 when a, b and d are used together.

Figure 3.19 Data contains model coefficients based on 5 AA patients before
surgery, 5 AVM patients before surgery and 10 AA and AVM patients after

surgery data. Each plot shows two of three features by fixing the third feature
value to its mean value.

58



The overall goal is to build a computational framework for real-time monitoring

during cardiovascular surgeries. One of the main objectives of our work is to use a

technique which would overcome the previous approach in terms of model-building

time. SINDy is fast to discover a governing model for the clinical data, and we

showed that the proposed model is robust. Moreover, we used the patient-specific

model parameters to classify the two malformations before and after surgery. 73%

accuracy in the classification task shows that SINDy as a model discovery technique

can be used as a dimensionality reduction method for time series.
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4. CONCLUSIONS

The network is fully recovered by our approach in the setting where f is chaotic,

the network is scale-free and the coupling is weak. Because of the weak coupling

between nodes and the chaotic nature of the local dynamics, the correlation between

measured time series decays exponentially; therefore, it is impossible to reconstruct

such complex systems by conventional methods. Cutting-edge autonomous statis-

tical learning techniques also fail when the network size is large. The key idea in

our procedure is splitting the model equation into parts by reduction theorem and

inferring each unknown (f ,H and W ) one by one using sparse recovery. Although

the reduction theorem is not established for the general chaotic discrete maps, we

showed its validity on various maps. Our approach guarantees the full reconstruc-

tion for the noise-free case and small noise intensity even for relatively short time

series with no limitations on the network size. However, the quality of reconstruction

decreases for increasing noise and the destructive effect of the noise also increases

with increasing system size. Finally, obtaining the network dynamics allows one to

predict the emergent behavior under parameter changes. The ability to detect such

transitions is crucial for applications such as a transition to collective behavior in

the brain network, which can lead to undesired implications. Thus, it is desirable

to put forward precautionary norms to avert potential disasters.

Continuous dynamical systems on complex networks remain open questions for our

approach. To perform sparse regression independently on each node’s measurement,

we set up the left-hand side of the equations one step further from the time series in

the case of the discrete dynamical system. However, we would put the derivatives

of the state variables in continuous systems. Numerical derivatives may give poor

results. Also, hidden variables in the data and needing access to all nodes to get

measurements still need to be solved for our approach.
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