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Abstract: Let G be a graph of order n satisfying that there exists λ ∈ Z
+ for which every

graph of order n and size t is contained in exactly λ distinct subgraphs of the complete graph
Kn isomorphic to G. Then G is called t-edge-balanced and λ the index of G. In this article, new
examples of 2-edge-balanced graphs are constructed from bipartite graphs and some further
methods are introduced to obtain more from old. © 2015 Wiley Periodicals, Inc. J. Combin.
Designs 24: 343–351, 2016
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1. INTRODUCTION

Consider a graph G of order n with the property that there exists λ ∈ Z
+ for which every

graph of order n and size t is contained in exactly λ distinct subgraphs of Kn isomorphic
to G. We call such a graph G t-edge-balanced and λ its index. One can generalize this
problem to obtain graphical t-designs. We refer the reader to other studies [3–7] for
history and known results on t-edge-balanced graphs and graphical t-designs.

Although no example of infinite families of t-edge-balanced graphs for t ≥ 3 is known,
few examples of 2-edge-balanced graphs have been constructed. Alltop [1] shows that
the graph of order 2k − 3 containing a cycle of length k and k − 3 isolated vertices is 2-
edge-balanced with index λ = (2k − 6)!/(k − 3)! for k ≥ 3. This gives rise to a graphical
2-(

(2k−3
2

)
, k, (2k − 6)!/(k − 3)!) design for all k ≥ 3. Caliskan and Chee [2] show that

some trees with certain properties are 2-edge-balanced and there are infinite families of
integer-valued polynomials each of which results in infinite families of such trees.

In this article, new examples of infinite families of 2-edge-balanced graphs are con-
structed from bipartite graphs and some further methods are introduced to obtain more
examples from old.
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FIGURE 1. Isomorphism classes of graphs of size two.

2. PRELIMINARIES

We assume the reader is familiar with the basic definitions related to combinatorial
t-designs and note that graphs are all simple throughout the article.

Let Kn be the complete graph on n vertices with the set of vertices V and set of edges
E, then the action of the symmetric group Sn on V naturally induces an action on E. A
t-design (X,B) with X = E andB a collection of graphs of certain size k closed under the
action of Sn is called graphical. In particular, B is a union of orbits of Sn on k-subsets of
E. A graphical t-(

(
n

2

)
, k, λ) design (X,B) such that B contains a single orbit represented

by G is equivalent to G being a graph of order n and size k that is t-edge-balanced with
index λ.

Let G and H be graphs of order n. Alltop [1] discusses how to compute λH :G, the
number of distinct subgraphs of Kn isomorphic to G each of which contains H , as
follows.

Lemma 2.1 (Alltop [1]). If G contains nH :G distinct subgraphs isomorphic to H , then

λH :G = nH :G
|Aut(H )|
|Aut(G)| .

There are only two isomorphism classes of graphs of order n and size two. See
Figure 1 (Isolated vertices are not shown in graph drawings in Figure 1). Thus, G is
2-edge-balanced if and only if λH1:G = λH2:G. By Lemma 2.1, this is equivalent to

nH2:G

nH1:G
= |Aut(H1)|

|Aut(H2)| = n − 3

4
.

Theorem 2.1 (Alltop [1]). A graph G of order n is 2-edge-balanced if and only if

nH2:G

nH1:G
= n − 3

4
.

For a given graph G of order n and size k, let dG be the list of nonzero vertex degrees
d(v1)d(v2) . . . d(vn) written in nonincreasing order, then dG is called the degree sequence
of G. To simplify, we write the degree sequence dG in the form d

s1
1 d

s2
2 . . . dsr

r , where
r ≤ n and di �= dj whenever i �= j . We also compute that

r∑
i=1

sidi = 2k and nH1:G + nH2:G =
(

k

2

)
. (1)

Let us assume that d
s1
1 d

s2
2 . . . dsr

r is the degree sequence of a 2-edge-balanced graph G

of order n and size k, then nH1:G = ∑
si

(
di

2

)
. Now consider a graph G′ of order n with
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FIGURE 2. G
�(xyz)−→ G′, m ∈ Z

+, � ∈ Z.

dG′ = dG, then the size of G′ is equal to k and nH1:G′ = nH1:G. This implies that G′ is
also 2-edge-balanced by (1).

Theorem 2.2. Let G be 2-edge-balanced. If a graph has the same order and degree
sequence as G, then it is 2-edge-balanced.

A 2-switch is the replacement of a pair of edges xy and zw in a graph by the edges yz

and wx, given that yz and wx did not appear in the original graph.

Theorem 2.3 (Berge [8]). If G and H are two simple graphs with the same vertex set
V , then they have the exact same degree sequences if and only if there is a sequence of
2-switches that transforms G into H .

We use 2-switches below in Section 3.3 (by Theorems 2.2 and 2.3) to obtain new
2-edge-balanced graphs from old.

Let G be a graph with the set of vertices V and edges E. If x, y, z ∈ V , xy ∈ E and
xz /∈ E, then we define the operation �(xyz) on G that removes the edge xy and adjoins
xz. We call this new graph as G′. See Figure 2 (In figures throughout the article, we
have the convention that only the edges related to the specified operation are shown in
graph drawings and the dotted edges represent the edges that no longer exist in the current
graph. Numbers next to vertices represents the vertex degrees). If d(z) − d(y) = �, where
� ∈ Z, then

nH1:G′ − nH1:G = � + 1.

Let us further define a second operation � on G. If x, y, z, w ∈ V , xy ∈ E, and
zw /∈ E, then define �(xyzw) on G that removes the edge xy and adjoins zw (see
Figure 3). If d(x) − 2 = d(y) = d(z) = d(w), then

nH1:G′ = nH1:G.

3. NEW 2-EDGE-BALANCED GRAPHS

In what follows two constructions which yield new 2-edge-balanced graphs are discussed.
Both use bipartite graphs and give rise to new infinite families of graphical 2-designs. We
further introduce some methods including 2-switches to convert these graphs into other
2-edge-balanced graphs.
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FIGURE 3. G
�(xywz)−→ G′, m ∈ Z

+ \ {1}.

3.1. Construction 1

Let m > 1 be an integer and G an m-regular graph on 2m vertices. We define G′ as
G′ = G ∪ {v}, where v is an isolated vertex. Note that G′ is of order 2m + 1. A sim-
ple computation shows that nH1:G′ = 2m

(
m

2

) = m2(m − 1) and nH2:G′ = (
m2

2

) − nH1:G′ =
1
2m2(m − 1)2. Since

nH2

nH1

= m2(m − 1)2

2m2(m − 1)
= m − 1

2
= (2m + 1) − 3

4
, (2)

it follows by Theorem 2.1 that G′ is 2-edge-balanced. We present this result in the
following theorem.

Theorem 3.1. Let m > 1, then an m-regular graph on 2m vertices together with an
isolated vertex is 2-edge-balanced.

Now consider the complete bipartite graph G = Km,m. Since G is m-regular on 2m

vertices with |Aut(G)| = 2m!m!, adjoining G an isolated vertex results in a 2-edge-
balanced graph with index

λ = (2m − 2)!

(m − 2)!(m − 1)!
.

See G1 in Figure 4 for an example with m = 3.

Corollary 3.1. Let G = Km,m be the complete bipartite graph for m > 1, then G′ =
G ∪ {v}, where v is an isolated vertex, is 2-edge-balanced.

Thus, the existence of graphical 2-designs on 2m2 + m points follows from Corol-
lary 3.1.

Corollary 3.2. There is a graphical 2 − (2m2 + m, m2, (2m−2)!
(m−2)!(m−1)! ) design for any

m > 1.

3.2. Construction 2

For m > 1, let G = Km−1,m+1 be a complete bipartite graph, then we adjoin a single new
vertex v and an edge e connecting v to one of the vertices of G with valency m − 1.
We call this new graph of order 2m + 1 as G′. See G3 in Figure 4 for an example of G′
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G1 G2 (G1)

G3 G4 (G3) G5 (G3) G6 (G3) G7 (G4) G8 (G4)

G9 (G4) G10 (G4) G11 (G5) G12 (G5) G13 (G9)

G14 G15 (G14) G16 (G15)

G17 G (G17) G19 (G17) G20 (G17) G21 (G17) G22 (G18)

FIGURE 4. 2-Edge-balanced graphs on 7 vertices and 9 edges.

with m = 3. It follows for G′ that nH1:G′ = (m − 1)m2 and nH2:G′ = 1
2m2(m − 1)2, then

it results in that

nH2:G′

nH1:G′
= m2(m − 1)2

2m2(m − 1)
= m − 1

2
= (2m + 1) − 3

4
.

This implies that G′ is 2-edge-balanced. Moreover, we compute that

|Aut(G′)| = (m − 1)!m!

and obtain its index as

λ = 2m(2m − 2)!

(m − 1)!(m − 2)!
.

Theorem 3.2. G′ is 2-edge-balanced with index λ = 2m(2m−2)!
(m−1)!(m−2)! .

Corollary 3.3. There is a graphical 2 − (2m2 + m, m2, 2m(2m−2)!
(m−1)!(m−2)! ) design for any

m > 1.

3.3. 2-Switches and Further Methods

In this section, we discuss how to obtain more 2-edge-balanced graphs from old. Once
we construct some 2-edge-balanced graphs on what some 2-switches are available, The-
orem 2.3 points out the existence of other 2-edge-balanced graphs whenever the original
graphs can be converted to nonisomorphic graphs by a sequence of 2-switches. Since the
degree sequence of the original graph is fixed by a 2-switch, one can apply 2-switches
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FIGURE 5. nH1:G′ − nH1:G′
2
= m − 3.

(where applicable) on 2-edge-balanced graphs that are constructed in Sections 3.1 and 3.2.
See Figure 4 for all possible examples of graphs on 7 vertices and 9 edges obtained from
G1 and G3 by a sequence of 2-switches. In Figure 4, the label “Gi (Gj )” means that the
graph Gi is obtained from the graph Gj by a single 2-switch.

In the next, we introduce further methods to construct more examples from the graphs
constructed above. Let us start with the graph G′ (for m > 2) introduced in Section 3.2.
See Figure 5 for the following discussion. The complete bipartite graph Km−1,m+1 has
the degree sequence (m + 1)m−1(m − 1)m+1, then the graph G′ has the degree sequence
(m + 1)m−1m(m − 1)m1. We first pick two vertices—say v1 and v2—of degree m − 1
and a vertex—say v3—of degree m + 1, then remove the edges v1v3 and v2v3 and adjoin
new edges v1v4 and v2v4, where v4 is the only vertex of degree m on G′. We call this
new graph as G′

1 and its degree sequence is (m + 2)(m + 1)m−2(m − 1)m+11. Next step
is to pick a vertex—say v5—of degree m + 1, then remove the edge v2v5 and adjoin a
new edge v2v6, where v6 is the only vertex of degree 1 in G′

1. The degree sequence of
this new graph G′

2 is equal to (m + 2)(m + 1)m−3m(m − 1)m+12. We compute that

nH1:G′ − nH1:G′
2
= m − 3.

The size of the graph G′ is preserved in G′
2, so we need to change the structure of G′

2
and increase the number graphs H1 in G′

2 by m − 3. If m = 3, we are done. We need
to apply the operation � once or twice for m ∈ {4, 5, 6} (see Figure 6). We apply the
operations �(x1z1z2), �(x0y0z0) and �(z0y1z1) (in this order) on the specified vertices
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FIGURE 6. G′
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3, m ∈ {4, 5, 6, 7}.
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G′
3, 0 ≤ i ≤ N and 0 ≤ j ≤ M (for m ≥ 8).

for m = 7. Each of first two increases nH1:G′
2

by three and the latest decreases it by two.
For m ≥ 8, we apply N + M many � operations, where

N = 	m − 3

3

 and M = 3(N + 1) − m,

to increase the number of H1 by m − 3 (see Figure 7). Each operation �(xiyixi+1), 0 ≤
i ≤ N , increases its number by three and each of �(wjzjwj+1), 0 ≤ j ≤ M , decreases
it by only one. Note that operations �(xiyixi+1) and �(wjzjwj+1) do not use a common
vertex or edge, since

N + M < m − 3,

for all m ≥ 8.
We discuss above how to change the structure of the graph G′

2 to obtain G′
3 (for

m > 2), which has the same order and degree sequence as the graph G′. Thus, we have
the following result by Theorem 2.2.
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FIGURE 8. G′ �(v1v2v3v4)−→ G′′.

Theorem 3.3. G′
3 is 2-edge-balanced.

To illustrate this method for m = 3, we let G′ = G3 (see Figure 4), then obtain that
G′

2 = G14.
For the sake of obtaining all the graphs shown in Figure 4, we now introduce another

method to construct (in general) other examples of 2-edge-balanced graphs from the
graph G′ (of Section 3.2) for all m > 2. This method, specifically, is to construct the
graph G17 from G3 in Figure 4. It consists only of the operation � as shown in Figure 8.
This operation fixes the number of graphs H1 without changing the size of the graph, so
the graph G′′ is 2-edge-balanced.

Theorem 3.4. G′′ is 2-edge-balanced.
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