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Performance of Cellular Neural Network Based
Channel Equalizers

A. OZMEN, B. TANDER, and H. SENOL

Abstract—In this paper, a popular dynamic neural network
structure called Cellular Neural Network (CNN) is employed
as a channel equalizer in digital communications. It is shown
that, this nonlinear system is capable of suppressing the effect of
intersymbol interference (ISI) and the noise at the channel. The
architecture is a small-scaled, simple neural network containing
only 25 neurons (cells) with a neighborhood of r = 2 , thus
including only 51 weight coefficients. Furthermore, a special
technique called repetitive codes in equalization process is also
applied to the mentioned CNN based system to show that the
two-dimensional structure of CNN is capable of processing such
signals, where performance improvement is observed. Simula-
tions are carried out to compare the proposed structures with
minimum mean square error (MMSE) and multilayer perceptron
(MLP) based equalizers.

Index Terms—Cellular Neural Networks, channel equalization,
MLP equalizer, MMSE equalizer, repetitive codes.

I. INTRODUCTION

N DIGITAL communication systems, the signal at the
I receiver will be the linear combination of time delayed
and original transmitted signals, as a result of reflections and
diffractions at the media. Therefore, the transmitted signal
will reach to the receiver with a significant loss, which is
called ISI. Typically, the ratio of the total erroneous bits to
the total transmitted bits, which is called Bit-Error-Rate (BER)
or Symbol-Error-Rate (SER) at the receiver, can be used as
a measure. Equalization is the process that compensates the
IST and the impact of noise at the receiver by providing the
maximum possible BER.

In literature, various methods are introduced for equal-
ization. Equalizers that are complex and require too much
computational power are designed for the applications where
precision is needed rather than speed [I]-[|6]. On the other
hand, less complex however, relatively less accurate methods
are also proposed when the speed is taken into account. A
structure that models the equalizer with a transversal filter
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approach called zero-forcing (ZF) and the algorithm based on
minimizing the mean square error between the equalizer output
and the transmitted signal called MMSE are the most popular
ones among these [7], [8].

Although these are commonly used linear transversal fil-
ters in channel equalization, their Bit-Error-Rates (BER) are
not satisfactory. For this reason, alternative methods were
developed in literature including Neural Network based ar-
chitectures [9], [10]. However, even their BERs are better
than the conventional techniques, because of their complex
structures, they require too much computational power. At
this point, CNN can be a good alternative to them with its
simple topology. Furthermore, since the outputs of a CNN
can take either -1 or +1 values, it is logical to use it in the
reconstruction of Binary Phase Shift Keying (BPSK) signals.
Formerly, CNN was employed to compute the coefficients of
the linear transversal filters [11]], somehow in our work, we
directly used it as an equalizer itself. In [12], CNN structure
uses a template with size of 3 x 3(r = 1) and also the
method is applied for only non-repetitive codes. But in this
work, CNN template size is selected as 5 x 5(r = 2) and the
proposed method is applied to non-repetitive codes as well as
to repetitive codes.

The paper is organized as follows: Firstly, the channel
equalization process is introduced; secondly, a brief theory
of the CNNs and how they are employed as an equalizer
are presented. The MMSE and CNN channel equalization
processes for repetitive codes are given in Section 4 and
Section 5 respectively. The performance of the MMSE, MLP
and the proposed CNN based structures are compared at
the simulations section, both for classical and repetitively
coded data. Finally, the advantages and drawbacks of CNN
Equalizers are discussed at the conclusion section.

II. CHANNEL EQUALIZATION

At a digital communication system, the transmitted signal
is distorted by ISI and noise factors as shown in Fig.1. Here,
s[n] is the original transmitted BPSK signal having a value
of either —1 or +1, h[n] is the transmission channel causing
an ISI, w(n] is the Gaussian noise, y[n] is the received signal
with the expression given in (1), §[n] is the equalized output.

yln] = s[n] * h[n] + w(n]; (1)

Where ” 7 denotes the linear convolution.

BER is a measure of the perfectness of the $[n] output signal
which can be expressed as follows:
total number of bit errors N,

BER = __'e
total number of transmitted bits IV,
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Fig. 1: Model of a digital communication system.

Channel equalization must be carried out in order to recon-
struct the original information at the output. Therefore, the
motivation of the channel equalization is to design a system
that will minimize the difference between the output and the
original s[n] signals. In ideal case, making BER=0. Generally,
the signal-to-noise-ratio (SNR) versus BER plots are utilized
to evaluate the performances of the equalizers for different
signal levels.

Although linear transversal filters as well as some special
neural network structures, such as MLP can be used for this
purpose; in this paper, a system based on CNN is proposed,
and the performances are compared for various channel mod-
els.

III. CELLULAR NEURAL NETWORKS

CNNs are a class of dynamic neural networks, first proposed
by Chua and Yang in 1988 [13] and afterwards, because
of their two-dimensional structures, found many impressive
applications, especially in image processing [14]]. When com-
pared with other neural networks, their demand to less number
of weight coefficients also appears to be an advantage, beyond
the pros of the two dimensional architecture. As a dynamic

A

> [ s

Fig. 2: A CNN cell model.

neural network, a CNN neuron (Cell) seen in Fig.2, which
is defined by the partial differential equation in (3), consists
of an addition unit, an integration unit and a piecewise-linear
activation function.

x=-x+Af(x)+Bu+1 3)

Here, x is the “’State”, x is its derivative, u is the input matrix
and f(x) is the activation function. A and B matrices are
called ”Cloning” and “Control” templates respectively that
assign the interconnection coefficients (weight coefficients)
between cells-cells and inputs-cells. Finally, [ is a threshold
value common for all neurons at the structure.

A stable CNN generates binary outputs {—1, 1}, since the
activation function at the cells defined with (4) is a piecewise-
linear function as shown in Fig.3. In other words, a stable CNN
is said to approach either to positive or negative saturation
regions on the mentioned characteristic. This feature can bring
restrictions to many image processing applications however,

from another point of view; the two-level output will be
capable of reconstructing the distorted BPSK signals at the
receiver end in a digital communication system.

f(x)

Fig. 3: Activation function of CNN.

fl#) = g {le+ 11~ e~ 1]} @

At an MxN-cell CNN layer having M cells at its rows and N
cells at its columns, the neurons will interact with each other
by an r neighbourhood definition given below:

Ny = {Clmaz{|k—il,|l-j|} <71 <k<M,1<1< N}
&)
One can see from the above equation that, if » = 1, like in
most cases, a cell will be only connected to its nearest neigh-
bors, that will dramatically decrease the number of weight
coefficients: Specifically, if » = 2, the number of coefficients
will be 25 for the A cloning, 25 for the B control templates
which will form 5 x 5 matrices and an I threshold scalar;
totally 51, allowing a relatively simpler implementation.

IV. LINEAR MMSE CHANNEL EQUALIZATION

In a discrete-time communication system the received signal
y[n] can be given as follows:

N—-1
yln) = Y Haesll]+wln), (6)
£=0

Since our system is Linear Time Invariant (LTI), H, , =
hln—£]. Where s[n] is the input signal, w[n] is additive white
Gaussian noise (AWGN) and H,, ; is the nth row ¢th column
entry of the convolution matrix H.

Suppose s[¢] symbols are M-repetitive coded of d[k]. By
defining ¢ = kM + m, it is straightforward that s[kM +m] =
d[k]. So the observation model in (6) can be rewritten as
follows:

K—1M—1
ynl=>" > Hu karem slkM + m] + wln]
k=0 m=0
K—1
= H, i d[k] + w[n] 7
k=0
. M—1
where H,r = Y. H, km+m and this equation actually

m=0
shows that, H is separated into K groups each containing M
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columns and then H is constructed by the summation of the
columns in each group. By collecting observation samples,
can be represented in vectorial form as follows

y=Hd+w (8)

The linear MMSE estimate of the symbols determined from
will be as follows [13]]

a= (H'H + 021y ity ©)

However, since d[k] is discrete, belonging to a signal con-
stellation point, we must quantize to its nearest constellation
point. Consequently, the detected symbols take the following
form

d = Quant(d), (10)

where Quant(-) denotes the quantization process that quantizes
its argument to its nearest data symbol constellation point.

V. CHANNEL EQUALIZATION WITH CNN

CNNs with 25 cells and with a neighborhood of r = 2,
shown in Fig.4 is employed for the equalization process.
Therefore, two 5 x 5 cloning and control template matrices A,
B and an I scalar, totaly 51 parameters have to be computed

as depicted above.

|1|+1

S
Q-G
g éé

Fig. 4: The 5 x 5 CNN for the equalization.

A. Classical CNN equalizer design

In order to reorganize the one-dimensional distorted data
in two-dimension to work with a CNN, five copies of the
distorted data is placed one under the other and the designed
CNN is slided above these five rows and a two-dimensional
convolution with the 5 x 5 templates is performed as seen in
Fig.5. In this case, each column at the the structure will interact
between the copies of the y[k — 4], y[k — 3] ... y[k] samples at
these data rows. Now our goal became the determination of
the weight coefficients of the mentioned 5 x 5 CNN.

Since CNN based equalizer design is to determine the 51
unknown weight coefficients of A, B and I, a training process
must be carried out as follows: Unequalized data with SNR
values varying between 0 and 18dB, employing 1000 symbols
for each 1dB range thus, total 19000 samples are applied
as the inputs, and the desired uniformly distributed BPSK
signals are used as the corresponding outputs for a chosen
specific channel. The mentioned unknown templates are found
by minimizing the mean square error between the input and
desired output with the Genetic Algorithm [16], [17]. After
the training, this CNN will be ready to be employed for the
new test data.

Data samples

y(k-4) y(k-3) y(k-2) y(k-1) y(k)

p P D .
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Fig. 5: CNN Equalizer design.

B. CNN Equalizer design with repetitive codes

In this section, the proposed system is applied to repetitively
coded data, which means that the transmitted BPSK signal
with a chosen length is repeated multiple times consecutively
and reorganized as in the classical CNN equalizer design. It is
known that, repetition codes provides better BER performance
than the classically transmitted data. The detailed process is
given below:

« Firstly, the random data is formed as a zero mean BPSK

signal with M bits.

« Secondly, the data is converted to a repetitively coded
signal by repeating each bit N times, therefore an MN
bit sequence is obtained.

o Then, this repetitively coded data is passed through the
h[n] channel in Figure 1 while w[n] noise is added.

o Afterwards, before it is applied to the CNN equalizer, the
MN bit sequence is paralleled to a 2D structure having
N rows and M columns.

o Mentioned NxM structure is convolved with the CNN
equalizer, to obtain stable outputs for each cell.

o If the number of +1s exceeds -1s on a particular column,
then the system decides the output as +1 or vice-versa.
This decision is indeed the reconstructed BPSK sequence.

All of the steps above at the receiver end are summarized at
the block diagram in Fig.6. The training phase of the CNN
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Unequalized
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Serial/Parallel CNN » Output
i ™ : — Decision —
Conversion Equalizer

Fig. 6: The receiver for repetition codes

equalizer for repetitive codes, is performed by selecting a
transmission signal with various SNRs between —10 and 2
dB in steps of 2 dB and the desired outputs corresponding
to these inputs. The data length is chosen as M = 5000
for each SNR value. Each bit is repeated three times for 3
repetition codes and five times for 5 repetition codes in order to
form a repetitively coded BPSK sequence. Again, the genetic
algorithm is employed, where the weight coefficients of the
5 x 5 A and B templates are found after.

Afterwards, to observe the performance of the proposed
CNN equalizer, BER curves are sketched for data having
various SNR values.

100 w w
—<&— MMSE

—*%— CNN

X

10 : ‘ : : ‘ ‘ ‘ ‘ ‘

0 2 4 6 8 10 12 14 16 18 20
SNR (dB)

Fig. 7: Comparison of MMSE and CNN BER performances

curves for channel B (without repetition).

VI. SIMULATION RESULTS

The CNNs are trained and their BER performances are
compared with the MMSE and MLP equalizers for the two
individual channels defined with hg and hc below with and
without repetition codes [7].

hp = {0.407,0.815,0.407}
he = {0.227,0.460, 0.688, 0.460, 0.227}

Simulations are carried out for non-repetition, 3-repetition and
5-repetition cases. After the training phase, the A, B templates
and the [ thresholds for the CNNs are computed and then
the performance of the MMSE, MLP and CNN equalizers are
compared for these cases. Fig.7, Fig.9 and Fig.11 show the

MMSE, MLP and CNN equalizer’s BER curves for channel
B in the case of non-repetition, 3-repetition and 5-repetition
coded signals respectively. Fig.8, Fig.10 and Fig.12 show the
BER curves of the equalizers for the channel C at the same
cases.

—&— MMSE
—%— CNN

BER

0 5 10 15 20 25
SNR (dB)
Fig. 8: Comparison of MMSE and CNN BER performances
curves for channel C (without repetition).

107

VII. CONCLUSIONS

In this work, a new channel equalization method employing
a CNN is proposed. As CNN’s output generates only +1
and -1 values, equalization is performed for BPSK signals.
Performance of the proposed equalizer is then compared with
MMSE and MLP equalizers with and without repetition codes.
Furthermore, 3 end 5 repetitions are used for each channel.
Performance of the proposed method gives better results
specifically at the high SNR values for non-repetition codes.
For the 3-repetition coded signals, as shown in the Figures 9
and 10, the performance of CNN equalizer for channel B gives
better performance and for channel C gives same performance
as MMSE. But, on the other hand, as shown in the Figures
11 and 12 ,if the number of repetition is increased, the better
the performance of MMSE equalizer. However, the matrix that
represents the MMSE is quite a large one thus, including too
many components therefore, requiring too much computational
burden, since the matrix inversion for this purpose consumes
too much time and memory when compared with the proposed
CNN structure. One can see that, the MLP performance is the
worst among aforementioned techniques for all cases.
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9: Comparison of MMSE and CNN BER performances

curves for channel B (with 3-repetition).
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10: Comparison of MMSE and CNN BER performances

curves for channel C (with 3-repetition).
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