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Abstract: We extend the scope of the forecast reconciliation literature and use its tools in the 

context of causal inference. Researchers are interested in both the average treatment effect on the 

treated and treatment effect heterogeneity. We show that ex post correction of the counterfactual 

estimates using the aggregation constraints that stem from the hierarchical or grouped structure 

of the data is likely to yield more accurate estimates. Building on the geometric interpretation of 

forecast reconciliation, we provide additional insights into the exact factors determining the size 

of the accuracy improvement due to the reconciliation. We experiment with U.S. GDP and 

employment data. We find that the reconciled treatment effect estimates tend to be closer to the 

truth than the original (base) counterfactual estimates even in cases where the aggregation 

constraints are non-linear. Consistent with our theoretical expectations, improvement is greater 

when machine learning methods are used.  
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1. Introduction 

The burgeoning forecast reconciliation literature offers systematic approaches which combine 

optimum forecasts from different levels of hierarchy to ensure that the aggregation constraints 

arising from the grouping structure are satisfied. For example, although it is a priori knowledge 

that regional sales sum up to national sales, discrepancies between the sum of regional sales 

forecasts and the national sales forecasts may occur because the best performing models often 

vary at different levels of hierarchy. The methods proposed in the literature ex post correct the 

discrepancies while utilizing all the forecasts.  

 

To date, the focus of the literature has been mostly limited to forecasting multivariate time series 

even though hierarchical or grouped data is ubiquitous in many research areas. In particular, in 

causal effect analyses, to assess the heterogeneous impact of a treatment as well as the average 

treatment effect on the treated, it is common to create hierarchical or grouped data by 

decomposing the overall population into subgroups. With this data, researchers separately 

estimate the causal effect for each of the groups by comparing what happens after 

implementation of the treatment (the actual universe) with what would happen in the absence of 

the treatment (the counterfactual universe). The aggregation constraints are satisfied in the 

former, whereas they may be violated in the latter, leaving us with an odd counterfactual 

universe where the basic rules of mathematics do not apply. 

 

In this paper, we extend the scope of the existing forecast reconciliation literature and 

demonstrate the value of incorporating those identities that arise from the grouping structure of 

data in answering causal questions. We make four main contributions. First, we show that the 
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methods in the forecast reconciliation literature can be used when treatment effect heterogeneity 

as well as the average treatment effect on the treated are of interest. Relying on the potential 

outcomes framework (Rubin 1974), we reformulate the causal effect question as a question of 

predicting the unobserved counterfactual. This reformulation allows the use of methods 

developed in the forecast reconciliation literature in constructing coherent group-specific 

counterfactual estimates that correctly add up across the hierarchy. Second, influenced by the 

“optimal combination” approach of Hyndman et al. (2011) and Wickramasuriya et al. (2019), we 

propose a reconciliation method that allows outcome variables and the treatment effects estimate 

to be non-linearly transformed. In these cases, the researcher is interested in having more 

accurate causal effect estimates in the transformed space, so the linear aggregation constraints 

appear as non-linear. Therefore, we (indirectly) allow non-linear constraints. Third, building on 

Panagiotelis et al.’s (2021) geometric interpretation of reconciliation, we also document the 

factors that precisely determine the size of the overall improvement in accuracy due to the 

proposed reconciliation method, whether it is used for counterfactual estimation or forecasting. 

In addition, we show under which conditions reconciliation is redundant when the least squares 

estimators, the most commonly used estimators in causal inference analyses, are used. The 

implication of the proof is that when one of these conditions is violated, the counterfactual 

estimates at different levels of the hierarchy will not be coherent. Fourth, with the U.S. state-by-

industry employment and GDP data, we explore whether and to what extent reconciliation is 

beneficial in terms of counterfactual estimate accuracy. We demonstrate that, even when the 

underlying theory requires the outcome variables to be non-linearly transformed, reconciliation, 

on average, improves the overall accuracy in the transformed space. We observe that 
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improvement becomes particularly greater when causal machine learning tools are used or when 

different models are employed for different groups in the hierarchy.   

 

The remainder of the paper is organized as follows. In the next section, we briefly discuss 

forecast reconciliation and the potential outcomes framework literature. Section 3 details 

counterfactual reconciliation and provides new insights on reconciliation using geometric 

interpretation. Section 4 explains our design of experiments to measure the benefits of 

reconciliation. Section 5 describes the data, and Section 6 presents the findings. Section 7 

concludes. 

 

2. Literature Review 

In this section, we briefly review forecast reconciliation and the potential outcomes framework 

literature.  

 

2.1 Forecast Reconciliation 

Many time series data are naturally hierarchical. Sales of individual firms aggregate to total 

industry sales. Electricity consumption of individual cities aggregate to regions; regions, to 

national total. Their accurate forecasts have obvious economic value, such as avoiding 

accumulation of unsold stocks or avoiding power outages.  

 

Forecasts at each level can be valuable for different stakeholders. While a general manager might 

be interested in knowing the total worldwide sales of a particular product, a local manager might 

be responsible for meeting regional demand. While, ideally, best forecasts for each level add up 
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appropriately in the hierarchy (i.e., there is coherency among forecasts at different levels), this is 

usually not the case for various reasons, among which include using different models and 

transformations that tend to perform better at different levels.  

 

To make forecasts, researchers used to rely on bottom up, top down, or middle out methods. The 

bottom up approach exploits the rich and detailed information that can be extracted from the 

bottom level and builds bottom level forecasts and aggregates up. The top down approach is 

useful when the signal to noise ratio at the most disaggregated level is very low, yet at the top 

level the noise is mitigated and the signal, though less rich in detail, is quite strong. Put 

differently, it is possible that aggregated data may reveal trends that are quite difficult, if not 

impossible, to capture at the bottom level (Hollyman et al., 2021). Then, the researcher predicts 

the total sales or demand for electricity, and sub-groups’ forecasts are disaggregated according to 

some rules. The middle out approach aims to find the sweet spot in this rich-in-detail vs. noise 

tradeoff, where accuracy is maximized according to some error metric. It builds the forecasts 

between the most bottom and top levels. Then, the forecasts are parceled out proportionally 

downwards and are aggregated upwards (Hyndman and Athanasopoulos 2018).  

 

Athanasopoulos et al. (2009) show that no single method, neither top down nor bottom up, 

outperforms others consistently. Almeida et al. (2016) point out that arguments for both 

approaches are sensible, and as specific problems and/or forecast horizons change, different 

approaches can perform better. In their seminal paper, Hyndman et al. (2011) introduce the 

optimal combination approach, which sparked the literature on forecast reconciliation with linear 

constraints. Hollyman et al. (2021) demonstrate that forecast reconciliation is a type of 
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combination of forecasts in which the original forecasts (also called base forecasts) optimized for 

different levels are combined in a principled, systemic, and scalable approach. The reconciled 

forecasts, as opposed to the original ones, conform to the natural aggregations constraint of 

hierarchical data. The paper offers a dose of humility to over-confident modelers who view a 

particular model as superior to the alternatives.  

 

The key element of forecast reconciliation is coherence; i.e., bottom series aggregate to the top, 

while using all available forecasts. Wickramasuriya et al. (2019) provide alternative 

reconciliation methods. Panagiotelis et al. (2021) provide a geometric interpretation and 

document when the reconciled forecasts are, overall, guaranteed to be better than the original (or 

base) forecasts. Empirical results in Wickramasuriya et al. (2019) and Panagiotelis et al. (2021) 

show that reconciled forecasts, overall, tend to be, on average, more accurate than the original 

(base) forecasts. Spiliotis et al. (2021) introduce machine learning models to the reconciliation 

procedure and allow non-linear combinations of the original (base) forecasts.1 

 

2.2 Potential Outcomes Framework 

The second strand of literature we build on is the Rubin causal model, also known as the 

potential outcomes framework (Rubin 1974; Imbens and Rubin 2015; Imbens 2020). According 

to this framework, researchers examining causal effects of a treatment (policy or event) on 

treated units construct a counterfactual universe to explore “what would happen if the treatment 

were never implemented.” In this universe, everything up until the treatment is the same as the 

                                                

1 Although beyond the scope of the current study, the nascent probabilistic forecast reconciliation literature goes 
beyond reconciling point forecasts and reconciles forecast densities (see Gamakumara (2020) for a more detailed 
analysis).  
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actual universe. However, the counterfactual universe is not subjected to the treatment. As a 

consequence, the outcome variables of the actual and counterfactual universes might diverge and 

the divergence is interpreted as the causal treatment effect on the treated.  

 

In their 2017 review of recent developments in econometrics for applied researchers, Athey and 

Imbens (2017) highlight research in three areas: (i) new research on identification strategies such 

as synthetic controls and regression discontinuity, (ii) sensitivity and robustness analyses for 

more credible identification strategies, and (iii) recent advances in machine learning for causal 

effects. The intention of all these recent advances is reducing bias in the coefficient estimates 

while providing policy evaluation. In policy evaluation, linear regressions with period and group 

fixed effects (two-way fixed effects, TWFE) are the work horse of applied researchers (see 

Angrist and Pischke (2008) for the details and assumptions of TWFE and other commonly used 

linear models). de Chaisemartin and D'Haultfoeuille (2022b: 1) note that “26 of the 100 most 

cited papers published by the American Economic Review from 2015 to 2019 estimate such 

regressions”2. Moreover, de Chaisemartin and D'Haultfoeuille’s (2022b) review shows that a 

rapidly growing econometrics literature is concerned with estimating the heterogeneous 

treatment effects of policy between groups and over-time. This recent focus on estimating 

heterogeneous treatment effects also seeks to reduce the bias in coefficient estimates.  

 

On the other hand, forecast reconciliation is a post-estimation procedure within the forecasting 

literature and is designed to reduce forecast error even when the original estimates are unbiased. 

It utilizes existing linear aggregation constraints in data to improve accuracy. Hence, it is a 

                                                

2 See de Chaisemartin and D'Haultfoeuille (2022a) Table 2 for the list of papers. 
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procedure that complements those recent developments in applied econometrics focused on 

eliminating potential sources of bias in coefficient estimates.  

 

Mathematically, the true average treatment effect on the treated (𝛽𝑇) is as follows3: 

 

 
𝛽𝑇 = 1𝑀 ∑(𝑌𝑗1  − 𝑌𝑗0)𝑀

𝑗=1   
 

                              (1) 

 

where Y indicates the outcome variable, the superscripts are the treatment indicator (i.e., 

superscript 1 refers to a world with treatment and superscript 0 refers to a world without 

treatment), and M stands for the number of trials (i.e. the number of unit-time pairs that are 

treated). The first term on the right-hand side of equation (1), (𝑌𝑗1), is what we observe in the 

actual universe where the treatment is implemented. The second term (𝑌𝑗0) is from the 

counterfactual universe which is not directly observed. 

 

Both researchers and policy makers are commonly interested in the overall effect of treatment on 

the treated population as well as its differential effects on certain subgroups such as by gender, 

by race and ethnicity, by region or by industry. This analysis of subgroups can also illuminate 

how and through which channels treatment affects the population. To assess treatment effect 

heterogeneity, researchers construct counterfactual universes specific to each of the subgroups in 

addition to the one for the overall population. Then, we can generalize equation (1) which 

becomes:  

                                                

3 We use a notation similar to that in Rubin (1974). 
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 𝛽𝑔𝑇 = 1𝑀 ∑(𝑌𝑗,𝑔1  − 𝑌𝑗,𝑔0 )𝑀
𝑗=1   (2) 

 

 

where subscript g indicates the group of interest (subgroup or overall population).  

 

In reality, once the policy or treatment is implemented, it is not possible to observe both the 

actuals and the counterfactuals, so the latter are estimated. Thus, the causality question implicitly 

becomes a prediction question in the sense that we are trying to predict/estimate the unobserved 

counterfactuals (Athey and Imbens 2017; Athey et al. 2021). Then, equation (2) becomes: 

 𝛽𝑔�̂� = 1𝑀 ∑(𝑌𝑗,𝑔1  − 𝑌𝑗,𝑔0̂ )𝑀
𝑗=1  

(3) 

 

 

where hat (^) indicates the term is estimated.   

 

3. Counterfactual Reconciliation for hierarchical and grouped data 

3.1 Room for Reconciliation in Counterfactual Estimation 

Converting the causal question into a prediction question allows us to use advances in the 

forecast reconciliation literature. When researchers analyze treatment effect heterogeneity by 

subgroups as well as the average treatment effects on treated units, certain linear dependence 

relationships or constraints naturally arise. For instance, the sum of white and non-white 

employees adds up to total employment. Also, the total number of individuals employed in both 

the manufacturing and non-manufacturing industries adds up to total employment as well. These 

statements are true whether the treatment is implemented or not. However, counterfactual 

estimates are very unlikely to satisfy these linear constraints even if they are all unbiased and 

consistent because the counterfactual estimates are random variables. In the theorem below we 
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identify the specific conditions that need to hold to satisfy linear constraints for counterfactual 

estimates. 

 

Theorem: If linear least squares estimators are employed to construct counterfactuals, and 

outcome variables are transformed by a linear bijective function, and the same regressor 

matrices with n observations and k variables are used, then linear dependencies among the 

outcome variables that hold in the actual universe hold in the counterfactual universe as well.  

 

Proof: For a sequence of n-dimensional column vectors {𝑦1, 𝑦2, . . . , 𝑦𝐺}, if there exists {𝑎𝑔} such 

that for some 𝑦1, we have 𝑦1 = ∑ 𝑎𝑔𝐺𝑔=2 ∗ 𝑦𝑔, then we call {𝑦1, 𝑦2, . . . , 𝑦𝐺} linearly dependent.  

 

Using linear least squares estimators with column vectors in n-by-k matrix Z as the exogenous 

variables, we have  𝛽�̂� = (𝑍′𝑍)−1𝑍′𝑦𝑔 for all 𝑔. This implies that the counterfactuals of the 

treated units for the treated periods can be written as 𝑦𝑔0̂ = 𝑦𝑔 − 𝛽𝑔�̂� ∗ 𝑇𝑔, where the subscript 𝑔 

indicates the groups (subgroups or overall population), 𝑦𝑔0̂ is the estimated counterfactual, and 𝑇 

represents the treatment indicator column(s) in Z. This can be simplified as 𝑦𝑔0̂ = 𝑦𝑔 − 𝛽𝑔�̂� since 

all 𝑇𝑔 are 1 for the treated units for the treatment periods.  

 

Then, for the counterfactuals to satisfy the same linear constraints as the actuals, it is sufficient 

and necessary to show: 

𝑦10̂ = ∑ 𝑎𝑔𝐺
𝑔=2 ∗ 𝑦𝑔0̂ 
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We know  

𝑦1 = ∑ 𝑎𝑔𝐺
𝑔=2 ∗ 𝑦𝑔 

Multiplying both sides by (𝑍′𝑍)−1𝑍′ 
(𝑍′𝑍)−1𝑍′𝑦1 = (𝑍′𝑍)−1𝑍′ ∑ 𝑎𝑔𝐺

𝑔=2 ∗ 𝑦𝑔 = ∑ 𝑎𝑔𝐺
𝑔=2 ∗ (𝑍′𝑍)−1𝑍′𝑦𝑔 

𝛽1̂ = ∑ 𝑎𝑔𝐺
𝑔=2 ∗ 𝛽�̂� 

Following the last line, for the average treatment effect on the treated, we have ⇒ 𝛽1�̂� = ∑ 𝑎𝑔𝐺
𝑔=2 ∗ 𝛽𝑔�̂� 

 

Multiplying both sides by -1 and adding 𝑦1 yields 

𝑦1 − 𝛽1�̂�  =  𝑦1  − ∑ 𝑎𝑔𝐺
𝑔=2 ∗ 𝛽𝑔�̂�  = ∑ 𝑎𝑔𝐺

𝑔=2 ∗ 𝑦𝑔  − ∑ 𝑎𝑔𝐺
𝑔=2 ∗ 𝛽𝑔�̂� = ∑ 𝑎𝑔𝐺

𝑔=2 ∗ (𝑦𝑔 − 𝛽𝑔�̂�) 

𝑦10̂ = ∑ 𝑎𝑔𝐺
𝑔=2 𝑦𝑔0̂ ∎ 

 

The theorem indicates that (i) if the regressor matrices are not identical across groups or (ii) if 

the outcome variables are transformed so that the linear constraints are no longer satisfied 

(ℎ(𝑦1) ≠ ∑ 𝑎𝑔 ∗ ℎ(𝑦𝑔)𝐺𝑔=2  𝑤ℎ𝑒𝑛 𝑦1 = ∑ 𝑎𝑔 ∗𝐺𝑔=2 𝑦𝑔),  then the linear dependencies are likely 

not to hold in the counterfactual universe.4,5 These cases include using (i) group-specific control 

                                                

4 One interesting exception here is that if the control variables in all 𝑍𝑔’s and the treatment indicators are all 

uncorrelated, the treatment indicators do not vary between groups, and the outcome variables are not transformed, 
then the linear constraints would hold in the counterfactual universe as well even if different group-specific control 
variables are used. This result comes from the Frisch-Waugh-Lovell theorem, as adding controls that are 
uncorrelated with the treatment variables would have no impact on the estimated treatment effects on treated. 
Nonetheless, it is important to emphasize that the correlation coefficients between all control variables and the 
treatment indicators must be exactly 0 in the observed sample for this to happen.  
5 If there are endogenous variables in 𝑍, researchers commonly use the two-stage least squares estimator (2SLS). 

The first stage of 2SLS, the endogenous components of 𝑍 are purged and �̂� is produced. In the second stage, �̂� is 

used. The theorem holds in this case as well, except 𝑍 is replaced by �̂�. In Appendix Table A.3, we show that our 
main findings and arguments can be extrapolated to the case where 2SLS is employed. 
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or instrumental variables, (ii) group-specific weights for observations, (iii) data-driven methods 

such as machine learning to specify the exact functional forms in which the predictors enter the 

model, or (iv) all kinds of transformations of the outcome variable that invalidate the linear 

constraint.6  

 

Because we know a priori that the true counterfactuals have to be on the constraint hyperplane 

(see Figure 1 and the accompanying discussion for visual example), there is room for improving 

the counterfactuals’ accuracy by reconciling them when the constraints do not hold in the 

counterfactual universe.  

 

3.2 Reconciliation as a Post-Estimation Procedure 

Before we discuss the proposed counterfactual reconciliation method, we rewrite equation (3) to 

allow transformations of the outcome variable: 

 

 𝛽𝑔�̂� = 1𝑀 ∑(ℎ(𝑌𝑗,𝑔1 )  − ℎ(𝑌𝑗,𝑔0̂ ))𝑀
𝑗=1   (4) 

 

 

 
where bijective function h is allowed since the underlying theory may require the outcome 

variable and the treatment effect estimate to be transformed. In other words, we allow cases 

where there are linear dependence relationships between outcome variables in grouping 𝐺, yet 

the outcome variables appear transformed in the theory.7  

                                                

6 The examples of the latter include log-transformations and normalizations by group-specific populations. 
7 For instance, empirical macroeconomists usually log-transform the Cobb-Douglas production function ( its 

simplest form is 𝑌 = 𝐴𝐾𝛼𝐿𝛽 where Y indicates the output (GDP); A, total factor productivity; K, capital; L, labor; 𝛼 
and 𝛽, the output elasticities of capital and labor, respectively) to obtain a linear model (e.g. Gechert et al., 2021; 
Mankiw et al., 1992). After the log-transformation, the coefficients of the multiple regression estimate A, 𝛼, 𝑎𝑛𝑑 𝛽. 
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Influenced by the “optimal combination” approach of Hyndman et al. (2011), for all treatments 𝑗, 

we propose the following constrained minimization for reconciliation: 

 

 

Λ𝑔,𝑗̂ = 𝑎𝑟𝑔𝑚𝑖𝑛Λ𝑔,𝑗𝐿𝑗(ℎ(𝑌𝑔,𝑗0 ) ̂ , ℎ(Λ𝑔,𝑗))  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴Λ𝑔,𝑗 = 0 
(5) 

 

where 𝐿𝑗 indicates that the loss function is calculated per treatment, 𝑌𝑔,𝑗0  ̂  are the original 

counterfactual estimates, ℎ is the transformation, and Λ𝑔,𝑗 are the reconciled counterfactuals for 

treatment 𝑗 and group 𝑔, respectively. 𝐴 matrix indicates the linear constraints. Note that if 𝐿𝑗’s 

are the mean squared error and ℎ is the identity function, equation (5) becomes the treatment-

specific orthogonal projections of the counterfactual estimates on the hyperplane where the linear 

constraints are satisfied.8 When ℎ is non-linear, numerical methods can be used to solve equation 

(5).9 

 

There are four main benefits of the proposed reconciliation. First, according to our experiments 

with real-world data, the reconciled counterfactual estimates, overall, (i) are guaranteed to be 

closer to the true counterfactuals than the original estimates when ℎ is a bijective linear function 

                                                

Similarly, it is common to use the log of employment in the labor economics literature as well (e.g. Allegretto et al., 
2017). 
8 This is called the OLS estimator in Hyndman et al. (2011) where the outcome variable is composed of the original 
forecasts at different aggregation levels and the right-hand side variables are columns of the “summing matrix” 
which orthogonally projects the original forecasts onto the hyperplane. 
9 In the experiments below, when ℎ is non-linear, we use numerical methods to obtain the reconciled counterfactual 
estimates. In particular, we use the “alabama” library by Varadhan (2015) in R programming language and we 
employ the “nlminb” (nonlinear minimization subject to box constraints) algorithm to minimize the loss function in 
equation (5) (Gay 1990). For robustness, we also try Sequential Least Squares Programming (SLSQP) in the scipy 
library in Python programming language (Virtanen et al., 2020). Both routines produced the same reconciled 
counterfactual estimates (up to the tolerance).  
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and (ii) they tend to be closer to the truth when ℎ is non-linear. Second, the reconciliation 

method alters the original treatment effect estimates as little as possible to satisfy the constraints. 

This is, arguably, a desirable property in particular if the research design is credible and the 

original treatment effect estimates are unbiased and/or consistent. In these cases, the researcher 

may justifiably be reluctant to substantially alter the original estimates. Third, it does not utilize 

any of the in-sample errors which might not be meaningful due to the use of models that tend to 

overfit.10 It also does not require out-of-sample errors which might not be feasible due to the 

small sample size. Fourth, it is quite straightforward to incorporate weights in different 

subgroups. If the researcher is willing to allow the reconciliation procedure to make bigger 

changes for counterfactuals of a certain group, this can be included in the loss function in the 

form of weights.  

 

3.3 The Magnitude of Accuracy Improvement 

For the purposes of geometric exposition, in this section, we define  ℎ(𝑌𝑔,𝐽0̂ ) = 𝑦𝑔,𝑗0̂  and ℎ(Λg,j) =𝜆𝑔,𝑗 and re-write the optimization function as follows:  

 
𝜆𝑔,�̂� = 𝑎𝑟𝑔𝑚𝑖𝑛𝜆𝑔,𝑗𝐿𝑗(𝑦𝑔,𝑗0  ̂ , 𝜆𝑔,𝑗) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴ℎ−1(λ𝑔,𝑗) = 0 

(6) 

 

 

Geometrically, the reconciliation method finds the shortest path from the original counterfactual 

estimates to the constraint hyperplane. If ℎ is the identity function, the loss function is the mean 

squared error, and we have a three-dimensional hierarchy with 𝑌𝑡𝑜𝑡 = 𝑌1 + 𝑌2. What the 

reconciliation procedure does in this case is depicted in Figure 1 panel (a). 

                                                

10 Horizontal regressions in Doudchenko and Imbens (2016) and Athey et al. (2021) may fit the training data 
perfectly. Not using in-sample errors is one of the major advantages of our proposed reconciliation method because 
models that provide the best predictions under certain regimes can be those that perfectly interpolate the training 
data due to the double-descent phenomenon (Hastie et al., 2019). 
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Figure 1 is here 

Due to the constraint, the three-dimensional space in the graph collapses into a two-dimensional 

plane (dotted plane). The original counterfactual estimates (blue circles), while still can be 

written as a three-dimensional array (𝑌𝑡𝑜𝑡 ̂  , 𝑌1  ̂, 𝑌2  ̂), have only two degrees of freedom: They 

must satisfy the constraint. When they do not, the reconciliation finds the shortest path between 

the original counterfactual estimates and the constraint, and the reconciled estimates (green 

circles) are on the plane.  

 

Depicting a similar figure in four or more dimensional hierarchies is not feasible. Nonetheless, 

no matter the number of dimensions, there always appears a triangle with original counterfactual 

estimates, reconciled estimates, and the truth as the vertices, with the latter two on the constraint 

hyperplane (Figure 1 panel (b)).  

 

Since the truth is on the plane, the shortest path from the original counterfactual estimates to the 

plane will form a right-angled triangle with the side from “Original” to “Truth” as the 

hypotenuse, unless the original counterfactual estimates are already on the plane. In other words, 

the reconciled counterfactuals which are orthogonal projections to the plane are overall always 

going to be closer to the truth unless reconciliation is unnecessary.11 In addition, if we know the 

                                                

11 Note that it is not possible to claim that reconciliation will pull all the group-specific counterfactual estimates to 
the truth. Even when ℎ is linear, some groups’ counterfactual estimates might become less accurate after 
reconciliation. In practice we cannot predict, a priori, lucky instances when the original counterfactual estimates for 
certain groups are accurate, so reconciliation would only harm their accuracies. We do not know the truth, except in 
simulation exercises. Hence, we always reconcile the counterfactuals as long as reconciliation is warranted. What is 
guaranteed is that the reconciled counterfactual estimates will be, overall, closer to the truth than the original 
estimates. If the researcher is more confident about the counterfactual estimates of certain groups, this can be 
incorporated by using weights in equation (5). 
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exact locations of the points, using the law of sines, we can calculate the distance between the 

reconciled counterfactuals and the truth relative to that between the originals and the truth: 

 𝑐𝑎 = 𝑠𝑖𝑛(𝐶)𝑠𝑖𝑛(𝐴). 
 𝑠𝑖𝑛(𝐴) is 1 when the triangle is right-angled, and 𝑠𝑖𝑛(𝐶) is smaller than 1.  

Figure 2 is here 

In fact, there emerges another relationship among the edges of right-angled triangles that allows 

us to calculate the magnitude of accuracy improvement (
𝑐𝑎). According to the Pythagorean 

theorem, 𝑎2 = 𝑏2 + 𝑐2. Dividing both sides by 𝑎2 yields 
𝑏2𝑎2 + 𝑐2𝑎2 = 1, which is the equation of a 

circle with a radius of 1. Since neither 
𝑏2𝑎2  nor  

𝑐2𝑎2  takes negative values, we observe only the first 

quadrant of a unit circle. In other words, when ℎ is a bijective linear function, there is a 

mechanical relationship between the accuracy improvement (
𝑐𝑎) and the distance from the 

reconciled to the original counterfactual estimates relative to the prediction error of the original 

estimates (
𝑏𝑎). Then, as illustrated in Figure 2, for a given value of  

𝑏𝑎, we can straightforwardly 

obtain the rate of the overall improvement in  accuracy since the point (
𝑏𝑎, 

𝑐𝑎) is on the circle.  

 

Figure 3 is here 
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When ℎ in equation (6) is not a linear function, the hyperplane is not flat. Figure 3 shows a case 

in three-dimensional space where the outcome variables are log-transformed while the constraint 

is linear. In other words, we still have  𝑌𝑡𝑜𝑡 = 𝑌1 + 𝑌2, but the axes are shown in log scale.12  

 

Here, the right-angled triangle does not necessarily appear because the constraint has a curvature. 

However, we can still draw the triangle and use the law of sines. Unless the original estimates 

are already on the plane, the angle 𝐴 can be right, wide (Figure 3 panel (b)), or acute (Figure 3 

panel (c)). In the former two cases, accuracy improvement is still guaranteed. In the latter, 

however, reconciliation might be harmful.  

 

In cases where ℎ−1 is non-linear, an important piece of information can be obtained if the graph 

of the constraint function in equation (6) is concave or convex. If it is strictly convex (concave), 

then the graph of the constraint function is above (below) any plane tangent to it due to the 

properties of convex (concave) functions. This implies that if our original estimates correspond 

to a point below (above) the graph of the convex (concave) constraint, then angle A will be 

greater than 90°. As shown in Figure 4 panel (a) (Figure 4 panel (c)), because the angle between 

the shortest line segment from the original counterfactuals to the constraint and the 

corresponding tangent line on the constraint is 90° and the constraint curves away from the 

original estimates, a wide-angled triangle appears with its vertices as original estimates, 

reconciled estimates, and the truth. More concretely, if, say, ℎ−1 is the exponential function (a 

convex function), and the constraint is exp(𝑦𝑇𝑜𝑡) = 𝑒𝑥𝑝(𝑦1) + exp (𝑦2) , and exp(𝑦𝑡𝑜𝑡̂ ) is 

                                                

12 The constraints appear non-linear because the axes are log-transformed. 
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smaller than 𝑒𝑥𝑝(𝑦1̂) + exp (𝑦2̂)  (i.e. the original estimates correspond to a point below the 

graph of the constraint function), then angle A will be larger than 90°.  

Figure 4 is here 

On the other hand, Figure 4 panel (b) (Figure 4 panel (d)) shows that when the graph of the 

constraint function is convex (concave), and the original estimates correspond to a point above 

(below) it, then angle A will be smaller than 90° because the constraint curves towards the 

original estimates. 13  

 

Notably, using weights in equation (5) also leads to projections where the right-angled triangle 

does not appear. The overall improvement in accuracy is not guaranteed in these cases either. 

However, some guidance has been provided in the literature regarding how these weights can be 

constructed to boost expected improvement in accuracy. More specifically, Wickramasuriya et 

al. (2019) propose using in-sample (one-step ahead) errors to construct weights. Briefly, their 

argument is that series with smaller errors are expected to have more accurate forecasts, so they 

should have larger weights, and they will be changed little during reconciliation. On the other 

hand, Jeon et al. (2019) and Spiliotis et al. (2021) recommend using the cross-validation 

procedure and the resulting out-of-sample errors in obtaining the weights. They note that in-

sample errors do not reliably proxy out-of-sample errors. They also use the objective function 

that is used to assess the accuracy in constructing the weights. As we note in footnote 10, it is not 

always possible to obtain in- or out-of-sample errors. In these cases, the weights can be 

constructed according to intuitive judgement and opinions. Van Erven and Cugliari (2015) 

provide some insights as to how these weights can be selected. 

                                                

13 In our experiments, even when exp(𝑦𝑡𝑜𝑡̂ ) is larger than 𝑒𝑥𝑝(𝑦1̂) + exp (𝑦2̂) (thus angle A is smaller than 90°), we 
observe, on average, that the overall accuracy has improved due to the reconciliation.  
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4. Design of Experiments 

In this section, we describe the design of our experiments with the U.S. GDP and employment 

data to assess whether and to what extent the proposed reconciliation method provides more 

accurate counterfactuals. 

 

 To present evidence showing the differential impact of reconciliation under different modelling 

approaches, we utilize traditional two-way fixed effects (TWFE) regressions as described in 

Angrist and Pischke (2008) and causal machine learning methods. In the main paper, for the 

reasons explained in Section 4.2 and footnote 15, we focus on the generalized synthetic control 

(GSC) developed by Xu (2017). In the Appendix Table A.2, we present the results of our 

experiments for a battery of causal machine learning tools. We reach similar conclusions with 

the other tools as well.  

 

4.1 Two-way Fixed Effects (TWFE) Regressions 

Lalonde (1986: 604) remarks that “Econometricians intend their empirical studies to reproduce 

the results of experiments that use random assignment without incurring their costs.” Rubin 

(1974) points out that in most social sciences only available data are observational 

(nonrandomized) because (i) the cost of randomized experiments can be prohibitive, (ii) there 

can be ethical concerns about randomly assigned treatments (i.e., effect of drug addiction on 

health), and (iii) estimates based on experiments would be delayed (i.e., effect of diet on 

longevity). As a result, social scientists most commonly employ difference-in-differences (DiD) 

research design to mimic experimental research design (Cunningham, 2021).  
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DiD compares changes in the outcome of the treatment group from the pre-treatment period to 

the post-treatment period with the same outcome of the control group over the same time 

horizon. In its simplest form with two time periods (post-treatment and pre-treatment), two 

cross-sectional units (treated and untreated), and no additional controls, DiD estimates the causal 

treatment effect as follows: 

 𝛽�̂� = 𝑌1,1 − 𝑌1,10  ̂ = 𝑌1,1 − 𝑌0,1 − (𝑌1,0 − 𝑌0,0) (7) 

 

where 𝑌1,1 is the outcome of the treated unit in the post-treatment period and 𝑌1,10  ̂  is the 

counterfactual estimate. The left-hand side equation is equivalent to equation (3). The 

counterfactual estimate, 𝑌1,10  ̂ , is constructed using the outcome of the untreated unit in the post-

treatment period (𝑌0,1) after correcting it for the level differences between the treated unit and the 

untreated unit in the pre-treatment period ((𝑌1,0 − 𝑌0,0)). For the case where there are many 

untreated units, pre-treatment periods, and additional control variables, the same logic applies. 

After having accounted for the control variables, DiD constructs the counterfactual estimates by 

correcting the average observed post-treatment outcome of the untreated units according to the 

level differentials.14 When there are multiple post-treatment periods or treated units, the 

treatment effect can be separately estimated for each of them unless the researcher believes the 

treatment has no dynamic effect and its effect is constant across units.   

 

A mathematically equivalent way to obtain the same causal effect with the use of a regression 

equation is: 

                                                

14 See Angrist and Pischke (2008) for more details on how DiD estimates the treatment effect, when there are many 
treated and control units, pre- and post-treatment periods, and additional control variables.  
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 𝑌𝑖,𝑡 = 𝛼𝑖 + 𝛾𝑡 + 𝛽𝑇𝑇𝑖,𝑡 + 𝜀𝑖,𝑡 (8) 

 

where 𝑖 and 𝑡 indicate cross-sectional and time dimensions, respectively. 𝑇𝑖,𝑡 is the binary 

variable for treatment, and it takes on the value of 1 when the unit is treated and 0 otherwise. 𝛽𝑇 

is the coefficient of interest, and its estimate,  �̂�𝑇, is the average treatment effect on the treated. 𝛼𝑖 and 𝛾𝑡 are a set of indicator variables which capture cross-sectional and time-specific effects, 

respectively. Comparing equation (8) with equation (7), in the basic DiD case, 𝛼𝑖 = (𝑌1,0 − 𝑌0,0) 

corrects the level difference between treated and untreated units, and  𝛾𝑡 = 𝑌0,𝑡 corrects the 

difference between pre- and post-treatment observation of the outcome variable to the extent of 

any change in the untreated unit. Thus, 𝛽𝑇 is the remaining difference of the outcome variable in 

the post-treatment period of the treated unit, and it is numerically identical in equations (7) and 

(8). The main benefit of the mathematical equivalence between equations (7) and (8) is its 

allowing easily generalization of the basic DiD setup to many treated/untreated units and pre-

/post-treatment periods and additional controls.  

 

In addition to the standard OLS assumptions, the primary requirement of a causal DiD estimate 

to be valid is the parallel trends assumption. According to this assumption, after accounting for 

all the control variables and fixed effects, there should be no systematic differences between the 

outcomes of interest in the control sample (composed of untreated units) and the treated sample 

in the pre-treatment period. In other words, we ascribe all the observed differences between the 

counterfactual estimate and the actual in the post-treatment period to the treatment. Therefore, 

the validity of the counterfactual estimate relies on the parallel trends assumption.  
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DiD design and TWFE regressions are quite common and facilitate estimation of 

counterfactuals. We employ the following to construct group-specific counterfactuals: 

 

 𝑌𝑖,𝑡,𝑔 = 𝛼𝑖,𝑔 + 𝛾𝑡,𝑔 + 𝛽𝑔𝑇𝑇𝑖,𝑡,𝑔 + 𝜀𝑖,𝑡,𝑔  (9) 

 

where 𝑖 and 𝑡 indicate the cross-sectional (state or industry) and time (quarter) dimensions, 

respectively. 𝑔 indicates the group we focus on, so we run separate regressions for each of the 

groups. 𝛼𝑖,𝑔 and 𝛾𝑡,𝑔 capture the cross-sectional- and time-specific effects of the group. 𝑇𝑖,𝑡,𝑔 is 

the treatment indicator, and, as noted in Section 2.2, the counterfactuals are constructed using the 

estimate of 𝛽𝑔𝑇. 𝜀𝑖,𝑡,𝑔 is the error term. 

 

4.2 Generalized Synthetic Control Method (GSC) 

When working with real-world data, equation (9) might be too simplistic, and the parallel trends 

assumption might be violated. Confounding variables that correlate with both treatment and 

outcome variables may bias the estimates. Researchers address this omitted variable bias by 

including additional control variables. However, oftentimes, they cannot or do not directly 

observe the required control variables. With recent advances in machine learning tools, 

researchers can derive these confounder variables using data-driven methods.  

 

Xu’s (2017) generalized synthetic control (GSC) method captures these time-varying systematic 

differences among cross-sectional units in a quite intuitive way: These confounders tend to cause 
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the error term of equation (9) to follow certain patterns.15 These patterns reveal themselves 

among the principal components of the error term. Then, GSC determines which of these 

principal components are “important” based on the cross-validation procedure, and it purges 

them.16   

 

GSC augments equation (9) as follows: 

 𝑌𝑖,𝑡,𝑔 = 𝛼𝑖,𝑔 + 𝛾𝑡,𝑔 + 𝛽𝑔𝑇𝑇𝑖,𝑡,𝑔 + 𝐹𝑡,𝑔 𝜆𝑖,𝑔 + 𝜀𝑖,𝑡,𝑔  (10) 

 

The two additional sets of terms in equation (10), 𝐹𝑡,𝑔  and 𝜆𝑖,𝑔, are defined as group-specific 

latent factors (i.e., time varying coefficients) and factor loadings (i.e., state specific intercepts). 

They are time- and cross-section-varying confounders such as group-specific regional trends 

which are not explicitly specified by the researcher.  

 

We note that GSC is quite different from the synthetic control method developed by Abadie et al. 

(2010). The GSC equation primarily adds the factors and the loadings to equation (9). Therefore, 

equation (10) can also be interpreted as having different moderately “important” group-specific 

control variables in traditional TWFE regressions. As noted in Section 3.1, using different right-

hand side variables opens up room for the reconciliation procedure to improve counterfactual 

accuracy. Therefore, GSC results in our experiments can be read as improvements in 

                                                

15 In the main text, we focus on the GSC primarily because it is quite straightforward to show the direct relationship 
between the GSC and the two-way fixed effects, as the former augments the latter by including additional control 
variables derived from the patterns detected in the latter’s error term. It has also been shown to perform well in 
policy evaluation analyses (Gobillon and Magnac 2016). For a literature review on causal machine learning tools, 
see Liu et al. (2021).  
16 This implies that if GSC deems none of the principal components as important, equation (10) collapses to 
equation (9).  



24 

 

counterfactual accuracy resulting from reconciliation in the presence of group-specific 

covariates. 

 

 

5. Data 

We demonstrate the benefits of the proposed reconciliation method using the 1990-2019 

quarterly state-by-industry employment statistics from the Quarterly Census of Employment and 

Wages (QCEW) and the 2005Q1-2021Q1 quarterly state-by-industry GDP statistics from the 

U.S. Bureau of Economic Analysis (U.S. BEA). The final vintage of QCEW quarterly data is 

published in the third quarter of the following year (U.S. Bureau of Labor Statistics, 2021b). 

Both datasets were obtained in June 2021. Since QCEW data ends in 2019, we use the final 

vintage. BEA GDP by industry estimates are initially announced the following quarter; however, 

these estimates are subject to annual updates in the month of September during subsequent years 

(U.S. BEA, 2021a; 2021b). Hence the state-by-industry GDP data used in this analysis should be 

regarded as June 2021 vintage.17 

Figure 5 is here 

  QCEW data are a publicly available data set that reports the quarterly count of employment at 

multiple geographic areas and industry levels. The data are constructed based on employer 

reports and cover more than 95% of all jobs in the U.S. The QCEW is commonly considered to 

be very high quality employment data since it lacks sampling error. However, due to the Bureau 

                                                

17 Researchers who use TWFE regressions (such as equation (9)) or more complex models (such as causal machine 
learning as in equation (10)) tend not to be concerned about the stationarity of their data due to the demeaning along 
time and panel dimensions. Nonetheless, especially if the time dimension is long, non-stationarity of the panel data 
can be particularly harmful. Following Acemoglu et al. (2019), we confirm that the panel data we use in our 
experiments are stationary by regressing the outcome variable on its lagged value after the demeaning. For all 
outcome variables and methods used, the 95% confidence intervals produced using standard errors clustered at the 
state level rarely contain 1 or -1. The details of this exercise are provided in Appendix and in Figure A.1. 
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of Labor Statistics’ (BLS) confidentiality policy, the reported values at more disaggregated 

levels are suppressed to protect the identity of cooperating employers. This is problematic in our 

case since these methods tend to break the linear identities that we exploit to obtain more 

accurate counterfactuals. More concretely, due to data suppression, total employment in state A 

is sometimes greater than the sum of individuals employed in each of the 5-digit NAICS 

industries in state A. As a result, we utilize only total employment counts using two broad 

categories: goods producing (NAICS 101) and service producing (NAICS 102). Figure 5 Panel 

(b) shows the hierarchical structure of the employment data. 

 

We use the current GDP data which are also publicly available at the BEA website. Specifically, 

we obtained GDP in current dollars (SQGDP2) at 19-Industry detail. The industry detail is based 

on the North American Industry Classification System (NAICS). Similar to QCEW, BEA 

suppresses lower-level GDP data to avoid disclosures of confidential data (such as GDP of the 

construction sector in D.C. in 2005). In other words, the reported gross state product (GSP) of 

Georgia can be more than the sum of individual industry products in the same state in some 

quarters. Hence, we calculate new state-level totals by aggregating available data in order to 

obtain linear identities. Figure 5 Panel (a) shows the hierarchical structure of GDP data.  

Table 1 is here 

 

Table 1 Panel (a) presents summary statistics for GDP data.18 We have 65 quarters of data 

(2005Q1-2021Q1). At the state level, the total number of observations is 3,315 (65*51 including 

                                                

18 For more details, see Appendix Table A.1 where we report summary statistics by industry. 
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DC); the state-by-industry level observation number is 62,985.19 Average quarterly current GDP 

by state is $290 billion with a standard deviation of $377 billion. At the industry-state level, 

average quarterly GDP is $15 billion (standard deviation $29 billion). The table also presents the 

average and standard deviations of natural logarithms of quarterly GDP. As expected, taking the 

natural logarithms of the data reduces variation significantly in the data as evidenced by the large 

differences in the coefficient of variation between the levels and natural logarithms (by 10 to 15 

times). Table 1 Panel (b) presents summary statistics for employment data. Mean employment by 

state exceeds 2 million. Roughly, a quarter of total employment is in goods-producing sectors; 

the remainder, in service producing sectors (see notes to Table 1 for exact classification). Again, 

taking natural logarithms of data reduces the coefficient of variation by 12 to 15 times. 

 

6. Simulations and Results   

6.1 Simulations 

To show the benefits of the proposed counterfactual reconciliation procedure, we randomly 

generate placebo laws that are enacted in some states but not in others. Given that the placebo 

laws have no effect whatsoever, any treatment effect estimate that is not zero indicates a 

divergence between the true counterfactuals and the estimated counterfactuals. Our expectation 

is that the reconciliation procedure will exploit this divergence and bring the estimated 

counterfactuals closer to the truth. 

 

                                                

19 For simplicity we present only one of the possible hierarchies. We could arrange the data with total industry gross 
product or employment at the top and state-level industry gross product or employment at the bottom. Then we 
would have 65*19=1,235 observations at the top level and 65*19*51=62,985 at the bottom. Table A.1 presents 
summary statistics for quarterly GDP by industry. Real estate and rental and leasing represent the largest industry on 
average.   
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Briefly, our simulations involve the following steps: First, we vary the number of treated states 

(where placebo laws are enacted) between 1 and 5. Second, we randomly choose the exact date 

when the treatment is implemented in the treated states and we vary the length of the pre-

treatment periods between 24 and 36. Third, we vary the length of the post-treatment periods 

between 1, 4, and 12. This means that, in total, we have 12 (=2*2*3) different scenarios.20 

Fourth, using this simulated data, we estimate the group-specific treatment effects (𝛽𝑔𝑇) using 

equations (9) and (10). This produces the original counterfactual estimates. Then, using equation 

(5), we also produce the reconciled estimates.21 In order to reduce the impact of outliers, we 

repeat each scenario 250 times to measure how well the counterfactual reconciliation performs 

on average. Fifth, we calculate the average root mean square prediction error (RMSPE) 

separately for the reconciled and the original counterfactual estimates. In the following tables, 

for each of these 12 scenarios and the two data sets (GDP and employment), we report the ratios 

of the average root mean squared prediction error of the reconciled counterfactual estimates to 

that of the original counterfactual estimates: 𝑅𝑀𝑆𝑃𝐸𝑟𝑒𝑐𝑜𝑛𝑐𝑖𝑙𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑅𝑀𝑆𝑃𝐸𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
=  ∑ √∑ ∑ (ℎ(Λg,j,iteration̂ ) − ℎ(𝑌𝑔,𝑗,iteration))2 𝑔𝑗#𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛∑ √∑ ∑ (ℎ(𝑌𝑔,𝑗,iteration0 ) ̂ − ℎ(𝑌𝑔,𝑗,iteration))2 𝑔𝑗#𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 , (11) 

                                                

20 This simulation is highly similar to the one employed in Bertrand et al. (2004).   
21 We estimate a single group-specific treatment effect coefficient even when we allow multiple treated units and 

horizons. This implies that to obtain the original counterfactual estimates, we subtract the same number (�̂�𝑔𝑇 ) from 

the groups’ outcome variables in the treated units in the post-treatment periods. Ideally, different group-specific 
treatment effect estimates are calculated for each treated unit and post-treatment period to capture heterogeneity 

across cross-sections and dynamic effects. However, for various reasons, researchers may regularize �̂�𝑔𝑇 and report 

the average group-specific treatment effect on the treated. Note that the reconciliation procedure is always 
separately performed for each treated unit and time (the treatment index 𝑗 in equation (5) corresponds to the 
combination of 𝑖 and 𝑡 in treated states in post-treatment periods in equations (9) and (10)). 
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where 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 represents the iteration number (1 ≤ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ≤ 250). Following the 

notation in Section 2.2, 𝑗 is the index of treatment (for instance, if the horizon is 4 and there are 5 

treated units, 1 ≤ 𝑗 ≤ 20) and 𝑔 indicates groups. A ratio less than one indicates average 

improvement in accuracy due to the reconciliation compared to the original estimates.  

 

In the tables below, when “overall” is indicated, all the groups in all hierarchy levels are 

considered in calculating RMSPE ratios. When “top” or “bottom” is indicated, we report 

RMSPE ratios for the groups that correspond to the “top” or “bottom” level. Note that for each 

time period and cross-sectional unit, we produce reconciled counterfactuals for all the groups 

simultaneously using equation (5). Since RMSPE is calculated only after the original and 

reconciled estimates have been constructed, the way it is calculated (“overall”, “top”, or 

“bottom”) does not impact on the estimates.  

 

6.2 Results 

Panels (a) in tables 2, 3, and 4 present results for GDP data, and panels (b) present results for 

employment data. Tables 2, 3, and 4 differ from each other by whether the outcome variables are 

transformed or not and whether two-way fixed effects (equation (9)) or machine learning tools 

(equation (10)) are used. Table 2 presents the results for the selected machine learning method, 

GSC (equation 10), where the outcome variables are untransformed (equation 3). By design, 

GSC may construct different control variables (𝐹𝑡,𝑔 𝜆𝑖,𝑔 in equation 10) for different groups. 

Table 3 presents linear TWFE estimation results where the right-hand side controls are the same 



29 

 

in each case (equation 9) but the outcome variables are transformed (equation 4).22 Finally, Table 

4 presents GSC (equation 10) with log-transformed outcome variables (equation 4).  

Table 2 is here 

Table 2 reports that for every alternative scenario, the reconciled counterfactuals are, overall, 

more accurate. The decline in average root mean square prediction error (RMSPE) ranges from 

1.5% to 9.5%. Given that the reconciliation procedure uses only the original counterfactual 

estimates and known linear constraints, the improvement can be considered free lunch if the 

overall improvement in accuracy is of interest. The average magnitude of the RMSPE ratios is in 

line with our expectations. Considering that GSC captures different confounders for each group, 

the more dissimilar the group-specific control variables across the hierarchy, the greater the 

potential improvement by reconciliation. Our observations also indicate that there is no clear 

pattern between the magnitude of the improvement in accuracy and the horizon, number of states 

that are treated, or the number of pre-treatment quarters in the data.  

 

When we focus on specific levels in the hierarchy, we observe RMSPE ratios greater than 1. This 

is also in line with our expectations. As noted in footnote 11, reconciliation does not necessarily 

decrease the RMSPE of every group. Therefore, it is possible that the accuracies of certain 

groups in the hierarchy deteriorate while the overall accuracy improves.  

Table 3 is here 

Table 3 employs TWFE (equation (9)) to estimate the counterfactuals; the outcome variables are 

log-transformed (ℎ function is the logarithmic function). Even though improvement in accuracy 

is not guaranteed due to the transformation, the ratios are mostly less than one. This suggests 

                                                

22 We do not report TWFE results (equation 9) when the outcome variable is untransformed (equation 3), since this 
corresponds to the case discussed in the theorem in Section 3.1. 
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that, on average, the reconciliation procedure has produced more accurate counterfactuals, albeit 

the magnitude of the improvement is quite small. Small improvements are expected since the 

true treatment effect is null and we employ a relatively basic regression equation with no 

controls other than fixed effects. Thus, reconciliation only marginally alters the original 

estimates. As explored below, when the distances between the original and the reconciled 

counterfactuals (𝑏) are small compared to those between the original counterfactual estimates 

and the truth (𝑎), the improvement due to the reconciliation tends to be very small, yet still 

present. 

Table 4 is here 

Table 4, on the other hand, depicts a different story when the regressor matrices are not identical 

for different groups (𝐹𝑡,𝑔 𝜆𝑖,𝑔 ≠ 𝐹𝑡,𝑔′  𝜆𝑖,𝑔′   𝑤ℎ𝑒𝑛 𝑔 ≠ 𝑔′). In this case, the outcome variables are 

log-transformed and the right-hand side variables are different. The distances between the 

original and the reconciled counterfactuals (𝑏) are sizable compared to those between the 

original counterfactual estimates and the truth (𝑎). Overall, this has led the improvements in 

accuracy to range from 1% to 7%.  

 

Consistent with our previous observations in footnote 11, Table 4 clearly shows that, even when 

the overall accuracy is improved due to the reconciliation, individual group’s accuracies may 

deteriorate. In panel (A), we note that reconciliation, on average, has improved the original GDP 

estimates at the state-by-industry level (bottom level) at the expense of the corresponding 

estimate at the state level (top level). While the overall accuracies, on average, have improved in 

every case, the relatively poor performances of the reconciled estimates for GSP may not be 

acceptable. In such cases, using group-specific weights in equation (5) would be appropriate.  
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Figure 6 is here 

In Figure 6, we further explore two relationships related to accuracy improvements when the 

outcome variable is not transformed (panel (a)) and when it is log-transformed (panel (b)): The 

first of these relationships is between the magnitude of the 𝐴 angle from figures 1 and 3 and the 

accuracy improvement (
𝑐𝑎). The second is between the distance from the original to the 

reconciled counterfactual estimates relative to the error of the original counterfactual estimate 

(
𝑏𝑎), and the accuracy improvement (

𝑐𝑎).  

 

The left-hand side graph in panel (a) shows that angle 𝐴 is always 90° when ℎ is the identity 

function, so reconciliation is guaranteed to improve the accuracy of the counterfactuals. In this 

situation, for a given distance between the original counterfactual estimates and the truth, the 

magnitude of the improvement depends only on the distance from the original to the reconciled 

counterfactual estimates relative to the original counterfactual error (
𝑏𝑎). The right-hand side of 

panel (a) shows that when we plot  
𝑏𝑎  against  

𝑐𝑎 , all the results from the experiments correspond 

to a point on the quadrant (the dotted curve).  

 

In Figure 6 panel (b), we focus on the cases in which the outcome variable is log-transformed. 

The graph on the bottom-left shows that angle 𝐴 is not always exactly 90°. The median angle is 90.07°, the mean is 90.35°, and more than half of the angles are between 89.30° and 90.95°. 

This suggests that in the majority of the cases, the triangles that will appear due to reconciliation 

will be very similar to right-angled triangles. However, when the angle is quite small, we can 

expect to observe deteriorations in counterfactual accuracy.  
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The right-hand side graph in panel (b) indicates that even though the strict mathematical 

relationship between 
𝑏𝑎 and 

𝑐𝑎  that we have observed in panel (a) breaks down, the results are still 

expected to be around the quadrant (the dotted curve). The graph indicates that the greater the 

relative difference between the original and the reconciled counterfactual estimates, the greater 

the accuracy improvements tend to be, albeit there are certain cases where accuracy deteriorated. 

The LOESS (locally estimated scatterplot smoothing) fit further corroborates that there are no 

regions in panel (b) where we should expect, on average, accuracy to deteriorate.23  

 

7. Conclusion 

The data in causal inference analyses can be hierarchical or grouped in nature which allows the 

use of forecast reconciliation methods. We show that when researchers are concerned with the 

heterogeneous effects of treatments (policy or event) on subgroups as well as the average causal 

effect on the overall population, there is room for reconciliation to obtain more accurate 

treatment effect estimates via more accurate counterfactuals. We propose a reconciliation method 

that is in the same spirit as Hyndman et al.’s (2011) “optimal combination”, but which also 

allows non-linear constraints.  

 

We further develop the geometric interpretation of the forecast reconciliation proposed in 

Panagiotelis et al. (2021). We provide additional insights into the exact determinants of the 

magnitude of the accuracy improvement due to reconciliation. In our experiments with real-

world data, we demonstrate that the proposed reconciliation method tends to improve 

                                                

23 We use the default values of the parameters of the function loess in the stats package in R.  



33 

 

counterfactual predictions even when the outcome variables and the treatment effect estimates 

are non-linearly transformed (or the linear aggregation constraint appears non-linear in the 

transformed space). This can be particularly crucial in causal inference analyses, as it is common 

that the theoretical models require non-linear transformations of variables; thus, the accuracy of 

the causal effect estimate is evaluated in the transformed space. In addition, we also show that 

the benefits of reconciliation can be quite pronounced when causal machine learning tools are 

employed.  

 

Finally, while the current study provides tools for obtaining coherent point estimates for 

treatment effects, it does not discuss how to obtain coherent confidence intervals. This topic 

merits future examination.  
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Figures 

Figure 1: Visual representation of reconciliation when the constraint is linear 

 

 
(a) 

 

 
(b) 

Notes: In Figure 1(a), blue (green) dots are the original (reconciled) counterfactual estimates. Figure 1(b) presents a 
two-dimensional slice corresponding to one of the counterfactual estimates. The dashed line in Figure 1(b) is the 
linear constraint plane where truth and reconciled counterfactuals reside. Side b corresponds to the orthogonal 
distance between blue and green dots from Figure 1(a). Side a is the original counterfactual error. 
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Figure 2: Relationship between accuracy improvement and distance between original and 

reconciled counterfactuals 

 
  

Notes: RMSPE stands for root mean square prediction errors. The x-axis plots the ratio of the distance between 

reconciled and original estimates to the original counterfactual error,  
𝑏𝑎, from Figure 1(b).  If the original and 

counterfactuals are geometrically very close (i.e. 
𝑏𝑎, close to zero), the RMSPE ratio of reconciled and original 

estimates will be very close, too (i.e. ratio on y-axis will be close to one). If the triangle in Figure 1 (b) is a very 

elongated right angled triangle with a very short base (side c), then side b will be almost as long since hypotenuse, 
𝑏𝑎 

will be close to one, and the corresponding RMSPE ratio will be significantly less than one. 
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Figure 3: Visual representation of reconciliation when the constraint is non-linear 

 
(a)  

 

 (𝑏) 𝐴 > 90° 

 

 

 (𝑐) 𝐴 < 90° 
Notes: In panel (a), blue (green) dots are the original (reconciled) counterfactual estimates. Panels (b) and (c) present 
a two-dimensional slice corresponding to one of the counterfactual estimates. Dashed lines in panels (b) and (c) are 
the non-linear constraint plane where truth and reconciled counterfactuals reside. Side b corresponds to the vertical 
distance between blue and green dots from panel (a). Side a is the original counterfactual error. Side c is the error of 
the reconciled estimates.   
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Figure 4: Relationship between Convexity/Concavity of the Graph of the Constraint 

Function and Angle A 

 

Convex Constraint 

 

 
(a) 𝐴 > 90° (b) 𝐴 < 90° 

Concave Constraint 

 
 

(c) 𝐴 > 90° (d)  𝐴 < 90° 

Notes: See Figure 3 notes for the triangles and the dashed lines. The blue straight lines indicate the lines tangent to 

the constraints that pass through the points corresponding to reconciled counterfactual estimates.  
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Figure 5: Hierarchical data structure of quarterly GDP and employment data 

 

 

 

 

 

 

 

 

 

 

Panel (a): GDP data 

 

 

 

 

 

 

 

 

 

Panel (b): Employment data 

 
Notes: In both panels we depict only three of the 51 states (including DC). Dashed lines between states represent 

non-depicted states. In Panel A we depict only two of the 19 industries, and dashed lines between industries 

represent non-depicted ones. Please see notes to Table 1 for a full list of the 19 industries. Both panels can also be 

depicted by switching the states and industries in the aggregation hierarchy. 
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Figure 6: Relationships between the magnitude of the 𝑨 angle, distance between 

counterfactuals, and the accuracy improvement 

  
Panel (a) Linear constraint 

 

  
Panel (b): Non-linear constraint 

Notes: Left-hand side graphs show the relationship between angle A (from figures 1 and 3) and accuracy 
improvement. When the constraint is linear (top left), angle A can only be a right angle (see also Figure 1b). When 
the constraint is non-linear (bottom left), angle A can be an acute or a wide angle (see also Figure 3b and 3c). In 

simulations, the majority of angle A’s are clustered around 90° or above, and quite small angles are rare. Right-hand 

side graphs depict the relationship between 
𝑏𝑎  and  

𝑐𝑎 (from figures 1 and 3). In the case of linear constraint, results 

are always on the quadrant (top right). In the case of non-linear constraint, the results still cluster around the 
quadrant.   
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Tables  

 

Table 1: Summary statistics 

Panel (a): Current quarterly GDP 

 

 quarterly state GDP  quarterly state by industry GDP 

  in millions $ Natural log of GDP  in millions $ Natural log of GDP 

Mean 290,226 12.014  15,275 8.602 

Stan. dev 376,670 1.055  29,464 1.631 

CV 1.298 0.088  1.929 0.190 

# Obs. 3,315 3,315  62,985 62,985 

 

Panel (b): Total Employment 

 State total 
 Goods producing  

(NAICS 101) 
 Service producing  

(NAICS 102) 

  Empl. 
Natural log of 

empl. 
 

Empl. 
Natural log of 

empl. 
 

Empl. 
Natural log of 

empl. 

mean 2,111,498 14.068  443,102 12.478  1,668,396 13.823 

Std. Dev. 2,317,813 1.022  474,762 1.107  1,873,278 1.024 

CV 1.098 0.073  1.071 0.089  1.123 0.074 

# Obs. 6,120 6,120  6,120 6,120  6,120 6,120 

Notes: CV stands for coefficient of variation (standard deviation divided by the mean). For GDP, there are 65 

quarters (2005Q1-2021Q1), 51 states (including DC) and 19 industries. At the bottom level we have 65*51*19 = 

62,985 observations. 19 industries are: agriculture, forestry, fishing and hunting (3), mining, quarrying, and oil and 

gas extraction (6), utilities (10), construction (11), manufacturing (12), wholesale trade (34), retail trade (35), 

transportation and warehousing (36), information (45), finance and insurance (51), real estate and rental and leasing 

(56), professional, scientific, and technical services (60), management of companies and enterprises (64), 

administrative and support and waste management and remediation services (65), educational services (69), health 

care and social assistance (70), arts, entertainment and recreation (76), accommodation and food services (79), and 

other services except government and government enterprises (82). See Table A.1 for a summary of industry 

statistics. For employment, there are 120 quarters (1990Q1-2019Q4), 51 states (including DC) and two broad 

industries. Goods producing is composed of NAICS 101 which is the total of natural resources and mining (1011), 

construction (1012), manufacturing (1013). Service producing is composed of trade, transportation, and utilities 

(1021), information (1022), financial activities (1023), professional and business services (1024), education and 

health services (1025), leisure and hospitality (1026), and other services (1027).  
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Table 2: Relative mean RMSPEs after reconciliation of the GSC counterfactuals for 

untransformed outcome variables 

    Horizon = 1 Horizon = 4 Horizon = 12 

Panel (a): GDP         

# Treated Units = 1 overall 0.982 0.979 0.980 0.983 0.978 0.982 

-Total Gross State Product (GSP) top 0.977 0.967 0.964 0.973 0.957 0.965 

-GSP by Industry bottom 0.999 1.006 1.019 1.017 1.039 1.063 

        

# Treated Units = 5 overall 0.985 0.985 0.981 0.980 0.979 0.978 

-Total Gross State Product (GSP) top 0.977 0.976 0.966 0.965 0.959 0.956 

-GSP by Industry bottom 1.021 1.013 1.023 1.038 1.036 1.075 

        

Panel (b): Employment        

# Treated Units = 1 overall 0.949 0.944 0.938 0.917 0.899 0.897 

-Total State Employment top 0.954 0.950 0.947 0.890 0.882 0.928 

-State Employment by Industry bottom 1.017 1.000 0.999 0.992 0.987 0.973 

        

# Treated Units = 5 overall 0.938 0.922 0.935 0.911 0.911 0.919 

-Total State Employment top 0.968 0.933 0.953 0.922 0.879 0.882 

-State Employment by Industry bottom 0.968 0.977 0.975 0.966 1.022 1.054 

        

# Quarters in Training Period:   24 36 24 36 24 36 

Notes: RMSPE stands for root mean squared prediction error. GSC stands for Generalized Synthetic Control. Each 

value in the table represents the ratio of the average RMSPE of the counterfactuals after reconciliation to the average 

RMSPE of the original counterfactuals. While calculating RMSPEs, “overall” indicates that all groups in all levels 
of the hierarchy are considered, whereas “top” and “bottom” indicate that only the top and bottom levels are 

considered as presented in Figure 5 is considered. We consider alternative horizons (post-treatment quarters), 

training periods (pre-treatment quarters), and number of treated units (states). The two columns under each horizon 

category display the results under 24 and 36 pre-treatment periods, respectively. The results can be interpreted as the 

benefit of reconciliation when there are group-specific control variables in the regression equations.   
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Table 3: Relative mean RMSPEs after reconciliation of the TWFE counterfactuals for log-

transformed outcome variables 

    Horizon = 1 Horizon = 4 Horizon = 12 

Panel (a): GDP         

# Treated Units = 1 overall 1.000 1.000 0.997 0.998 0.998 0.998 

-Total Gross State Product (GSP) top 0.916 0.898 1.135 1.055 1.116 1.169 

-GSP by Industry bottom 1.000 1.001 0.997 0.998 0.998 0.998 

        

# Treated Units = 5 overall 0.997 0.997 0.996 0.994 0.998 0.998 

-Total Gross State Product (GSP) top 1.320 1.173 1.276 1.381 1.039 1.224 

-GSP by Industry Bottom 0.995 0.997 0.995 0.993 0.998 0.997 

        

Panel (b): Employment        

# Treated Units = 1 overall 0.999 0.997 0.998 0.998 0.998 0.998 

-Total State Employment top 1.002 0.970 0.985 1.004 0.986 0.968 

-State Employment by Industry bottom 0.998 1.005 1.003 0.976 1.002 1.005 

        

# Treated Units = 5 overall 0.998 0.998 0.998 0.997 0.997 0.997 

-Total State Employment top 1.002 0.981 1.001 0.986 0.999 0.979 

-State Employment by Industry bottom 0.998 1.003 0.998 1.000 0.999 1.001 

        

# Quarters in Training Period:   24 36 24 36 24 36 

Notes: RMSPE stands for root mean squared prediction error. TWFE stands for two-way fixed effects. Each value in 

the table represents the ratio of the average RMSPE of the counterfactuals after reconciliation to the average 

RMSPE of the original counterfactuals. While calculating RMSPEs, “overall” indicates that all groups in all levels 
of the hierarchy are considered, whereas “top” and “bottom” indicate that only the top and bottom levels are 

considered as presented in Figure 5 is considered. We consider alternative horizons (post-treatment quarters), 

training periods (pre-treatment quarters), and number of treated units (states). The two columns under each horizon 

category display the results under 24 and 36 pre-treatment periods, respectively.   
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Table 4: Relative mean RMSPEs after reconciliation of the GSC counterfactuals for log-

transformed outcome variables 

    Horizon = 1 Horizon = 4 Horizon = 12 

Panel (a): GDP         

# Treated Units = 1 overall 0.967 0.984 0.979 0.932 0.976 0.966 

-Total Gross State Product (GSP) top 3.230 2.088 3.568 6.094 3.134 4.047 

-GSP by Industry bottom 0.956 0.982 0.974 0.909 0.970 0.959 

        

# Treated Units = 5 overall 0.979 0.992 0.945 0.989 0.990 0.992 

-Total Gross State Product (GSP) top 2.610 2.696 5.950 3.871 2.806 2.723 

-GSP by Industry Bottom 0.974 0.990 0.929 0.986 0.987 0.990 

        

Panel (b): Employment        

# Treated Units = 1 overall 0.965 0.974 0.965 0.970 0.963 0.970 

-Total State Employment top 0.937 0.961 0.927 0.907 0.855 0.953 

-State Employment by Industry bottom 0.986 0.987 0.979 0.997 0.999 0.990 

        

# Treated Units = 5 overall 0.970 0.984 0.968 0.974 0.962 0.975 

-Total State Employment top 0.944 0.935 0.963 0.936 0.845 0.897 

-State Employment by Industry bottom 0.986 1.002 0.983 0.990 0.995 1.004 

        

# Quarters in Training Period:   24 36 24 36 24 36 

Notes: RMSPE stands for root mean squared prediction error. GSC stands for Generalized Synthetic Control. Each 

value in the table represents the ratio of the average RMSPE of the counterfactuals after reconciliation to the average 

RMSPE of the original counterfactuals. While calculating RMSPEs, “overall” indicates that all groups in all levels 
of the hierarchy are considered, whereas “top” and “bottom” indicate that only the top and bottom levels are 

considered as presented in Figure 5 is considered. We consider alternative horizons (post-treatment quarters), 

training periods (pre-treatment quarters), and number of treated units (states). The two columns under each horizon 

category display the results under 24 and 36 pre-treatment periods, respectively. The results can be interpreted as the 

benefit of reconciliation when there are group-specific control variables in the regression equations. 
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Appendix 

 

Appendix Table A.1 provides more detailed information about the GDP data sets we use.  

Appendix Table A.2 shows the relative mean RMSPEs after reconciliation of the counterfactual 

estimates obtained using various causal machine learning (ML) tools. In addition to GSC, the 

following are used:  

 EM: Expectation Maximization algorithm proposed by Gobillon and Magnac (2016); 

 MC: Matrix Completion method proposed by Athey et al. (2021); 

 SC: Synthetic Control method proposed by Abadie et al. (2010); 

 EN: Proposed method by Doudchenko and Imbens (2016); 

 EN-T: Transposed version of the proposed method in Doudchenko and Imbens (2016). 

We report the relative mean RMSPEs for the case where the outcome variable is log-

transformed, the horizon is 1, there are 24 quarters in the training period, and there is a single 

treated unit. Other scenarios are omitted as they yield the same conclusion. 

 

Reconciliation and 2SLS 

In Appendix Table A.3, we show the results for the case when 2SLS is employed. In the example 

below we focus on a very common case where we do not observe the true treatment indicator 

(𝑇𝑖,𝑡,𝑔) but we observe error-prone treatment variables. More specifically, we define four error-

prone treatment variables: 

𝑇𝑖,𝑡,𝑔∗1 = 𝑇𝑖,𝑡,𝑔 + 𝑢𝑖,𝑡 
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𝑇𝑖,𝑡,𝑔∗2 = 𝑇𝑖,𝑡,𝑔 + 𝜖𝑖,𝑡 

𝑇𝑖,𝑡,𝑔∗3 = 𝑇𝑖,𝑡,𝑔 + 𝑢𝑖,𝑡,𝑔 

𝑇𝑖,𝑡,𝑔∗4 = 𝑇𝑖,𝑡,𝑔 + 𝜖𝑖,𝑡,𝑔 

where 𝑢𝑖,𝑡 and 𝜖𝑖,𝑡, and 𝑢𝑖,𝑡,𝑔 and 𝜖𝑖,𝑡,𝑔 are independent from each other. 𝑢𝑖,𝑡 and 𝑢𝑖,𝑡,𝑔 are 

correlated with the outcome, whereas 𝜖𝑖,𝑡 and 𝜖𝑖,𝑡,𝑔 are not.24,25  

In these simulations, we use 𝑇𝑖,𝑡,𝑔∗2  as an instrument for 𝑇𝑖,𝑡,𝑔∗1 , and 𝑇𝑖,𝑡,𝑔∗4  as an instrument for 𝑇𝑖,𝑡,𝑔∗3 . 

More specifically, following equation (9), we have the following second stages, where both are 

the same as equation (9) except the treatment indicator is replaced by the predicted 𝑇𝑖,𝑡,𝑔∗1  (𝑇𝑖,𝑡,𝑔∗1̂ )  

and 𝑇𝑖,𝑡,𝑔∗3  ( 𝑇𝑖,𝑡,𝑔∗3̂ ).  

 𝑌𝑖,𝑡,𝑔 = 𝛼𝑖,𝑔 + 𝛾𝑡,𝑔 + 𝛽𝑔𝑇 𝑇𝑖,𝑡,𝑔∗1̂ + 𝜂𝑖,𝑡,𝑔  (A.1) 

 𝑌𝑖,𝑡,𝑔 = 𝛼𝑖,𝑔 + 𝛾𝑡,𝑔 + 𝛽𝑔𝑇 𝑇𝑖,𝑡,𝑔∗3̂ + 𝜂′𝑖,𝑡,𝑔 (A.2) 

The corresponding first stages are as follows: 

 𝑇𝑖,𝑡,𝑔∗1 = 𝛼𝑖,𝑔 + 𝛾𝑡,𝑔 + 𝛽𝑔𝑇𝑇𝑖,𝑡,𝑔∗2 + 𝜁𝑖,𝑡,𝑔  (A.1’) 

 𝑇𝑖,𝑡,𝑔∗3 = 𝛼𝑖,𝑔 + 𝛾𝑡,𝑔 + 𝛽𝑔𝑇𝑇𝑖,𝑡,𝑔∗4 + 𝜁′𝑖,𝑡,𝑔  (A.2’) 

 

                                                

24 Note that even if none of the error terms were correlated with the outcome variables, using any of these treatment 
variables would yield biased coefficients due to attenuation bias and 2SLS would still be warranted. 
25 The error terms that are uncorrelated with the outcome variables are normally distributed with mean 0 and standard 

deviation 1/20.  𝑢𝑖,𝑡 and 𝑢𝑖,𝑡,𝑔 are created by adding 0.1 ∗ 𝑌𝑖,𝑡,𝑔 to the noise. Although not necessary, the reason for us 

choosing a rather small standard deviation is to ensure that the first-stage F-statistics are large enough to avoid 
criticisms raised by Lee et al. (2020). In all cases, the first-stage F-statistics are greater than 100.  
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where the last terms in equations are error terms. One important note here is that when we use 𝑇𝑖,𝑡,𝑔∗2  as the instrument for 𝑇𝑖,𝑡,𝑔∗1 , neither the control variables (fixed effects) nor 𝑇𝑖,𝑡,𝑔∗2  vary by 

group. Hence, the regressor matrices in equation A.1 vary by panel unit and time, but not by 

group. As a result of this, when the outcome variables are linearly transformed, Theorem 1 

applies. In this case, all the RMSPE ratios are exactly 1 because the reconciliation is redundant. 

However, when we use 𝑇𝑖,𝑡,𝑔∗4  as the instrument for 𝑇𝑖,𝑡,𝑔∗3 , the regressor matrix varies by group 

because 𝑇𝑖,𝑡,𝑔∗3̂   varies by group.  

Table A.3 reports the average RMSPE ratios for the case where the training data are 24 periods 

long, the horizon is 1, and there is only 1 treated unit although the findings can straightforwardly 

be generalized for longer or shorter training data or horizons, or where there are more treated 

units. As seen, the reconciliation, on average, has improved the overall RMSPEs in all cases 

except when Theorem 1 applies.26 The improvement tends to be greater when the instrument 

varies by group. This further shows that the proposed reconciliation method is not specific to the 

cases where variables of interest are exogenous: It is warranted when 2SLS is employed as well.  

 

Reconciliation and Stationarity 

Although, the benefits of the proposed reconciliation depend entirely on angle 𝐴 and the relative 

sizes of the edges in triangles in Section 3, one interesting question regarding the impact of 

reconciliation on counterfactual accuracy might be whether the stationarity of the data affects it.  

                                                

26 As before, the overall counterfactual accuracy improvement has occurred at the expense of some groups.  
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The impact of non-stationarity on coefficient estimates is an ever present concern of time series 

data. Researchers who use panel data tend not to be overly concerned with the stationarity of 

their data due to time and panel demeaning. Nonetheless, non-stationarity can be harmful for 

causal inference. To assess whether the data in our simulations are stationary, we show in Figure 

A.1 the coefficients estimated from group-specific regressions of the outcome variables on their 

first lags after fixed effects (and other factors) are purged. This method was used in a similar 

context in Acemoglu et al. (2019) (panel data with log of GDP as the outcome variable with, on 

average, 38.8 periods per country): If the estimated coefficient of the lagged term after purging 

fixed effects and other factors is greater or equal to 1 in absolute terms, then the panel data are 

non-stationary. Otherwise, as noted in Acemoglu et al. (2019), if the coefficient is statistically 

significantly less than 1 (even if it is quite close to 1, such as 0.973 (0.006) as reported in their 

Table 2 column (1)), then the data are stationary. 27 

More specifically, using the pre-treatment periods of all states and groups, we first purge (i) 

group-specific time and state fixed effects in TWFE regressions (equation (9)); and (ii) group-

specific time and state fixed effects, and other factors deemed important by GSC (equation (10)). 

Then, we regress the purged outcome variable on its first lag:  𝑌𝑖,𝑡,�̃� = 𝛽0 + 𝛾𝑌𝑖,𝑡−1,𝑔̃ , where  𝑌𝑖,𝑡,�̃� 

indicates the outcome variable after the fixed effects (and factors) are purged.  

In our simulations, we vary the length of the pre-treatment period (24 or 36), and we use 

equation (9) with log(GDP) and log(employment), and equation (10) with GDP, log(GDP), 

employment, and log(employment) as outcome variables. To save space, we report only the 

regressions with GDP and log(GDP) as outcome variables and 36 pre-treatment periods, though 

                                                

27
 As noted in Acemoglu et al. (2019), since the number of observations per panel unit in our setting is sufficiently 

large, the Nickell bias should be small (Nickell 1981).  
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the conclusion about the stationarity of the data is even stronger in other cases (shorter pre-

treatment period or employment regressions). Therefore, we show 9 plots in three panels that 

show the lower limits of the 95% confidence interval of the lagged term estimates (top graphs), 

point estimates of the lagged term (middle graphs), and the upper limits of the 95% confidence 

intervals of the lagged term estimates.  

All in all, while the point estimates tend to approximate close to 1 when equation (9) is used, 

though the 95% confidence intervals produced using standard errors clustered at the state level 

almost never contain 1 or -1. This is in line with Acemoglu et al.’s (2019) observations. When 

equation (10) is used, the point estimates tend to be positive and quite close to 0. These results 

suggest that the data in our simulations are stationary.  

Lastly, we report the relative RMSPEs when we use the first difference estimator and update 

equation (9) as follows:  

 Δ𝑌𝑖,𝑡,𝑔 = 𝛾𝑡,𝑔 + 𝛽𝑔𝑇Δ𝑇𝑖,𝑡,𝑔 + 𝜀𝑖,𝑡,𝑔.  (A.3) 

As expected, using the first-difference estimator with state and time fixed effects significantly 

reduces the correlation between the outcome variable and its lag (the average (median) value of 

the corresponding 𝛾�̂�  is -0.19 (-0.22) after time demeaning). Nevertheless, the relative RMSPEs 

in Table A.4 lead us to conclusions very similar to the ones reached in Table 3. The overall 

accuracy slightly improved in all cases. 
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Table A.1: Quarterly current GDP by industry 

   quarterly state GDP     quarterly state GDP  

     millions $   
Log-

transformed       millions $   
 Log-

transformed  

 Total  

 mean        290,226      12.014  

 Finance and insurance  

 mean        24,507        9.359  

 st. dev        376,670        1.055   st. dev        40,487        1.231  

 CV           1.298        0.088   CV          1.652        0.132  

 n            3,315        3,315   n          3,315        3,315  

 Agriculture, 
forestry, 

fishing and 
hunting  

 mean            3,247        7.120  

 Real estate and rental 
and leasing  

 mean        43,711      10.055  

 st. dev            4,973        2.129   st. dev        64,638        1.104  

 CV           1.531        0.299   CV          1.479        0.110  

 n            3,315        3,315   n          3,315        3,315  

 Mining, 
quarrying, and 

oil and gas 
extraction  

 mean            5,979        6.756  
 Professional, 
scientific, and 

technical services  

 mean        24,329        9.311  

 st. dev          19,688        2.432   st. dev        36,562        1.279  

 CV           3.293        0.360   CV          1.503        0.137  

 n            3,315        3,315   n          3,315        3,315  

 Utilities  

 mean            5,532        8.123  
 Management of 
companies and 

enterprises  

 mean          6,131        7.937  

 st. dev            6,346        0.997   st. dev          7,426        1.409  

 CV           1.147        0.123   CV          1.211        0.178  

 n            3,315        3,315   n          3,315        3,315  

 Construction  

 mean          13,529        8.937   Administrative and 
support and waste 
management and 

remediation services  

 mean          9,951        8.561  

 st. dev          17,167        1.204   st. dev        12,894        1.183  

 CV           1.269        0.135   CV          1.296        0.138  

 n            3,315        3,315   n          3,315        3,315  

 
Manufacturing  

 mean          39,117        9.820  

 Educational services  

 mean          4,129        7.549  

 st. dev          48,439        1.479   st. dev          5,925        1.308  

 CV           1.238        0.151   CV          1.435        0.173  

 n            3,315        3,315   n          3,315        3,315  

 Wholesale 
trade  

 mean          19,966        9.244  

 Health care and social 
assistance  

 mean        24,126        9.564  

 st. dev          26,125        1.190   st. dev        28,090        1.038  

 CV           1.308        0.129   CV          1.164        0.109  

 n            3,315        3,315   n          3,315        3,315  

 Retail trade  

 mean          19,036        9.326  

 Arts, entertainment, 
and recreation  

 mean          3,382        7.347  

 st. dev          23,172        1.042   st. dev          5,604        1.229  

 CV           1.217        0.112   CV          1.657        0.167  

 n            3,315        3,315   n          3,315        3,315  

 
Transportation 

and 
warehousing  

 mean            9,960        8.649  

 Accommodation and 
food services  

 mean          9,528        8.635  

 st. dev          11,760        1.124   st. dev        11,994        1.016  

 CV           1.181        0.130   CV          1.259        0.118  

 n            3,315        3,315   n          3,315        3,315  

 Information  

 mean          16,828        8.792   Other services (except 
government and 

government 
enterprises)  

 mean          7,238        8.346  

 st. dev          33,233        1.335   st. dev          8,626        1.065  

 CV           1.975        0.152   CV          1.192        0.128  

 n            3,315        3,315   n          3,315        3,315  

Notes: CV stands for coefficient of variation (standard deviation divided by mean). There are 65 quarters (2005Q1-

2021Q1) and 51 states (including DC), hence 65*51=3,315 observations for each industry.  
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Table A.2: Relative mean RMSPEs after reconciliation of the counterfactual estimates 

obtained using alternative causal ML methods for log-transformed outcome variables 

 

 GSYNTH  EM  MC  SC  EN  EN-T 

Outcome: GDP 0.967  0.970  0.972  0.976  0.973  0.981 

Outcome: Employment 0.965  0.949  0.968  0.981  0.956  0.983 
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Table A.3. Relative mean RMSPEs after reconciliation of the 2SLS counterfactuals for 

untransformed and log-transformed outcome variables 

  
Group Invariant Instrument ( Eq. 

A.1 and A.1') 
Group Varying Instrument (Eq. 

A.2 and A.2') 

Outcome Variable:    GDP log(GDP) GDP log(GDP) 

 overall 1.000 0.995 0.981 0.992 

-Total Gross State Product (GSP) top 1.000 1.499 0.967 1.451 

-GSP by Industry bottom 1.000 0.993 1.070 0.990 

      

Outcome Variable:    
Employment 

Log 
(Employment) 

Employment 
log 

(Employment) 

 overall 1.000 0.999 0.842 0.928 

-Total State Employment top 1.000 0.996 0.801 0.793 

-State Employment by Industry bottom 1.000 0.999 0.977 0.991 

Notes: RMSPE stands for root mean squared prediction error. 2SLS stands for two-stage least squares. Each value in 

the table represents the ratio of the average RMSPE of the counterfactuals after reconciliation to the average 

RMSPE of the original counterfactuals. While calculating RMSPEs, “overall” indicates that all groups in all levels 

of the hierarchy are considered, whereas “top” and “bottom” indicate that only the top and bottom levels are 

considered. We report only when the horizon (post-treatment quarters) is one, training period (number of pre-

treatment quarters) is 24, and number of treated units (states) is one.  
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Table A.4: Relative mean RMSPEs after reconciliation of the FD counterfactuals for log-

transformed outcome variables 

    Horizon = 1 Horizon = 4 Horizon = 12 

Panel (a): GDP         

# Treated Units = 1 overall 0.999 0.999 0.999 0.999 0.999 0.980 

-Total Gross State Product (GSP) top 1.112 1.059 1.317 1.156 1.373 2.404 

-GSP by Industry bottom 0.999 0.999 0.999 0.999 0.998 0.973 

        

# Treated Units = 5 overall 0.996 0.997 0.994 0.993 0.997 0.992 

-Total Gross State Product (GSP) top 1.759 1.173 2.098 2.790 1.847 2.815 

-GSP by Industry bottom 0.995 0.997 0.992 0.989 0.995 0.987 

        

# Quarters in Training Period:   24 36 24 36 24 36 

Notes: RMSPE stands for root mean squared prediction error. FD stands for the first difference estimator in equation 

(A.3). Each value in the table represents the ratio of the average RMSPE of the counterfactuals after reconciliation 

to the average RMSPE of the original counterfactuals. While calculating RMSPEs, “overall” indicates that all 
groups in all levels of the hierarchy are considered, whereas “top” and “bottom” indicate that only the top and 

bottom levels are considered. We consider alternative horizons (post-treatment quarters), training periods (pre-

treatment quarters), and number of treated units (states).    
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Figure A.1: Point and confidence interval estimates from the regressions of outcome 

variables on their first lags 

 

Panel A: Equation (9) with log(GDP) as the outcome variable (36 pre-treatment periods) 

Lower Limits of the 95% CI in Simulations 

 
Point Estimates 

 
Upper Limits of the 95% CI in Simulations 
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Panel B: Equation (10) with GDP as the outcome variable (36 pre-treatment periods) 

Lower Limits of the 95% CI in Simulations 

 
Point Estimates 

 
Upper Limits of the 95% CI in Simulations 
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Panel C: Equation (10) with log(GDP) as the outcome variable (36 pre-treatment periods) 

 

Lower Limits of the 95% CI in Simulations 

 
Point Estimates 

 
Upper Limits of the 95% CI in Simulations 

 
 

 


