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Online travel agencies (OTA’s) advertise their website offers on meta-search bidding engines. The problem of 
predicting the number of clicks a hotel would receive for a given bid amount is an important step in the 
management of an OTA’s advertisement campaign on a meta-search engine because bid times number of clicks 
defines the cost to be generated. Various regressors are ensembled in this work to improve click prediction 
performance. After preprocessing, the entire feature set is divided into 5 groups, with the training set preceding 
the test set in the time domain, and multi-set validation is applied. The training data for each validation set is then 
subjected to feature elimination, and the selected models are next validated with separate ensemble models based 
on the mean and weighted average of the test predictions. Additionally, a stacked meta-regressor is designed and 
tested, along with the complete train set, whose click prediction values are extracted in accordance with the out-
of-fold prediction principle. The original feature set and the stacked input data are then combined, and level-1 
regressors are trained once again to form blended meta-regressors. All individually trained models are then 
compared pairwise with their ensemble variations. Adjusted 𝑅2 score is chosen as the main evaluation metric. 
The meta-models with tree-based ensemble level-1 regressors do not provide any performance improvement 
over the stand-alone versions, whereas the stack and blended ensemble models with all other non-tree-based 
models as level-1 regressors boost click prediction (0.114 and 0.124) significantly compared to their stand-alone 
versions. Additionally, statistical evidence is provided to support the importance of Bayesian hyperparameter 
optimization to the performance-boosting of level-1 regressors.
1. Introduction

Millions of travellers book hotel accommodations over the Internet 
each year. Modern travellers rely on peer options, electronic word of 
mouth (eWOM), and peer reviews. Popular online travel websites offer 
reliable reviews and prices (Casaló et al., 2015). Therefore, customers 
choose to inspect and compare different options on meta-search sites 
like Kayak.com, Trivago, and TripAdvisor before booking their accom-
modations.

Online travel agencies (OTA’s) advertise their website offers on 
meta-search bidding engines. If the OTA chooses to have a Cost-Per-
Click (CPC) ad campaign, the OTA promises to pay a certain amount 
for each click a certain hotel gets from the platform under predefined 
conditions. The amount to pay per click is the OTA’s 𝑏𝑖𝑑 amount. The 
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problem of predicting the number of clicks a hotel would get for a cer-
tain bid amount is an important step in the OTA’s advertisement cam-
paign management on a meta-search engine, as 𝑏𝑖𝑑 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑖𝑐𝑘𝑠
defines the cost to be generated.

Predicting hotel searches, clicks, and bookings is a challenging task 
due to many external factors, such as seasonality, events, location, and 
hotel-based properties. Capturing such properties increases the accu-
racy of prediction models. Due to the high variance in daily OTA data, 
non-linear prediction methods and creating relevant features with a 
time-delayed data preprocessing approach are adopted in a work try-
ing to forecast daily room sales for each hotel in a meta-search bidding 
platform (Aras et al., 2019).

Numerous regressor models are trained on large data sets gathered 
as a result of complex feature engineering, and numerical forecasts are 
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then made. Although tree-based boosting regressors used as stand-alone 
ensemble models provide high performance, the performance-boosting 
effect of ensemble learning (Lei et al., 2010) is increasingly being inves-
tigated. It is a machine-learning model combination that gets decisions 
from various models to enhance the overall performance. The ensemble 
approach provides the stability and low-variety predictions of machine 
learning algorithms. It builds a set of decision-makers, namely classi-
fiers and regressors, with various techniques, namely bagging, boosting 
or Bayesian averaging as final decisions (Dietterich, 2000).

Although ensembling is used as an umbrella term and is realized 
to be a performance booster in different data domains from a general 
perspective, it is a structure that is open to investigation due to its in-
clusivity to as many distinct pipeline-based designs as feasible within 
itself. In particular, alternative middle-layer feature engineering, and 
also substantiality of level-1 model characteristics and the impact of hy-
perparameters on meta-model prediction are open for further research.

The proposed study concentrates on regression-based meta-models 
because it predicts how many clicks the advertisement will get. A va-
riety of ensemble models is examined for click prediction boosting in 
a broad perspective; performances of regressors trained as level-1 with 
their stand-alone versions are compared and the effectiveness of tree-
based ensemble models (as an internal ensemble themselves) and non-
tree-based models as level-1 regressors are found to be highly distinct. 
Moreover, the prediction performance of level-1 models with respect 
to hyperparameter optimization (HPO) is observed and the effective-
ness of Bayesian optimization on the click prediction meta-regressors is 
verified.

2. Related work

In the literature, studies are focusing on the problem of predicting 
the Click-through-rate (CTR) of a sponsored display advertisement to be 
shown on a search engine related to a query. Click and CTR prediction is 
an ongoing research for both industry and academia (Fain & Pedersen, 
2006, Jansen & Mullen, 2008, Ghose & Yang, 2009). Predicting the 
number of clicks as an aim of the proposed study is highly related to 
the CTR prediction problem.

Etsy, an online e-commerce platform, displays promoted search re-
sults, which are similar to sponsored search results and our problem 
with meta-search bidding engines. CTR prediction is utilized in the sys-
tem to determine the ranking of the ads (Aryafar et al., 2017). The 
authors found out that different features capture different aspects, so 
they classified the features as being historical and content-based. They 
train separate CTR prediction models based on historical and content-
based features, separately. Then, these individual models are combined 
with a logistic regression model. They reported AUC, Average Impres-
sion Log Loss, and Normalized Cross-Entropy metrics to compare the 
models to non-trivial baselines on a large-scale real-world dataset from 
Etsy, demonstrating the effectiveness of the feature engineering in the 
proposed study.

Besides, numerous approaches could be seen in the machine 
learning-based click prediction literature. In one study, state-of-the-art 
prediction algorithms, Extreme Gradient Boosting (XGBoost) (Chen & 
Guestrin, 2016) regressor, and a minimum Redundancy-Maximum Rel-
evance (mRMR) (Torralba & Oliva, 2002) feature selection algorithm 
was executed to predict the daily clicks to be received per hotel, us-
ing a large OTA’s data from Turkey (Cakmak et al., 2019). The data set 
received from the meta-search bidding engine contained both numeri-
cal and categorical features. The number of clicks as the multiplication 
of the predicted click-through rate (CTR) and the predicted hotel im-
pression were modelled. The highest R-Squared values obtained in the 
prediction of individual-hotel-based CTR and impression values are 
both achieved using XGBoost.

Another study aimed to forecast how many impressions and clicks 
a hotel will acquire as well as how many rooms it will sell via a meta-
2

search bidding engine (Tekin & Cebi, 2020). The given model predicts 
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how much money an OTA’s hotels will make the following day. The au-
thors demonstrate that by incorporating OTA-specific information into 
prediction models, the generalization of models improves and better 
results are obtained. They applied XGBoost, random forest, gradient 
boosting, deep neural networks (DNN), and generalized linear models 
(GLM) (Nelder & Wedderburn, 1972). The most successful model to 
predict bookings is gradient boosting, applied on a dataset enriched by 
features that can summarize the trends in the target variable well.

The demand for hotel rooms in the hotel industry in Turkey between 
the years 2002-2013 is estimated using Autoregressive integrated mov-
ing average (ARIMA) (Box & Pierce, 1970) by Efendioğlu and Bulkan 
(2017). In their study, they determined the hotel room capacity ac-
cording to the cost of the unsold rooms and the ARIMA distribution. 
They also reported that the hotel room demand in the country could 
be affected by outer factors such as political crises and warnings about 
terrorism. This work shows the non-deterministic nature of hotel room 
demand and how unpredictable factors suddenly affect the click predic-
tion problem.

In order to predict ad clicks, Google makes use of logistic regres-
sion with improvements in the context of traditional supervised learn-
ing based on a Follow-The-Regularized-Leader (FTRL-Proximal) online 
learning algorithm (McMahan et al., 2013) for better sparsity and con-
vergence. Microsoft’s Bing Search Engine proposes a new Bayesian on-
line learning algorithm for CTR prediction for sponsored search (Grae-
pel et al., 2010), which is based on a probit regression model that 
maps discrete or real-valued input features for probability estimation. 
The scalability of the algorithm is ensured through a principled weight 
pruning procedure and an approximate parallel implementation. Yahoo 
adopts a machine learning framework based on Bayesian logistic re-
gression to predict click-through and conversion rates (Chapelle et al., 
2015), which is simple, scalable, and efficient. Facebook combines de-
cision trees with logistic regression (He et al., 2014), generating 3% 
better results in click prediction compared to other methods.

An ensemble model is proposed by Wang et al. to predict the CTR 
of advertisements on search engines (Wang et al., 2012). Firstly, they 
tried several Maximum Likelihood Estimation (MLE)-based methods to 
exploit the training set; including Online Bayesian Probit Regression 
(BPR) (Smith & LeSage, 2004), Support Vector Machine (SVM), and 
Latent Factor Model (LFM) (Agarwal & Chen, 2009) and optimized 
them by selecting the most descriptive features. They have created a 
rank-based ensemble model using the outputs of BPR, SVM, and MLE. 
The results are ensembled using harmonic means to generate the final 
blending submission. The proposed model’s output shows an on average 
0.013 improvement over the individual models.

Ensemble learning techniques implemented by King et al. to investi-
gate whether they could increase the profitability of pay-per-click (PPC) 
campaigns (King et al., 2015). They applied voting, bootstrap aggre-
gation (Bagging) (Breiman, 1996), stacked generalization (or stacking) 
(Zirpe & Joglekar, 2017), and meta cost (Domingos, 1999) techniques 
to four base classifiers: Naïve Bayes, logistic regression, decision trees, 
and Support Vector Machines. The research in this work analyzed a data 
set of PPC advertisements placed on the Google search engine, aiming 
to classify PPC campaign success. They used average accuracy, recall, 
and precision metrics to measure the performance of both base classi-
fiers and ensemble models. They also introduced the evaluation metric 
of total campaign portfolio profit and illustrated how relying on overall 
model accuracy can be misleading. They conclude that applying en-
semble learning techniques in PPC marketing campaigns can achieve 
higher profits. In another study, Bisht and Susan (2021), probabilistic 
graphical models such as decision belief are trained with a voting soft-
based ensemble model to predict click prediction. It is observed that the 
voting-based model outperforms the performance of individual models.

Eight ensemble methods were proposed by Ling et al. to accurately 
estimate the CTR in sponsored search ads (Ling et al., 2017). A single 
model would lead to sub-optimal accuracy, and the regression models 

all have different advantages and disadvantages. The ensemble mod-
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Fig. 1. Overview of the System. The main train set is divided into two subsets (train and test) to assess the importance of features. These are used to determine the 
most representative feature subspace by testing with the individual dataset that should be isolated from the actual test set. Accordingly, Bayesian HPO is applied 
to each individual model via training with a sub-train set. The dimensionality of the main test set is reduced over a predefined feature subspace, and the model is 
tested over five different model pipelines, including individual ten regressor models, simple averaged and weighted averaged ensemble models, and stack and blend 
ensemble pipelines.
els are created via bagging, boosting, stacking, and cascading. The 
training data is collected from historical ads’ impressions and the corre-
sponding clicks. The Area under the Receiver Operating Characteristic 
Curve (AUC) and Relative Information Gain (RIG) metrics are computed 
against the testing data to evaluate prediction accuracy. They conclude 
that boosting is better than cascading for the given problem. Boosting 
neural networks with gradient-boosting decision trees turned out to be 
the best model in the given setting. They conclude that the model en-
semble is a promising direction for CTR prediction; meanwhile, domain 
knowledge is also essential for ensemble design.

3. Proposed system with methods

There are five primary components in the proposed system. The 
complete system’s flow diagram is depicted in Fig. 1. To summarize, 
queries are used to retrieve the dataset from the database. Preprocess-
ing is used to extract time-domain seasonal decomposition features with 
suitable data cleaning in the next stage. Individual regressors are then 
subjected to hyperparameter tuning. After splitting the entire training 
data into the sub-train sub-test and selecting some of the models ranked 
according to their validation scores, ensemble models are trained and 
3

tested to generate click predictions for each validation set of the total 
data. Multiple evaluation metrics are extracted from 35 proposed re-
gressors and an adjusted 𝑅2 score is used as an evaluation indicator of 
ensemble models.

3.1. Dataset generation and data preprocessing

The data is retrieved from a major OTA company based in Turkey. 
Contents of the meta-search platform’s daily reports are combined with 
the data retrieved from the OTA. The dataset contains features includ-
ing bid, average booking value, hotel impression, top position share, 
cost per click, number of stars of a hotel, rating, gross revenue as nu-
merical, and regions of hotels, and hotel types as categorical features. 
Some of the columns are eliminated during the data analysis phase, as 
they contain a high ratio of missing values. In this study, we have re-
placed the missing values with the most common value and the average 
of the related feature for categorical and numerical features, respec-
tively.

In addition to OTA’s data, some external features are added to the 
dataset in order to explain the state of the economical and seasonal 
properties of the environment. Some simple external data examples are 
daily weather information and daily exchange rates. Data enrichment 

improves the quality of the dataset. The closeness of the related day to 
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the next public holiday and the length of the holiday are also added as 
additional numerical variables.

In order to improve the accuracy and generalization ability of the 
prediction model, additional features are generated from the data fol-
lowing a sliding window (time-delay) approach. Multiple statistical 
values: the minimum, maximum, average, standard deviation and skew-
ness of numerical values for some specific time periods (such as the last 
3, 7, and 30 days) are calculated and used as input features for predic-
tion. The aim of adding such features is to improve the accuracy and 
generalization ability of the prediction model.

Feature space is enriched with the seasonal decomposition of some 
time-series features. Seasonal decomposition is a naïve decomposition 
model that generates additive components by breaking the original fea-
ture into three. The output of the algorithm is T: Trend, S: Seasonality, 
and e: Residual, where 𝑌 [𝑡] = 𝑇 [𝑡] +𝑆[𝑡] + 𝑒[𝑡]. The seasonal component 
is first removed by applying a convolution filter to the data. The av-
erage of this smoothed series for each period is the returned seasonal 
component (Avazov et al., 2019). Decomposed seasonality, trend, and 
residual values are added to the dataset as new features.

As a final step, feature one-hot encoding is proposed for some of the 
string-based features and binarized. In the last step, the feature set is 
normalized with min-max scaling to force values to be between 0 and 
1.

3.2. XGBoost-based recursive feature elimination

XGBoost is part of a gradient-boosting decision tree which operates 
via the regularization of the tree framework. By using gradient boosting 
to create the boosted trees and collect the feature scores in an effective 
manner, each feature’s significance to the training model is indicated 
(Zheng et al., 2017). The calculation of the feature importance of every 
feature 𝐹𝑛 is shown in Eq. (1).

𝐹𝑛(𝑇 ) =

√√√√ 1
𝐸

𝐸∑
𝑒=1

𝑖2(𝑇𝑒) (1)

There is a subdivision of each node into two regions at every node 𝑒 for 
each feature 𝑛 as a part of the feature space 𝐹𝑛 from a given single deci-
sion tree 𝑇 . The maximally forecasted score boosting rate 𝑖2 represents 
the metric of squared error shifts of the cost function from the given 
XGBoost regression outcome of an additive tree 𝑇𝑒. The summation of 
the squared importance over all trees 𝐸 proposes the summarization 
of the square importance of the given feature 𝑛. Accordingly, the root 
mean squared importance manifests the absolute importance factor of 
the feature.

The estimation of such an improvement depends on replacing the 
actual feature value in space with random noise to determine a relative 
magnitude shift in the final regression performance. Running multiple 
trees simultaneously provides a better understanding of the average im-
portance of the feature.

In the next step, the customized recursive feature elimination al-
gorithm is used to minimize the feature space (Yan & Zhang, 2015). 
Algorithm 1 shows the procedure of the flow. The goal is to cover 
the features (𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒) that represent best the feature impor-
tance levels in descending order. To avoid the complexity of the classi-
cal recursive-based feature elimination due to the large feature space, 
the initial feature importance values are considered as bias factors 
for the features. Given that the randomization factor of the selected 
features will be auto-biased in the subspace, such a specialization sig-
nificantly reduces the elimination process. 𝑟2_𝑠𝑐𝑜𝑟𝑒 value of a new 
𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒 is calculated within every iteration until convergence 
occurs (𝑟2_𝑡𝑒𝑚𝑝 value stops being exceeded by 𝑟2_𝑠𝑐𝑜𝑟𝑒). Again XGBoost 
regressor is selected as the feature sub-space evaluator. Classical recur-
sive feature elimination (RFE) (Misra & Yadav, 2020) techniques have 
4

also been tried. However, the process takes too long as feature sub-sets 
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are randomly selected in each iteration (within the large feature space). 
For this reason, it is not preferred in the proposed system.

Algorithm 1: Recursive XGBoost dimensionally reduction algo-
rithm.

Data:

𝐹𝐼 = 𝑠𝑜𝑟𝑡_𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔(𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑠)
𝑟2_𝑡𝑒𝑚𝑝 = 0

Result:

𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒
for 𝐹𝐼0 𝑖𝑛 𝐹𝐼 do

𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒 = 𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑠𝑝𝑎𝑐𝑒 (𝐹𝐼0 < 𝐹𝐼)
𝑟2_𝑠𝑐𝑜𝑟𝑒 =𝑋𝐺𝐵_𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛(𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎, 𝑡𝑒𝑠𝑡_𝑑𝑎𝑡𝑎,

𝑡𝑟𝑎𝑖𝑛_𝑙𝑎𝑏𝑒𝑙𝑠, 𝑡𝑒𝑠𝑡_𝑙𝑎𝑏𝑒𝑙𝑠)
if 𝑟2_𝑠𝑐𝑜𝑟𝑒 < 𝑟2_𝑡𝑒𝑚𝑝 then

return (𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒)
else

𝑟2_𝑡𝑒𝑚𝑝 = 𝑟2_𝑠𝑐𝑜𝑟𝑒
end

end

3.3. Bayesian HPO

HPO is an essential approach for some machine learning models 
to enhance prediction performance. There are a few algorithms for 
tuning hyperparameters. One of them is Grid Search (Bergstra et al., 
2011) which tries each combination of given hyperparameter candi-
dates of a model. Another optimization algorithm is known as random 
search (Karnopp, 1963), which randomly extracts hyperparameter com-
binations and tries to reach the local optima of a performance score. 
However, none of them is able to reach successful local optima of per-
formance in a short period. Bayesian HPO (Nguyen, 2019) is a relatively 
more powerful and efficient algorithm for hyperparameter tuning. It 
aims to reach a global optimum in a much shorter time than a grid 
search. There is a probabilistic model of 𝑓 (𝑥) that aims to be exploited 
to make decisions about where 𝑋 is accepted as the next performing 
function. This procedure helps to find the minimum of non-convex func-
tions in a few epochs, which positively affects the performance. The 
evaluation metric to rank hyperparameter combinations through input 
data is 𝑅 − 𝑠𝑞𝑢𝑎𝑟𝑒𝑑(𝑅2). 𝑅 − 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 is a statistical measure that repre-
sents the proportion of the variance for a dependent variable that’s ex-
plained by an independent variable or variables in a regression model. 
The formula of 𝑅2 is shown in Eq. (2).

𝑅2 = 1 − 𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑𝑉 𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛

𝑇 𝑜𝑡𝑎𝑙𝑉 𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛
(2)

𝑅2
𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑

= 1 −
[
(1 −𝑅2) ∗ (𝑛− 1)

𝑛− 𝑘− 1

]
(3)

Adjusted 𝑅2 (Leach & Henson, 2007) (shown in Eq. (3)) is the mod-
ified version of 𝑅2 where the score is adjusted based on the number of 
features 𝑘, and sample size of 𝑛. Considering that the average 𝑅2 val-
ues of each model are extracted with multi-set validation, adjusted 𝑅2

is selected as an evaluation metric to extract a more robust 𝑅2 value, as-
suming that each set has a different feature space size (feature selection 
is independent for each validation fold).

3.4. Validation score-based model selection

In total, 11 different regression models are selected as candidate 
models for ensemble pipelines including Lasso (Tibshirani, 1996), Lasso 
Lars (Efron et al., 2004), Ridge (Hoerl & Kennard, 1970), Bayesian 
Ridge (Shi et al., 2016), Huber (Sun et al., 2020), Elasticnet (Zou & 
Hastie, 2005), Linear Regression (Su et al., 2012), XGB, LGBM (Ke et 
al., 2017), Catboost (Dorogush et al., 2018) and Randomforest (Cutler 

et al., 2012). The models chosen include ensemble models on their own 
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based on bagging and gradient boosting, as well as linear regression 
and its regularized variants. Additionally, a model is chosen that uses a 
probabilistic approach to tackle regression issues, such as the Bayesian 
Ridge model. However, because the suggested system is not centered 
on real-time estimates, online learning models are not included. Each 
training set is divided into a subset of training and test sets and the vali-
dation score of each regressor model is ranked. Models with adjusted 𝑅2

scores above 0.5 are selected as input to the ensemble models. The se-
lected models are trained from scratch with the whole training set and 
added as input to the ensemble models. In this way, models that cannot 
be trained with a certain level of success are automatically eliminated.

3.5. Ensembling

If there are M models with errors extracted from the same dataset 
which are uncorrelated with them, the average error of a model is theo-
retically reduced by some factor by simply averaging the model outputs. 
On the other hand, if some of the model outputs have lower perfor-
mance and are not fit to predict results as well as others, overall error 
may not be reduced or even increase in some cases.

3.5.1. Average & weighted average of model outputs

The first and most basic ensembling approach is to take an average 
of various model outputs. There are two different averaging techniques 
for ensembling. The first one is taking a mean of predicted values. It 
provides a lower variance of predicted values since different algorithms 
proceed to predict various aspects of the input data set. The formula for 
an average of model outputs is shown in Eq. (4).

𝐴𝑣𝑔𝑖 =
∑𝑛

𝑟
𝑝𝑖𝑟

𝑛
(4)

where 𝑖 is the 𝑖𝑡ℎ sample, 𝑟 is regressor model, 𝑝𝑖𝑟 is individual proba-
bility of given regressor and 𝑛 is the number of models used.

However, some machine learning models perform worse than oth-
ers in terms of prediction, culminating in a poorer overall ensemble 
prediction performance than some individual regressor prediction per-
formances. The fundamental reason for this is that weak regressors are 
given the same weight as other ones that provide decent individual 
performance. As a consequence, while taking an average of all estima-
tions, the weighted average is also utilized in this study to eliminate 
the detrimental influence of low-performance models. Weights are pro-
duced using each model’s individual 𝑅2 score and scaled between 0 and 
1 to standardize the weight of each regressor, ensuring that the sum of 
all weights is 1. This method allows models that predict higher per-
formance to have a greater impact on the final prediction than models 
that predict lower performance. The formula of the weighted average 
of model outputs is shown in Eq. (5).

𝑊 𝑎𝑣𝑔𝑖 =
∑
𝑟

𝑤𝑟 ∗ 𝑝𝑖𝑟,

𝑟 ∈𝑅𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜𝑁,∑
𝑟

𝑤𝑟 = 1

(5)

where 𝑟 is the chosen regressor model, 𝑤𝑟 is normalized individual 𝑅2

performance of regressor. 𝑝𝑖𝑟 is prediction result of regressor 𝑟 of 𝑖’th 
sample and 𝑁 is the number of models used.

3.5.2. Stack ensemble model

Stack ensemble algorithm assembles individual results for different 
models to make an intermediate input dataset, and the final model is 
used to create a final regression result. In the proposed approach, se-
lected models are trained to stack their extracted predictions, and for 
each validation set, all the stacked inputs are further trained with level-
1 regressors. Eleven different stack ensemble models are created for 
each validation set after each model is trained independently as a level-
5

1 estimator.
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Stacking the individual predictions enables the analysis of the in-
termediate regressor model. The latter is, in turn, used for the linear 
weight of the results to create a learnable weighted average of provided 
predictions through each sample of input data. Overall ensemble model 
variations are indicated in Fig. 2 along with the associations between 
them.

3.5.3. Blend ensemble model

The Stack ensemble method and the Blend ensemble algorithm (Xie 
et al., 2013) have similar designs. The separate outcomes of regressor 
models are assembled in the first stage. Additionally, the individual 
model outcomes are merged with a dimensionally reduced feature set 
(feature blending), which adds mediated features extracted as predicted 
clicks with knowledge of intended predictions to produce an expanded 
feature dimension. In this regard, the level-1 regressor is subsequently 
trained independently for every model using the blended dataset.

4. Analysis and results

4.1. Train & test partition

The whole dataset has a semantic connection in the time domain 
due to seasonal decomposition features, and for this reason, the test 
dataset is applied after the training set. This is an alternative multi-set 
validation instead of cross-validation, as it is thought to give a more 
realistic result due to the nature of the time series. Accordingly, the 
entire dataset is split into 5 sub-sets using a window size of 55% of the 
whole dataset and within each sub-set, distinct data are used as test sets 
and training sets of constant size immediately preceding the test sets 
are validated independently. Train-test partitioning scheme is shown in 
Fig. 3. The entire dataset covers 36 days of curated OTA data.

4.2. Validation results

In total, 11 different regression models are selected, of which 4 are 
decision tree-based ensemble baseline models that are XGB, LGBM, Cat-
boost and Randomforest.

The performance of 35 different regressor models is measured for 
five validation sets and the evaluation metrics are derived and aver-
aged accordingly. In Table 1, the evaluation metrics (𝑅2, adjusted 𝑅2, 
root mean squared error (RMSE), mean absolute error (MAE)) of all the 
models are listed in descending order based on the 5-set average of ad-
justed 𝑅2 values. The average test click values for the chosen dataset 
have a high standard deviation (41.55), which makes the RMSE and 
MAE errors appear to be increased. However, simplified results are 
extracted by removing the variation component using the 𝑅2 and re-
flectively with adjusted 𝑅2. Accordingly, blend ensemble with Huber 
as a level-1 regressor provided the highest performance (0.610) among 
others. These model results are followed by weighted average and aver-
age ensemble models, Lasso with blended ensemble, stacked ensemble 
with Huber, blended ensemble models with Ridge, Elasticnet and Linear 
regression as level-1 regressors, Ridge and Bayesian Ridge’s stacked en-
semble models, blend ensemble with Bayesian ridge, and blend ensem-
ble with XGB (0.610, 0.602, 0.602, 0.600, 0.593, 0.593, 0.592, 0.590, 
0.589, and 0.587 respectively). The 13 highest-performing models are 
all ensemble regressors, and XGB follows close behind with 0.582.

As seen from here, ensemble regressors lose their dominance start-
ing from the 14th highest-performing model. The click prediction rate 
of stack and blend ensemble models with tree-based level-1 regressors 
(XGB, LGBM, Randomforest and Catboost) are found to be insignificant 
compared to their stand-alone versions. When employed as a level-
1 regressor, the Catboost model performs better than both the stack 
and blend ensemble models (0.374, 0.426), especially in its stand-alone 
version (0.456). Comparing their stand-alone performances to their en-
semble counterparts, LGBM, XGB, and Randomforest all rank in the 

middle of their groups.
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Fig. 2. Ensemble model pipelines. The ensemble models are built by averaging and weighted averaging the results for the models chosen from the validation scores. 
The click predictions of the models are extracted with out-of-fold prediction and stacked to be able to feed the level-1 regressor as a training set. The stacked data 
set is then blended with the dimensionally reduced training set and used to train the blended meta-regressor.
Fig. 3. Time-sensitive train-test split scheme for each validation set.

4.2.1. Performance comparisons between ensemble and stand-alone models

Further, all selected models are divided into two groups (tree-based 
ensemble and non-tree-based models), and the adjusted 𝑅2 validation 
score distributions of each model are shown in Fig. 4. When utilized 
as level-1 regressors, it can be seen that all the non-tree-based models 
chosen perform better than their standalone equivalents. The ensem-
ble variation of any tree-based model, however, does not follow this 
pattern. Owing to this, the ensemble variations of the two groups—
tree-based and non-tree-based models—are statistically compared inde-
pendently.

To examine the ensemble performance of each model type (tree-
based, non-tree-based), one-way repeated measures ANOVA (RMA) 
within-subject is applied to separate the adjusted 𝑅2 values of each val-
idation set for each model into 3 groups, and RMA results are shown 
in Table 2. Within each model type, the sphericity test is used before 
RMA, but because the intragroup variance values are discovered to be 
different, Greenhouse-Geisser (GG) correction is employed on the signif-
icance values. As a result, there is no statistically significant difference 
between stack or blend ensemble models and stand-alone models of the 
tree-based model type (p = .119). The ensemble model groups and 
6

non-tree-based stand-alone models, however, differ from one another
Fig. 4. Adjusted 𝑅2 performance comparison among model type for each re-
gressor. White circles are defining the average of the multi-set validation scores. 
Black dots are representing the outliers.

(p < .001). In order to determine whether groups varied from one an-
other, post-hoc analysis with Bonferroni correction is performed on the 
adjusted 𝑅2 scores of the non-tree-based models. Table 3 demonstrates 
that, despite the fact that there is no statistically significant difference 
between the stack and blend ensemble models (p = 1), the stand-alone 
model performance is significantly worse than the results of the stack 
and blend ensemble models (stack ensemble vs. stand-alone: p < .001; 
blend ensemble vs. stand-alone: p < .001). Fig. 5 compares the regres-
sion score distributions of both tree-based and non-tree-based models 
for all validation sets in a paired group setting. It can be seen that 
tree-based models do not contribute to the model performance as a 
level-1 regressor. However, in the comparison model contexts, the av-

erage score of each model with a non-tree-based level-1 regressor is 
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Table 1

Average validation results for each regressor model.

Regressor type Model name 𝑅2 Adjusted 𝑅2 RMSEs MAE Training time [0-1]

Blend ensemble Huber 0.611 0.610 26.514 3.074 0.789
Weighted average Voting 0.609 0.608 26.619 3.082 0.454
Model average Voting 0.606 0.605 25.737 3.804 0.454
Blend ensemble Lasso 0.603 0.602 25.481 4.358 0.762
Stack ensemble Huber 0.603 0.602 26.916 3.103 0.771
Blend ensemble Ridge 0.601 0.600 26.138 4.082 0.771
Blend ensemble Elasticnet 0.594 0.593 25.748 4.436 0.766
Blend ensemble Linear regression 0.593 0.593 25.999 3.889 0.768
Stack ensemble Ridge 0.593 0.592 25.903 5.271 0.761
Stack ensemble Bayesian ridge 0.592 0.590 25.905 4.530 0.975
Blend ensemble Bayesian ridge 0.590 0.589 26.095 4.053 0.776
Stack ensemble Linear regression 0.590 0.589 25.931 4.624 0.777
Blend ensemble XGB 0.588 0.587 27.327 3.292 0.816
Stand-alone XGB 0.583 0.582 27.534 3.263 0.038
Stack ensemble Lasso 0.571 0.570 26.319 4.832 0.768
Stack ensemble Elasticnet 0.565 0.564 26.511 4.608 0.761
Blend ensemble Randomforest 0.555 0.554 27.508 3.368 1.000
Stand-alone Ridge 0.552 0.551 26.888 3.973 0.001
Stand-alone Bayesian ridge 0.539 0.538 27.165 3.966 0.001
Stand-alone Linear regression 0.539 0.537 27.170 3.967 0.001
Stack ensemble XGB 0.536 0.535 29.380 3.358 0.789
Stand-alone Randomforest 0.529 0.527 28.571 3.388 0.016
Stack ensemble Randomforest 0.509 0.508 29.736 3.491 0.776
Stand-alone Lasso 0.502 0.501 29.207 4.081 0.001
Stack ensemble Lasso Lars 0.484 0.483 30.091 4.975 0.771
Blend ensemble Lasso Lars 0.473 0.472 30.807 4.255 0.777
Stand-alone Catboost 0.457 0.456 31.356 3.567 0.089
Stand-alone Lassolars 0.440 0.439 31.408 4.229 0.001
Blend ensemble Catboost 0.426 0.424 31.940 3.588 0.873
Blend ensemble LGBM 0.420 0.418 31.636 3.748 0.779
Stand-alone LGBM 0.416 0.415 31.731 3.973 0.004
Stack ensemble LGBM 0.408 0.407 32.962 3.721 0.768
Stack ensemble Catboost 0.375 0.374 33.627 3.670 0.827
Stand-alone Huber 0.362 0.361 32.162 3.688 0.012
Stand-alone Elasticnet 0.266 0.264 36.659 5.989 0.001

Table 2

RMA within-subject adjusted 𝑅2 comparisons among ensemble and stand-alone models for level-1 tree-based and non-tree 
based regressors.

Model type SS df MS F GG corrected p-value

Tree-based models 0.020 1.343 0.015 2.482 p = .119
Non-tree based models 0.332 1.257 0.265 18.847 p < .001

Table 3

Post-hoc test for further model type comparisons among non-tree-based level-1 learners and non-tree-based stand-alone mod-
els. CI refers to confidence interval.

Group 1 Group 2 Mean dif. 95% CI for mean difference SE t 𝑃𝐵𝑜𝑛𝑓𝑒𝑟𝑟𝑜𝑛𝑖

Lower Upper

Stack ensemble Stand-alone 0.114 0.059 0.169 0.022 5.087 p < .001
Stack ensemble Blend ensemble -0.010 -0.065 0.045 0.022 -0.434 p = 1
Stand-alone Blend ensemble -0.124 -0.179 -0.069 0.022 -5.521 p < .001
superior to the standalone version. JASP graphical statistical software 
(Love et al., 2019a) is used for statistical testing.

4.2.2. Effect of HPO applied to level-1 regressor on ensemble model 
performance

The effect of HPO on the level-1 regressors (restricted to stack and 
blend models) is further examined. Accordingly, among all the models, 
the ones (XGB, LGBM, Catboost, Randomforest, Elastic net and Bayesian 
Ridge) where multiple hyperparameters can be tuned are chosen for 
comparison between Bayesian and Randomsearch HPO. The same num-
ber of iterations (n=80) is used for both HPOs. In addition, level-1 
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regressor performances without any HPO as a baseline factor are also 
extracted. For the validity of the comparison, the same stacked input 
layer is used for level-1 model training of all three groups.

As can be seen in Table 4, by applying one-way RMA within-subject 
comparison between Bayesian HPO, Randomsearch HPO and no HPO 
groups, it is observed that level-1 learners have a statistically significant 
effect on ensemble pipeline performance depending on HPO (sphericity 
is failed and GG corrected p = .003). In the lower part of the same ta-
ble, groups are subjected to post-hoc analysis applying post-hoc test and 
bonferroni-corrected significance values are extracted. Although there 
is an average increase of 0.041, there is no statistical difference between 
level-1 learners without HPO and level-1 models trained with Random-
search HPO (p = .354). However, Bayesian HPO performs significantly 

better than both level-1 learners without HPO and level-1 regressors 
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Fig. 5. Tree-based and non-tree-based grouped model performance comparison among model types. While all validation sets of each model are included in the 
distribution, no statistical difference is observed when the adjusted 𝑅2 of the tree-based validations are compared pairwise with the stand and blend ensemble 
models where the same models are used as level-1 learner (a). However, both stack and blend pipelines, where all non-tree-based stand-alone models are used 
as level-1 learners, achieve significantly higher average performance (b). However, no difference is found between the stack and blend ensemble pipelines for 
non-tree-based level-1 learners.

Table 4

RMA within-subject comparisons of adjusted 𝑅2 among HPO types of level-1 regressors in stack & blend ensemble 
models with additional post-hoc test.

RMA

SS df MS F GG corrected p-value

0.197 1.382 0.143 8.007 p = .003

Group 1 Group 2 Mean dif. 95% CI for mean difference SE t 𝑃𝐵𝑜𝑛𝑓𝑒𝑟𝑟𝑜𝑛𝑖

Lower Upper

No HPO Random search 0.041 -0.023 0.105 0.026 1.583 p = .354
Random search Bayesian optimization -0.065 -0.128 -0.001 0.026 -2.490 p = .045
No HPO Bayesian optimization -0.106 -0.169 -0.042 0.026 -4.073 p < .001
Fig. 6. Type of HPO effectiveness on stack & blend ensemble model perfor-
mances.

trained with Randomsearch HPO (Randomsearch vs. Bayesian HPO:
p = .045; No HPO vs. Bayesian HPO: p < .001). Visual representa-
tions of the performance distributions among HPO utilization on level-1 
learners are shown in Fig. 6. According to this, averaged 𝑅2 group distri-
butions for level 1 learners with No HPO, Random search, and Bayesian 
optimization HPO are presented from left to right, and the group means 
are 0.453, 0.494 and 0.559, respectively, showing an upward trend in 
8

performance.
4.2.3. Ensemble training time assessments for practicality aspects

The normalized training time of each model is also listed in Table 1
(all seconds of training times are divided by the maximum). As a result, 
all stand-alone models are trained substantially more quickly than en-
semble models overall. Before training the entire training set of data, 
the individual validation scores of each model are first computed. Only 
the chosen models are trained individually with the whole training set. 
The ensemble models are awaiting the necessary input data at this time 
frame. Average and weighted average ensemble models take relatively 
less to predict results than stack and blend ensemble models since they 
can reach the result directly based on the selected model predictions. 
In addition to the stacked prediction input for level-1 regressors, the 
original feature set and the input space grow in the blending process, 
so blend ensemble models generally take slightly longer to train than 
stack variants.

5. Discussions

In this work, various meta-regressor modifications that can enhance 
click prediction are formed, and comparative analyses are conducted 
to identify strategies for level-1 regressor success. Multiple statistical 
features are added to the extracted numerical features, substantially 
expanding the feature vector and requiring faster convergence during 
feature elimination. The complete feature set is then partitioned into 
five validation sets. Within each validation set, XGB feature ranking-
based recursive dimensionality reduction is applied to select optimal 

features in the large feature vector with ideal time frame.
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Sub-optimal models are selected via validation-based model rank-
ing, and click prediction values of selected models are extracted. In 
order to estimate the voting-based performances, the average and the 
weighted average are taken. Additionally, a stacked meta-regressor is 
built via out-of-fold prediction, which is then applied to the training of 
several level-1 regressors. In order to produce blended meta-regressors, 
the same stacked input data is additionally mixed with the original di-
mensionally reduced feature set and utilized as training data for level-1 
models.

All variations of model performances are subjected to comparisons. 
Accordingly, in the stack and blend ensemble models, the tree-based 
bagging and boosting regressors do not improve performance at level-1, 
however other models boost significantly compared to their stand-alone 
versions. However, it is also discovered that Bayesian HPO outperforms 
random search or non-optimized models in terms of level-1 regressor 
performance.

Overall, the findings indicate that level-1 performance is improved 
by the linear regression variants with L1 & L2 regularizers. It can be 
seen from the top-ranked blend ensemble with Lasso and Ridge mod-
els as regularized linear models contribute the most to the performance 
of meta-regressors. However there is no noticeable performance dif-
ference between the blend and stack ensemble models. The fact that 
the weighted average ensemble model and the slightly more primitive 
voting-based average model are among the top performers is notable.

While there may be different reasons why tree-based level-1 re-
gressors do not contribute to the ensemble models this could be 
speculated that they capture ensemble nuance with multiple decision 
trees within themselves, and the ineffectivity is understandable for the 
stacked ensemble model because the intermediate input set is quite low-
dimensional compared to the original feature vector for stacked meta-
regressors. Thus, it can be expected that they cannot form marginal 
decision tree combinations relative to each other due to the lack of a di-
verse vector pool. However, given that the original feature data is also 
used to train level-1 regressors in blended ensemble models, it would 
be expected to improve the performance of blended meta-regressors in 
particular.

In this case, a more unusual restructuring of ensemble models can 
be considered. The concept of meta-learners is designed to provide 
the final outcome, yet there are possibilities to convert them into in-
termediate learners by inducing additional HPO mechanisms or addi-
tional meta-feature elimination due to forming the additive judgement 
on blended predictions on an originally untouched feature dimension 
(Chen et al., 2022). Articulating meta-learners as mediators would be an 
inception-based regularizer for intercommunication between multiple 
meta-models as a single pipeline, which might recalibrate incoming fea-
ture space with new model parameters to interact with. This procedure 
will unquestionably prolong training time, but it might considerably 
boost the contribution of bagging or gradient boosting based level-1 re-
gressors on ensemble pipelines.

Considering the average training time, it could be seen that meta-
regressors are considerably more cost-inefficient than voting-based en-
semble models. Still, the model selection before stacking also extends 
this process. Model selection time can be reduced by training all models 
in parallel via training multiple models asynchronously via multi-core 
training pipelines, but while each selected model is stacked separately 
according to the out-of-fold prediction principle, it still consumes time 
due to a cross-validation-like fold predictions. If a real-time estimation 
is not required, practically there is no disadvantage of ensemble meth-
ods in estimating the clicks of the next day(s).

6. Conclusion

In summary, ensemble model variations are built from chosen re-
gressors, and by comparing these meta-regressor and stand-alone mod-
els pairwise, the importance of ensemble approaches to click prediction 
9

is highlighted. Although it is noted that level-1 regressors based on tree-
Intelligent Systems with Applications 17 (2023) 200185

based ensemble models do not contribute to the techniques, it is found 
that level-1 models based on regularized linear regression variations are 
boosting factors on both stack and blend ensemble meta-regressions. 
However, using the same hyperparameters as the level-1 regressor, 
models with the Bayesian HPO on the initial feature set improved the 
performance of the ensemble model. Future studies will concentrate on 
the performance enhancement of the blended meta-regressor architec-
ture and multi-level feature blending will be initiated with local feature 
elimination and HPO on each layer, and the effectiveness of gradient 
boosting trees on mid-level layers will be reassessed.
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