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N E T W O R K  S C I E N C E

Network structural origin of instabilities in large 
complex systems
Chao Duan1,2†, Takashi Nishikawa2,3*†, Deniz Eroglu2,4, Adilson E. Motter2,3

A central issue in the study of large complex network systems, such as power grids, financial networks, and eco-
logical systems, is to understand their response to dynamical perturbations. Recent studies recognize that many 
real networks show nonnormality and that nonnormality can give rise to reactivity—the capacity of a linearly 
stable system to amplify its response to perturbations, oftentimes exciting nonlinear instabilities. Here, we iden-
tify network structural properties underlying the pervasiveness of nonnormality and reactivity in real directed 
networks, which we establish using the most extensive dataset of such networks studied in this context to date. 
The identified properties are imbalances between incoming and outgoing network links and paths at each node. 
On the basis of this characterization, we develop a theory that quantitatively predicts nonnormality and reactivity 
and explains the observed pervasiveness. We suggest that these results can be used to design, upgrade, control, 
and manage networks to avoid or promote network instabilities.

INTRODUCTION
The dynamical stability of large complex network systems is an intrigu-
ing problem. The basic question of what properties of such systems 
govern their stability has attracted much interest, which was initially 
sparked by a 1972 article by Robert May predicting that sufficiently 
large systems should be linearly unstable despite the observed stability 
of large real ecological systems (1). While the literature on this problem 
and discrepancies between theory and observation has focused mostly 
on May’s original context [ecological networks (2–7), including micro-
biome communities (8–10)], the problem is relevant for large network 
systems in general, including financial networks (11, 12), power networks 
(13), and immune system networks (13). The problem acquires a new 
dimension when the Jacobian matrix M determining the linear stability 
is nonnormal (14) (i.e., MMT ≠ MTM, where MT denotes the transpose 
of M). This is because a small perturbation in such a system can cause 
the resulting state deviation to initially grow and become large enough 
to excite nonlinear instabilities, even when the system is linearly stable 
(14–17). The system’s capacity to exhibit initial growth of deviations in 
the linear regime is termed reactivity (15), which is known to relate to a 
spectral property of the matrix M. Although the initial interest in non-
normality and reactivity emerged in hydrodynamics (18–20), these 
properties have recently gained attention in the study of network sys-
tems, including ecological (5, 21), neuronal (22, 23), chemical reaction 
(17), and communication networks (24), as well as in the study of pat-
tern formation in networks (25, 26) and control of networks (27). The 
literature has begun to reveal how prevalent nonnormality and reactiv-
ity are in real-world networks (16), but the fundamental question of 
which network structural mechanisms underlie the apparent preva-
lence of nonnormality and reactivity has not yet been addressed.

Here, we address this question by deriving rigorous conditions 
for nonnormality and reactivity that can be applied to any directed 

network [rather than to the average over an ensemble of networks (5)] 
and interpreted in terms of the structure of the given network. For 
nonnormality, the condition is that there is an imbalance between in-
coming and outgoing links at a node or a pair of nodes in terms of 
their numbers and/or weights. For reactivity, the condition is that there 
is an imbalance between the eigenvector centrality of a node associated 
with incoming network paths (including their weights) and the eigen-
vector centrality associated with outgoing paths. We use these con-
ditions to show that, in a broad class of directed networks, the 
probability that the coupling matrices are both nonnormal and reac-
tive approaches 1 quickly as the network size increases. We prove our 
results for large networks using a general network model that permits 
arbitrary distributions of possibly correlated in- and out-degrees (the 
number of incoming and outgoing links at a node, respectively) and 
arbitrary distributions of link weights. We also validate the prevalence 
of nonnormality and reactivity using a dataset of 251 real networks. 
This set is the largest and most diverse collection of directed networks, 
which also includes the largest networks (with up to nearly 8 million 
nodes), ever considered in this context.

These findings indicate that no additional global organization of con-
nectivity is necessary to generically observe nonnormality and reactivity. 
This is important given that large-scale structures can have dynamical 
consequences, such as the stability promoted by trophic coherence in 
food-web networks (28) and the nonmonotonicity supported by linear 
chain structures in chemical reaction networks (17). In addition to estab-
lishing the prevalence of nonnormality and reactivity, we develop a quan-
titative theory that directly relates the extent of the degree and centrality 
imbalances in a given network to the extent of nonnormality and reactiv-
ity, respectively. Thus, our results reveal the network structural features 
responsible for nonnormality and reactivity, contributing to the much 
needed fundamental understanding of the relationship between dy-
namical and structural properties of directed networks (29–39).

RESULTS
Nonnormality and reactivity of network systems
Given that many real network systems operate near an equilibrium, 
we consider the class of (nonlinear) systems whose linearization 
around a given reference equilibrium state is described by
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    x  i   ˙   = −    i    x  i   +   ∑ 
j=1

  
n
     A  ij    x  j    (1)

for i = 1, … , n, where xi is the (scalar) deviation from the reference 
state for the ith node. The matrix A = (Aij) can be regarded as the 
weighted adjacency matrix of the system’s directed interaction net-
work: Aij ≠ 0 if node j is connected to node i, and Aij = 0 otherwise. 
The parameter i and the diagonal element Aii represent the node 
dynamics and any self-link at node i, respectively. We assume that 
the time scales of the dynamics in Eq. 1 are much shorter than those 
of the evolution of the interaction network structure, so that Aij can 
be regarded as constant. For concreteness, we also assume i =  for 
all i in the following unless otherwise indicated. We note, however, 
that our results on random networks are valid for heterogeneous i 
and that the presence of the heterogeneity is generally expected to 
increase both the nonnormality and the reactivity of the Jacobian 
matrix of the system (see Materials and Methods for details). For i = 
, the Jacobian matrix M and the adjacency matrix A are related as 
M = A − In, with In denoting the n × n identity matrix. Thus, the 
reference state is asymptotically stable if and only if Re 1(M) < 0, or 
Re 1(A) < , where 1(X) denotes the eigenvalue with the largest 
real part for any matrix X. Assuming Aij ≥ 0 for i ≠ j, as observed in 
many real networks, 1(A) is guaranteed to be real by the Perron- 
Frobenius theorem for nonnegative matrices (40), regardless of whether 
the network is strongly connected (i.e., any two nodes are connected 
by directed paths in both directions). While we have implicitly as-
sumed one-dimensional node dynamics in Eq. 1 for clarity, we also 
establish an exact relation between the Jacobian and adjacency ma-
trices for a broader class of systems. In particular, this relation 
shows how the nonnormality and reactivity of the adjacency matrix 
generically imply the same properties for the Jacobian matrix (see 
Supplementary Materials, section S1, for details).

We first show how the nonnormality and reactivity of the system 
in Eq. 1 can be expressed as properties of the network structure de-
scribed by A under the uniform i assumption. Noting that matrix D ≔ 
MMT − MTM represents the deviation of the Jacobian matrix M from 
being normal, the nonnormality of the system can be quantified by 
the Frobenius norm  ∥ D  ∥  F   ≔  √ 

_____________
  ∑ i      ∑ j      ∣ D  ij  ∣   2     (41). Since D = MMT − 

MTM = AAT − ATA (and hence does not depend on ), the nonnormal-
ity of M is reduced to the nonnormality of A. To characterize the 
reactivity of the system in Eq. 1 mathematically, we consider the 
maximum exponential rate of initial growth of the state deviation 
vector that can result from a perturbation of the initial state. This 
rate is given by 1((M + MT)/2) = 1(H) − , where H ≔ (A + AT)/2 
is the symmetric part of A. Thus, the state deviation can grow if 
1(H) > . Combining this with the stability requirement 1(A) < , 
we define reactivity as a property of the interaction network struc-
ture A (including its dependence on the reference state): A is said to 
be reactive if there are  values for which 1(H) >  > 1(A). That is, 
A is reactive if, within the linear regime, the system can be both 
stable and capable of exhibiting initial growth of state deviations. 
Such growth can push the system state out of the region in which 
the linearization in Eq. 1 is valid, potentially inducing nonlinear in-
stabilities. The reactivity condition can be expressed as

       (A ) ≔    1  (H ) −    1  (A ) > 0  (2)

and thus we use (A) as a measure of the reactivity of the interac-
tion network structure A [this definition can be extended to allow 

for negative weights by replacing 1(A) with Re 1(A)]. This mea-
sure is independent of , in contrast to the reactivity for a specific , 
which could be defined as 1(H) −  following previous studies 
(14, 15, 19, 20). In the general case of heterogeneous i, both non-
normality and reactivity can be defined in the same way after ab-
sorbing the heterogeneity into the diagonal elements of the matrix 
A (see Materials and Methods for details).

We note that (A) ≥ 0 always holds (see Eq. 7 in Materials and 
Methods) and (A) > 0 implies that the initial growth rate of state vector 
deviation    d∥x∥ _ dt   ∣    t=0   / ∥ x  0  ∥  in Eq. 1 for  = 0 can be strictly larger than 
1(A) when the initial state vector x0 is chosen to be the eigenvector 
corresponding to 1(H), where we use ∥·∥ to denote the 2-norm and 
x := (x1,…,xn)T to denote the state vector. This is the case because 
    d∥x∥ _ dt   ∣    t=0   / ∥ x  0  ∥ =  x 0  T  H  x  0   /  (    x 0  T   x  0   )   =    1  (H ) >    1  (A)  . We also note 
that (A) is invariant under any coordinate transformation if we 
concurrently apply the transformation to the observable for the sys-
tem in Eq. 1, since (A) is based on the value of the observable 
rather than its coordinate-specific representation. For the reactivity 
measure defined in Eq. 2, the observable is the 2-norm of the sys-
tem state vector. This choice is standard in the literature [see, e.g., 
(5, 14–16, 19, 21, 25, 26)], as it permits a convenient characteriza-
tion through eigenvalues, but for certain network processes, differ-
ent measures of deviations may be more natural and would lead to 
different definitions of reactivity [see, e.g., the 1-norm used in (42–44) 
and the absolute value of a one- dimensional projection used in (17)].

We used the conditions and measures just defined to study non-
normality and reactivity in a large dataset of 251 real directed net-
works, which consists of 63 biological, 51 informational, 79 social, 
39 technological, and 19 economic/game networks and avoids rep-
etition of similar networks. The dataset used here substantially 
expands on an earlier study (16) with respect to the number of 
networks, the largest network size, and the diversity of network 
types. We verified that A is nonnormal (i.e., ∥D∥F > 0) for all 251 
networks and is reactive [i.e., (A) > 0] for all but one network (see 
Materials and Methods for details on the network data and our 
findings). Quantitatively, Fig. 1A reveals a strong positive correla-
tion between the level of nonnormality ∥D∥F and the overall level of 
imbalance between the nodes’ in- and out-degrees, measured by the 
average  〈  ( d   in  −  d   out )   

2
  〉 ≔  ∑ i       (    d i  

in  −  d i  
out  )     

2
  / n , where   d i  

in   and   d i  
out   are 

the in- and out-degrees of node i, respectively (i.e., the numbers of 
incoming and outgoing links from/to other nodes). Similarly, 
Fig.  1B shows a monotonic relation between the reactivity (A) 
and a measure of imbalance, in this case between the eigenvector 
centrality associated with the incoming and outgoing paths, quanti-
fied by the angle 1 between the left and right eigenvectors corre-
sponding to 1(A) (to be precisely defined below). Both relations are 
observed for each type of networks (fig. S1) and will be theoretically 
derived and computationally validated in a later section.

Imbalance conditions for nonnormality and reactivity
To understand the mechanisms underlying the correlations ob-
served above, we first examine the network structural features that 
are responsible for the nonnormality and reactivity of A. The mea-
sure of nonnormality introduced above can be expressed as

  ∥ D  ∥ F  2   =   ∑ 
i=1

  
n
      (     i  

in  −   i  
out  )     

2
  + 2  ∑ ∑  

i<j
      (    d ij  in  −  d ij  out  )     

2
   (3)

where    i  
in  ≔  ∑ k≠i      A ik  2   ,    i  

out  ≔  ∑ k≠i      A ki  
2   ,   d ij  in  ≔  ∑ k      A  ik    A  jk   , and   

d ij  out  ≔  ∑ k      A  ki    A  kj   . The variables    i  
in   and    i  

out   can be regarded as 
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generalized in- and out-degrees, respectively, since they reduce to 
  d i  

in   and   d i  
out   for unweighted networks (i.e., if Aij ∈ {0,1}). For distinct 

nodes i and j, the variable   d ij  in   (  d ij  out  ) can be interpreted as a further 
generalization of the in-degree (out-degree) to a pair of nodes, and 
it reduces to the number of common in-neighbors (out-neighbors) 
shared by the two nodes in the case of unweighted networks. 
Equation 3, despite being immediate from the definition of D and 
its Frobenius norm, provides an insightful decomposition of non-
normality into two types of imbalances between incoming and out-
going links: The first term is the square sum of the generalized 
in- and out-degree differences at individual nodes, while the second 
is an analogous square sum for node pairs. From Eq. 3, we see that 
A is normal if and only if the generalized in- and out-degrees are 
equal for each node and for each pair of nodes (see Fig. 2A for an 
illustrative example). It is thus sufficient to have just a single node 
whose in- and out-degrees differ in order to make A nonnormal. 
However, even without such a node, A can still be nonnormal if there 
is a node pair with an imbalance between their common weighted 
in-neighbors and the common weighted out-neighbors (making the 
second sum nonzero in Eq. 3), as illustrated in Fig. 2B. Furthermore, 
Eq. 3 shows that a larger total imbalance between incoming and 
outgoing links implies a more nonnormal A.

For reactivity, a stronger condition is needed, since nonnormal 
A does not have to be reactive, as illustrated by the network in 
Fig.  2B. In particular, for a d-regular network, defined as an un-
weighted network in which the in- and out-degrees are all equal to 
a constant integer d ≥ 0, the adjacency matrix A can be nonnormal 
but can never be reactive. To see this, we first note that 1(A) is 
bounded between the minimum and maximum row sum of A be-
cause this eigenvalue is the spectral radius of A [see, e.g., theorem 
8.1.22  in (40)] and thus is equal to d for any d-regular network. 
Since the same argument applies to the symmetric part of A, we 

have 1(H) = d, implying that (A) = d − d = 0, i.e., A is non-
reactive. Nonetheless, for many d-regular networks, the second 
term in Eq. 3 is strictly positive, rendering A nonnormal.

Given that nonnormality is only a necessary condition for reactiv-
ity, we now present a condition guaranteeing reactivity: A is reactive 
if the left and right eigenspaces associated with its largest eigenvalue 
1(A) are distinct (see Materials and Methods for a proof). In the ge-
neric case in which these eigenspaces are one dimensional, the reactiv-
ity condition is equivalent to having a strictly positive angle 1 between 
the right eigenvector v1 and left eigenvector u1. We always choose the 
acute angle so that 1 ≤ /2, where the quantity 1/∣cos 1∣ is known 
as the eigenvalue condition number in the literature (14). This condi-
tion is illustrated by the example network in Fig. 2C. While the non-
orthogonality of right eigenvectors defining nonnormality has been 
shown to often lead to reactivity [e.g., in (45, 46)], our condition 1 > 0 
captures reactivity more precisely, as it is equivalent to the specific 
nonorthogonality between the right eigenvector v1 and some other 
right eigenvector. The condition 1 > 0 also translates to the existence 
of at least one node i for which v1i ≠ u1i, where v1i is the eigenvector 
in-centrality, defined to be the ith component of the right eigenvector 
v1 (and hence associated with incoming paths to the node), and u1i is 
the eigenvector out-centrality, defined similarly through the left 
eigenvector u1 (and the outgoing paths). The inequality v1i ≠ u1i can 
thus be interpreted as an imbalance between the incoming and out-
going “flow” of centrality. In the example of d-regular networks above, 
if 1(A) is nondegenerate (so that v1 and u1 are unique and 1 is well 
defined), we find that v1i = u1i for all i and thus 1 = 0, as expected 
from the result above that A is nonreactive for all d-regular net-
works. In general, the imbalances    i  

in  −   i  
out   and v1i − u1i for individ-

ual nodes and   d ij  in  −  d ij  out   for pairs of nodes can be either positive or 
negative and tend to be distributed heterogeneously across a given 
network, as illustrated by the three example real networks in fig. S2.

Fig. 1. Nonnormality and reactivity of real networks. (A) Nonnormality versus the in- and out-degree imbalance quantified by the average 〈(din − dout)2〉 of the 
squared difference between   d i  

in   and   d i  
out   over all nodes i for the 251 real networks considered (see Materials and Methods for details on the data). The measure of non-

normality ∥D∥F is normalized by   √ 
_

 n   〈  w   2  〉  based on the scaling predicted by our theory for random networks, where  〈 w   2  〉 ≔  ∑ 
i
      ∑ j      A ij  2  / (n d ̄  )  is the mean squared weight over 

all links in the network and   d ̄    is the average degree; see Eq. 22. The size and color of a circle indicate the network size and link density, respectively. (B) Reactivity versus 
the in- and out-centrality imbalance quantified by the angle 1 (in radian) between the left and right eigenvectors associated with the largest eigenvalue of A. The 
measure of reactivity (A) is normalized by 1(A) based on our theory in Eq. 5. The plot shows only the 212 nondegenerate reactive networks [i.e., those having non-
degenerate 1(A) and satisfying (A) > 0; see Materials and Methods for details]. We observe appreciable levels of nonnormality and reactivity in a vast majority of the 
networks:  ∥ D  ∥  F   / ( √ 

_
 n   〈  w   2  〉 )  > 1  for 248 networks (≈99%) and (A)/1(A) > 0.01 for 188 nondegenerate networks (≈88%). IL, Illinois.
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While we focus mainly on the adjacency matrix A, different inter-
action matrices can also be considered in Eq. 1. This includes the 
Laplacian matrix, which we show can be nonnormal even if A is not 
and vice versa (a fact that has been generally overlooked; see fig. S3 
for illustrative examples).

Prevalence of nonnormality and reactivity
We now address the question of how often nonnormality and reactiv-
ity are expected to be observed by considering a model of random di-
rected weighted networks with a given number of nodes n, a given 
joint probability distribution for the in- and out-degrees, and a given 
distribution of link weights. By allowing for arbitrary distributions for 
the in- and out-degrees, an arbitrary correlation between them, and an 
arbitrary distribution of weights, the model is capable of capturing the 
essential elements of real networks involved in the conditions estab-
lished above for nonnormality and reactivity. This model is a general-
ization of the Chung-Lu-Vu model studied in (47) and allows us to 
specify a general joint distribution of in- and out-degrees (rather than 
the expected node degrees) and a general weight distribution. A net-
work realization under this model is generated as follows. First, the 
(possibly non-integer) expected in- and out-degrees of each node 
are randomly drawn from the given joint distribution. Then, for each 
i and j, a directed link is created from node j to node i with a proba-
bility proportional to the product of the expected in-degree of node 
i and the expected out-degree of node j. Last, a random weight Aij is 
drawn from the given distribution for each link j → i. We note that 
a special case of this model produces unweighted networks, and 
self-links can be excluded if desired. For further details on this gen-
eralized Chung-Lu-Vu (GCLV) model, see Materials and Methods.

For weighted networks generated by the GCLV model, we show 
that the adjacency matrix A is almost always nonnormal in the lim-
it of large network size n (see Supplementary Materials, section S2, 
for a proof for unweighted networks and its extensions to weighted 
and Laplacian-coupled networks). More precisely, we show that the 
probability of having at least one node whose generalized in-degree 
and out-degree are different (implying nonnormality of A, as dis-
cussed above) tends to one as n → ∞. In practice, the probability 

that A is nonnormal grows quickly and is very close to one even for 
networks with less than 10 nodes, as shown numerically for both 
weighted and unweighted networks in fig. S4A and table S1 for two 
classes of in-/out-degree distributions: (i) the gamma distribution, 
whose probability density function is p(x) ∼ xa−1e−bx, x > 0, where a 
and b are parameters, and (ii) the Dirac delta distribution centered at 
d, which renders the model equivalent to the Erdős-Réyi (ER) networks 
with fixed mean degree d (and thus with n-dependent connection 
probability p = d/n). The same appears to hold true for other ran-
dom network models, as verified in fig. S4A for the unweighted ER 
networks with fixed p and random d-regular networks and also ver-
ified in table S1 for the weighted versions of these random networks.

Nonnormality does not necessarily imply reactivity. For large 
networks, however, we can show that, if A is nonnormal, then it is 
also reactive in almost all cases. This is because the conditional 
probability ℙ(A is reactive ∣ A is nonnormal) ≥ ℙ(A is reactive), as 
reactivity implies nonnormality, and because we show that ℙ(A is 
reactive) approaches one as n → ∞ for the GCLV model (see Sup-
plementary Materials, section S2, for a proof, including the case of 
Laplacian-coupled networks). More precisely, we prove that the 
probability of having distinct left and right eigenspaces associated 
with 1(A) (sufficient for reactivity, as noted earlier) converges to 
one. When estimated numerically for finite n, the actual probability 
that A is reactive and the conditional probability that A is reactive 
given that it is nonnormal are again very close to one even for small 
n, as shown in fig. S4 (B and C), respectively (which also shows sim-
ilar results for two other random network models). All these results 
support the observation from Fig. 1 that the reactivity of A is preva-
lent among real networks.

Quantitative characterization of nonnormality and reactivity
To understand the correlations observed for the real networks in 
Fig.  1, we now derive theoretical estimates of the nonnormality 
∥D∥F and the reactivity (A) for random networks. For the non-
normality, we first consider networks generated by the unweighted 
GCLV model with no self-links (i.e., Aij ∈ {0,1} and Aii = 0 for all i 
and j) given a fixed set of in-degrees   d i  

in   and out-degrees   d i  
out   for all 

Fig. 2. Topological and spectral features inducing nonnormality and reactivity. The four-node unweighted example networks shown illustrate all three possible 
cases (the normal-reactive case is not possible). The eigenvector in-centrality v1i and the eigenvector out-centrality u1i, normalized so that ∥v1∥ = ∥u1∥ = 1, are indicated 
near each node i as (v1i, u1i). Note that we have    i  

in  =  d i  
in   and    i  

out  =  d i  
out   as the networks are unweighted. (A) Network for which A is normal (and thus nonreactive) be-

cause the in- and out-degrees match (  d i  
in  =  d i  

out  = 2 ) for all nodes i and the number of shared in- and out-neighbors match (  d ij  in  =  d ij  out  = 1 ) for all pairs of nodes i and 
j ≠ i, as illustrated for i = 1, j = 4 (blue, shared in-neighbor; red, shared out-neighbor). (B) Network for which A is nonnormal because the second sum in Eq. 3 is nonzero 
due to   d ij  in  ≠  d ij  out   for some i ≠ j, e.g.,   d 14  in   = 1 ≠  d 14  out  = 0 . However, A is nonreactive because the in- and out-centralities are balanced at each node, i.e., v1i = u1i for all i. 
(C) Network for which A is nonnormal and reactive. Nonnormality in this case is guaranteed not only by   d ij  in  ≠  d ij  out   for some i ≠ j (e.g., for i = 1, j = 4) but also by   d i  

in  ≠  d i  
out   

for some i (blue node,   d i  
in  >  d i  

out  ; red node,   d i  
in  <  d i  

out  ). Reactivity is guaranteed by v1i ≠ u1i for all nodes (blue numbers, v1i > u1i; red numbers, v1i < u1i).
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nodes. In this case, the first sum in Eq. 3 is fixed and proportional to 
the (constant) average single-node degree imbalance 〈(din − dout)2〉, 
while the second sum representing the imbalances at the node pair 
level is a random variable. Assuming n ≫ 1 and approximating the 
second sum with its expected value (see Materials and Methods for 
details), we have

  
∥D  ∥ F  2   ≈ n〈  ( d   in  −  d   out )   

2
  〉 + n [ 〈  ( d   in  −  d   out )   

2
  〉 + 2〈  d   in   d   out  〉 − 2  

_
 d   ]

     
= 2n [ 〈  ( d   in  −  d   out )   

2
  〉 + 〈  d   in   d   out  〉 −   

_
 d   ]

   

(4)

where 〈z〉 ≔ ∑izi/n denotes the average of zi over nodes i and    
_

 d   ≔ 
〈  d   in  〉 = 〈  d   out  〉  is the average degree. Thus, in the limit of large net-
works, nonnormality increases with the network size n as ∥D∥F ∼ 
n1/2, with an n-independent prefactor expressed as a simple func-
tion of the in- and out-degree imbalance 〈(din − dout)2〉, the in- and 
out-degree correlation 〈dindout〉, and the average degree    

_
 d   . We also 

derive extensions of this formula to the weighted GCLV model (al-
lowing self-links) and to Laplacian-coupled networks (see Materials 
and Methods), which have additional terms and factors involving 
the diagonal elements Aii and the statistics of link weights (see 
Eqs. 22, 32, and 36). For the reactivity (A), we make use of the 
observation that the spectral gap between the leading eigenvalue 
1(A) and the remaining eigenvalues 2(A), …, n(A) is often large 
for the adjacency matrix A of large random networks [which is the 
case, e.g., for the ER networks (48) and for the GCLV model when 
the mean degree is large (49)]. For such networks, we expect 1(H) 
to be well-approximated by 1(H1), where    H  1   ≔ ( A  1   +  A 1  T  )   / 2   is the 
symmetric part of the leading component   A  1   ≔    1  (A )  v  1    u 1  T   and u1 
and v1 are respectively the left and right (column) eigenvectors asso-
ciated with the leading eigenvalue 1(A), normalized so that ∥v1∥ = 1 
and   u 1  T   v  1   = 1 . Among the 212 real networks in Fig. 1B [which have 

nondegenerate 1(A), ensuring that H1 is well defined], we indeed 
observe 1(H) ≈ 1(H1) for most, as shown in fig. S5A. For any 
(possibly weighted) network satisfying 1(H) ≈ 1(H1) and having 
nondegenerate 1(A) (even when it is not strongly connected), we 
derive a simple expression:

       (A ) ≈   1 − cos    1   ─ 2cos    1     ⋅    1  (A)  (5)

with a prefactor that depends monotonically on the angle 1 between 
the leading left and right eigenvectors u1 and v1 (see Materials and 
Methods for a derivation).

We find that Eqs. 4 and 5 provide good approximations, as vali-
dated in Fig. 3 for several classes of random networks generated by the 
GCLV model (green, orange, and red dots) as well as for the real net-
works used in Fig. 1 (blue dots). In addition, they capture the general ten-
dency observed in Fig. 1 for nonnormality and reactivity to increase 
with the degree imbalance and the eigenvector angle in real networks.

Our results show that A is more nonnormal and reactive when 
the network is weighted. In particular, Eqs. 3 and 22 indicate that 
allowing for weights in random networks can only increase the 
probability of observing imbalances that induce nonnormality (i.e., 
the probability that ∥D∥F ≠ 0) and that a larger variance for the 
weights leads to a larger extent of nonnormality. Likewise, the ei-
genvector condition and Eq. 5 indicate that the presence of weights, 
whose randomness would be reflected in the eigenvectors, is expected 
to increase in-/out-centrality imbalances, leading to a higher prob-
ability that A is reactive and to a larger extent of reactivity.

The tendency for A to be dominated by the leading eigenvalue 
1(A) and the corresponding eigen-component A1 also explains why 
large directed networks are almost always both nonnormal and re-
active. To see this, we first note that A1 satisfies the following exact 
relation linking its nonnormality and reactivity to each other and to 
the eigenvector angle:

Fig. 3. Validating theoretical predictions for nonnormality and reactivity. (A) Computed nonnormality versus the corresponding prediction from Eq. 4 for the real 
networks in Fig. 1A (blue). Plots are also shown for random networks generated by the GCLV model: unweighted networks with the gamma or power-law distribution for 
the in- and out-degrees (green) and weighted networks with gamma-distributed degree distributions and exponentially distributed weights (orange; mean  = 0.7, 1.0, 
or 1.3) or Gaussian-distributed weights (red; mean one and standard deviation (SD)  = 0.1 or 0.2), keeping only positive weights. For each class of networks, we used 20 
equally spaced values of n between 103 and 105 on the logarithmic scale. For each n, we show 20 realizations of the model, with the parameters of the distribution drawn 
randomly for each network realization (see Materials and Methods for details). The continuous lines correspond to Eq. 22. The plots for the random networks and the 
corresponding lines are shifted vertically to avoid overlapping. (B) Reactivity versus the eigenvector angle 1. The continuous curves correspond to Eq. 5. The plot shows 
the same random networks as in (A) and the real networks in Fig. 1B, to which Eq. 5 is applicable.
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    1  2  +  √ 
__________

    1  4  + 2 ∥  D  1    ∥ F  2     = 2  (   1   + 2      ( A  1   ) )   2  =   
2   1  2 

 ─ 
 cos   2     1  

    (6)

where we denote 1 = 1(A1) = 1(A) for brevity. Here, we note that 
A1 and A have the same eigenvector angle 1 associated with 1, and 
we introduce   D  1   ≔  A  1    A 1  T  −  A 1  T   A  1    to quantify the nonnormality of 
A1. From Eq. 6, it immediately follows that, for the leading compo-
nent A1, nonnormality (∥D1∥F > 0), reactivity [(A1) > 0], and 
having a strictly positive eigenvector angle (1 > 0) are all mathe-
matically equivalent to each other. Moreover, Eq. 6 shows that an 
increase in any one of these three measures implies an increase in all 
the other measures. Building on these observations, we find that 
random networks whose A is dominated by A1 generally satisfy Eq. 6 
approximately with ∥D1∥F and (A1) replaced by ∥D∥F and (A), 
respectively, which implies that nonnormality and reactivity are 
approximately equivalent for such networks. This finite-n approx-
imate equivalence complements the rigorous results we established 
above in the limit of large network size. For the real networks in 
Fig. 3B,   Eq. 6 approximately holds true when ∥D1∥F and (A1) 
are replaced by ∥D∥F and (A), respectively (fig. S5, B to D).

For networks satisfying Eqs. 4 and 6 approximately, we see that, if 
1 = 1(A) is bounded as n increases, nonnormality and reactivity 
would scale with n as ∥D∥F ∼ n1/2 and (A) ∼ n1/4, respectively. For 
the real networks, (A) tends to increase with n (even when normal-
ized by 〈w2〉, the root mean square of the link weights), which is a trend 
observed even more strongly when the networks are randomized while 
holding the in- and out-degrees fixed (Fig. 4A). For random networks 
with a power-law degree distribution p(x) ∼ x− and Gaussian- 
distributed link weights, the reactivity (A) scales with n with an 
exponent that depends on the power-law parameter  (Fig. 4B). The 
increase of (A) with n indicates that, as the system becomes larger, 
there will be a wider range of  for which the system can simultane-
ously exhibit a more pronounced transient response to a small pertur-
bation and stronger linear stability. Specifically, Fig. 4C establishes 
that, if the node stability parameter  in Eq. 1 has an n- dependence 
(n) ∼ nℓ with a constant ℓ, then there is a region in the  versus ℓ pa-
rameter space (shaded red) for which the maximum initial growth rate 
of perturbations given by 1(H) − (n) increases with n even though 
the first-order dynamics become more stable [i.e., 1(A) − (n) decreases]. 

Fig. 4. Increase of reactivity with network size. (A) Reactivity versus network size n for the real networks in Fig. 3B (blue circles). We normalize (A) by   √ 
_

 〈  w   2  〉    to facilitate 
comparison between networks with different scales for link weights. The black line indicates the least-squares fit (on the logarithmic scale), reflecting an increasing trend 
for the reactivity. Red dots indicate randomized versions of the real networks (see Materials and Methods for details), which more closely follow the trend line. (B) Scaling 
of (A) with n for the GCLV model with the same discrete power-law degree distribution p(x) ∼ x− used in Fig. 3, but for a given value of  and uncorrelated     ~ d   i  

in   and     ~ d   i  
out

  , with 
link weights drawn from the positive domain of the Gaussian distribution with mean one and SD 0.1. For each , the plot shows the average over 200 network realizations. 
We observe that the scaling exponent for (A) depends on the parameter  of the degree distribution. (C) Reactivity−stability phase diagram for the system in Eq. 1 with 
an n-dependent parameter  = (n) ∼ nℓ, where ℓ is a constant, and for the same power-law distribution with parameter  as in (B). Shaded in red is the region in which 
the maximum growth rate of state deviations 1(H) − (n) increases with n despite the concurrent increase of linear stability [i.e., decrease of 1(A) − (n)]. See Materials 
and Methods for details on the procedure to identify the boundaries of this region.
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Below this region the growth rate increases while linear stability de-
creases with n, which is doubly destabilizing, and above this region the 
opposite is observed.

DISCUSSION
Our demonstration that nonnormality and reactivity are stronger 
and more prevalent for larger networks implies that conventional 
modal stability analysis alone is not sufficiently informative: The 
system can be less stable against perturbations than the modal 
analysis indicates, and this gap can grow with the system size. 
Even if such a system is linearly stable and the perturbation is well 
within the linear regime, the transient response may bring the sys-
tem sufficiently far from the equilibrium that nonlinear instabili-
ties can be induced, possibly in the form of a cascade (50). Our 
findings thus suggest that, following a perturbation, there is a pa-
rameter region for which larger networks can exhibit larger oscil-
lations in the linearized system and thus the possibility of a rare 
but substantial instability in the nonlinear system. Does such an 
instability cause a permanent transition to a different state? If so, 
to which state does the system transition? The answers to these 
questions depend on the size and direction of the perturbation, 
the extent of reactivity in the system, and the global structure of 
the state space. The latter, in particular, requires specific knowl-
edge of the nonlinearity of the system under consideration.

Given our validation with extensive network data and general 
mathematical analysis, these conclusions are applicable to a wide 
range of real network systems and are thus not limited to the net-
works previously considered in addressing the complexity–stability 
problem. In particular, knowing that nonnormality and reactivity 
can be caused by the imbalance of incoming/outgoing connections 
or of the node’s in-/out-centrality will likely be useful in designing 
large complex technological (and possibly synthetic biological) sys-
tems. Importantly, our results show that nonuniform link weights 
and self-links, which are aspects of complexity often neglected in the 
systematic study of networks, tend to increase nonnormality. While 
here we focused on reactivity as a widely used measure of transient 
response, we anticipate similar results for other measures, such 
as pseudospectra (14), singular values (19), and the perturbation- 
averaged evolution of the state vector (51). We also suggest that the 
structural characterization of nonnormality and reactivity can be 
relevant for the study of generalized networks of current interest, 
such as those accounting for temporal, multilayer, and higher-order 
(nonpairwise) interactions. Ultimately, the demonstration that non-
normality and reactivity tend to be more prevalent and more conse-
quential for stability as the system grows in size opens up new vistas 
of network dynamics in complex systems.

MATERIALS AND METHODS
Impact of i heterogeneity on nonnormality and reactivity
Any heterogeneity in i can be subtracted from the first term and 
absorbed into the second in Eq. 1 by replacing i and Aii with   =  
max  i      i    and Aii + ( − i), respectively. In Eq. 31, this would contribute 
to the heterogeneity of i, extending the validity of the nonnormality 
approximation in that equation to the general case of heteroge-
neous i. It then follows from Eqs. 23 and 31 that the expected non-
normality ∥D∥F for the GCLV model generally increases with the 
heterogeneity of i. Combining this with the approximate relation 

between nonnormality and reactivity in Eq. 6, we see that the reactivity 
also tends to increase with the heterogeneity of i in random networks. 
Moreover, the modification of i and Aii in Eq. 1 used here can also 
be applied to Eq. 5, which would extend the reactivity approximation 
formula to heterogeneous i. The conclusion above on the impact of 
i heterogeneity in random networks holds true in particular when 
i and Aii are uncorrelated, while specific correlations can, in principle, 
lead to a reduction in the heterogeneity of i and thus in   𝔼 (   ∥ D  ∥ F  2   )    .

After absorbing i heterogeneity into Aii in Eq. 1 as in the previ-
ous paragraph, the nonnormality and reactivity of the system can be 
defined in the same fashion, i.e., as ∥D∥F = ∥AAT − ATA∥F and 
(A) = 1(H) − 1(A), respectively, but using the modified A. While 
this definition allows us to derive results for random networks (as 
described in the previous paragraph), the real networks were ana-
lyzed under the uniform i assumption since the values of i were 
not available in the dataset.

Sufficient condition for reactivity
To establish that having distinct (real) left and right eigenspaces as-
sociated with 1(A) implies reactivity [i.e., (A) > 0], we will prove 
the contrapositive: (A) = 0 implies that these eigenspaces coin-
cide. Suppose that (A) = 0, which implies 1(H) = 1(A). We will 
seek to show that any right eigenvector is also a left eigenvector and 
vice versa. Let v be a (real) right eigenvector of A associated with the 
eigenvalue 1(A). Without loss of generality, we can assume v to be 
normalized so that vTv = 1. Then, we have

     1  (H ) =  max  
x≠0

       x   T  Hx ─ 
 x   T  x

   ≥  v   T  Hv =    1  (A)  (7)

where we note that vTHv = vT(A + AT)v/2 = 1(A)vTv = 1(A). Since 
1(H) = 1(A), the inequality in Eq. 7 becomes an equality, implying 
that v is a solution of the maximization problem and thus a (right) 
eigenvector of H associated with 1(H), i.e., Hv = 1(H)v. This, to-
gether with 2H = A + AT and Av = 1(A)v, yields vTA = (21(H) − 
1(A))vT = 1(A)vT. We thus conclude that v is a left eigenvector of 
A associated with 1(A), in addition to being a right eigenvector. To 
show the opposite direction, we now let v be any left eigenvector of 
A associated with the eigenvalue 1(A). This again implies vTHv = 
1(A) and turns Eq. 7 into an equality, implying that v is a (left) 
eigenvector of H associated with 1(H), i.e., vTH = vT1(H). From 
this, an argument similar to the one above shows that v is also a right 
eigenvector of A associated with the eigenvalue 1(A). Therefore, we 
conclude that the left and right eigenspaces of A corresponding to 
1(A) must coincide, which completes the proof.

Real network data
We retrieved raw data for 534 distinct directed networks avail-
able from Koblenz Network Collection (KONECT) (52, 53), the 
Netzschleuder Network Catalogue and Repository (54), the Colorado 
Index of Complex Networks (ICON) (55), and the Matrix Market 
Repository (56). From KONECT, Netzschleuder, and ICON, we 
obtained all distinct directed non-bipartite networks that were avail-
able in the form of adjacency lists. From the Matrix Market Reposi-
tory, we retrieved a total of 17 directed nonbipartite networks 
among the largest available in each technological or economic ap-
plication domain to compensate for the relatively few networks of 
those types available from the other three data sources.

To eliminate redundancy among these networks, we identified 
and excluded duplicates by comparing the description, number of 
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nodes, number of links, and other network statistics. Since the re-
sulting set still contained a disproportionately large number of 
wiki-talk and wiki-link networks (28 and 167, respectively), we re-
moved this bias by excluding all but the largest network from each 
of these two groups. This led to our final selection of 251 networks, 
consisting of 62 biological networks, 51 informational networks, 79 
social networks, 40 technological networks, and 19 economic/game 
networks. The network size ranges from n = 10 to n = 7.9 × 106, and 
the link density ranges from 4.0 × 10−7 to 1.0. The adjacency matrix 
A of each network was constructed as follows. For each link, the cor-
responding Aij was set to the weight from the data if available and 
set to one otherwise. Multiple links between the same pair of nodes 
were combined into a single link whose weight equals the sum of 
the weights of the original links. For a self-link, the corresponding 
Aii was set based on the information from the data if available and 
Aii = 0 otherwise. The constructed adjacency matrices were then 
used to compute the nonnormality measure ∥D∥F, reactivity mea-
sure (A), degree imbalance 〈(din − dout)2〉, eigenvector angle 1, 
and other properties of the networks. Of these 251 networks, 38 had 
degenerate or nearly degenerate 1(A), which we numerically iden-
tified using the criterion 1 > 1.57 [recalling that 1 ≤ /2 by defini-
tion and that 1 = /2 when 1(A) is degenerate].

The minimum level of nonnormality observed among the 251 
networks in Fig. 1A was for a 8192-node network of interactions in 
a square dielectric waveguide, with  ∥D  ∥  F   / ( √ 

_
 n   〈  w   2  〉 ) ≈ 0.032 . The 

only nonreactive network in the dataset was one representing child- 
parent relationships from an online genealogical website called 
WikiTree, for which (A) and 1 are both estimated to be zero to 
machine precision. Among the reactive networks that are nonde-
generate, shown in Fig. 1B, the minimum value of (A)/1(A) ≈ 
3.1 × 10−6 was observed for the 3140-node network of intercounty 
migration in the United States.

Directed random network model
To sample a network realization of size n from the GCLV model, we 
first draw the expected in-degree     ~ d   i  

in
  ≥ 1  and out-degree     ~ d   i  

out
  ≥ 1  

of different nodes i = 1, …, n independently from a common joint 
probability distribution that does not depend on the network size n 
and has finite second moments. For each i, the random variables     ~ d   i  

in
   

and     ~ d   i  
out

   are not restricted to be integers and need not to be inde-
pendent (and thus can be correlated). Following (47), the actual in- 
and out-degrees   d i  

in   and   d i  
out   of the network are then determined as 

a result of randomly creating a directed link from node j to node i 
with the probability

  ℙ (  link j → i exists ∣    ̃  d   1  in , … ,    ̃  d   n  in ,    ̃  d   1  
out

 , … ,    ̃  d   n  
out

  )   =    ij   ≔   
   ̃  d   i  

in     ̃  d   j  
out

 
 ─ 

 ∑ k=1  n      ̃  d   k  in  
     

(8)

for each i and j. We then independently draw random weights Aij > 0 
for the resulting links from a given distribution, while we set Aij = 0 
if node j is not connected to node i. Note that this process can create 
self-links with random weights, but we could choose to prohibit 
them by setting Aii = 0 for all i. The unweighted version of this model 
is obtained if we instead set Aij = 1 for all links.

For the (marginal) distributions of     ~ d   i  
in

   and     ~ d   i  
out

  , we assume that 
ij ≤ c for some constant   1 _ 2  ≤ c < 1  and that the extreme values  

    ̃  d   max  in   ≔   max  
1≤i≤n

      ̃  d   i  
in   and     ̃  d   max  

out
   ≔   max  

1≤i≤n
      ̃  d   i  

out
   asymptotically follow the 

so-called generalized extreme value (GEV) distributions (57) after 
appropriate normalization (see below for more details). We note that 
the first assumption is only a slight addition to the second, as the 
second implies that ij → 0 in probability as n → ∞ (see Supplementary 

Materials, section S2.1, for a proof). We also assume that   𝔼 (      ̃  d   i  
in  )   =  

𝔼 (      ̃  d   i  
out

  )    , so that we have     lim  n→∞    (    ∑ i=1  n       ̃  d   i  
in  −  ∑ i=1  n       ̃  d   i  

out
  )   / n = 0   almost 

surely (which can be shown using the strong law of large numbers). De-
noting the mean of the expected in- or out-degree by     ̃  d   ≔ 𝔼 (      ̃  d   i  

in  )   =  

𝔼 (      ̃  d   i  
out

  )     (which does not depend on i), we assume    ~ d   > 1 . This holds 
true because     ~ d   i  

in
 ,    ~ d   i  

out
  ≥ 1  unless the joint distribution of     ~ d   i  

in
   and     ~ d   i  

out
   

is singular with all probability density concentrated at     ~ d   i  
in

  =    ~ d   i  
out

  = 1 . 
These assumptions guarantee that, with probability one, the means of 
the actual in-degrees   d i  

in   and out-degrees   d i  
out   over the Bernoulli distri-

bution of Aij indeed match     ~ d   i  
in

   and     ~ d   i  
out

  , respectively, in the limit of 
n → ∞. Thus, the given joint distribution of     ~ d   i  

in
   and     ~ d   i  

out
   can be interpreted 

as the expected degree distribution for this random network model.
For     ~ d   max  

in
   , the GEV assumption mentioned above is more pre-

cisely described as follows: there exist sequences of normalization 
constants an > 0 and bn such that

     lim  n→∞   ℙ (     
   ̃  d   max  in   −  b  n   ─  a  n     ≤ x )   =  G    (x)   (9)

and    lim  n→∞     a  n   / n =   lim  n→∞    b  n   / n = 0 . Here, the GEV cumulative distri-
bution function G(x) is given by

   

 For  < 0 :  G    (x ) =  {   exp (−  (1 + x)   −1/  ) ,  x ≤ − 1 /     
1,

  
x > − 1 / 

   

     For  = 0 :  G    (x ) = exp (−  e   −x ) for all x    

 For  > 0 :  G    (x ) =  {   
0,

  
x ≤ − 1 / 

    
exp (−  (1 + x)   −1/  ) ,

  
x > − 1 / 

   

   (10)

The parameter  is called the extreme value index and is determined 
solely by the distribution of     ~ d   i  

in
  . For     ~ d   max  

out
   , we assume the same but 

possibly with different an, bn, and . The GEV distributions are the 
only ones that can arise as the limit distribution of the maximum of 
independent and identically distributed random variables if the limit 
in Eq. 9 exists, and they include the well-known Gumbel, Fréchet, 
and Weibull distribution as special cases.

The GEV assumption is mild and is satisfied for almost all com-
monly encountered distributions. It can be verified using the explicit 
conditions for Eq. 9 given in (57). For example, one of these condi-
tions (theorem 1.1.8) shows that it is satisfied by any power- law dis-
tribution with exponent  > 2, minimum expected degree     ~ d    min   ≥ 1 , 
and the density function given by p(x) = Cx− if  x ≥    ~ d    min   , and 
p(x) = 0 otherwise, where  C = ( − 1 )    ~ d   min  

−1
    is the normalization 

constant. The extreme value index in this case is  = 1/( − 1), and 
the sequences of constants in Eq. 9 are   a  n   =  n         ~ d    min    and   b  n   =  
n        ~ d    min   . Since  > 2 (which is also the condition for this distribution 
to have a finite mean), we have  < 1, implying    lim  n→∞    a  n   / n =   lim  n→∞      ̃  d    min   
 /  n   1−  = 0  and    lim  n→∞    b  n   / n =   lim  n→∞      ̃  d    min   /  n   1−  = 0 .

Nonnormality approximation for unweighted networks
Our derivation of Eq. 4 is for large random networks generated 
by the unweighted version of the GCLV model. Since Eq. 4 
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expresses  ∥ D  ∥ F  2    as a function of the in-degrees   d i  
in   and out-degrees   

d i  
out  , the derivation is based on calculating the conditional expected

value   𝔼(∥ D  ∥ F  2  ∣ d 1  in , … ,  d n  in ,  d 1  out , … ,  d n  out  )    , which we denote simply by 
𝔼(∥ D  ∥ F  2   )     in this section (in which we also use similar simplified
notations for other expected values, variances, and probabilities). 
Taking the (conditional) expected value of Eq. 3, we obtain

𝔼(∥D ∥ F  2   ) =   ∑ 
i=1

  
n
     ( d i  

in  −  d i  
out )   

2
  + 𝔼( ∑ ∑  

i≠j
     ( d ij  in  −  d ij  out )   

2
 )

  
= n〈   (    d   in  −  d   out  )     

2
  〉 +  ∑ ∑  

i≠j
    𝔼( Y ij  2  )

(11)

where we define   Y  ij   ≔  d ij  in  −  d ij  out  =   ∑ 
k≠i,j

   ( A  ik    A  jk   −  A  ki    A  kj  )  (recalling 

the assumption Aii = 0, which will be relaxed in the next section). We 
note that, while   d i  

in   and   d i  
out   are held fixed,   d ij  in   and   d ij  out   are random.

We now seek to estimate   𝔼 (    Y ij  2   )     in Eq. 11 by calculating  𝔼( Y  ij  )  and 
Var(Yij), which can be broken down to individual terms  𝔼( A  ik    A  jk  )  
and  𝔼( A  ki    A  kj  ) . We first note that  𝔼( A  ik    A  jk   ) = ℙ( A  ik    A  jk   = 1 ) = ℙ( A  ik   = 1 
and  A  jk   = 1) . To compute this probability, we define

Q i,n  in  (d ) ≔ ℙ (    ∑ 
k=1

n
     A  ik   = d )   and  Q j,n  out (d ) ≔ ℙ (    ∑ 

k=1
  

n
     A  kj   = d )     (12)

to represent the probability that the in-degree of node i is d and the 
probability that the out-degree of node j is d, respectively. Assuming
the random variable     ~ d   i  

in
   fixed for the moment, we have

 Q i,n  in  (d ) =  ∑ 

      ∏ 
k=1

  
n
      ik     k     (1 −    ik  )   1−   k   

   

 =  ∑ 

     (    ∏

k:   k  =1
   ik   )   (    ∏ 

k:   k  =0
   (1 −    ik   )  )   

   
 ≈  ∑ 


     
(

   ∏ 
k:   k  =1

˜ d   i  
in     ̃  d   k  

out
 
 ─ 

n  
_

 d  
   

)
  exp 

(
   −   ∑

k:   k  =0

˜ d   i  
in     ̃  d   k  

out

 ─ 
n  

_
 d  
   

)
   
    

≈ ( n  d   )   
  (      ̃  d   i  

in
)

d

 ─ 
 n   d     

_
 d     d 
 ⋅   1 ─ 

 (   n  d   )  
    ∑ 

    (  ∏

k:   k  =1
˜ d   k  

out
  ) exp(−   

   ̃  d   i  
in 
 ─ 

  
_

 d  
   ·   1 ─ n     ∑

k:   k  =0
˜ d   k  

out
 )

   

≈ ( n  d   ) ⋅   
  (      ̃  d   i  

in
)

d

 ─ 
 n   d 

 ⋅ exp(−    ̃  d   i  
in )

 

(13)

where ∑ denotes the summation over all  = {1, …, n} ∈ {0,1}n in 
which exactly d elements are equal to one, and k: k = 0, 1 denotes all 
k such that k = 0, 1, respectively. Equation 13 also used the follow-
ing approximations for large network size n (with d fixed): 1 − ik ≈ 
e−ik valid when ik is small (which is the case because ik → 0 in probabil-
ity as n → ∞; see Supplementary Materials, section S2.1);    1 _ n   ∑ k        

~ d   k  
in

  ≈   
_

 d    
and    1 _ n   ∑ k:   k  =0        ̃  d    k  

out
  ≈   1 _ n   ∑ k        ̃  d   k  

out
  ≈   

_
 d    (based on the strong law of 

large numbers); and    ∑       ∏ k:   k  =1        ̃  d   k  
out

  /  (   n  d   )   ≈    
_

 d     d    [a special case of
the theorem proved in (58)]. Analogously, holding     ~ d   j  

out   fixed tem-
porarily, we have

Q j,n  out (d ) ≈ ( n  d   ) ⋅   
  (      ̃  d   j  

out
)

d

 ─ 
 n   d 

 ⋅ exp(−    ̃  d   j  
out

 )  (14)

and similar arguments also show that

 ℙ (    ∑ 
k≠j

 A  ik   = d )   =  Q i,n−1  in  (d ) , ℙ (     ∑
k≠ j  1  , j  2  

 A  ik   = d  )   =  Q i,n−2  in  (d ) , 

 ℙ (    ∑ 
k≠i

 A  kj   = d )   =  Q j,n−1  out  (d ) , ℙ (     ∑
k≠ i  1  , i  2  

 A  kj   = d  )   =  Q j,n−2  out  (d)
(15)

We can now calculate  𝔼( A  ik    A  jk  )  and  𝔼( A  ki    A  kj  )  from the defini-
tion of the conditional expected values as

 𝔼( A  ik    A  jk   ) = ℙ (    A  ik   = 1 and  A  jk   = 1 ∣  d i  
in ,  d j  in ,  d k  out  )

  

=   
   ik      jk    Q i,n−1  in   (    d i  

in  − 1 )    Q j,n−1  in   (    d j  in  − 1 )    Q k,n−2  out   (    d k  out  − 2 )  
    ──────────────────────────────   

 Q i,n  in   (    d i  
in  )    Q j,n  in   (    d j  in  )    Q k,n  out  (    d k  out  )  

 

  
≈   

 d i  
in   d j  in   d k  out  (    d k  out  − 1 )  

  ──────────── 
 (  
_

 d  n)   2 
  ,

   

     𝔼( A  ki    A  kj   ) ≈   
 d i  

out   d j  out   d k  in  (    d k  in  − 1 )  
  ────────────

 (  
_

 d  n)   2 
 

 

(16)

We note that these expressions do not depend on     ~ d   i  
in

   nor     ~ d   i  
out

  , and 
hence, the estimates are valid even when these variables are allowed 
to be random. We thus have

𝔼( A  ik    A  jk   −  A  ki    A  kj   ) = 𝔼( A  ik    A  jk   ) − 𝔼( A  ki    A  kj  )

     

≈ 
 d i  

in   d j  
in   d k  out  (    d k  out  − 1 )  

  ──────────── 
 (  
_

 d  n)   2 
   − 

 d i  
out   d j  

out   d k  in  (    d k  in  − 1 )  
  ──────────── 

 (  
_

 d  n)   2 
  ,

     
         Var( A  ik    A  jk   −  A  ki    A  kj   ) = Var( A  ik    A  jk   ) + Var( A  ki    A  kj  )

     
= 𝔼( A  ik    A  jk   ) − 𝔼  ( A  ik    A  jk  )   2  + 𝔼( A  ki    A  kj   ) − 𝔼  ( A  ki    A  kj  )   2 

     

≈ 𝔼( A  ik    A  jk   ) + 𝔼( A  ki    A  kj  )

   

≈ 
 d i  

in   d j  
in   d k  out  (    d k  out  − 1 )  

  ──────────── 
 (  
_

 d  n)   2 
   + 

 d i  
out   d j  

out   d k  in  (    d k  in  − 1 )  
  ────────────

 (  
_

 d  n)   2 
 

   

(17)

where we used that the high-order terms  𝔼  ( A  ik    A  jk  )   2   and  𝔼  ( A  ki    A  kj  )   2   
are negligible for large n. Summing these over k (including the 
terms k = i, j, which are small compared to other terms and hence 
do not affect the sums for large n), we have

𝔼( Y  ij   ) ≈   1 ─ n   
[

     
 d i  

in   d j  in (〈  ( d   out )   2  〉 −   
_

 d   )
  ───────────── 

   
_

 d     2 
   −   

 d i  
out   d j  out (〈  ( d   in )   

2
  〉 −   

_
 d   )
  ─────────────

   
_

 d     2 
   

]
(18)

Var( Y  ij   ) ≈   1 ─ n   
[

     
 d i  

in   d j  in (〈  ( d   out )   2  〉 −   
_

 d   )
  ───────────── 

   
_

 d     2 
   +   

 d i  
out   d j  out (〈  ( d   in )   

2
  〉 −   

_
 d   )
  ─────────────

   
_

 d     2 
   

]
(19)

The term   𝔼 (    Y ij  2   )     in Eq. 11 can now be estimated for large n as

𝔼 (    Y ij  2   )   = Var( Y  ij   ) + 𝔼  ( Y  ij  )   2  ≈ Var( Y  ij  )   (20)

since  𝔼  ( Y  ij  )   2   is negligible compared to Var(Yij), and we have
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  ∑ ∑  

i≠j
    𝔼(    Y ij  

2   )   ≈   1 ─ n     ∑ 
i=1

  
n
     ∑ 
j=1

  
n
    
[

     
 d i  

in   d j  
in (〈  ( d   out )   

2
  〉 −   

_
 d   )
  ───────────── 

   
_

 d     2 
   +   

 d i  
out   d j  

out (〈  ( d   in )   
2
  〉 −   

_
 d   )
  ───────────── 

   
_

 d     2 
   

]
   
       

= n  [ 〈  ( d   in )   
2
  〉 + 〈  ( d   out )   

2
  〉 − 2  

_
 d  ]

   

(21)

(retaining the i = j term, which is small compared to the sum of the 
other terms). Substituting this into Eq. 11 yields Eq. 4.

Nonnormality approximation for weighted networks
Here, we consider the weighted version of the GCLV model, assuming 
that the distribution of link weights squared has a finite mean  𝔼( w   2 )  
and a finite variance Var(w2). Assuming first that there are no self-
links, i.e., Aii = 0, we will show that the nonnormality ∥D∥F can be 
approximated for large n as

 ∥ D  ∥ F  2   ≈ 2n [ 〈  ( d   in  −  d   out )   
2
  〉 + 〈  d   in   d   out  〉 −   

_
 d   ]  𝔼   2 ( w   2  ) + 2n  

_
 d  Var( w   2 ) 

(22)

This extends Eq. 4 to weighted networks. When the link weight 
variance Var(w2) is small, this equation yields the scaling  ∥ D  ∥  F   ∼  
√ 
_

 n   𝔼( w   2  ) ≈  √ 
_

 n   〈  w   2  〉 . As in the case of unweighted networks, the 
derivation is based on taking the conditional expectation given 
fixed values of   d i  

in   and   d i  
out  . The weighted version of Eq. 11 reads:

   𝔼 (   ∥ D  ∥ F  2   )   =   ∑ 
i=1

  
n
    𝔼 (    Y ii  

2   )   +  ∑ ∑  
i≠j

    𝔼 (    Y ij  2   )     (23)

where Yij = ∑k ≠ i, j(AikAjk − AkiAkj) and thus    Y  ii   =  ∑ k≠i     (    A ik  2   −  A ki  
2   )    . 

Following the derivation of Eq. 17 while accounting for the random 
weights, we have

  

𝔼( A  ik    A  jk   −  A  ki    A  kj   ) ≈

   
  
(

     
 d i  

in   d j  in   d k  out  (    d k  out  − 1 )  
  ──────────── 

 (  
_

 d  n)   2 
   −   

 d i  
out   d j  out   d k  in  (    d k  in  − 1 )  

  ──────────── 
 (  
_

 d  n)   2 
   

)
  𝔼( w   2 ) 

   (24)

  

 Var( A  ik    A  jk   −  A  ki    A  kj   ) ≈ 𝔼 (    A ik  2    A jk  2   )   + 𝔼 (    A ki  
2    A kj  

2   )    

     
 ≈  

(
     
 d i  

in   d j  in   d k  out  (    d k  out  − 1 )  
  ──────────── 

 (  
_

 d  n)   2 
   +   

 d i  
out   d j  out   d k  in  (    d k  in  − 1 )  

  ──────────── 
 (  
_

 d  n)   2 
   

)
    (𝔼( w   2  ))   

2
  
  (25)

This leads to the weighted version of Eq. 21:

    ∑ ∑   
i≠j

    𝔼 (    Y ij  2   )   ≈ n [ 〈  ( d   in )   
2
  〉 + 〈  ( d   out )   2  〉 − 2  

_
 d   ]  (𝔼( w   2  ) )   

2
    (26)

To approximate the first term on the right side of Eq. 23, we note that

    𝔼
 (  

  A ik  2  
 )  

 ≈   
 d i  

in   d k  out 
 ─ 

  
_

 d  n
   𝔼( w   2  ) ,   𝔼

 (  
  A ki  

2  
 )  

 ≈   
 d i  

out   d k  in 
 ─ 

  
_

 d  n
   𝔼( w   2 )    (27)

and that there are exactly   d i  
in   and   d i  

out   nonzero terms in   ∑ k≠i    A ik  2     and 
  ∑ k≠i    A ki  

2    , respectively. Thus, given fixed values of   d i  
in   and   d i  

out  , the ex-
pectation and variance of    Y  ii   =  ∑ k≠i     (    A ik  2   −  A ki  

2   )     can be estimated as

   𝔼( Y  ii   ) ≈  (    d i  
in  −  d i  

out  )  𝔼( w   2 )   (28)

   Var( Y  ii   ) ≈  (    d i  
in  +  d i  

out  )  Var( w   2 )   (29)

and hence we have

    
 𝔼 (    Y ii  

2   )   = 𝔼  ( Y  ii  )   2  + Var( Y  ii  ) 
    

               ≈   (    d i  
in  −  d i  

out  )     
2
   (𝔼( w   2  ) )   

2
  +  (    d i  

in  +  d i  
out  )  Var( w   2 ) 

   (30)

Combining Eqs. 23, 26, and 30 and approximating  ∥ D  ∥ F  2    by its con-
ditional expectation   𝔼 (   ∥ D  ∥ F  2   )     yield Eq. 22.

The above results can be further extended to allow for any given 
assignment of self-links. Assume that    ̂  A   = A + diag()  with diago-
nal elements i, i = 1,2, ⋯, n. Then, Yij = ∑k ≠ i, j(AikAjk − AkiAkj) − 
(Aij − Aji)(i − j) and Yii remains unchanged. Note that

  

 𝔼 (    Y ij  2   )   ≈ Var( Y  ij  ) 

   

 = Var (    ∑ 
k≠i,j

   ( A  ik    A  jk   −  A  ki    A  kj   )  )   + Var(( A  ij   −  A  ji   ) ( β  i   −  β  j   ) ) 

      
 ≈  

[
     
 d i  

in   d j  in (〈  ( d   out )   2  〉 −   
_

 d  )
  ──────────── 

   
_

 d     2 
   +   

 d i  
out   d j  out (〈  ( d   in )   

2
  〉 −   

_
 d  )
  ───────────── 

   
_

 d     2 
   

]
   ⋅    𝔼   2 ( w   2 ) ─ n  + 

      

 ( β  i   −  β  j  )   2  ⋅   
 d i  

in   d j  out  +  d j  in   d i  
out 
  ─ 

  
_

 d  
   ⋅   𝔼( w   2 ) ─ n  

   

(31)

Therefore, we have

  

∥ D(  ̂  A  )  ∥ F  2   ≈ 2n [ 〈  ( d   in  −  d   out )   
2
  〉 + 〈  d   in   d   out  〉 −   

_
 d   ]  𝔼   2 ( w   2  ) +

       2n  
_

 d  Var( w   2  ) + 2n𝔼( w   2  )  [  〈     2   d   in  〉 + 〈     2   d   out  〉 −   2 ─ 
  
_

 d  
   〈  d   in  〉〈  d   out  〉 ]         

 = ∥ D(A )  ∥ F  2   + 2n𝔼( w   2  )  [  〈     2   d   in  〉 + 〈     2   d   out  〉 −   2 ─ 
  
_

 d  
   〈  d   in  〉〈  d   out  〉 ]   

   

(32)

Extension of the nonnormality approximation to 
Laplacian-coupled networks
Here, we consider the nonnormality of the Laplacian matrices of 
networks generated by the weighted GCLV model under the same 
conditions as in the derivation of Eq. 22. The Laplacian matrix of a 
network with adjacency matrix A is defined by L ≔ K − A, where 
K denotes the diagonal matrix with Kii = ∑kAik. A straightforward 
calculation yields

  ∥ D(L )  ∥ F  2   = ∥  L   T  L − L  L   T   ∥ F  2   =   ∑ 
i=1

  
n
    𝔼 (      ̃  Y   ii  

2   )   +  ∑ ∑  
i≠j

    𝔼 (      ̃  Y   ij  2   )     (33)

where      ~ Y    ij   =  ∑ k≠i,j    ( A  ik    A  jk   −  A  ki    A  kj   ) + ( A  ij   −  A  ji   )  (    d i  
in  −  d j  in  )     and, in 

particular,      ~ Y    ii   =  ∑ k≠i     (    A ik  2   −  A ki  
2   )    . Following Eq. 30, we have

   𝔼 (      ̃  Y   ii  
2   )   ≈   (    d i  

in  −  d i  
out  )     

2
   (𝔼( w   2  ) )   

2
  +  (    d i  

in  +  d i  
out  )  Var( w   2 )   (34)

In addition, following Eqs. 20 and 26, we obtain

  

 𝔼 (      ̃  Y   ij  2   )   ≈ Var (      ̃  Y    ij   )   

   

 = Var 
(

     ∑ 
k≠i,j

   ( A  ik    A  jk   −  A  ki    A  kj   )  
)

   + Var(( A  ij   −  A  ji   ) ( d i  
in  −  d j  in  ))  

      
≈    𝔼   2 ( w   2 ) ─ n   [   

 d i  
in   d j  in (− 〈  ( d   out )   2  〉–  

_
 d  )
  ──────────── 

   
_

 d     2 
   +   

 d i  
out   d j  out (〈  ( d   in )   

2
  〉 −   

_
 d  )
  ───────────── 

   
_

 d     2 
   ] +

      

 ( d i  
in  −  d j  in )   

2
  ·   

 d i  
in   d j  out  +  d j  in   d i  

out 
  ─ 

n  
_

 d  
   ⋅ 𝔼( w   2 )

   

(35)
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Therefore, we have

  

∥ D(L )  ∥ F  2   ≈ 2n [ 〈  ( d   in  −  d   out )   
2
  〉 + 〈  d   in   d   out  〉 −   

_
 d   ]  𝔼   2 ( w   2  ) +

       2n  
_

 d  Var( w   2  ) + 2n𝔼( w   2  )  [  〈  ( d   in )   
3
  〉 + 〈  ( d   in )   

2
   d   out  〉 −   2 ─ 

  
_

 d  
   〈  ( d   in )   

2
  〉〈  d   in   d   out  〉 ]          

 = ∥ D(A )  ∥ F  2   + 2n𝔼( w   2  )  [  〈  ( d   in )   
3
  〉 + 〈  ( d   in )   

2
   d   out  〉 −   2 ─ 

  
_

 d  
   〈  ( d   in )   

2
  〉〈  d   in   d   out  〉 ]   

  

(36)

Reactivity approximation for networks with dominant 
largest eigenvalue
Here, we derive Eq. 5 assuming 1(H) ≈ 1(H1) and the nondegen-
eracy of 1(A). We normalize the left and right eigenvectors associ-
ated with 1(A), so that we have   v 1  T   v  1   = 1  and   u 1  T   v  1   =  v 1  T   u  1   = 1 , 
and thus, the angle 1 between the left and right eigenvectors is 
given by  cos    1   = 1 /  √ 

_
  u 1  T   u  1     . Noting that the symmetric part of A1 can 

be written as    H  1   =  1 _ 2     1  (A )  (    u  1    v 1  T  +  v  1    u 1  T  )     and approximating the 
eigenvector associated with its largest eigenvalue by a linear combi-
nation u1 + v1, we have

  

   1  (H ) ≈    1  ( H  1   ) =   max  
x∈ ℝ   n ,x≠0

      x   T   H  1   x ─ 
 x   T  x

  

      =   1 ─ 2      1  (A )   max  
    2 +    2 ≠0

     
 (  u  1   +   v  1  )   T ( u  1    v 1  T  +  v  1    u 1  T  )  (  u  1   +   v  1  )

   ────────────────────   
 (  u  1   +   v  1  )   T (  u  1   +   v  1  )

       

=    1  (A )   max  
y∈ ℝ   2 ,y≠0

     
 y   T  y

 ─ 
 y   T  y

  

   
(37)

where we defined

  

 ≔ (   1   ) =

  
  

⎡

 ⎢ 

⎣
    

1
  

  1 ─ 2    u 1  T   u  1   +   1 ─ 2  
   

  1 ─ 2    u 1  T   u  1   +   1 ─ 2  
  

 u 1  T   u  1  
   

⎤

 ⎥ 

⎦
   =  

⎡

 ⎢ 

⎣
    

1
  

  1 ─ 
2  cos   2     1  

   +   1 ─ 2  
   

  1 ─ 
2  cos   2     1  

   +   1 ─ 2  
  

  1 ─ 
 cos   2     1  

  
   

⎤

 ⎥ 

⎦
   
  

(38)

   ≔ (   1   ) =  
[

   
1

  
1

  1   u 1  T   u  1    ]
   =  

[
   
1

  
1

  1    1 ─ 
 cos   2     1  

    ]
     (39)

The last maximum in Eq. 37 can be computed as the largest gener-
alized eigenvalue  of the matrix pencil ((1), (1)) and satisfies 
the equation

  det ((   1   ) − (   1   )) = 0  (40)

This equation can be explicitly solved to yield   =  1 + cos    1   _ 2cos    1     . Substi-
tuting this into Eq. 37 and using the definition of , we obtain Eq. 5 as

       =    1  (H ) −    1  (A ) ≈    1  (A ) ·  1 + cos    1   ─ 2cos    1     −    1  (A ) =    1  (A) ⋅   1 − cos    1   ─ 2cos    1     

(41)

Random networks used in Fig. 3
To generate these networks, we used the GCLV model with a given 
correlated identical distributions of the expected in-degree     ~ d   i  

in
   and 

the expected out-degree     ~ d   i  
out

   for each node i. To realize such a joint 

distribution, we first drew     ~ d   i  
in

   and     ~ d   i  
out

   (independently for each node 
i) from a common distribution, which was either (i) the gamma distri-
bution, with probability density function p(x) ∼ (x − dmin)a−1e−b(x−dmin), 
x > dmin, where dmin is the minimum degree, a > 0 is the shape pa-
rameter, and b > 0 is the rate parameter; or (ii) a discrete power-law 
distribution with the probability mass function p(x) ∼ x− for inte-
gers x = dmin, dmin + 1, …, dmax, where  > 0 is the scaling exponent, 
dmin is the minimum degree, and   d  max   =  √ 

_
 cn  d  min      is the maximum 

degree imposed to ensure that the model assumption ij ≤ c is satis-
fied (and here, we set c = 0.99). For the gamma distribution, the mean 
degree d and the parameter 1/b were drawn randomly from the in-
tervals [10,50] and [2,10], respectively, and the parameter a was 
then set to be a = b(d − dmin) (to ensure that the mean degree equals d). 
For the power-law distribution, the scaling exponent  was drawn 
randomly from the interval [2,4]. For both distributions, we used the 
minimum degree dmin = 10.

After generating     ~ d   i  
in

   and     ~ d   i  
out

  , correlation was added between 
them using a parameter  randomly chosen from the interval [−1,1] 
to increase the range of ∥D∥F and (A) observed. The correlation 
was created by sorting     ~ d   i  

in
   and     ~ d   i  

out
   for a randomly chosen subset of 

nodes (with mean fraction ∣∣) in the same order for     ~ d   i  
in

   and     ~ d   i  
out

   if 
 > 0 (leading to positive correlation) and in the opposite order if 
 < 0 (leading to negative correlation).

For the weighted networks, the random weights were drawn 
either from the exponential distribution with mean  and variance 2 
(for  = 0.7, 1.0, or 1.3) or from the positive domain of the Gaussian 
distribution with mean one and variance 2 (for  = 0.1 or 0.2). For 
this figure, we allowed self-links in the GCLV model (with ran-
dom weights drawn from the same distribution as the other links).

Randomization of real networks in Fig. 4A
For a given network from the dataset, we generated its randomiza-
tion using the GCLV model. The in- and out-degrees of node i in 
the network were used as the expected degrees     ~ d   i  

in
   and     ~ d   i  

out
  , respec-

tively, to generate a random network topology. Note that, for nodes 
i and j with the right side of Eq. 8 exceeding one, we set the connec-
tion probability ij = 1. The link weights of the network were resam-
pled (with replacement) to generate random weights.

Determination of the shaded region in Fig. 4C
First, for each , we computed the averages of 1(H) and 1(A) over 
10 realizations of the GCLV model for 15 values of n, equally spaced 
on the logarithmic scale between n = 102 and n = 105. We then per-
formed a least-squares fit of these averages as functions of n on the 
logarithmic scale for n ≥ 300 and used the resulting slopes as the scaling 
exponents for 1(H) and 1(A) for the given  (shown in the back-
ground by blue and green dots, respectively). The boundary curves 
were obtained by fitting these scaling exponents with seventh- order 
polynomials. The shaded area between these two curves thus rep-
resents the parameter region in which the scaling exponent ℓ for (n) 
is smaller than that for 1(H) but larger than that for 1(A), implying 
that, as n increases, 1(H) − (n) increases while 1(A) − (n) decreases.
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