
Reconstructing Network Dynamics of Coupled Discrete Chaotic Units from Data

Irem Topal∗ and Deniz Eroglu†

Faculty of Engineering and Natural Sciences, Kadir Has University, 34083 Istanbul, Turkey

Reconstructing network dynamics from data is crucial for predicting the changes in the dynamics
of complex systems such as neuron networks; however, previous research has shown that the re-
construction is possible under strong constraints such as the need for lengthy data or small system
size. Here, we present a recovery scheme blending theoretical model reduction and sparse recovery
to identify the governing equations and the interactions of weakly coupled chaotic maps on com-
plex networks, easing unrealistic constraints for real-world applications. Learning dynamics and
connectivity lead to detecting critical transitions for parameter changes. We apply our technique to
realistic neuronal systems with and without noise on a real mouse neocortex and artificial networks.

Dynamical networks, including power grids, food webs, climate networks, and neuron networks, described by dy-
namical units oscillating on complex networks, are fundamental components of our everyday lives. The ability to
regulate network dynamics is crucial for predicting, thus, controlling these systems’ behavior to acquire the desired
functionality. Neuron networks are an important class of dynamical networks for human wellness since the changes
in the interaction can lead to undesired pathological situations. For instance, epileptic seizures are associated with
emergent neural network synchronization when the dynamical network parameters change [1]. Consequently, it is
vital to anticipate critical transitions to neuronal synchronization and invent predictive technologies to detect early
warning signals to prevent potential tragedies [2]. In the case of neuron network dynamics, consisting of intrinsic
neuron function and the coupling scheme between neurons, the critical transitions to synchronization are not directly
determinable. Therefore, the governing equation must be recovered from the observations of the nodes for forecasting
the critical transitions due to parameter changes.

The network dynamics reconstruction from data is a very active research field [3–8]. Various methods were proposed
to infer the connectivity matrix under some constraints, such as the need for a system to be at steady-state [9] or
requiring prior knowledge about the dynamics [10–12] or the coupling strength [13]. In addition to the studies
that reveal the connectivity matrix by control signals or analytical solutions, statistical learning approaches such as
compressed sensing were also introduced to learn entire unknown dynamics [14, 15], which also infers the connectivity
structure. However, statistical learning techniques are not extendable for large networks or require long time series
measurements. A natural question is then whether revealing the network dynamics of weakly interacting chaotic
oscillators would be possible using relatively short data without requiring knowledge of the system’s nodal behavior
and coupling scheme. This question is especially relevant in weak coupling regimes, in which the synchronization
regime is unstable and the decay of correlation is exponential for chaotic oscillators, meaning that similarity measures
cannot capture the interaction topology.

This Letter reports a dynamical network reconstruction approach from time series observations by integrating
mean-field approaches from dynamical systems theory with statistical learning tools. Neural networks are described
by chaotic isolated dynamics [16], weakly interacting nodes [17] and interaction through scale-free type networks [18].
Our reconstruction approach assumes that we have the mentioned neuroscientific setting and access to all nodes’ data
while the local dynamics of the nodes, the coupling function between them and the interaction structure are unknowns.
Our methodology accurately identifies them using rather short time series and is independent from the network size,
which is important since it is, generally, impossible to have long real-world observations, and real networks are large.
Finally, as the reconstruction methodology includes mean-field approximations, the inferred model may not estimate
the exact future states of the system due to the chaotic nature of the dynamical units. However, the reconstructed
model allows us to predict the emergent collective behavior of dynamical networks considering parameter change,
which is crucial to avoid undesired behaviors for real-world applications such as epilepsy seizures.

Model.— The network dynamics of weakly coupled and identical n oscillators with interaction akin to diffusion is
described by

xi(t+ 1) = f(xi(t)) +

n∑
j=1

wijH(xi(t),xj(t)) + ηi(t) (1)

where xi ∈ Rm, f : Rm → Rm represents the isolated dynamics of nodes and we assume it is chaotic [19]. H
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is a diffusive coupling function (H(x,x) = H(0) = 0 and H(x,y) = −H(y,x)). W = [wij ] ∈ Rn×n is the
adjacency matrix of weighted and directed network where wij ≥ 0 is the interaction strength from node-j to node-
i. The noise term, ηi(t), is uniformly distributed ‖ηi(t)‖ ≤ η0 for all nodes where η0 is noise intensity. This
network dynamics, Eq. (5), is used to model numerous real-world applications including brain networks [20], power
grids [21, 22], superconductors [23], and cardiac pacemaker cells [24].

Reduction theorem.— A low-dimensional reduction of Eq. (5) is key for our network dynamics reconstruction
approach. The reduction theorem applies a mean-field approach that relies on two main statements: (i) the statistical
behavior of nodes’ dynamics (frequency distribution of states) must be preserved and (ii) a large portion of nodes must
be interacting with at least a few nodes in the network. These statements are satisfied with the given assumptions
for the reduction theorem: chaotic local dynamics of expanding maps and weak coupling (to preserve the nodes’ state
distribution against fluctuations due to the interactions or external noise) and scale-free networks (most of the nodes

have small degrees k ∼ nε, and some nodes are hubs with degrees k ∼ n
1
2 +ε where ε is an arbitrarily small number),

which also mimic brain network dynamics. Using the theorem, the coupling term of Eq. (1) can be reduced as follows:

n∑
j=1

wijH(xi,xj) ≈ ki

∫
αH̃(xi,xj)dµ(xj)

= kiα(Ṽ (xi) + C̃) = kiV (xi) + C

where V is the effective coupling function, ki =
∑
j wij is the incoming degree of node i, H = αH̃, α is a multiplier

for the coupling function, µ is a physical measure of the isolated dynamics, C is the integration constant and the
integral takes into account the cumulative effect of interactions on node-i. As the coupling term is reduced as a
function of an invariant measure µ, the reduction theorem works for a system in a steady state. Furthermore, to
apply this mean-field approach-based reduction theorem, the statistical properties of individual dynamical systems
must be preserved, which is satisfied by chaotic oscillators and weak coupling (see Supp. Mat. II and Ref. [25]). Then
Eq. (5) can be written as

xi(t+ 1) = f(xi(t)) + kiV (xi(t)) + C + κi(t) + ηi(t) (2)

where κi(t) is a small fluctuation for an interval of time that is exponentially large and depends on the state of
neighbors of the ith node.

Reconstruction scheme.— To learn isolated dynamics f and coupling function H, we first need to classify nodes
regarding their degrees. According to the reduction theorem, nodes with a similar in-degree must have a similar
governing equation. To identify the governing equations of each node independently from other nodes, we use sparse
regression, particularly the Sparse Identification of Nonlinear Dynamical Systems (SINDy) technique [26]. We denote
the data collection of node-i by Eq.(5) as Xi = [xi(1), . . . ,xi(T − 1)]T and X ′

i = [xi(2), . . . ,xi(T )]T . SINDy
performs a sparse regression for the linear equation X ′

i = Ψ(Xi)Ξi to solve for Ξi = [ξ1
i , . . . , ξ

p
i ]T , which is a vector

of coefficients that defines the dynamics, where Ψ = [ψ1, . . . , ψp] represents a library of basis functions and is applied
to xi as

Ψ(Xi) =

candidate functions of x−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
ψ1(xi(1)) ψ2(xi(1)) ... ψp(xi(1))
ψ1(xi(2)) ψ2(xi(2)) ... ψp(xi(2))

...
...

. . .
...

ψ1(xi(T−1)) ψ2(xi(T−1)) ... ψp(xi(T−1))


y

tim
e

where p is the number of candidate functions in the library Ψ. (For a detailed description for the basis library,
see Supp. Mat. Sec. VIII.) Sparse regression’s goal is to determine the dynamics with a small number of functions
in Ψ by finding active coefficients in Ξi (see Supp. Mat. Sec. VII). Consequently, we obtain a predicted model for
each node only using the associated node’s own data, and we expect to learn similar models for the nodes with
similar in-degree ki. A distance matrix is obtained by normalized Euclidean distance to classify the predicted models
dij = (Σpk=1

1
Vk
|ξki − ξkj |2)1/2, where | · | is absolute value, Vk is the variance of the predicted coefficients of the

kth function in Ψ. Assume Ξi and Ξj are two predicted models of nodes-i and j, which are presented as a linear
combination of some functions within the library Ψ. We get smaller dij for a similar pair of nodes i and j, while
dij will be large for distinct nodes, such as a low-degree node and a hub. An example computation of dij can be
found in Supp. Mat. Sec. VIII. The histogram P (D) is obtained by the row-sum of the distance matrix Di =

∑
j dij ,

which provides an excellent classification for model similarities in terms of their degrees (Fig. 1 (a)). The low-degree
nodes are expected to be located in the highest bin of the histogram since the network has many low-degree nodes.
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FIG. 1: Illustration of the reconstruction scheme. (a) Performing sparse regression on each observation gives
predicted models for each node. Nodes with the same in-degree are reconstructed with the same predicted models,
which allow us to classify nodes concerning their in-degrees. As low-degree nodes are abundant and represent the
isolated dynamics with a negligible noise, learning f is possible. Discarding the local dynamics, f , from the hub’s
data gives the dominant coupling effect on the hub. Therefore, the coupling function H can be learned. (b) After

learning f and H, the problem is defined as a linear problem for each node by subtracting the local dynamics,
which obtains the remaining interaction effect for each node. Sparse regression on the remaining interaction

dynamics of node-i where i = 1, . . . , n entirely reconstructs the dynamical networks. Nonzero GT
i elements are the

incoming connections for ith node (see Supp. Mat. Sec. II for a step by step scheme).

The models recovered for low-degree nodes are determined as our f with a negligible fluctuation κi. Contrarily, the
distance Di is expected to be large for the hub nodes as they are the rarest. Therefore, hubs are located in the lowest
bin of the histogram P (D) (Fig. 1 (a)). Note that the success of the reconstruction depends on the separability of
the low-degree nodes and hubs with respect to their degrees, which means the network topology plays an important
role here [2], which is further illustrated in Supp. Mat. Sec. II.

We obtain the cumulative coupling effect on the hub by discarding learned isolated dynamics contribution from the
identified hub node’s data as X ′

h−f(Xh) where h denotes the hub node. We fit a function to the cumulative coupling
effect on the hub and learn the coupling function H with a possible linear shift due to the integration constant C
(Supp. Mat. Sec. II). The size of the linear shift can be easily estimated using H(0) = 0. Inferring the interaction
function is vital to reveal the network [27], and learning H from such reduced dynamics increases the feasibility of
our approach. Introducing the Laplacian matrix, L with Lij = δijki − wij where δij is the Kronecker delta (δii = 1
and δij = 0 if i 6= j) and assuming that H is a linear function, we can rewrite Eq. (5) in a compact form as

X(t+ 1) = F (X(t))− (L⊗H)(X(t)), (3)

where X = [x1, · · · ,xn]T , F (X) = [f(x1), · · · ,f(xn)]T and ⊗ is the Kronecker product (See Supp. Mat. Sec. I for
the derivation in terms of Laplacian matrix and [28]). Defining Y (t) = X(t + 1)− F (X(t)), Eq. (8) can be written
as Y = GX where G = −(L⊗H). Finally, we complete the reconstruction by learning sparse matrix G ∈ Rmn×mn,
by solving the linear equation Y T = XTGT using sparse regression, namely Least Absolute Shrinkage and Selection
Operator (LASSO)[29], as suggested in Ref. [30]. LASSO adds the `1 regularization penalty to the least-squares loss
function to find the sparse coefficients (the links), and it is assessed as a compressed sensing approach [31]. Note
that the linear equation can also be solved with `2-norm for long time series, however, as we are interested in short
data (in the case of the length of the time series T < mn) the compressed sensing approach must be employed [31].
Consequently, we learn the connectivity matrices G and L as seen in Fig. 1 (b). It is also important to note that
learning the equations of all nodes by a single sparse regression without the reduction theorem is only possible for
relatively small networks. The library extension, due to network size, causes a statistically correlated data matrix
that quickly fails on reconstruction [32, 33]. A detailed discussion can be found in Supp. Mat. Sec. XII.

Mouse neocortex reconstruction.— A weighted and directed neural network (987 nodes and 1536 edges), representing
a mouse neocortex [34, 35], is considered (Supp. Mat. Sec. IV). To mimic neurons, we used electrically coupled Rulkov
maps akin to diffusion as

ui(t+ 1) =
β

1 + ui(t)2
+ vi(t)−

∑
j

Lijuj + ηi

vi(t+ 1) = vi(t)− νui(t)− σ
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FIG. 2: Reconstruction procedure for weakly electrically coupled Rulkov maps on a real mouse neocortex network.
(a) Node-similarity histogram determines the low-degree nodes (orange bar) and the hub (red bar). Inset:

Histogram P (S) presents the correlations between the original time series. It is impossible to infer the connectivity
structure from the correlations due to the chaotic nature of the Rulkov maps. (b) The return maps of a low-degree
node and the hub are slightly different due to weak coupling effect. (c) The effective coupling, V (u), shifts through
the horizontal direction due to the integral constant 1. (d) FNR for different lengths of time series. FPR are zero

for all time series lengths.

where the fast variable ui is the membrane potential and the slow variable vi is the ion concentration variation [36].
The constant parameters β = 4.1 and ν = σ = 0.001 are fixed for chaotic bursting dynamics [37].

Noise-free case.— Following the reconstruction scheme, the nodes are classified using the similarity histogram
Fig. 2(a) for η0 = 0, while the pairwise Pearson correlations do not show any information about the degrees (inset
in Fig. 2(a)). The difference between return maps of a low-degree node and the hub is illustrated in Fig. 2(b), and
the comparison against an isolated node dynamics is given in Supp. Mat. Sec. V-A. Effective coupling V (x) is found
approximately [0.1(u+1), 0], meaning that α is 0.1 and the linear shift is 1 on u-variable due to H(0) = 0 (Fig. 2(c)).

Finally, we learn the network topology by solving the linear equation Y = GX using the learned f and H̃. We
measure the reconstruction error using the fraction of the false negatives (positives) out of the positives (negatives),
FNR (FPR). The FNR (FPR) equals 0 for perfect reconstruction (Supp. Mat. Sec. III). Here, we use the ground
truth Laplacian matrix to assess the accuracy of the reconstruction. When the ground truth is not available, the
learned model can be evaluated by the cross-validation techniques (Supp. Mat. Sec. XI). The reconstruction error is
found to be almost zero for a data length larger than T > 200 (Fig. 2(d)). Furthermore, a systematical evaluation of
our approach according to penalty terms and time series lengths is performed. When the number of nodes n times
the dimension of the local dynamics m exceeds the time series length nm > T , it corresponds to an underdetermined
linear problem. Even for short data (T ≈ 200), a successful reconstruction is possible with a small penalty term
when mn = 1974 (Fig. 3(a)). Note that if the problem is overdetermined nm < T , then `2-norm regression can be
used for faster computations (Supp. Mat. Sec. IX). Furthermore, we provide reconstruction analysis for Hénon map
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FIG. 3: (a) The reconstruction performance for different time series lengths and a series of penalty terms as FNR.
FPR always equals 0 for this case. (b) Noise effect on reconstruction performance on real network as FNR and

FPR.
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FIG. 4: Average noise effect on reconstruction performance illustrated using (a) FNR and (b) FPR for 50
realizations of simulations using random scale-free networks of system sizes n = 200, 400, 600, 800 and 1000. Time
series length is fixed as 500 during all the simulations. The shaded regions represent the corresponding standard

deviations.

and the Tinkerbell map in Supp. Mat. Sec. V. We also perform our procedure on a macaque monkey visual cortex
network [35, 38]. This network is not scale-free; however, assuming the local dynamics and the hub node are known,
we reconstructed the network dynamics (see Supp. Mat. Sec. VI).

Noise effect on reconstruction performance.— To measure the robustness of our methodology against noise, we
systematically perform the reconstruction procedure for various η0 values (Eq. (5)) on synthetic as well as real mouse
neocortex networks. The reconstruction approach is robust to small noise intensities for the real-world example
(Fig. 3(b)). The average robustness of the reconstruction procedure over 50 different directed and weighted random
scale-free networks is given in Fig. 4. The scale-free networks are generated using the algorithm in Ref. [39], and
weights are assigned uniformly from the interval [0.8, 1.2]. The algorithm generates undesired self-loops and multiple
edges, so first we remove them. As the system size grows, the reconstruction performance reduces with respect to FNR
for increasing noise intensity η0 (Fig. 4(a)), since the noise becomes more dominant than the weak coupling, which
prohibits learning H using the coupling effect. As similar to real-world application, FPR results are also negligibly
small for the noise induced reconstruction case (Fig. 4(b)). We also performed experiments by generating denser
networks where the reconstruction technique fails, therefore, the network sparsity is crucial for the reconstruction (see
Supp. Mat. Sec. X).

Prediction of emergent behavior.— Although we recover the true network structure, the reduction theory approx-
imates the isolated dynamics f and coupling function H with small bounded fluctuations. As the local dynamics
is chaotic and we consider possible noise effect, time evolution forecasting of the given system can diverge from the
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original system. However, as we recovered the network dynamics with high accuracy for the given data as,

X(t+ 1) = F (X(t)) + γGX(t), (4)

where γ is the coupling control parameter and initially it is γ = 1 for the reconstructed model. Then, it is possible to
detect critical coupling strength factor γc to predict the emergent behavior of the dynamical network by fully analytical
techniques if the reconstructed coupling function is identity matrix [40]. For general coupling functions, master
stability function [41] or connection graph method [42] can be performed for the detection (see Supp. Mat. Sec. XIII).

Conclusions.— The network is fully recovered by our approach in the setting where f is chaotic, the network
is scale-free and the coupling is weak. Because of the weak coupling between nodes and the chaotic nature of the
local dynamics, the correlation between measured time series decays exponentially; therefore, it is impossible to
reconstruct such complex systems by conventional methods. Cutting-edge autonomous statistical learning techniques
also fail when the network size is large. The key idea in our procedure is splitting the model equation into parts
by reduction theorem and inferring each unknown (f ,H and W ) one by one using sparse recovery. Although the
reduction theorem is not established for the general chaotic discrete maps, we showed its validity on various maps. Our
approach guarantees the full reconstruction for the noise-free case and small noise intensity even for relatively short
time series with no limitations on the network size. However, the quality of reconstruction decreases for increasing
noise and the destructive effect of the noise also increases with increasing system size. Finally, obtaining the network
dynamics allows one to predict the emergent behavior under parameter changes. There are available regression-based
approaches that can learn network topology using short time series [8]; however, it is impossible to detect the critical
transitions with only the connectivity. The ability to detect such transitions is crucial for applications such as a
transition to collective behavior in the brain network, which can lead to undesired implications. Thus, it is desirable
to put forward precautionary norms to avert potential disasters.

Data and code availability.—The data we used in this study can be regenerated by running the code which is
publicly available on GitHub [43].
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Turkey (TUBITAK) under Grant No. 118C236. D.E. acknowledges support from the BAGEP Award of the Science
Academy.
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I. CONNECTIVITY MATRIX IN TERMS OF LAPLACIAN

Network dynamics with diffusive interaction is given by,

xi(t+ 1) = f(xi(t)) +

n∑
j=1

wij [H(xj)−H(xi)] (5)

where x ∈ Rm, f : Rm → Rm is chaotic dynamics of isolated nodes and H is a diffusive coupling function [1].
W = [wij ] ∈ Rn×n is a weighted and directed adjacency matrix. Diffusive nature of the interaction allows represent
the coupling in terms of the Laplacian matrix.

n∑
j=1

wij [H(xj)−H(xi)] =

n∑
j=1

wijH(xj)−H(xi)

n∑
j=1

wij (6)

=

n∑
j=1

wijH(xj)− kiH(xi)

=

n∑
j=1

(wij − δijki)H(xj)

where ki =
∑
j wij is the incoming degree of node i and δij is the Kronecker delta. By introducing the Laplacian

matrix, L with Lij = δijki − wij we obtain,

xi(t+ 1) = f(xi(t))−
n∑
j=1

LijH(xj) (7)

Then we can rewrite Eq. (7) in a compact form as,

X(t+ 1) = F (X(t))− (L⊗H)(X(t)), (8)

where X = [x1, · · · ,xn]T , F (X) = [f(x1), · · · ,f(xn)]T and ⊗ is the Kronecker product [2].

II. NETWORK RECONSTRUCTION SCHEME ON A TOY MODEL

We present a step-by-step reconstruction algorithm using weakly coupled chaotic maps on a directed and weighted
network of size n = 20 Fig. 5(a). The network is heterogeneous; the low-degree nodes are abundant, and the hub is
the rarest, as illustrated in the network’s in-degree distribution Fig. 5(b). The network has Rulkov maps interacting
with each other through their u-components diffusively:

ui(t+ 1) =
β

1 + ui(t)2
+ vi(t)−

n∑
j=1

Lijuj(t) (9)

vi(t+ 1) = ui(t)− νui(t)− σ

where the constant parameters β = 4.1 and ν = σ = 0.001 are fixed for chaotic bursting dynamics. We first simulate
the system 15000 time steps and discard the first 14000 steps as a transient. We should note that the local dynamics
(Rulkov map), the coupling function (u-coupling) and the connectivity matrix (Lij) are all unknowns during the
procedure; however, we present every piece of information in this toy model to show the method rigorously.

Fig. 5(c) shows the 2-dimensional data coming from the hub and one of the low degree nodes. We present the
return maps of the same nodes in Fig. 5(d), the dispersion of the hub node due to the dominant coupling effect can
be seen. On the other hand, we compute the pairwise Pearson correlation coefficients sij between the time series,
see Fig. 5(e). Then we obtain the histogram P (S), Fig. 5(f), by the row-sum of the correlation matrix in Fig. 5(e).
Given the chaotic nature of the Rulkov maps, correlations between time series does not give any information about
the network connectivity.

The reconstruction procedure is given by the following steps:
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1. Classification of the nodes.

The separability of low-degree nodes and hubs is crucial since the reconstruction procedure is not applicable
if we cannot classify which nodes are low-degree or hubs at the beginning of the reconstruction recipe. The
classification leads us to learn the isolated dynamics f and the coupling function H as follows: we, first, assume
that the coupling is weak, meaning that if we classify the low-degree nodes, we can consider their dynamics as
local dynamics f with some small fluctuations. If we classify which node is the hub and f , then we can learn
the coupling function H by discarding f(xh(t)) from the hub’s time series xh(t+ 1) using the cumulative effect
of interactions. Therefore, our first aim is to classify the nodes regarding their degrees.

For the classification, we first learn a governing equation for each time series using sparse regression methods
(Supp. Mat. Sec. VII) with a basis composed of candidate functions (Supp. Mat. Sec. VIII). After obtaining the
n predicted models, we measure the difference between the models using normalized Euclidean distance between
the coefficients of predicted models, dij . A distance matrix D = [dij ] summarizes the mismatches between the
predicted models. Fig. 5(g). The row-sum of the distance matrix Di =

∑
j dij gives a histogram P (D), and

each bin of the histogram contains nodes with a similar degree (Fig. 5(h)).

It is also important to note that weak coupling is also crucial to avoid possible synchronization in the network
dynamics. If the system is synchronized, the time series will be identical; in other words, all the predicted
models will be identical. This will make the classification impossible. Therefore, the weak coupling is quite
crucial for this algorithm to work as desired.

2. Learning the local dynamics. To mimic brain network dynamics, we assume that the connectivity matrix
W = [wij ] represents a scale-free network whose degree distribution follows a power law; in other words, most

of the nodes have small degrees k ∼ nε, and some nodes are hubs with degrees k ∼ n 1
2 +ε where ε is an arbitrarily

small number. Therefore, the highest bin of the histogram (the most abundant frequencies) contains the low-
degree nodes’ models since there are many low-degree nodes (the orange bar in Fig. 5 (h)). As it is likely to
have nodes having incoming links, ki > 0, in the set of low-degree nodes, the models can contain some small
fluctuations. Thus, we average the predicted coefficients of the low-degree nodes’ models to infer the local
dynamics as accurately as possible.

3. Learning the coupling function. Using the scale-free network topology assumption as in the previous
section, we understand that the lowest bin of the histogram (the rarest frequencies ) contains the most different
models, which belong to the hubs (the blue bar in Fig. 5(h)). Then discarding the local dynamics of the
hub (f(xh(t)) from the hub measurement (xh(t + 1)) gives the dominant coupling effect, which we aim to
learn. Fig. 5(i) presents the remaining coupling effect. We fit a function to the data and learn an approximate
coupling function plus an integration constant arising from the reduction theorem. To be more precise with
the integration constant, for instance, if the diffusive coupling function is given as h(x, y) = φ(y) − φ(x) then
the effective coupling V for the expending maps is V =

∫
h(x, y)dµ(y) = −φ(x) + C where C is the integration

constant, which we call a possible linear shift for the numerically recovered effective coupling V . This is easy
to estimate from the fitted coupling (Fig. 5 (i)) since we assume that φ(0) = 0. Therefore, the appearing linear
shift is the integration constant C, and its value can vary for different dynamical networks. Furthermore, the
effective coupling is an approximation, which becomes exact when the network model is considered as a directed
star graph with the link directions from low-degree nodes to the hub at the thermodynamical limits as n→∞.
We have an approximated effective coupling for tree-like graphs, as scale-free graphs, under our assumptions
related to node degrees (mentioned above). The size of the bounded fluctuation term κi in the reduction (Eq. (2)
in the main text) can be considered as the measure of approximation.

Here, the weak coupling and chaotic dynamics assumptions take an important role again for more general
networks to preserve the statistical behavior of the nodes’ dynamics. Although using chaotic oscillators helps to
keep the state distribution of the states stable, this property can be destroyed by a large coupling. Therefore,
if the network is denser, then the coupling constant should be scaled to a smaller coupling strength for our
reduction theorem to work. For instance, if the hubs are rare in a scale-free network, the coupling strength
must be scaled by n1/2. If all the nodes are hubs, in other words, if the network is all-to-all connected, then the
coupling strength must be scaled by n. In our work, we scaled the weights in W with n1/2, as we considered
scale-free networks (containing many low-degree nodes and rare hubs) since the work focuses on reconstructing
brain networks. It is also important to remind that, for the node classification step, the synchronization of the
nodes disallows the reconstruction since the machine learning-based methods cannot distinguish the data source
between synchronized oscillators. Consequently, the chaotic oscillators also play an important role here since if
we have periodic and identical oscillator networks, any positive coupling strength can synchronize the model,
which is undesired for the reconstruction part. Therefore, the weak coupling strength and the chaotic dynamical
regime are crucial assumptions for the theory and also for the numerical steps to learn the coupling function H.
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4. Learning the connectivity matrix. After learning the functions f andH, we define Y = X(t+1)−F (X(t)),
so Eq. (8) can be written as Y = GX where G = −(L⊗H). Therefore, learning the links becomes a regression
problem by solving the linear equation Y T = XTGT . Here we employ a compressed sensing approach using
`1-norm, called LASSO, to solve the equation since we are interested in reconstructing large network dynamics
from short data. In other words, we aim to solve the problem when the length of the time series < m×n where
m is the dimension of the local dynamics and n is the system size. The problems under this condition are called
underdetermined regression problems. Finally, we identify the exact Laplacian matrix of the network by solving
the linear equation (Fig. 1 (j)).

Note that, in the previous steps of the procedure, the potential interaction functions of two nodes (or higher-
order interactions if the hypernetworks are interested) are not involved in the basis library. Meaning that the
size of the library is not grown exponentially. Therefore, the algorithm does not require a longer time series to
reconstruct the network dynamics as the network size, n, is increasing. In this last step, we also only sparsely
solve a linear equation where G ∈ Rmn×mn, which is a square matrix. The discussion on the relation between
the length of the time series and the sparsity can be found in Supp. Mat. Sec. XII.

III. ASSESSING THE PERFORMANCE

We use two standard indices to assess the reconstruction performance of our procedure: the fraction of the false
negatives out of the positives (FNR) and the fraction of false positives out of the negatives (FPR). These metrics
correspond to two types of errors in network reconstruction: missing a link where a link indeed exists (false negatives)
or assigning a link between two nodes when they are not connected (false positives):

FNR =
FN

P
and FPR =

FP

N

where FN evaluates errors on the non-zero terms (P ) of the correct matrix (underestimation) and FP evaluates

errors of the zero terms (N) (overestimation). We count FN and FP links by
∑
i,j Θ(|Lij − L̂ij | > ε) to assess the

accuracy of the link strengths where L̂ij is the predicted Laplacian and ε is a tolerance value set as 10 times smaller
than the smallest nonzero value in L. We use a fixed tolerance value as ε = 0.0001 for all analyses.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(j)(i)

FIG. 5: (a) A directed and weighted network. As the network is unknown initially, its links were illustrated
indistinctly. (b) Corresponding in-degree distribution of the network. (c) Time series of a low-degree node and the
hub. (d) The return maps of these time series, the hub’s data is dispersed according to the low-degree node due to
the coupling effect accumulated on the hub. (e) Pairwise Pearson correlation matrix of the time series, which shows
no similarity between, even connected, nodes dynamics due to the chaos. (f) The histogram obtained by the row-sum
of the time series similarity matrix (subplot (e)) does not reflect any information about the network’s original degree

distribution; therefore, it is impossible to identify a low-degree node or the hub. (g) Pairwise distances between
predicted models were obtained in the first step of our reconstruction procedure. Nodes with similar in-degrees show
high similarity. (h) The histogram of the row-sum of the distance matrix (subplot (g)), which does also not contain

the exact in-degree distribution of the network (subplot (b)), however, allows for the low-degree and hub node
identification. The abundant models (the highest bin in (h)) represent the low-degree nodes, and these models

represent the local dynamics, f . The most distinct model (the lowest bin in (h)) belongs to the hub node. We learn
the coupling function by filtering the local dynamics from the hub data. (i) The remaining coupling effect on the
hub is plotted, and the reduction theorem recovers the coupling function. (j) After recovering the local dynamics

and the coupling function, we solve the linear equation y = Ax by sparse regression to obtain the network structure.
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IV. MOUSE NEO-CORTEX NETWORK

We choose a neuronal connectivity consisting 1029 nodes representing a small volume of a young adult mouse
neocortex [3]. The network is directed and contains multi-edges between some nodes. We considered the number of
these multi edges between nodes as weights. Furthermore, the network contains some disconnected parts, we removed
them and kept only the giant component. The resulting weighted and directed network has n = 987 nodes and
m = 1536 links, which is illustrated in Fig. 6 (a) with its in-degree distribution in Fig. 6 (b). We downscale entries of
the connectivity matrix by a small constant 0.1, and then normalize by in-degree of hub, kh, so that the network is
not synchronized.

FIG. 6: (a) Pre-processed directed and weighted mouse neo-cortex network. The sizes of the nodes denote their
in-coming degrees and the thickness of the arrows denote their weights. (b) In-degree distribution of the associated
real network.

V. APPLICATIONS ON MOUSE NEO-CORTEX NETWORK

This section presents the results of the reconstruction procedure on various dynamical systems, namely Rulkov
map, Hénon map and Tinkerbell map. For all the systems, we use mouse neo-cortex network which described in
Section IV.

A. Rulkov map

We have already presented Rulkov map results in the main text. In our reconstruction scheme, we assume that a
low-degree node can be taken as an isolated node to estimate local dynamics f . Here, we compare the return maps of
a low-degree node and a hub node’s dynamics with an isolated Rulkov map under the effect of weak coupling (Fig 7).

FIG. 7: a) The return map of the hub’s data and isolated Rulkov map to show the weak coupling effect. b) The
return map of one of the low-degree nodes shows that these nodes oscillate almost with the isolated local dynamics.
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B. Hénon map

1. u-component coupling

We use Hénon map as f in Eq. (7), a discrete-time dynamical system exhibit chaotic behavior:

ui(t+ 1) = 1− αui(t)2 + vi(t)−
n∑
j=1

Lijuj(t) (10)

vi(t+ 1) = βui(t)

where α = 1.4 and β = 0.3 are fixed during the simulations. Hénon maps are coupled through their u-components
weakly. Initial positions are taken from the interval [0, 0.1] randomly uniformly for each map. We iterate over 11000
steps and discard the first 10000 steps as a transient. Our procedure reveals the local dynamics as Hénon map,
interaction function as diffusive coupling for u−component, and finally, the correct Laplacian matrix from time series
data.

FIG. 8: Reconstruction procedure for weakly u-coupled Hénon maps on a real network. First, we learn a model for
each node’s time series data to classify them. (a) The histogram P (D) based on the pairwise Euclidean distance
matrix. While the highest bin of the histogram gives us f , the lowest bin identifies the hub. The inset histogram
emphasizes that the pairwise correlations of the time series observations do not provide any information about the
network connectivity due to the chaotic dynamics. (b) The return maps of a low degree node and hub show the
coupling effect slightly due to weak coupling. In (c), we plot the dominant coupling effect on the hub to see the model
of H. (d) shows FNR and FPR for different lengths of time series. 200 data points are enough for full reconstruction
of the network dynamics with 987 nodes.
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2. u-component coupling with sinusoidal function

We use the same f but different coupling function H in this example:

ui(t+ 1) = 1− αui(t)2 + vi(t)−
n∑
j=1

Lij sin(2πuj(t)) (11)

vi(t+ 1) = βui(t)

Initial positions are taken from the interval [0, 0.01] randomly uniformly for each map. We iterate over 12000 steps
and discard the first 10000 steps as a transient. Fig. 9 shows the reconstruction results of sine-coupled Hénon maps.
We simply added trigonometric functions to the candidate function library in the first step of our procedure and fully
reconstructed the network connections by learning the local dynamics as Hénon map and the coupling function as
sine function.

FIG. 9: Reconstruction procedure for weakly sinu-coupled Hénon maps on a real network. First, we learn a model
for each node’s time series data to classify them. (a) The histogram P (D) based on the pairwise Euclidean distance
matrix. While the highest bin of the histogram gives us f , the lowest bin identifies the hub. The inset histogram
emphasizes that the pairwise correlations of the time series observations do not provide any information about the
network connectivity due to the chaotic dynamics. (b) The return maps of a low degree node and hub show the
coupling effect slightly due to weak coupling. In (c), we plot the the dominant coupling effect on the hub to see
the model of H. (d) shows FNR and FPR for different lengths of time series. 300 data points are enough for full
reconstruction of the network dynamics with 987 nodes.
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C. Tinkerbell Map

Tinkerbell map coupled through their u-component diffusively is given by:

ui(t+ 1) = ui(t)
2 − vi(t)2 + aui(t) + bvi(t)−

n∑
j=1

Lijuj(t) (12)

vi(t+ 1) = 2ui(t)vi(t) + cui(t) + dvi(t)

where a = 0.9, b = −0.6013, c = 2.0 and d = 0.5 are fixed during the simulations to ensure a fully chaotic regime.
Data is generated from u-coupled Tinkerbell maps by iterating over 11000 steps and dropping the first 10000 time
steps as a transient. We successfully reveal the local dynamics of the Tinkerbell map, interaction function and finally
the Laplacian matrix from time series.

FIG. 10: Reconstruction procedure for weakly u-coupled Tinkerbell maps on a real network. First, we learn a model
for each node’s time series data to classify them. (a) The histogram P (D) based on the pairwise Euclidean distance
matrix. While the highest bin of the histogram gives us f , the lowest bin identifies the hub. The inset histogram
emphasizes that the pairwise correlations of the time series observations do not provide any information about the
network connectivity due to the chaotic dynamics. (b) The return maps of a low degree node and hub show the
coupling effect slightly due to weak coupling. In (c), we plot the dominant coupling effect on the hub to see the model
of H. (d) shows FNR and FPR for different lengths of time series. 300 data points are enough for full reconstruction
of the network dynamics with 987 nodes.

As seen in figures 8(c), 9(c) and 10(c), the horizontal shift between the fitted curve on the data (red) and the
predicted H curve (black) varies for each dynamical system. This observation is compatible with the reduction
theorem, which is analytically proven only for expanding maps [4]. We show that even if the theorem is not rigorously
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proven for the Rulkov map, Hénon map or Tinkerbell map, the methodology accurately works. For the coupling,
H(x, y) = y − x, v(x) =

∫
H(x, y)dm(y) is found as −x plus a constant. These constants are found as 1 for

coupled Rulkov maps, −0.3 for coupled Hénon maps and 0.1 for coupled Tinkerbell maps. For sinusoidal coupling,
H(x, y) = sin 2πy − sin 2πx, v(x) =

∫
H(x, y)dm(y) is found as − sin 2πx plus a constant and it is 0 for sin-coupled

Hénon maps.

VI. MACAQUE MONKEY VISUAL CORTEX NETWORK

We tried our procedure on a real monkey visual cortex network that is not a scale-free type [5, 6]. The network
consists of 91 nodes and 581 undirected and unweighted edges, which is illustrated in Fig. 11(a) with its degree
distribution in Fig. 11(b). It is impossible to classify nodes by degree in a network with such a degree distribution,
failure to classify nodes results in an unable to learn local dynamics and identify the hub. So, we assume we know
the local dynamics and which node is the hub. When we continue with this preliminary information, the reduction
theorem allows us to learn the coupling function smoothly and see full reconstruction.

FIG. 11: (a) Undirected and unweighted macaque monkey visual-cortex network. (b) Degree distribution of the
associated real network.

VII. SPARSE OPTIMIZATION

The model for the dynamical system is given by the function g:

g(x) ≈
p∑
k=1

ψk(x)ξk (13)

where Ψ(x) = [ψ1(x), ψ2(x), ..., ψp(x)] is the library of basis functions. Only a few active terms characterize data
that comes from natural systems on a well-chosen basis; most of the coefficients ξk are zero. To find interpretable
models sparsity concept is beneficial. This idea was used in a compressed sensing framework for the first time as the
sparsity requirement is satisfied [7]. If we have prior knowledge to decide the basis, sparse regression is instrumental
in avoiding overfitting and noise [8]. In our reconstruction procedure, we use sparse regression in more than one step.

The least absolute shrinkage and selection operator (LASSO) [9] is a sparse regression method that uses `1-norm
to promote sparsity. Sequentially-thresholded least-squares (STLS) is another method implemented in the Python
package of SINDy [10]. In STLS, we start with an ordinary least squares solution which results in overfitting the time
series at each point. We repeat least squares to the values obtained by thresholding the residues below a particular
cut-off value called sparsity parameter at each sequence. Finally, an interpretable dynamical model is obtained.



11

VIII. LIBRARY OF BASIS FUNCTIONS

Although prior knowledge about the dynamical system is always helpful in constructing a basis library, it is impossi-
ble to access the information for all cases. Nevertheless, many functions can be accurately estimated using high-order
polynomials. For instance, in this work, we mainly studied with the Rulkov maps defined as follows,

u(t+ 1) =
β

1 + u(t)2
+ v(t) (14)

v(t+ 1) = v(t)− νu(t)− σ

Using a basis library containing only polynomials, it is possible to reconstruct an imperfect model for the Rulkov
map, which generates quite an accurate time series to the original one (Fig. 12). For the Rulkov map, only the
non-polynomial term is the rational one, 1

1+u2 , which is absent in the library. However, this rational term can be
expanded in a power series as follows,

1

1 + x2
=

∞∑
n=0

(−x2)n = 1− x2 + x4 − x6 + x8 + · · · (15)

therefore, it is possible to model the Rulkov map with polynomials roughly. As the power expansion’s convergent
interval is [−1, 1], the predicted model diverges when the orbit is out of the given interval. However, such convergence
problems can be solved by normalizing the time series into the associated space. The interesting dynamics for our
study is the bursting regime which can be modeled without the normalization Fig. 12 (b); therefore, we skip this step,
but the model becomes very complicated with many higher-order polynomial terms.

FIG. 12: The predicted time series of a reconstructed Rulkov model using a candidate functions library containing
only polynomials. a) predicted u-variable of the model b) a bursting regime package zoomed from the black rectangle
in a).

In order to avoid complicated models containing many polynomial terms and possible inaccurate predictions, we
prepared a standard library including common functions, such as geometric series and trigonometric functions. Al-
though unreasonably increasing the number of functions in the library is undesired, adding such nonpolynomial terms
generally terminates a large number of polynomials. Thus, our computational cost mostly becomes cheaper using the
following standard candidate library:

Ψ =

[
1,Pd(x),

{
sin(ix), cos(ix)

}r
i=1

,
{ 1

xi
,

1

1± xi
,

1

(1± x)i

}q
i=1

]
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where d is the degree of the polynomials, and for instance P2(x) is:

P2(x) = [u, v, u2, uv, v2].

Our main strategy is to start d = r = q = 1, and increase them slowly to estimate the model with the minimum
number of candidate functions. The first step of our reconstruction algorithm aims to learn the local dynamics by
classifying the inferred model equations due to their similarity. Here, we illustrate the reconstructed models on the
mouse neocortex network using coupled Rulkov maps (Table I) through a set of selected nodes’ with respect to their
degrees ki (k0 = 0, k46 = k136 = 4, and k218 = 26). As node-0 has no incoming links, we reconstructed only the
Rulkov map dynamics. Node-46 has 4 incoming links, the inferred coefficients for it do not reflect the exact governing
equation, but one can say that its governing equations are similar to node-136, which also has 4 incoming links. The
most distinct model belongs to node-218, which is the hub of this particular network.

node
id

1 u v · · · cos(u) 1
1−u

1
1+u2

0 -0.000 -0.000 1.000
... 0.000 -0.000 4.100

...
...

...
...

...
...

...
...

46 0.000 -0.015 1.005
... 0.005 0.000 4.093

...
...

...
...

...
...

...
...

136 -0.000 -0.015 1.006
... 0.000 -0.000 4.101

...
...

...
...

...
...

...
...

218 -0.714 0.098 0.783
... 0.016 0.001 4.075

TABLE I: Table for the inferred coefficients of the corresponding candidate functions for some of the selected nodes.
We present only nonzero functions for any node.

The first step of the reconstruction algorithm is to classify nodes, which uses a distance between nodes’ coefficients.
We define the distance metric as, dij = (Σpk=1

1
Vk
|ξki − ξkj |2)1/2 where | · | is absolute value, Vk is the variance of

the predicted coefficients of the k-th function in Ψ. As an example, we compute the pairwise distances of the learnt
models given in Table I:

node id 0 46 136 218
0 0.000 2.830 2.105 18.351
46 2.830 0.000 1.925 16.808
136 2.105 1.925 0.000 16.979
218 18.351 16.808 16.979 0.000

TABLE II: Pairwise distances of the predicted models for some of the selected nodes.

As numerically shown in Table II, dij is small for the nodes with the same or similar degrees, such as the distance
is 1.925 between 46 (k46 = 4) and 136 (k136 = 4), while the distance is large for different predicted models, such as
the distance is 18.351 between 46 (k46 = 4) and 218 (k218 = 26).

IX. COMPARISON BETWEEN SPARSE REGRESSION METHODS

We compare two optimizers to perform sparse regression; LASSO and STLS.

LASSO is defined by the equation [11]:

ŵLASSO(λ) = argmin
w∈Rm

(||Xw − y||22 + λ||w||1) (16)
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for a linear problem y = Xw where y ∈ Rn,X ∈ Rn×m and λ is penalty term and uses `1-norm to penalize the weights.

In STLS, Ridge regression is used and defined by the equation [11]:

ŵRidge(λ) = argmin
w∈Rm

(||Xw − y||22 + λ||w||22) (17)

and λ is fixed as 0.05. Sparsity is obtained by masking out elements of ŵ that are below a given threshold. This
threshold is called as sparsity parameter and it is the single hyper-parameter of STLS. In the final step of our
reconstruction approach, we find a sparse solution for w, it corresponds to L in our case. From the algorithmic point
of view, fine-tuning of the hyper-parameters, penalty term for LASSO and sparsity parameter for STLS, is essential
to improve the accuracy. These two parameters are not equivalent, however we can make a similar interpretation
between them. The length of the time series determines the problem type since our network size is fixed in the
experiments. The time series length lower than the network size (T < nm = 987 × 2 = 1974) correspond to an
under-determined case for the real network we use.

Fig. 13 presents the reconstruction performance for different time series lengths and two hyperparameters as FNR
and FPR. We compare FNR values to evaluate the performance of LASSO and STLS in Fig. 13(a) and Fig. 13(c),
since FPR values are always very small. The results show that LASSO overcomes STLS for shorter time series. Since
the `1-norm penalized solution, is a generalization of compressive sensing approach, it provides a unique solution for
underdetermined cases [12]. On the other hand, if there is long enough data, STLS becomes a fast alternative to the
LASSO from an algorithmic point of view and works very well for our problem. We took one under-determined case
(T = 300) to compare the performance of two different sparsity promoting methods in Fig. 14. If we have limited
data, we see full reconstruction by LASSO but not by STLS.

(b)

(c) (d)

(a)

FIG. 13: (a) FNR and (b) FPR with respect to a list of penalty terms for LASSO. (c) FNR and (d) FPR with respect
to a list of sparsity parameters for STLS. 10 different lengths of time series are used to compare the performance.
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FIG. 14: FNR with respect to a list of penalty term for Lasso and sparsity parameter for STLS. (T = 300) case is
used as a short time series example. There is no full reconstruction region for STLS.

X. EFFECT OF NETWORK SPARSITY ON RECONSTRUCTION PERFORMANCE

In addition to the lack of sufficient data, the sparsity condition of the Laplacian matrix should be satisfied to solve
the linear regression problem within the compressed sensing framework. We present results in this direction based on
synthetical networks. The algorithm we use to generate directed scale-free networks has three probabilistic parameters:
α and γ are the probabilities of adding a new node connected to an existing node chosen randomly according to the
in-degree and out-degree distribution, respectively. β is the probability of adding an edge between two existing nodes.
We use two different parameter setting as [α = 0.41, γ = 0.05, β = 0.54] and [α = 0.2, γ = 0.5, β = 0.3] to obtain
Laplacian matrices at different sparsity levels. The former (default) setting’s power exponent is approximately 2 and
generates denser networks, while the latter’s power exponent is approximately 1 and generates sparser networks. As
seen in Fig. 15, we see full reconstruction in sparser networks since the Laplacian matrix meets the sparsity condition
for the compressive sensing approach [13].

FIG. 15: FNR against noise for sparse and dense networks of sizes (a) n = 600, (b) n = 800 and (c) n = 1000. All
points show an average error over 10 different realizations of scale free networks and shaded regions present standard
deviations. Time series length is 500, which corresponds to underdetermined cases for all three network sizes.

XI. CROSS VALIDATION OF INFERRED LAPLACIAN MATRICES

In the main text, we use the ground-truth Laplacian matrix to show the performance of the reconstruction for various
hyper-parameters and data lengths. However, it is unlikely to know the true matrix to evaluate the methodology’s
success in real-world problems. Therefore, it is important to assess the reconstruction outcome when the real matrix
is absent using a cross-validation technique. To illustrate the cross-validation approach, we obtained predicted time
series of length 500 using inferred Laplacian matrices for various hyper-parameters (penalty term) λ = 0.008, 0.003
and 0.0003. Out of those three parameters, the outcome for λ = 0.0003 gives the best-fit, Fig. 16(a).
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FIG. 16: a) Comparison between measurement of a node and test time series. Each λ parameter corresponds to
different connectivity matrices. We simulate the inferred models and obtain test time series. b) Cross validation of
the inferred time series based on obtained connectivity matrices for a series of penalty terms.

To find the best hyper-parameters in large network dynamics, we use an error function

E =
1

n

n∑
i=1

(
1

T

T∑
t=1

(
yi,t − ŷi,t

)2
)

(18)

where yi = xi(t+1)−f(xi) and ŷ denotes the predicted one. Then we optimize the hyper-parameters, which minimize
the error. The parameters yielding the most accurate results can be used as the optimal hyper-parameter (Fig. 16(b)).

XII. WHY IS THE REDUCTION THEOREM CRUCIAL TO RECONSTRUCT LARGE NETWORKS?

A fully-algorithmic approach is to apply any sparse optimization technique directly to the entire multi-variable
time series. Only up to a certain size networks can be recovered by this method. By the reduction theorem, we learn
local dynamics from low degree nodes and interaction dynamics from the hub. We are not looking for a sparse linear
combination of functions within a massive library of all possible functions. Therefore, there is no limit on network
size in our approach. In this section, we will show this with a simple example:

Assume we have a network with 5 nodes. If node 1 has links coming from the nodes 0, 4 and 5 as seen in Fig. 17,
then the dynamics of node 1 is written simply in Laplacian matrix form:

0

1

2

3

4

5

FIG. 17: 5-nodes network as an example.

x1(t+ 1) = f(x1(t)) + 3H(x1(t))−H(x0(t))−H(x4(t))−H(x5(t)) (19)



16

where xi ∈ Rm. Eq.(19) is in the form of a linear combination of the connections, allowing any sparse regression
algorithm to capture the parameters correctly in case of a well-defined basis library. For one single equation, it seems
pretty feasible, but for a 5-nodes network, each has m components, we have 5m equations to be discovered. Suppose
we set the basis composed of polynomials up to second-degree and all quadratic combinations of all variables due to
a piece of prior knowledge about the coupling function. This example setting has 9 functions for m = 3. In that case,
our basis includes 45 features for this particular example. If we do not have prior knowledge, we use an extensive
library that includes more candidate functions. We performed experiments in this direction to see the limitations.
The results showed that a purely algorithmic equation-based learning approach fails as the network size, that is, the
basis grows. Results of Novaes et al. validated our conclusions, they showed that adding new functions to the basis
due to increase of network size (up to 20-nodes) effects badly the reconstruction [14].
Furthermore, in the final sparse regression step, our problem turns into a linear equation as y = Ax, where y ∈ RT ,
A ∈ RT×n and x ∈ Rn. Here, y is the data, and the length of the data is T , n is the network size, and we focus on the
underdetermined cases (T < n) since data availability is always limited. From the perspective of compressed sensing,
the measurement matrix A should satisfy some conditions to converge the sparsest solution for x by `1-norm. One
of these conditions can be summarized as the time series length scales with the network size, so if the measurement
matrix has more columns, longer measurements are needed. It is given by the relation:

T ≈ O(Klog(n/K))

where K is the network’s sparsity measure (number of nonzero entries) [15]. If the number of columns is determined
by the basis functions that include all possible pairwise interactions, not the network size, this means the need for
a longer time series. On the other hand, the uncertainty of the interaction function is an obstacle to inferring the
exact connection matrix [16]. Finding H and therefore reducing the dimension of the optimization problem for full
reconstruction broadens the applicability and distinguishes our work.

XIII. GENERAL DIFFUSIVE COUPLING AND MASTER STABILITY FUNCTION

Consider the function h : Rm × Rm → Rm. We say that h is diffusive if

h(x, x) = h(0) = 0 and h(x, y) = −h(y, x)

We again consider the model to a general diffusive coupling

xi(t+ 1) = f(xi(t)) + γ

n∑
j=1

wijh(xj ,xi) (20)

where γ is the coupling strength.
We perform the analysis close to synchronization xi = s+ ξi so

h(xj ,xi) = h(s+ ξj , s+ ξi) = h(s, s) +D1h(s, s)ξj +D2h(s, s)ξi

but since the coupling is diffusive

D2h(s, s) = −D1h(s, s)

we get

h(xj ,xi) = H(s)(ξj − ξi) +R(ξi, ξj)

where H(s) = D1h(s, s) and R(ξi, ξj) contains quadratic terms. Then, the first variational equation about the
synchronization manifold

ξi(t+ 1) = Df(s(t))ξi(t) + γ

n∑
j=1

wijH(s)(ξj(t)− ξi(t)) (21)

= Df(s(t))ξi(t)− γH(s)

n∑
j=1

Lijξj(t). (22)
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All blocks have the same form which are different only by λi, the ith eigenvalue of L. Then we obtain the parametric
equation for the modes

u(t+ 1) = [Df(s(t))− κH(s(t))]u(t)

where κ = γλi. By fixing κ, we compute the maximum Lyapunov exponent Λ(κ) as

‖u(t)‖ ≤ CeΛ(κ)t.

The map

κ 7→ Λ(κ) (23)

is called master stability function. Notice that if Λ(κ) < 0 when κ > γcλ2 then ‖u‖ → 0. For more details on the
master stability function Eq. 23, see e.g., [17, 18].
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