
 

Available online at www.sciencedirect.com 

Manufacturing Letters 
Manufacturing Letters 33 (2022) 17–28 

            
     
  
 

50th SME North American Manufacturing Research Conference (NAMRC 50, 2022) 

Optimum utilization of on-demand manufacturing and laser polishing in 
existence of supply disruption risk 

 Durul Ulutan*, Zülal İşler, Burak Erkan Kaya, Mustafa Hekimoğlu 
Kadir Has University, İstanbul, TURKEY 

 

2213-8463 © 2022 Society of Manufacturing Engineers (SME). Published by Elsevier Ltd. All rights reserved. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)                                                                                           
Peer-review under responsibility of the Scientific Committee of the NAMRI/SME. 

* Corresponding author. Tel.: +90-212-533-6532x1359. E-mail address: durul.ulutan@khas.edu.tr 

Abstract 

3D printing has moved from being a rapid prototyping tool to an additive manufacturing method within the last decade. Additive manufacturing 
can satisfy the need in dire situations where spare parts distribution is an issue but access to a 3D printer is much more likely and rapid than 
access to original parts. Managing inventories of spare parts can be tackled with more ease thanks to the reduced part types with additive 
manufacturing. While quality (in terms of reliability) of additively manufactured spare parts in terms of mechanical properties seem to be lower 
than original parts (particularly due to the inherent staircase appearance and the corresponding stress concentration zones that can lead to 
premature fatigue failure), use of post-processing subtractive techniques to correct such surface irregularities are found to improve reliability. 
While each process adds another layer of complexity to the cost minimization problem, demand uncertainty and risk of supply disruption represent 
the modern global problems faced recently. The problem tackled in this study is the joint optimization of the supply reliability considering the 
effect of laser polishing parameters and the demand uncertainty. In this problem, a condition of random breakdowns of identical products is 
considered. Also, the original supplier of machine components is subject to exogenous disruptions, such as strikes, raw material scarcity, or the 
COVID-19 pandemic. As a result, the optimum control policy with the right cost parameters was shown via numerical experiments originated 
from mathematical analyses. This optimality can be critical in managing the system in the best possible way, particularly during times of 
unforeseen circumstances such as pandemics. 
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1. Introduction 

Conventionally, subtractive manufacturing (which has 
become a retronym for manufacturing) has been used in 
producing goods in many industries [1]. On the contrary, 
additive manufacturing has traditionally been a method for 
prototyping due to its lack of process capabilities [2-4]. It is 
called “additive” because of the layer-by-layer nature of the 
process [4-6]. The major limitation of additive manufacturing 
that is the product mechanical quality has been overcome in 
many cases in the recent years [1-2, 4]. Therefore, it has 
become a process that can be a good alternative where 
subtractive methods fall short, such as when speed and cost are 

of concern. In terms of material costs as well as lead time and 
set-up time, additive manufacturing offers many advantages 
compared to its subtractive counterpart [7]. What has made 
additive manufacturing so popular before it became 
mainstream was its superior capabilities in terms of product 
complexity that allowed designers to iterate [8]. Since the 
complexity of the process is not affected much by the product 
geometry, it has been a good tool to reduce design costs by 
frequent iterations [7-8]. 

Currently, the main issue with additive manufacturing 
remains to be the observance of the layered manufacturing 
technique in a “staircase” appearance [9]. This inherent issue 
with the manufacturing method has not been much of an issue 
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when it was used for prototyping since parts that are not for sale 
and only used for visualization purposes do not carry that much 
importance. However, once these parts become parts for use as 
it has been recently, the staircase appearance brings with itself 
some inherent issues. Aside from the visual suboptimalities, 
this appearance also means surface irregularity, which causes 
tolerancing issues [10]. Even worse, the surface irregularity 
may cause a stress concentration zone that will lead to 
premature fatigue failure of the part [11]. Therefore, if additive 
techniques are to replace subtractive manufacturing methods 
for production parts, the staircase appearance needs to be 
minimized or completely eliminated. 

Researchers have been developing complicated methods to 
alleviate the staircase appearance by approaching the part from 
different directions. To accomplish this task, a 6-DoF robot or 
a 5-axis printing equipment can be employed so that the part 
that is printed is virtually “sideless” [12-13]. If there are no 
sides but all surfaces of the part are “top,” then there cannot be 
a staircase appearance as it is a feature created due to the side 
surface. However, these machines can be quite costly making 
them not at all cost-efficient. Therefore, many researchers also 
work on developing methods that can be used to alter the 
surface quality after the printing is complete. These methods 
are called post-processing techniques and fall into the category 
of subtractive manufacturing [14]. If the equipment for these 
methods is already acquired or can be easily obtained without 
much cost, use of the post processing method can be justified. 
One method that is relatively easy to obtain and apply without 
much of an investment is laser beam polishing [15]. In this 
technique, the irregularities on the part surface are removed by 
a focused laser beam to make the surface smoother [15]. The 
smooth surface then makes the part more reliable via improved 
fatigue life due to eliminated stress concentrations [15]. 
Therefore, use of laser polishing assistance to the additive 
manufacturing process can be a reliability booster. However, 
appropriate selection of parameters in laser polishing is 
essential. If one is not careful, the effect of laser polishing may 
not be observed after the post-processing. Even if it is observed, 
the effect may be too small to provide any meaningful benefit. 
The worst-case scenario is if the laser parameters are adjusted 
too aggressively – in which case a burnt part surface with 
quality worse than before it was laser polished could be a 
possibility. 

Considering the 3D-printing capabilities, as well as the 
possible effects of laser polishing on part quality, production 
planning can take different shapes than a single option [16]. In 
today’s world, where relatively lightweight and easier to use 
3D-printers are getting more common by the day, logistical 
problems need to be revisited with new constraints. 
Conventionally, shipping of goods for customer use requires 
careful thus expensive packaging. However, “shipping” of 
software and designs of products can be done quickly and 
without the attached cost of shipping. If raw materials that do 
not need such careful handling are shipped and used to create 
the part at the destination, transportation costs can be 
significantly reduced [17]. Moreover, holding inventory of 
finished goods would become unnecessary and inventory of 
raw materials that can make up any product as a spare part 
would be the norm. This “on-demand manufacturing” thought 
can only be materialized with a good understanding of how and 
how much benefit can be extracted from new technologies such 
as 3D-printing [14]. 

In addition to on-demand manufacturing, companies are 
forced to adapt themselves to abrupt changes in their supply 
chains [17]. Such changes most commonly manifest 
themselves as demand and supply uncertainty for a 
manufacturer. Specifically, customer demand of any finished 
products is subject to uncertainty. This randomness has been 
addressed by theoretical probability distributions and 
stochastic processes, such as Normal distribution or compound 
Poisson process in the literature. In addition to the demand risk, 
exogenous factors, such as labor strikes in suppliers’ plants, 
inaccessible ports or raw material shortage due to outbreak of 
a pandemic disease, e.g. COVID-19, can lead to disruptions in 
raw material of semi-finished goods supply chains.  

Supply chain disruption is a widely studied topic in the 
literature from the perspective of supply chain and inventory 
management perspectives. Hekimoğlu and colleagues state that 
the supply risk in supply chain can manifest itself in different 
forms [17]. The most common forms are lead time fluctuations 
(suppliers’ postponed deliveries), partial fulfillment of 
replenishment orders, and temporary unavailability of 
suppliers. In 1990s suppliers’ temporary (Markovian) 
unavailability was recognized by scholars considering 
stochasticity of demand and supply in a single echelon setting 
[18-19]. They considered hedging the supply risk by increasing 
the inventory level of a raw material or semi-product in order 
to satisfy the demand during supply unavailability. Similarly, 
hedging the effect of lead time fluctuations with inventory 
increase has been analyzed by researchers [20-22]. They 
recommend optimal control policies to increase the order 
quantities to supplier in advance when the lead time 
fluctuations increase due to some exogenous factors in the 
supply side. Muharremoğlu and Tsitsiklis are the first ones 
considering the effect of lead time fluctuations in a multi-
echelon supply chain setting consisting of a depot and multiple 
production facilities [23]. Tomlin considered different 
strategies: inventory increase, finding an additional supply 
source, and capacity reservation for hedging supply risk from 
inventory management perspective, and characterized the 
conditions in which each strategy is the most favorable [24]. Li 
and colleagues as well as Hekimoğlu and colleagues are the first 
ones combining the effects of multiple supply risk forms in a 
single study [17, 25]. Li and colleagues developed a supply risk 
estimator utilizing lead time and other endogenous measures 
within a supply chain to quantify the supply risk within a spare 
parts supply chain [25]. Hekimoğlu and colleagues considered 
the combined effect of lead time and supply risk within a single 
echelon setting [17]. They found that the combined effect of the 
two types of supply risk creates more cost increase (need higher 
inventory hedging) compared to the individual effect of each 
supply risk form on a company. In none of these studies 
reviewed here, the effect of supply risk in existence of on-
demand manufacturing capability, i.e. 3D printers, has been 
studied. It is recognized that increasing usage of additive 
manufacturing stimulates increased localization of the 
manufacturing process as producers have the capability of 
manufacturing as a whole instead of relying on dozens of 
suppliers for components. With the additional manufacturing 
capability of 3D printers, manufacturers will be able to respond 
to supply chain fluctuations using in-house solutions [26-27]. 
Therefore, it is important to address the optimal strategy of a 
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manufacturer in existence of 3D-printing capability when 
supply risk becomes apparent. To move this research question 
further, we present a motivational case study depicting such a 
problem for a manufacturing facility. 

1.1. Motivational case study of a manufacturing facility 
adapting additive manufacturing 

In this section, we provide a case study, first introduced by 
Öberg and Sham who consider the additive manufacturing as a 
solution to supply problems of machine components [28]. In 
this section, we added some details, which are inspired by 
another case study [17] on supply problems in spare parts 
supply chains to their business case to emphasize this relation 
and motivate our problem setting and model provided in the 
next section.  

Consider a food packaging and processing firm, offering 
packaging, filling machines, and processing for dairy, 
beverages, ice cream, and cheese. The company supplies 
machines for production to its customers. For these 
machineries, they also provide components and spare parts for 
their customers. Currently, the company utilizes a network of 
suppliers to obtain necessary parts of a machine component and 
assemble those parts to provide a solution for its customers. 
Lately, they introduce additive manufacturing to their business. 
Doing so allowed them to manufacture consolidated parts as 
one component rather than multiple components supplied from 
different companies and assembled into one. 

Recently, one of the component suppliers announces that 
they will not be able to deliver parts for 3 months due to facility 
shutdown during the COVID-19 pandemic. To circumvent this 
supply disruption, the manufacturing department of the 
company initiates a project for producing the necessary 
component using additive manufacturing combined with laser 
polishing. During their literature review, they realize that by 
manipulating the scanning speed and energy density of laser 
polishing, they can increase the reliability of parts to a certain 
extent in exchange of increased production cost of the part. The 
production engineer realizes that there is a trade-off between 
the selection of laser energy density, hence reliability level, of 
the printed part and the original part’s reliability, production 
cost, and the duration of supply disruption. 

In this study, a solution to the production process planning 
problem of spare parts with 3D printing is provided in existence 
of a laser polishing option (to increase part reliability), as well 
as demand uncertainty and supply disruption risk. To be able 
to have a full grasp of the problem, first the theory is explained 
in detail in terms of the effect of laser polishing (Section 2) and 
how it is applied to the supply chain problem (Section 3). To 
facilitate understanding of the discussion in the theory, a 
detailed nomenclature is provided in Table 1. This includes 
how the minimum total of discounted cost in the finite planning 
horizon can be mathematically modeled subject to perfectly 
healthy supply as well as two types of supply disruptions: short-
and-frequent and long-and-infrequent. Therefore, changes in 
optimum manufacturing and supply policy of a manufacturer 
can be understood. After the results are presented alongside 
with discussions in Section 4, concluding remarks follow in 
Section 5. 

 

Table 1. Nomenclature 𝜉: laser energy density 
P: the density of a laser’s energy is directly proportional to its power

v: velocity 

D: spot diameter 𝑝: part reliability 

p: the original spare part failure probability without any laser 
polishing Δ: the discriminant of the quadratic polynomial in 𝑝(𝜉) 𝑐 : the acquisition cost of the original part 𝑐 : the cost of manufacturing a part in a 3D printer 𝑐 : the cost of laser polishing 𝑅 : surface roughness 𝑣: energy density 𝑙𝑡: lead time 𝑞 : the amount of parts ordered to the original part supplier (OPS) q : the amount of parts printed at different energy densities m: the number of working printed parts at different quality levels ℎ: holding rate 𝑏: backlogged rate 𝑦 : inventory level at the beginning of period t d : the number of broken parts from other quality levels 𝑑 : the amount of original parts broken during a period 𝑚 : the number of working original parts 𝑐 : unit cost of original parts 𝑠: the status of supply at the beginning of the period t, 𝑠 ∈ {𝐻, 𝐹}. H 
indicates healthy supply and F indicates failed supply 𝑞 : the amount of printed and polished parts using laser density 
level 𝜉  𝜙(𝐻): the probability of the supplier’s staying healthy in the next 
period 𝜙(𝐹): the probability of supplier’s revocery from disruption in the 
next period 

2. Theory 

The major theory of this work is the joint optimization of 
part reliability and the inventory level in presence of demand 
and supply uncertainty. Under such uncertain conditions as 
well as uncertain reliability of parts, increased type and amount 
of parts stored at inventory is expected, which increases 
inventory costs. Additive manufacturing can be deployed as a 
method that uses the same raw material as input (which 
decreases inventory costs by reducing the type of parts stored) 
and outputs a replacement for any part that fails (which 
decreases inventory costs by reducing the amount of parts 
stored). The level of commonality that can be obtained by using 
additive manufacturing is unmatched by any other current 
method, which is the main contribution that is studied in this 
work. On the one hand, increasing the use of additive 
manufacturing brings such an advantage. On the other hand, 
additive manufacturing has not yet reached the level of 
conventional manufacturing methods in terms of reliability of 
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products produced. This is mostly due to the fact that reliability 
has been shown to be affected by the surface quality, which is 
the most apparent inherent issue with additive manufacturing. 
Decreased surface quality results in stress concentrations on the 
part, which leads to crack initiation and propagation. These 
cracks are irreversible after a certain point and they cause 
unexpected failure of the part, which is the depiction of the 
reliability issue. Although occurrence and measurement of 
these surface quality issues can be in many different forms, 
average surface roughness measured by a surface profilometer 
is the conventional way followed. Hence, in this study, amount 
of decrease in surface roughness is used as a metric showing 
the increase in part reliability. 

2.1. Laser polishing effect and cost 

Since the “staircase appearance” of parts is inherent to 
additive manufacturing, many researchers work on ways to 
overcome this issue. Robotic 3D-printing and 5-axis 3D-
printing are some ways they have found to work since changing 
the angle of approach to the part enables the removal of the 
staircase structure that causes increased surface roughness. 
However, these processes make the whole system 
unnecessarily complex and additive manufacturing loses its 
main appeal of being a low-complexity process. Therefore, 
finding a different way of reducing surface roughness without 
increasing the process complexity significantly is key. 

2.1.1. Previous work 
In this sense, using a post-processing step, provided that the 

post-process is sufficiently simple, becomes a good 
compromise. Researchers showed that using a laser cutter to 
polish the surface of the additively manufactured part and 
removing the staircase appearance is not only possible, but also 
leads to favorable results. With only a marginal cost term added 
to the whole production system, the reliability of manufactured 
parts can be increased significantly [10, 29]. Conventionally, 
the effect of laser polishing can be measured with its energy 
density (𝜉). It was shown that the density of a laser’s energy is 
directly proportional to its power (P), and inversely 
proportional to its velocity (v) and spot diameter (D). 
Therefore, it is possible to adjust the laser effect by speeding 
up or down the laser scanning, or increasing or decreasing the 
laser power level. 

Researchers showed that without sufficient laser energy 
density (low laser power level and/or high laser scanning 
speed), surface was not polished at all. They also showed that 
at laser energy density that is too high (high laser power level 
and/or low laser scanning speed), surface can get burnt, causing 
structural problems while not solving the roughness issue. 
Thus, it is important to find the optimal level of laser energy 
density that gives the best results. Chang et al. developed an 
inverse quadratic empirical model to represent this behavior of 
surface roughness with changing laser energy density, which 
can be utilized in the joint optimization suggested in this work 
(Figure 1) [29]. Then, Perez Dewey and Ulutan showed that 
this model can be applied to other materials such as plastics as 
well (Figure 2) [10]. Finally, Hekimoğlu and Ulutan used this 
model to create a reliability model of additively manufactured 
parts with and without laser polishing [14]. According to this 
model, part reliability 𝑝 can be taken as a function of only the 

laser energy density as shown in (1). In this equation, a, r, s, 
and p are constants of the equation and a, r ≥ 0, s < 0 constraints 
ensure the best representation of the physical phenomenon. The 
original spare part failure probability without any laser 
polishing is provided with p. 𝑝(𝜉): = 𝑝 +    (1) 

 

Fig. 1. (a) Inverse quadratic approximation of experimental surface roughness 
measurements (Ra) under changing laser energy density (𝜉) for a metal part 

[29]. 

2.1.2. Mathematical framework 
The following proposition provides the properties of the 

inverse quadratic model important to the solution of the supply 
chain problem (taken from [14]). 

Proposition 1: The following statements hold: 
1. If 𝑠𝛼 < , then  𝑝(𝜉) is a convex function of 𝜉  and 

decreasing in 0, − . 
2. 𝑝 − min 𝑝(𝜉) , which is named as the originality 

difference, is − , where Δ is the discriminant of the 
quadratic polynomial in 𝑝(𝜉). 

Proof 
The first statement will be shown using the second 

derivative test as  𝑝(𝜉)  is a continuous function of 𝜉.  For 
notational simplicity, define 𝐴 =  𝑎 + 𝑟𝜉 + 𝑠𝜉 . Then  𝑝(𝜉) =𝑝 + .   ( )  =  −  ,  and  ( ) = − ,  where 𝐴 =   = 𝑟 + 2𝑠𝜉 , and 𝐴 =   = 2𝑠. 

Using this,  ( ) = − 𝑠𝐴 − 𝐴  = − [𝑠𝛼 − 𝑟 −
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is positive, since 𝑠𝛼 − 𝑟 − 3𝜉𝑠𝑟 − 3𝑠 𝜉  is a concave 
function. It has a single maximum point at 𝜉 = − . 
Substituting this value into the polynomial in square brackets, 
we get 𝑠𝛼 −  which is the upper bound of the polynomial. 

The condition in the statement ensures that  ( ) > 0  as 𝐴 > 0 for 𝜉 ∈ [0, − ]. This makes 𝑝(𝜉) a convex function if 
the condition holds. Convexity implies that there is a unique 
point 𝜉∗  that minimizes the function, and it can be obtained 
with  ( )  = = 0 ⇒ 𝜉∗ = − . Statement 1 is proven. 

For statement 2, we calculate 𝒑(𝝃∗) − 𝒑 for 𝝃∗ = − 𝒓𝟐𝒔. 
This leads us to 𝟒𝒔𝟐𝟒𝒔𝟐 𝜶 𝒓𝟐𝒔. Define 𝚫 = 𝒓𝟐 − 𝟒𝒂𝒔. Then 𝟒𝒔𝟐𝟒𝒔𝟐 𝜶 𝒓𝟐𝒔 = − 𝟒𝒔𝚫 . Q.E.D. 

The cost of manufacturing a part in a 3D printer, 𝑐 ,  is 
considered to be lower than the acquisition cost of the original 
part, denoted by 𝑐 . In addition, the cost of laser polishing 
(𝑐 ), which is assumed to be an additive cost component for 
the printing cost of spare parts, is assumed to be (convex) 
increasing function of the laser energy density as follows: 𝑐 (𝜉) ≔  𝑐 𝜉 . 

 

 

Fig. 2. Inverse quadratic approximation of experimental surface roughness 
measurements (Ra) under changing laser energy density (𝜉) for a plastic part 

[10]. 

2.2. Spare Parts Inventory Control During a Finite Planning 
Horizon 

In this study we consider a periodic review inventory control 
problem during a finite planning horizon. Finite horizon 
periodic review feature of the system refers to a single order 
placed to the supplier within a period during until a certain time 
point in future. Such a system can be exemplified with spare 
parts orders that are placed to original equipment manufacturer 
at the beginning of each week until all machines are retired 
from use. The inventory control of spare parts is an important 
problem for companies as too much inventory creates 
significant financial burden on the company whereas frequent 
shortages cripples the productivity and customer loss. From the 
technical point of view, spare parts inventory control is a 
challenging problem as demand is a stochastic process over 
time. In addition, in most practical cases, spare parts are 
delivered after a certain lead time, which means it is impossible 
to correct inventory levels quickly in case of shortages.  

In periodic review systems inventory managers place an 
order at the beginning of each period by looking at the current 
level of inventory, the amount of previous undelivered orders 
and the demand distribution. Random demand makes the 
inventory level (and the associated cost factors) a random 
process. Therefore, the manage total inventory costs, one needs 
to control the inventory level process dynamically at each 
decision epoch. 

2.3. Total cost 

The study in this work is an exploratory one whereby 
developing a mathematical model that minimizes the total 
discounted cost that occurs in a finite planning horizon 
consisting of fixed time periods such as weeks, months, etc., is 
aimed. At each period, parts at different quality levels working 
in a finite amount of identical capital products, denoted by 𝑁, 
fail with different probabilities. For traceability of the optimal 
control model, we assume that there is a finite amount of 
different energy densities, denoted by 𝑣, that can be used in the 
laser polishing process. From a mathematical point of view, 
this is equivalent to having a finite amount of quality levels 
(𝑣 + 1 different failure probabilities) that can be selected for 
printing spare parts during the planning horizon. Two examples 
of such a discretization of reliability for 𝑣 = 3 and 𝑣 = 10 are 
given in Figure 3 against the continuous case (𝑣 = ∞). 

In the problem setting, we assume that events occur in the 
following order. First, delivery of the order that is placed lead 
time (𝑙𝑡) periods ago is delivered and a new order, 𝑞 ,  is placed 
to the Original Part Supplier (OPS). Then random breakdowns 
(spare parts demand) are realized during the period. Once all 
random breakdowns are realized, original parts in inventory are 
used for maintenance of machinery. When spare parts 
inventory is short, the printing process takes place. The event 
order of each period is depicted in Figure 4. 

At each period of the planning horizon, a periodic cost 
function in (2), consisting of acquisition cost, printing cost 
(printing plus laser polishing), holding and downtime costs is 
incurred. The cost function depends on the amount of parts 
ordered to the original part supplier (OPS), denoted by 𝑞 , parts 
printed at different energy densities, 𝐪𝐭𝐩 ≔ (𝑞 , 𝑞 , … , 𝑞 ), 
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and the number of working printed parts at different quality 
levels denoted by 𝐦: = (𝑚 , 𝑚 , … 𝑚 ). 

If an original spare part is held at inventory for one period, 
holding cost is incurred with rate ℎ. When a machine stays 
down for a period due to the lack of available (original or 
printed) parts, then downtime cost with a rate of 𝑏 is incurred. 
Assuming each machinery has a single spare part, then the 
conditional expectation of holding and downtime cost can be 
expressed with (2). 𝐿(𝑦, 𝑞 , 𝑑) = ℎ(𝑦 − 𝑑) + 𝑏(𝑑 − 𝑦 − 𝑞 ) ,   (2) 

where �̅� = (𝑑 , … , 𝑑 ). The first term of (2) is the amount of 
excess inventory at the end of a period whereas the second 
term is the total downtime cost at the same period given that 
the amount of original parts broken during a period is 𝑑  and 
the number of broken parts from other quality levels are 𝑑 , 𝑖 = 1,2, … , 𝑣. Mathematical models for the optimum cost 
of printing and acquisition are given in (3) and (4). 
 

 

Fig. 3. Discretization of laser energy density 

 

Fig. 4. Event order within a review period 

𝑉 (𝒒𝒕𝒓, 𝑦 , 𝑚 , 𝒎) = 𝑚𝑖𝑛 𝑐 𝑞 + 𝐸 �̿�(𝑦, 𝒒 , 𝑚 , 𝒎, 𝐷 , 𝑫 , 𝐻)   (3a) 

𝛤 (𝒒𝒕𝒓, 𝑦 , 𝑚 , 𝒎) = 𝐸[�̿�(𝑦, 𝒒𝒕+𝟏𝒓 , 𝑚 , 𝒎, 𝐷 , 𝐷 , 𝐹)] (3b) 

In (3a) the optimum 𝑡 period cost-to-go function for healthy 
supply case is given with. 𝑉 (𝐪𝐭𝐫, 𝑦 , 𝑚 , 𝒎), which has four 
parameters: The first parameter is the outstanding order vector 𝐪𝐭𝐫: = (𝑞 , 𝑞 , … , 𝑞 )  including previous orders that 
have not been delivered. The second parameter 𝑦  is the 
inventory level at the beginning of period 𝑡, whereas the third 
parameter is the amount of original parts installed in the 
machine part and fourth parameter is the vector 𝐦 including 
the amount of printed parts at quality levels 1,2, … , 𝑣. When 
the supply is healthy, the inventory manager can place an order 
to OPS at the beginning of the period 𝑡. After the delivery and 
order placement, the pipeline vector 𝐪𝐭𝐫  becomes 𝐪𝐭 𝟏𝐫  and 𝑉 (. ) is calculated as a result of a minimization over 𝑞 . The 
minimization in (3) yields the optimum order to OPS. The first 
term in this minimization is the acquisition cost, 𝑐 𝑞 , whereas 
the second term gives the expected cost of printing spare parts 
in case of inventory shortage at the end of period 𝑡. 
 

When the supply is disrupted, it is impossible place an order 
to OPS. Therefore, after the pipeline vector becomes 𝐪𝐭 𝟏𝐫 ≔(0, 𝑞 , … , 𝑞 )  and the 𝑡 -period cost to go function, 
denoted by Γ (𝐪𝐭𝐫, 𝑦 , 𝑚 , 𝐦), is equal to the expected value of 
the cost at the end of the period. The status of supply at the 
beginning of the period 𝑡, also affects the system’s evolution 
between healthy and disrupted supply. It is indicated with the 
parameter 𝑠 ∈ {𝐻, 𝐹}  of  �̿�(. ),  which is the cost calculated 
after the replacement of broken parts from inventory and 3D 
printing at the end of period 𝑡. 

 𝐺 𝐪𝒕 𝟏, 𝑦 , 𝑚 , 𝐦, 𝑑  , 𝐝�̅�, 𝑠= 𝑚𝑖𝑛𝐪𝐭𝐩≥0,(𝑑𝑜+∑ 𝑑𝑝𝑖𝑖 −𝑦)+≥∑ 𝑞𝑡𝑝𝑖𝑣𝑖=1
𝑐𝑝𝑖 𝑞𝑡𝑝𝑖

𝑣
𝑖=1 + 𝐿 𝑦, 𝑞𝑡𝑝𝑖

𝑖 , 𝑑𝑜 + 𝑑𝑝𝑖𝑖
+ 𝛼𝜙(𝑠)𝑉𝑡+1 𝒒𝒕+𝟏𝒓 , 𝑦𝑡 − 𝑑0 − 𝑑𝑝𝑖𝑖

+ , 𝑚0 − 𝑑𝑜 + 𝑦 ∧ 𝑑𝑜 +  𝑑𝑝𝑖𝑖 ,   𝐦 − 𝐝𝐩 + 𝐪𝐭𝐩

+ 𝛼(1 − 𝜙(𝑠))Γ𝑡+1 𝒒𝒕+𝟏𝒓 , 𝑦 − 𝑑𝑜 +  𝑑𝑝𝑖𝑖  + + 𝑞𝑡−𝐿𝑇𝑟 , 𝑚0 − 𝑑0 + 𝑦 ∧ 𝑑𝑜 +  𝑑𝑝𝑖𝑖 , 𝐦
− 𝐝𝐩 + 𝐪𝐭𝐩  

(4)
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The boundary condition for recursive equations (3) and (4) 
is 𝑉 (𝐪𝐓𝐫 , 𝑦 , 𝑚 , 𝐦) = Γ (𝐪𝐭𝐫, 𝑦 , 𝑚 , 𝐦) = 0  for all state 
variables of the function. The minimization in (4) gives the 
optimum printing decisions when the supply is healthy when 𝑠 = 𝐻, whereas it leads to the optimum choice of printing in 
case of disrupted supply if 𝑠 = 𝐹. In both equations the amount 
of printed parts in 𝑣 different quality levels is denoted by 𝐪𝐭𝐩 ≔𝑞 , 𝑖 = 1,2, … 𝑣  where 𝑞  is the amount of printed and 
polished parts using laser density level 𝜉 . Given the amount of 
broken original and printed parts, denoted by 𝑑  and  �̅�𝐩 ≔(𝑑 , 𝑖 = 1,2, … , 𝑣), and the vector of printed parts at work, 𝐦, 
the summation of printing cost and the expected cost from 
future periods in case of healthy supply is denoted by 𝐺 𝐪𝐭 𝟏𝐫 , 𝑦 , 𝐦, 𝑑  , �̅�𝐩, 𝑠 , 𝑠 = 𝐻. The first parameter of this 
conditional expectation is the outstanding order vector 𝐪𝐭 𝟏𝐫 . 
Note that printing decision is made after the delivery of 𝑞  
and the placement of 𝑞  (Figure 3) so, the pipeline vector is 
already updated from 𝐪𝐭𝐫  to  𝐪𝐭 𝟏𝐫 . The second and the third 
parameters of the function are the inventory level at the 
beginning of period 𝑡 and the amount of original parts at work 
at the beginning of period t. Similarly, the amount of printed 
parts (at different quality levels) are denoted by the vector 𝐦 
at the beginning of period 𝑡. 

 
Note that the reason behind optimizing the two ordering 

decisions, 𝑞  and 𝐪𝐭𝐩, in separate minimizations in (3) is that 
part printing takes place after demand realization (on-demand 
manufacturing) whereas, orders to OPS are placed at the 
beginning of a period. Therefore, the number of printed parts is 
a deterministic outcome of the printing policy whereas orders 
to OPS are placed using the expected cost.  

The only difference between healthy and disrupted supply 
cases is the probability of the next period’s supply state. 
Specifically, when 𝑠 = 𝐻,  𝜙(𝐻) represents the probability of 
the supplier’s staying healthy in the next period. When 𝑠 = 𝐹,  𝜙(𝐹)  represents the probability of supplier’s recovery from 
disruption in the next period. 

2.4. Optimization of Printing Quality 

Total cost of printing is minimized through the vector 𝐪𝐭𝐩. The 
minimization in (4) is subject to two constraints: The first 
constraint is the positivity of 𝑞 , 𝑖 = 1,2, … , 𝑣 . The second 
constraint assumes that the total number of printed parts cannot 
be larger than the shortage of spare parts after the demand 
realization. This constraint is due to our assumption of 
preclusion of printing to stock. This rule is shown to be the 
optimal in Proposition 2. Under the assumption of on-demand 
production of spare parts with a 3D-printer, which can work 
infinitely fast, inventory holding cost of printed parts becomes 
redundant. 

The first term of the minimization gives the total cost of 
printing spare parts whereas the function 𝐿 𝑦, ∑ 𝑞 , 𝑑 +∑ 𝑑  yields the cost of inventory holding and downtime 
costs. The last term, 𝑉 𝒒𝒕 𝟏𝒓 , (𝑦 − 𝑑 − ∑ 𝑑 ) , 𝑚 −𝑑 + 𝑦 ∧ (𝑑 +  ∑ 𝑑 ) , 𝐦 − �̅�𝐩 + 𝐪𝐭𝐩 , in the minimization 
yields the optimum discounted cost starting from period 𝑡 + 1. 
In this term, the first parameter represents the pipeline vector. 
The second parameter gives the total amount of inventory at the 

beginning of the period 𝑡 + 1.  The third parameter of 𝑉 (. ) 
is the amount of original parts after demand realization. This 
variable is denoted by 𝑚 − 𝑑 + 𝑦 ∧ (𝑑 +  ∑ 𝑑 ) . The 
last parameter of 𝑉 (. ) is the number of printed parts at the 
beginning of the next period, denoted by 𝐦 − �̅�𝐩 + 𝐪𝐭𝐩. 

When the supply is disrupted the optimum cost is 
represented with the function Γ 𝐪𝐭 𝟏𝐫 , 𝑦 , 𝐦, 𝑑  , �̅� .  The 
disruption probability of supply is represented with 𝜙(𝐻) ∈[0,1]. After the disruption, the supply system returns to healthy 
state with probability 𝜙(𝐹) ∈ [0,1], whereas it stays disrupted 
with probability (1 − 𝜙(𝐹)). For the disruption function, order 
to the original supplier is not allowed and 3D printing is the 
only supply option to satisfy part need. The overall structure of 
the Γ (. ) is very similar to 𝑉 (. ) in (3). 

3. Methods 

In this study, we conduct numerical experiments using 
recursive equations (2-4) to understand the characteristics of 
the optimal policy that controls the production of spare parts 
using additive manufacturing. To this end, the mathematical 
models (2-4) are analyzed using meticulously designed 
numerical experiments in order to explore the optimum 
inventory control policy. The optimum policy is benchmarked 
by the base stock policy. Also, we would like to investigate the 
effect of using a larger number of quality levels (higher 𝑣), 
which will allow finer control over the system in terms of total 
cost.  

This investigation indicates the potential cost benefit of laser 
polishing combined with additive manufacturing of spare parts 
for a constant number of capital products at work. In our 
analyses, we first explore the optimum policies for perfectly 
healthy supply ( 𝜙(𝐻) = 1 ). Afterwards we evaluate two 
different disruption scenarios: Long and infrequent disruptions 
(low 𝜙(𝐻) and 𝜙(𝐹)), and short and frequent disruptions (high 𝜙(H) and 𝜙(𝐹)). 

To this end, the recursive equations (2-4) are coded in C++ 
with the parameter setting in Table 2. Our test bed consists of 
96 different parameter combinations. 

Table 2. Parameter setting for numerical experiments 

horizon (𝑇) 𝑝 𝑐 𝑐 ℎ 𝛾 𝑏 𝑣 (𝜙(H), 𝜙(𝐹))
50 0.5 100 10 0.25 0.5 3 1 (0.1, 0.1) 
100 0.5 0.4 2 3 (0.5,0.5)

  0.3    
 

In this parameter setting, 𝑐  represents the acquisition cost 
of the regular supplier whereas 𝑐  is the cost of printing without 
any laser polishing.  In our numerical experiments, we consider 
three different laser energy densities which are 100, 200, and 
300 J/cm2. For these energy densities, calculated total printing 
cost and reliability levels are given in Table 3 where 𝑝(𝜉 ) are 
calculated using parameters values 𝛼 = 3, 𝑟 = 0.01 and 𝑠 =−10  similar to the model suggested by Chang et al. [29]. For 
disruption characterization, long and infrequent disruptions are 
evaluated with 1 − 𝜙(𝐻) = 𝜙(𝐹) = 0.1 , and short and 
frequent disruptions are calculated with  𝜙(𝐻) = 𝜙(𝐹) = 0.5. 
These parameters can be interpreted as follows: Long and 
infrequent disruptions assume a disruption in every 10 periods 
(months, weeks etc.) and each disruption will last in 10 periods 
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in expectation. This scenario represents serious (possibly 
global) events that halt suppliers’ production processes such as 
strikes, global epidemic or hurricanes. Parameters for short and 
frequent disruptions assume supply problems in every 2 
periods (in expectation) and each disruption is expected to stay 
for 2 periods. The parameters of the supply disruption and cost 
are derived from the literature as well as empirical case studies 
[17, 25] on supply problems. 
 

The parameter settings for laser polishing were determined 
by studying Figure 1. On this figure, it can be observed that for 
a metal part, there could be a big difference between the surface 
roughness values polished under these settings. 

Table 3. Calculated parameter levels for different laser energy densities (𝜉 ) 

  𝑐  𝜉  𝑝(𝜉 ) 𝛾 = 0.5 𝛾 = 0.4 𝛾 = 0.3
100 0.75 100.00 63.10 39.81 
200 0.70 141.42 83.26 49.01
300 0.66 173.21 97.91 55.35 

 
For each parameter combination, the recursive equations (3) 

and (4) are numerically solved by the value iteration algorithm 
and backward induction [30] on a finite state space of 𝐐 × 𝐍, 
where 𝐐 = {(𝑞 , 𝑦 ): 0 ≤ 𝑞 ≤ 𝑁, 0 ≤ 𝑦 ≤ 𝐷 }  and 𝐷 = 𝑁(𝐿𝑇 + 1).  The value iteration algorithm is a 
common solution method for stochastic dynamic programming 
models. It can be applied to recursive dynamic programming 
models with backward and forward induction approach. With 
the backward induction, the algorithm starts from the final 
period of the planning horizon and calculates the optimum cost 
and action for each state variable, a vector including the 
information set consisting of amount of inventory, the number 
of original and printed parts in use. Once the final period is 
complete, the algorithm proceeds to the previous periods one 
by one by calculating the optimum cost and actions in each 
period. Our calculations benefit from the existence of a finite 
number of machines in the system. This provides an upper 
bound on the range of demand distribution in our problem. 
Such an upper bound allows us to avoid the common problem 
of curse of dimensionality in dynamic programming solutions. 

In these runs, we primarily observe the optimum control 
policy’s ordering decisions to the regular supplier, 𝑞 ,  and 
printing decisions at quality level 𝑖, denoted by 𝑞 , for all 𝑖. 
Optimum actions are benchmarked to the base stock policy, 
which orders to the supplier by raising the inventory position, 
the summation of inventory level and the pipeline inventory, to 
a constant level. Base stock policy is one of the most common 
inventory control policy in the literature due it is simplicity and 
good performances in various circumstances. Also, we are 
interested in the optimum selection of quality level (optimum 
usage of laser energy density for polishing) for on-demand 
production of spare parts. In the following section, the structure 
of commonly observed control policy in our numerical 
experiments are presented. 

4. Results 

In our numerical investigation, we observe the effect of 
different model parameters on total cost as well as the structure 

of the optimal control policy for original parts inventory. In this 
section, we first present our overall results and intuition into 
the problem derived from these analyses. Next, we discuss the 
structure of the optimal policy. 

4.1. Overall results 

In our analysis, we find that cost of 3D-printing is the most 
important factor that determines the primary source of supply. 
Specifically, in our numerical experiments we find that when 𝛾 = 0.3 or 𝛾 = 0.4, the optimum action is to choose to satisfy 
spare parts demand using only additive manufacturing. 
Interestingly, all of these parts are printed at the lowest quality 
level where laser energy density is set to 100. This can be 
explained with the fact that 𝛾  is set to 0.3 or 0.4, additive 
manufacturing becomes cheaper than the cost of original part 
as 𝑐 = 100  (Table 3). When 𝛾 = 0.5,  the combined use of 
printing and original parts takes place in the optimum policy. 
This can be seen in Table 4. 

Furthermore, in all of our numerical experiments we find 
that the optimal cost is invariant to 𝑏  since on-demand 
production of spare parts prevents having an unsatisfied 
demand during the entire planning horizon (Table 4). This 
feature of the optimal policy is explained in detail in the 
following section. 

Recall that the number of broken parts in a given review 
period is a random variable and the original spare parts 
inventory and 3D printing decisions are made according to a 
control policy. In the mathematical model given in (3-4), we 
consider a finite horizon cost minimization problem where 
decision for 𝑞  is followed by 𝑞  for all 𝑖. The mathematical 
structure of the optimum control policy is presented in the 
following subsections. 

Table 4. Average optimum costs for different values of 𝑏, 𝜙(𝐻), 𝜙(𝐹) and 𝛾. 
 𝒃 𝜸 Cost 

Long and Frequent Supply (𝜙(𝐻) = 𝜙(𝐹) = 0.1) 
 

3 0.5 125979.7 
3 0.4 89056.75 
3 0.3 28106.91 
2 0.5 125979.7
2 0.4 89056.75 
2 0.3 28106.91 

Short and Infrequent Supply (𝜙(𝐻) = 𝜙(𝐹) = 0.5) 
 

3 0.5 131867.6 
3 0.4 89056.75 
3 0.3 28106.91 
2 0.5 131867.6
2 0.4 89056.75 
2 0.3 28106.91 

4.2. Structure of the optimum on-demand spare parts 
production 

To understand the mathematical structure of the optimum 
printing policy, we conduct a mathematical analysis of the 
model in (3-4). The following result, obtained from these 
analyses, shows the optimum decision for 𝑡 = 𝑇 (the end of 
planning horizon). 
 

Proposition 2: At the end of the planning horizon, given 
that the total number of broken parts (from all quality 
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levels) is 𝑑 ≔ 𝑑 + ∑ 𝑑 , the optimal policy of laser 
polishing is 𝑞 = (𝑑 − 𝑦) . 

 
 

Proof: Assume 𝑉 (. ) = 0 for all parameters. For 𝑡 = 𝑇 

𝐺 𝒒𝑻 𝟏𝒓 , 𝑦 , 𝑚 , 𝒎, 𝑑  , 𝒅𝒑 = 𝑚𝑖𝑛,( ∑ ) ∑
∑ 𝑐 𝑞 +

𝐿 𝑦, ∑ 𝑞 , 𝑑 + ∑ 𝑑    (5) 

This implies for a given that the total number of 
breakdowns is 𝑑 the function in the minimization is: ∑ 𝑐 𝑞 + ℎ(𝑦 − 𝑑) + 𝑑 − 𝑦 −  ∑ 𝑞    (6) 

If 𝑦 ≥ 𝑑, then the constraint of the minimization leads to  ∑ 𝑞 = 0 ⇒ 𝑞 = 0, ∀𝑖.  If 𝑦 < 𝑑, then minimization leads 
to  ∑ 𝑞 = 𝑑 − 𝑦.  Hence, ∑ 𝑞 = (𝑑 − 𝑦) . Since the cost 
is increasing in 𝑖, 𝑞 > 0 is subotimal for 𝑖>1. Q.E.D. 

Proposition 2 implies that the optimum policy prints parts 
from the worst quality level (no laser polishing) as it is the 
cheapest option. This result is quite intuitive in the sense that 
the end of the planning horizon, there is no point of increasing 
quality levels of parts in exchange of extra cost. 

Importantly, we realized that the result in Theorem 1 also 
holds for periods before the end of the planning horizon, i.e. 𝑡 < 𝑇 in our numerical experiments. Our detailed investigation 
into the numerical results reveals that this result primarily 
stems from our assumption of the uncapacitated (capacity equal 
to infinity [31]) OPS. In our system, spare part production with 
3D-printing is used in case of the shortage of original parts 
during maintenance of capital products. Since we assume that 
OPS is uncapacitated and production time of 3D printer is 
sufficiently smaller than a period, e.g. printing is completed in 
hours and the time period of the model is one week, the 
manufacturer does not print to stock and 3D printing is used as 
a contingency solution to avoid costly downtimes of capital 
products and using laser polishing does not create any 
additional cost reduction. 

4.3. Structure of the optimum order to OPS in case of healthy 
supply 

Given that in case of shortage spare parts are printed 
after the demand realization, control of original part inventory 
resembles to classical lost sales problem in the inventory 
control literature [32] depending on the magnitude of printing 
cost. In lost sales problems, customers refuse to wait for 
delivery of products and leave without buying anything when 
they cannot find their desired product in stock. The inventory 
control decisions are made based on the trade-off between costs 
of lost sales and inventory holding. In our problem setting, 
printed parts stand for lost sales from the perspective of the 
inventory manager of original spare parts. The cost of lost sales 
is equal to 𝑐  for some 𝑖. The main difference of our problem 
stems from the fact that printed parts increases the future spare 
parts need of the system. Therefore, using printed parts 
stimulates more frequent failures and higher cost in the system. 
In the following subsections, we first explained the optimal 
orders to OPS when 𝑦 = 0 and  𝐦 ≠ 0. Next, we present the 

structure of the optimal policy when 𝑦 > 0 and 𝑚 = 𝑁. 
4.3.1. The optimum policy when 𝛾 = 0.5 (𝑐 ≤ 𝑐 , 𝑖 =1,2, … , 𝑣) 

When the cost of printing is more expensive than the 
original part, due to material and energy costs, the optimal 
control policy has a state-dependent structure in the sense that 
the total amount of existing inventory level and ordered 
quantity, 𝑦 + 𝑞 + 𝑞 , also known as inventory position 
after ordering, is small for low values of 𝑦 + 𝑞  and they are 
equal to base stock policy for moderate and large values of the 
summation. Note that the base stock policy is the optimum 
control policy for inventory control problems where unsatisfied 
demand is backlogged [31]. The optimal ordering policy to 
OPS places smaller orders than the base stock policy for low 
levels of inventory due to the fact that low inventory level leads 
to shortage which will be satisfied with 3D printing within the 
same period before the delivery of orders placed in the current 
period. On the other hand, in case of backlogged demand and a 
single supply source, where the base stock policy is optimal, 
unsatisfied demand is carried to the next period and keeps 
creating backlog cost until it is satisfied with new deliveries. 
This difference between the optimal orders to OPS for 𝑦 =0, 𝐦 ≠ 0 and the base stock policy is depicted in Figure 5 for 𝑣 = 3, 𝑇 = 50, 𝑏 =3, ℎ = 0.25, 𝛾 = 0.5 and 𝑁 = 10.  

In Figure 5, optimal 𝑞  for different 𝑦  levels are given for 
two different 𝐦 vectors which are (1,9,0,0) and (9,1,0,0). The 
first vector represents a case where only one of 𝑁 = 10  of 
machines works with an original part while the rest works with 
parts printed without laser polishing. The second vector 
represents the case with nine original and one printed parts. 
Obviously, the optimum policy generates the same orders with 
the base stock policy with the order-up-to level being equal to 
15, which is denoted by 𝐵𝑆(15), when the existing inventory 
level is larger than equal to 10 for the first vector. For the 
second vector, the optimum policy is much closer to the base 
stock policy as the optimum policy generates the same order 
sizes when the inventory level is larger than equal to 3. The 
difference between the two part vector is due to the fact that 
some of existing inventory level will be used to replace printed 
parts at work and remaining ones will be available for the 
satisfaction of broken spare parts within the review period 
when the number of printed parts at work are higher (as 
in  𝐦=(1,9,0,0)). 

When there is a positive amount of original spare parts in 
stock (and all capital products are working with original parts 𝑁 = 0), the structure of the optimal policy is much closer to the 
base stock policy as depicted in Figure 6. In fact, when there 
are some parts in the pipeline, the optimal policy orders exactly 
the same with 𝐵𝑆(9). When there are no parts in the pipeline, 
the optimal policy is also the same with 𝐵𝑆(9) except 𝑦 = 0. 

4.3.2. The optimum policy when 𝛾 < 0.5 (𝑐 > 𝑐 , 𝑖 =1,2, … , 𝑣) 
When acquisition cost is smaller than the cost of additive 

manufacturing, the optimal policy is never order from OPS and 
complete reliance on 3D printing for all states of the system. 
Interestingly, this is true for perfectly healthy supply as well as 
different types of disruption risks discussed below. The optimal 
pure-additive manufacturing strategy can be explained by the 
fact when on-demand manufacturing is cheaper than the 
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regular manufacturer, the additional cost due to lower 
reliability of printed parts is lower than savings from holding 
cost. Recall that on-demand manufacturing does not need to 
incur holding cost as we assume that it is possible to 
manufacture a part when it is needed.  

Note that these findings might be slightly different when we 
include a constraint on the number of printed parts that can be 
used per period due to limited number of replacements that can 
be performed per period. Although, details of the optimal 
policy might be somewhat different, our findings shed light on 
the main structure of the policy for such case: use printing as 
much as possible and order to OPS for the rest. 

 

 

Fig. 5. For (perfectly) healthy supply difference between optimal ordering 
policy to OPS and the base stock policy for 𝑣 = 3, 𝑇 = 50, 𝑏 =3, ℎ = 0.25, 𝛾 = 0.5, 𝑁 = 10, 𝑙𝑡 = 1, 𝑦 ≥ 0 and 𝒎 ≠ 0. 

 

Fig. 6. Difference Between Optimal Ordering Policy to OPS for 𝑣 = 3, 𝑇 =50, 𝑏 =3, ℎ = 0.25, 𝛾 = 0.5, 𝑚 = 𝑁 = 10 and 𝑙𝑡 = 1, 𝑦 > 0 and 𝒎 = 0. 
4.4. Structure of the optimum order to OPS in existence of 
supply risk 

In our exploratory analysis of the optimal policy under 
supply risk, we elaborate four possible scenarios by 
considering holding and backlogging cost in terms of critical 
ratio and two different disruption scenarios. The first disruption 
scenario is reflecting the manner that disruptions occur 
infrequently (𝜙(𝐻) = 𝜙(𝐹) = 0.1) but the disruption time is 
long which means if the state jumps an unhealthy state, it jumps 
back healthy state with a low probability. In the second 
disruption scenario, there are frequent but short disruptions 
with probability (𝜙(𝐻) = 𝜙(𝐹) = 0.5). In these analyses we 

mainly consider the case of 𝑐 < 𝑐 , 𝑖 = 1,2,3 in which 𝑞 ≥0 for some states. As we explained above, when  𝑐 ≥ 𝑐  it is 
never optimal to order to OPS and additive manufacturing is 
the main source of supply for the system. 

In Figure 7, we examined the optimal policy of ordering to 
OPS under different disruption scenarios. In case of long and 
infrequent disruptions (L&I) the optimal policy orders to OPS 
more  when  𝐦 = (1,9,0,0)  compared to the case of 𝐦 =(9,1,0,0). This is due to the fact that lower reliability of printed 
parts forces the system to order more to OPS to avoid excessive 
costs. Furthermore, we find that the optimal policy orders less 
in case of short and frequent disruptions (S&F) compared to 
L&I. Importantly, we find that the quality levels of parts in use 
might be more effective than the type of disruption on the 
optimal policy. This can be observed by comparing the optimal 
policy curves for L&I  with 𝐦 = (9,1,0,0) and S&F with 𝐦 =(1,9,0,0).  The detrimental effect of L&I disruptions on the 
optimal policy, compared to S&F type supply problems, is also 
consistent with the findings in the supply chain literature. The 
difference of the optimal policy from the well-known base 
stock policy is also presented in Figure 7. Base stock policy 
orders linearly decreasing amounts of inventory as existing 
inventory increases. The main difference appears when the 
inventory level is low in which case demand shortage is 
satisfied with additive manufacturing. Therefore, on-demand 
manufacturing option decreases the optimum order levels 
compared to the base stock policy, which is the optimum policy 
of the case where there is only one supply option. 

 
The effect of supply risk on cost can be observed from the 

percent difference of Γ () − 𝐽 (. ) for the same states. This 
percent difference over different inventory levels is given in 
Figure 8. When inventory level is 0, cost of starting from failed 
state, Γ (. ) , is higher than the cost of starting with healthy 
supply 𝐽 (. ). Naturally this cost decreases in inventory level as 
the existing inventory is used to compensate the demand during 
the disruption period. Importantly, this difference is higher for 
long and infrequent disruptions compared to short and frequent 
ones as long disruptions has more serious effects on the supply 
system compared to the short ones. 

 

 

Fig. 7. Optimal Policy Under Long and Infrequent Disruptions 𝑣 = 3, 𝑇 =50, 𝑏 =3, ℎ = 0.25, 𝛾 = 0.5, 𝑁 = 10, 𝑙𝑡 = 1, 𝑦 ≥ 0 and 𝒎 ≠ 0. 
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Fig. 8. The Percent Cost Difference Between 𝐽 (. ) − Γ (. ) for 𝑣 = 3, 𝑇 = 50, 𝑏 =3, ℎ = 0.25, 𝛾 = 0.5, 𝑁 = 10, 𝑙𝑡 = 1, 𝑦 ≥ 0 and 𝒎 ≠ 0. 
5. Discussion and Conclusion 

In this study, solution to a multi-disciplinary problem 
covering logistics, supply chain, and manufacturing systems is 
attempted. The process plan needs to include considerations of 
producing spare parts through conventional means, which 
includes handling, packaging, and shipment of finished goods. 
On the other side of the spectrum, raw materials can be 
transported without such care and expense, and with rapid and 
inexpensive transfer of digital information, spare parts can be 
additively manufactured on-site. To overcome the surface 
quality issue inherent to the additive manufacturing process 
that causes low reliability, post-processing methods such as 
laser polishing can be applied, which brings a new dimension 
to the problem. Demand is almost always uncertain, but with 
particular issues such as strikes and pandemic, disruption risk 
to the supply can be an important factor in transferring from 
finished part transportation to information transfer. Therefore, 
the relationship between optimum control policy and cost 
parameters was provided as a mathematical analysis in this 
study. 

It is known that almost all companies face with exogenous 
supply risk in their operations. It is their ability to adapt to these 
new situations and develop mitigation measures that 
determines the survival of companies in the long run. As 
alternative supply sources, 3D printers provide an alternative 
supply option for spare parts of capital products and it is 
important to evaluate their economic usages in existence of 
supply risk. 

With the benefit of spare parts inventory control due to on-
demand manufacturing of spare parts, additive manufacturing 
can be preferred as the best method [33]. Long downtimes can 
be avoided by utilizing this benefit rather than ordering from 
the Original Part Supplier (OPS) and waiting for the part to 
arrive. This wait can be costly in terms of business by losing 
customers to competitors or failure in customer satisfaction due 
to tardiness. 

In this study, the joint optimization of a hybrid 
manufacturing scheme (with additive manufacturing and laser 
polishing) and an inventory management system was tackled in 
order to decrease the total operating costs. A recursive 
mathematical model was deployed to minimize the total 
discounted cost over a finite planning horizon and optimum 
control policies were searched for in existence of demand and 
supply uncertainty. The mathematical model also incorporated 

laser polishing density as it increases part reliability. However, 
failure of these parts is assumed to occur at a significantly later 
time than the original replacements are received from the OPS, 
which leads to the effect of laser energy density being 
insignificant in the problem. However, in supply disruption 
modes where a long amount of time might be required to 
receive original spare parts, the existence of laser polishing to 
increase part reliability would play a more important role. 
Furthermore, we observe that the type of supply disruption 
changes the optimal policy of ordering significantly. Ordering 
in case of long and infrequent disruptions resembles to base 
stock policy which is the optimal policy in case of a single 
supplier and in case of lost sales with 0 lead time. In case of 
short and frequent disruptions, on the other hand, optimum 
ordering resembles to the policy of the case with healthy supply 
and 3D printers. 

Interpretation of our results for the real production facilities 
can be given as follows: In our analyses, we find that the main 
driver for the optimal utilization of additive manufacturing is 
its production cost (average cost per part, including material, 
energy, labor and setup costs) compared to the cost of original 
product. When printing a part is cheaper than the cost of 
original part, the additive manufacturing becomes the main 
source of supply for spare parts of machines. Even if the 
reliability of printed parts is lower, savings from holding cost 
(thanks to on-demand manufacturing) dominates the additional 
costs due to the lower reliability of printing. Also, laser 
polishing is occasionally utilized to increase the reliability of 
parts depending on the difference between printed and original 
parts. This result might be slightly different for large machine 
parts with limited maintenance capability, as in those cases the 
number of replacements per period must be limited. However, 
we estimate that even under this additional constraint, the 
benefit of additive manufacturing prevails and regular suppliers 
would only be used to complement the additive manufacturing. 
When additive manufacturing is more expensive, 3D printers 
are effective for contingency plans against supply disruptions. 
In such a case, printed parts are used as temporary solutions 
until disruption is over, so laser polishing becomes unimportant 
for the system. 

This study builds on the previous work of the authors [14] 
by adding the supply disruption risk. However, there is still a 
huge amount of work to be done in this direction with rigorous 
mathematical analyses and changing part quality, original part 
receiving time, and uncertainty modes. Specifically, we 
consider only discounted cost finite horizon models in this 
study whereas our results need to be extended to infinite 
horizon cases. In addition, Markovian characteristic of the 
demand and disruption system should be generalized into a 
more general mechanism that allows endogenous demand and 
supply disruption evolution.  Analytically characterizing the 
numerical results presented here is essential. 
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