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a b s t r a c t

This paper deals with constructing obstruction sets for two subclasses of 4-searchable
graphs. We first characterize the 4-searchable biconnected outerplanar graphs by listing
all graphs that cannot be their minors; we then give a constructive characterization
of such graphs. We also characterize the 4-searchable biconnected generalized wheel
graphs by listing all graphs that cannot be their minors.
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1. Introduction

Imagine that we want to secure a system of tunnels from a hidden intruder who can move very fast. We model this
ystem as a finite connected graph G = (V , E) where junctions correspond to vertices and tunnels correspond to edges.
e assume that G may have multiple edges but no loops. We follow the terminology in [7].
We launch a group of searchers into the system in order to catch the intruder. We assume that every edge of G is

ontaminated initially, and our goal is to clean the whole graph by a sequence of steps. At each step, we are allowed to
o one of the following moves: (1) place a searcher at a vertex; (2) remove a searcher from a vertex; (3) slide a searcher
rom a vertex along an edge to an adjacent vertex. Note that placing multiple searchers on the same vertex is allowed.
e do not pose any restriction on the number of searchers used.
If a searcher slides along an edge e = uv from u to v, then the edge e is clean if either (i) another searcher is stationed

at u, or (ii) all other edges incident to u are already clean. We define a clean vertex (or alternatively, say a vertex is clean)
if all edges incident with the vertex are clean.

An edge search strategy is a sequence of moves that ends with all edges being simultaneously clean, in which case we
say that the graph is cleaned.

If a searcher is stationed at a vertex v, then we say that v is guarded. If a path does not contain any searcher, then it
is called an unguarded path. If there is an unguarded path that contains one endpoint of a contaminated edge and one
endpoint of a clean edge e, then e gets recontaminated. Hence, a clean edge remains clean as long as every path from it
to a contaminated edge is blocked by at least one searcher.

We measure a search strategy by the maximum number of searchers used over all search steps. For a given graph, it
is a natural question to ask what is the smallest value of k with which we can clean the graph. Over all search strategies
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he fewest number of searchers needed to clean the graph is the edge search number of the graph and is denoted s(G). A
raph G is said to be k-searchable if s(G) ≤ k.
The edge search problem has been extensively studied. Its origin dates back to the late 1960s in the work of Breisch [4].

t was first faced by a group of spelunkers who were trying to find a person lost in a system of caves. They were interested
n the minimum number of people they needed in the searching team. Parsons [20] was the first one to formalize it as a
athematical problem. He defined it as a continuous problem where the searchers and the intruder are allowed to move
ccording to continuous functions. Golovach [13] proved the equivalence of the continuous problem and the discrete
ersion that we are considering. A survey of edge searching results is available at [11].
The edge search problem is closely related with layout problems and due to this connection there are various

nequalities showing the relationship between width parameters and the search number. Some of these parameters are
athwidth [9], cutwidth [6], bandwidth [10,18], and topological bandwidth [6].
The decision version of the problem is called the EDGE SEARCH problem: Given a graph G and an integer k, decide

hether G is k-searchable. It has been shown that EDGE SEARCH is NP-hard for general graphs [19].
One of the major problems of edge search is to give structural theorems on k-searchable graphs for a fixed positive

integer k. One way to characterize the k-searchable graphs is to give a complete set of graphs that are forbidden as minors.
Consider two operations: edge deletion, which deletes an edge e, and edge contraction, which deletes an edge e = uv

nd identifies the vertices u and v. The second operation replaces an edge e = uv with a new vertex v′ which is adjacent
o all of the former neighbors of u and v.

Given a graph G, a graph H is called aminor of G if a graph isomorphic to H can be obtained from G by edge contractions
applied to a subgraph of G. Notice that G is a minor of itself.

If H is a minor of G, then we say that H is less than or equal to G in the minor order and we write H ⪯m G. A family
of graphs is said to be closed under minor ordering if for any G ∈ G, we have H ∈ G for every H ⪯m G. A graph property

is said to be hereditary or inherited by minors if it defines a minor closed family.
Some hereditary graph properties are being cycle free, being series parallel, being embeddable in any fixed surface and

being linklessly embeddable. In particular the edge search number is inherited by minors; that is, if H is a minor of G,
then s(H) ≤ S(G). Some variants of edge search are also inherited by minors, such as mixed search and weighted search;
however fast search is not inherited by minors [8].

The crucial graph minor theory was developed by Robertson and Seymour in a series of more than 20 papers. One
of the implications for any minor closed graph class is that there are only a finite number of forbidden minors (given in
Graph Minors XX, 2004 [22]). This is equivalent to the following result: in every infinite class of graphs, there are two
such that one is a minor of the other.

Furthermore, once the obstruction set is known, we can decide in polynomial time whether a given arbitrary graph
is contained in the graph family G. This is an immediate consequence of the following theorem by Robertson and
Seymour [21]: for every fixed graph H , the problem that takes as input a graph G and determines whether H is a minor
of G is solvable in polynomial time. Thus testing membership in G can be done in polynomial time.

In 1930 Kuratowski [16] gave the two forbidden topological subgraphs for planar graphs: a graph G is planar, if it does
not contain K5, K3,3 or any of their subdivisions. Later on, Wagner [25] showed these graphs are the exact list of forbidden
minors for graphs that have a planar embedding. This is considered the first result of topological graph theory and the
two graphs are called Kuratowski graphs. Since then, many people have worked on similar issues for other surfaces,
though complete obstruction sets are known for few such surfaces. In 1981, it was shown by Archdeacon and Huneke
that there are 35 forbidden minors for the projective planar graphs [2]. Glover and Huneke conjectured in 1995 that there
are more than 1000 forbidden minors for toroidal graphs [1]. Later, it was shown that this number is much larger, with
Chambers [5] and Myrvold showing that there are more than 16629 forbidden minors for toroidal graphs by giving the
complete list of forbidden minors that have at most 11 vertices, the ones that are 3-regular and have at most 24 vertices,
the disconnected minors, and those minors with a cut vertex. More recently, Gagarin, Myrvold and Chambers have shown
that there are four forbidden minors for toroidal graphs that are K3,3-free [12].

Similar types of results have been given for several width parameters. Kinnersley [14] showed that there are at least
110 forbidden minors for graphs with pathwidth at most 2, and later on in 1994, together with Langston [15], they showed
that this list is complete. The complete list containing 57 obstructions for graphs with linearwidth at most 2 is given by
Thilikos [24]. Arnborg et al. showed that there are four forbidden minors for graphs with tree-width at most three and
Sanders [23] showed that there are more than 75 forbidden minors for graphs with treewidth at most 4.

A subdivision of a graph is obtained by inserting one or more vertices of degree two to some of its edges. The reverse
operation is called reduction. Let V ′ be the set of vertices of degree 2 in G. The reduction of a graph G is the graph obtained
by removing each vertex vi ∈ V ′ and joining its former neighbors by an edge. Thus, the reduced graph does not contain
any vertex of degree two. We say that two graphs are homeomorphic if they have the same reduced graph. One can observe
that homeomorphic graphs will have the same search number. Thus, it is sufficient to consider only the reduced graphs.

Given a graph G, a graph H is called an S-minor of G if H is a minor of a subdivision of G. In particular, G is an S-minor
of itself. An S-minor of G is called a proper S-minor if it is not isomorphic to G.

Note that S-minor is usually stronger than the classical minor. If H is a minor of a graph G, then it is also an S-minor
of G; but the opposite may not be true. For example, the third graph in Fig. 3 is not a minor of the graph in Fig. 1, though
it is an S-minor.
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Fig. 1. A graph that is not 3-searchable.

Fig. 2. A complete set of obstructions for 2-searchable graphs [19].

Fig. 3. A complete set of obstructions for biconnected 3-searchable graphs [19].

Let Hk be the set of k-searchable graphs. For a fixed k, the obstructions for k-searchable graphs are those graphs that
re S-minor minimal in the complement of Hk. Let Fk denote the set of all obstructions for k-searchable graphs. Thus
∈ Fk whenever H is not in Hk and every proper S-minor of H is in Hk.
As far as edge search is concerned, for fixed k, Fk is known completely only when k is at most 3. These results are given

y Megiddo, Hakimi, Garey, Johnson and Papadimitriou [19]. In Figs. 2 and 3 we give the sets F2 and F3, respectively. For
≥ 4, determining Fk is an open problem.
In this paper we partially answer this open problem by giving a complete list of graphs that cannot be contained in any

iconnected outerplanar graph as a minor. We give a description of how a 4-searchable biconnected outerplanar graph
s constructed by giving its explicit structure. Next, in Section 4, we give a partial list of obstructions for 2-outerplanar
raphs by giving a complete list of graphs that cannot be contained in any 4-searchable generalized wheel graph as a
inor.

. Preliminaries

A complete graph with n vertices, denoted by Kn, is a graph in which every pair of distinct vertices is connected by
unique edge. Similarly, a complete bipartite graph Km,n is a bipartite graph (V1, V2, E), where |V1| = m and |V2| = n
uch that every vertex of V1 is connected to every vertex of V2 and E contains only these edges. A multigraph is a graph
hat may have multiple edges (also called parallel edges). We will simply use graphs instead of multigraphs if there is no
onfusion from the context. The degree of a vertex is the number of edges that are incident to this vertex. The multiplicity
f an edge is the number of parallel edges that have the same endpoints. An edge with endpoints u and v is denoted as
v. We also simply use uv to denote all parallel edges between u and v if there is no ambiguity from the context.
Recall that a graph H is a minor of a graph G if H can be obtained from a subgraph of G by edge contractions. A minor

f G is proper if it is not isomorphic to G. In the remainder of this paper, we only consider minors under this definition.
o the definition of obstructions is changed accordingly: an obstruction for k-searchable graphs is a graph that is minor
inimal in the set of graphs with search number strictly more than k.
We first show that all 4-searchable graphs are planar.

heorem 1. If s(G) ≤ 4, then G is a planar graph.

roof. Note that s(K5) = s(K3,3) = 5. If G contains K3,3, K5 or their subdivisions, then s(G) ≥ 5. This is a contradiction.
ence from Kuratowski’s Theorem, G must be a planar graph. ■
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Fig. 4. On the left: A tent. On the right: A house with thick base edge.

Fig. 5. A biconnected generalized bipolar graph with poles v1 and vi .

For brevity, we consider reduced graphs, which are obtained by successive reduction operations defined above. Thus a
reduced graph has no vertex of degree two. Notice that reduction does not change the search number. In the remainder
of the paper, all of the graphs that we consider are reduced multigraphs. Therefore, we hereafter omit the description
‘‘reduced multigraph’’; reduced multigraphs will simply be called graphs.

A graph is said to be outerplanar, or 1-outerplanar, if it can be drawn in the plane in such a way that all vertices are
on the boundary of the unbounded (or ‘‘outer’’) face. A k-outerplanar graph is defined recursively. For k > 1, a graph is
k-outerplanar if there exists a planar embedding of G which has an outer face so that by removing the vertices of the
outer face, we obtain a (k− 1)-outerplanar graph. Note that not every planar graph is outerplanar. For instance, K4 is not
outerplanar but is 2-outerplanar.

A tent is a multigraph 3C3, i.e., each pair of vertices of C3 are connected with three parallel edges. A house is a multigraph
H = (V , E) where V = V (C4) = {v0, v1, v2, v3} and E = E(C4) ∪ {e5 = v0v1, e6 = v0v1}. Given a house H , the edge whose
two endpoints each is incident with two edges, is called the base of the house (Fig. 4).

It is known that the boundary of the outer face of a biconnected outerplanar graph is a spanning cycle [7]. Assume
that G is a biconnected outerplanar graph. We fix an outerplanar embedding of G and label its vertices as v1, v2, . . . , vn so
that they consecutively lie on the boundary of the outer face, ending with vn being adjacent to v1. We denote the graph
induced by the vertices {vi, vi+1, . . . , vj} as Pi,j, where the indices (except n) are modulo n. Thus Pi,j denotes the boundary
path from vi to vj together with all the chords between the vertices in {vi, vi+1, . . . , vj}. Note that vi and vj are the only
common vertices shared by the induced subgraphs Pi,j and Pj,i.

If there are two vertices vi and vj such that neither Pi,j nor Pj,i has a tent or a house as a minor, with the base of the
house as a chord of Pi,j or Pj,i, then we say that G is a generalized bipolar graph. The vertices vi and vj are then called the
poles of G. An example of a generalized bipolar graph is given in Fig. 5.

3. Four-searchable outerplanar graphs

In this section we present a characterization of 4-searchable biconnected outerplanar graphs. A search strategy in a
graph G is monotonic if the searchers must move in such a way to keep an edge clean once it has been cleaned. That is,
the searchers can allow no edge to be recontaminated.

The following lemma is the main result in [3,17].
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T

Fig. 6. A complete list of minimal minors that cannot be contained in any outerplanar graph with search number at most 4.

Lemma 2 ([3,17]). For any graph G, there always exists a monotonic search strategy that cleans G using s(G) searchers.

heorem 3. The following are equivalent for a reduced biconnected outerplanar graph G:

1. s(G) ≤ 4.
2. G does not contain any of the graphs in Fig. 6 as a minor.
3. G is a generalized bipolar graph.

Proof. Consider a planar embedding of G and label the vertices of G as v1, v2, . . . , vn such that they clockwisely lie on
the boundary of the outer face. We will show that (1)⇒(2)⇒(3)⇒(1).

(1)⇒(2). To see this, we use proof by contrapositive. Assume that G contains one of the graphs in Fig. 6 as a minor. If
we show that all of the graphs in Fig. 6 have search number strictly greater than 4, then we can conclude that s(G) > 4,
because edge search number is inherited by minors.

Let us show that s(H) > 4 for the leftmost graph H in Fig. 6. Assume that s(H) = 4. From Lemma 2, there is a monotonic
search strategy that cleans H using s(H) searchers. The graph H has 6 vertices and 27 edges. There are two types of vertices
in H: those with |N(v)| = 4 and those with |N(v)| = 2. Label the vertices as in Fig. 6. If the first vertex to become clean
in a monotonic search strategy has four neighbors, then it will use at least 6 searchers. Since the graph is symmetric, we
can start with any vertex v with |N(v)| = 2. Hence, without loss of generality, let the first clean vertex be v1. To clean v1
we need at least 4 searchers. When v1 becomes clean, we must keep one searcher on each of v2 and v6. Hence there are
two free searchers. Observe that these two free searchers do not suffice to clean any other vertex. Hence a second vertex
cannot be cleaned using only 4 searchers. Thus s(H) > 4.

Also notice that deleting any vertex or edge from H or contracting any edge will reduce the search number to 4. Hence
H is a minimal minor with s(H) > 4. Similar arguments suffice for the other graphs in Fig. 6.

(2)⇒(3). Assume that G does not contain any of the graphs in Fig. 6 as a minor. Let P := Pi,j be the subgraph induced
by a maximal length boundary path with end vertices vi and vj such that P does not contain a tent or a house as a minor. If
P contains all the vertices in V (G), then G is a generalized bipolar graph where vi and vj are the poles. Otherwise, suppose
that vi−1 and vj+1 do not lie on P . We denote the subgraph induced by V (P) ∪ V ′, for V ′

⊆ V (G), as P + V ′.
Since P is maximal, the induced subgraph P + {vi−1} contains a tent (or a house) as a minor. Similarly, the induced

subgraph P + {vj+1} contains a tent (or a house) as a minor. Since G is outerplanar, these two tents (or two houses or a
tent and a house) are edge disjoint.

Let P ′
:= Pj+1,i−1 be the subgraph induced by the boundary path from vj+1 to vi−1 which is vertex-disjoint from P .

Then, P ′ cannot contain any tent or house as a minor since otherwise G would have one of the graphs in Fig. 6 as a minor.
To see this assume that P ′ contains a house or a tent. Since the subgraph P+{vi−1, vj+1} contains two tents (or two houses
or a tent and a house) which are edge disjoint, G will contain one of the graphs in Fig. 6. But this leads to a contradiction
with the assumption that G does not contain any graph in Fig. 6 as a minor. Hence, P ′ does not contain a house or a tent
as a minor.

Assume that P ′
+ {vi} has a tent or a house, say H , as a minor. Then, vi ∈ V (H), because P ′ does not contain a house

or a tent as a minor. Furthermore, there exists a vertex u ∈ {vj+1, vj+2, . . . , vi−2} such that uvi ∈ E(H). Thus vi−1 has no
neighbor in P other than vi, since G is outerplanar. Hence P +{vi−1} contains a longer boundary path without any tent or
a house as a minor, contradicting the maximality of P . Therefore P ′

+ {vi} does not have a tent or a house as a minor.
Similarly, P ′

+ {vj} cannot have a tent or a house as a minor either. Furthermore, it is impossible for P ′
+ {vi, vj} to

contain any tent or a house as a minor. Thus none of the boundary paths connecting vi and vj, namely, neither P nor
P ′

+ {vi, vj}, contains a tent or a house. Therefore, G is a generalized bipolar graph with vi and vj as poles.
(3)⇒(1). Suppose that v1 and vi are the poles of G. Let P1 := P1,i and P2 := Pi,1 be the subgraphs induced by the

boundary paths from v1 to vi and from vi to v1, respectively. First we put two searchers σ1 and σ2 on v1.
During the search process we always keep σ1 on P1 and σ2 on P2. The other two searchers, σ3 and σ4, are used to clean

boundary edges and chords in P and P ; they are also used to clean cross chords of G connecting a vertex in P with a
1 2 1
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ertex in P2. By the outerplanarity of G, a cross chord can always be cleaned using one searcher while its end vertices are
uarded by σ1 and σ2.
We will show how to clean P1 using σ1, σ3 and σ4 where the vertices are cleaned consecutively from v1 to vi. Similarly,

we can use σ2, σ3 and σ4 to clean the vertices of P2 consecutively from v1, then vn and down to vi.
Assume that v1, v2, . . . , vj−1 are cleaned and that currently vj is occupied by σ1. We have two cases regarding cross

chords incident to vj.
Case 1. There are no contaminated cross chords incident to vj. We consider three subcases based on the number of

ontaminated edges incident to vj.
Case 1.1. There are at most two contaminated edges incident to vj, say e1 = vjvj+1 and e2 = vjvk, where j + 1 ≤ k ≤ i.

We put σ3 on vj and we clean vj by sliding σ1 along e1 and σ3 along e2. If k = j + 1, both searchers are on vj+1 and we
proceed to clean vj+1. If k = j + 2, we put σ4 on vj+1 and clean all the edges between vj+1 and vj+2 by σ4. There are no
cross chords incident to vj+1 due to the outerplanarity. Hence vj+1 is clean. If j + 3 ≤ k ≤ i, since P1 does not contain a
house as a minor, the boundary path from vj+1 to vk can be cleaned by σ1 and σ4.

Case 1.2. There are at least three contaminated edges incident to vj and these edges are incident to exactly two vertices
on P1 other than vj. Let these two vertices be vj+1 and some vk (j + 1 ≤ k ≤ i). We show that the subgraph Pj,k induced
by {vj, vj+1, . . . , vk} can be cleaned by σ1, σ3 and σ4. Note that there are no contaminated cross chords incident to vj. If
k = j + 1, then σ1 remains on vj, we place σ3 on vj+1 while σ4 cleans all edges between vj and vj+1.

If j + 2 ≤ k ≤ i, since Pj,k does not contain a tent as a minor, it contains at most two edges of multiplicity at least
three. If it contains only one such edge, call it uv, with u having a subscript less than v, then either u = vj or v = vk, as
otherwise Pj,k would contain a house as a minor. In the former case, place σ4 on u = vj, then use σ1 and σ2 to clean the
vertices of Pj,k sequentially until v is reached. Let σ2 sit on v, and then σ1 cleans the edges uv. Then σ1 and σ2 may clean
the remaining vertices in Pj,k, eventually reaching vk. A similar argument suffices for when v = vk.

Next, we consider when Pj,k contains exactly two edges of multiplicity at least three. Call these edges uv and u′v′.
Notice that u, v, u′, v′

∈ {vj, vj+1, . . . , vk}. Without loss of generality, suppose the subscript of u is less than that of v, the
subscript of u′ is less than that of v′, and the subscript of u is less than or equal to that of u′. Since Pj,k does not contain a
house as a minor, we know that u = vj, and either v = vk or v′

= vk. Thus there are four possible cases for the endpoints
of uv and u′v′.

Case 1.2.1: u = u′ and v ̸= v′. In this case, u = u′
= vj, and v = vk or v′

= vk. Without loss of generality, suppose
v = vk. Since Pj,k does not contain a house or a tent as a minor, Pj,k can be cleaned as follows: (1) Put σ4 on vj and use
σ1, σ3 to clean the subgraph induced by the vertices on the boundary between vj and v′ except the edge vjv

′. After that,
vj is occupied by σ4 and v′ is occupied by σ1, σ3 and we clean the parallel edges between vj and v′. (2) Let σ4 stay on vj
and use σ1 and σ3 to clean the subgraph induced by the vertices on the boundary between v′ and vk. (3) Use σ3 to clean
the parallel edges between vj and vk while v1 is occupied by σ4 and vk is occupied by σ1.

Case 1.2.2: u ̸= u′, v ̸= u′ and v ̸= v′. Since Pj,k does not contain a house as a minor, we know that u = vj and v′
= vk;

and further, that the subscript of u′ must be greater than that of v, since otherwise we would violate the outerplanarity
of G. Then Pj,k can be cleaned in the following way: (1) While σ1 is on u, use σ3 and σ4 to clean the subgraph induced by
the vertices on the boundary between u and v except the edge uv. After that, u is occupied by σ1 and v is occupied by
σ3, σ4 and we can easily clean the parallel edges between u and v. (2) Then, with the only contaminated edges incident
with vj = u being uv′, use σ1 and s3 to clean all edges uv′, ending with σ1 on v′. (3) Use σ3, σ4 to clean the subgraph
induced by the vertices on the boundary between v and u′. After that, u′ is occupied by σ3, σ4 and v′ is occupied by σ1.
(4) Clean the parallel edges between u′ and v′. (5) Then σ1 remains on v′, and use σ3, σ4 to clean the subgraph induced
by the vertices on the boundary between u′ and v′ other than u′v′.

Case 1.2.3: u ̸= u′, v = u′ and v ̸= v′. Similarly to Case 1.2.2, we have u = vj and v′
= vk, and Pj,k can be cleaned in the

same way as that in Case 1.2.2 omitting the unnecessary step (3).
Case 1.2.4: u ̸= u′ and v = v′. Similarly to Case 1.2.1, we have u = vj and v = v′

= vk. In this case, Pj,k can be cleaned
by the following steps: (1) Use σ1, σ3, σ4 to clean the parallel edges between vj and vk. After that, vj is occupied by σ3 and
σ4 and vk is occupied by σ1. (2) Use σ3 and σ4 to clean the subgraph induced by the vertices on the boundary between vj
and u′. (3) While u′ is occupied by σ3 and vk is occupied by σ1, use σ4 to clean the parallel edges between u′ and vk. (5)
Use σ3 and σ4 to clean the subgraph induced by the vertices on the boundary between u′ and vk except the edge u′vk.

Case 1.3. There are at least three contaminated edges incident to vj and these edges are incident to at least three distinct
vertices on P1 other than vj, say vj+1, vk′ and vk, where j + 1 < k′ < k. Since Pj,k does not contain a house or a tent as a
minor, the only edges in Pj,k with multiplicity at least three are at most two of the vjvj+1, vjvk and vk−1vk. If there are at
most one edge in Pj,k with multiplicity at least three, it is easy to see that Pj,k can be cleaned by σ1, σ3 and σ4. Suppose
that there are two edges in Pj,k with multiplicity at least three. Then we have three cases for these two edges.

Case 1.3.1: vjvj+1 and vjvk have multiplicity at least three. Similarly to Case 1.2.1, we can clean Pj,k using σ1, σ3 and σ4.
Case 1.3.2: vjvj+1 and vk′vk have multiplicity at least three. Similarly to Case 1.2.3, we can clean Pj,k using σ1, σ3 and σ4.
Case 1.3.3: vjvk and vk′vk have multiplicity at least three. Similarly to Case 1.2.4, we can clean Pj,k using σ1, σ3 and σ4.
Case 2. There is a contaminated cross chord vlvj incident to vj, where vl ∈ V (P2)\{v1, vi}. Similarly to the above strategy

for cleaning Pj,k, we can clean P2 from v1 down to vl. After that, vl is occupied by σ2 and vj is occupied by σ1. Then we
use σ3 to clean all parallel edges between vl and vj.

We repeat the above procedure until P1 and P2 are cleaned, meanwhile, all cross chords of G between P1 and P2 are
also cleaned. Therefore, the graph G can be cleaned using at most 4 searchers. ■
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Fig. 7. A graph formed by the solid edges is a 4-searchable generalized wheel graph, while the graph formed by the solid and dotted edges is not.

Now that we know the biconnected components, we may comment on how to construct 4-searchable graphs.
xtending the definition of a pinched graph in [19], we define a 3-pinched graph as a graph obtained by identifying two
pposing poles of a bipolar graph. Observe that every 3-pinched graph is 4-searchable. The endpoint of a 2-searchable
raph is defined in [19] and we define the endpoint of a 3-searchable biconnected graph as an end vertex of one of its
oles.
The construction of an outerplanar 4-searchable graph allows joining such biconnected components at pole vertices,

nd adding (a) an arbitrary number of 1-, 2- and 3-searchable graphs at their end points, or, (b) at most a constant number
f pinched graphs and 3-pinched graphs at selected vertices of the result. We omit this result as the characterization of
hich graphs can be added to which vertices is straightforward to see but extremely tedious to write.

. Four-searchable generalized wheel graphs

A generalized wheel graph is a 2-outerplanar graph that consists of a center vertex and vertices on the boundary of the
uter face, called boundary vertices, such that after removing the center vertex, the remaining graph is a cycle which may
ave multiple edges. A spoke is an edge that connects the center vertex with a boundary vertex. Note that multiple edges
re allowed for spokes.
Let W be a biconnected generalized wheel graph with n vertices. In this section we fix a planar embedding of W and

abel its vertices as v0, v1, . . . , vn−1, where v0 is the center vertex and v1, . . . , vn−1 are boundary vertices in a clockwise
rder lying on the boundary of the outer face so that vn−1 is adjacent to v1.
Consider the graph in Fig. 7. That graph, omitting the dotted line, is 4-searchable, as we will show directly by giving a

monotonic search strategy using four searchers, σi, 1 ≤ i ≤ 4. Place σ1 on vk and σ2 on vk+1. Then use σ3 to clean the edges
etween them. Using searchers σ1, σ3, and σ4, continue to clean edges sequentially from vk until vj+1 is reached. Leaving
4 on vj+1, move σ1 to vj, and then use σ3 to clean the edges vjvj+1. At this point, all edges incident with vj+1 have been
leaned except for the spoke v0vj+1. Move s4 along v0vj+1 (cleaning it). Then use σ3 to clean the spokes v0vj and v0vk+1.
From here on, the σ1 will continue to move from vj to vi+1. When it reaches an uncleaned spoke, it will stop, and then σ3
will clean that spoke. This will continue, until σ1 reaches vi+1, with σ3 then cleaning v0vi+1. Then, σ2 will duplicate this
motion, moving from vk+1 towards vn−1. Again, when spokes are encountered, σ3 will clean them. Eventually, σ2 reaches
vn−1, and σ3 cleans v0vn−1. At this point, the only edge incident with v0 that has not been cleaned is v0v2. The searcher
σ4 can slide along that spoke, cleaning it. Then σ2 can move to v1 from vn−1, and subsequently σ3 can clean all the edges
v1v2. Leaving σ4 on v2, σ1 can move to vi, and σ3 can clean the edges vivi+1. Then s1 can move along the outer edges until
it is adjacent to v2, and σ3 can clean the remaining edges.

However, by adding the dotted edge (the spoke v0vi) we see that the ‘‘end game’’ of this strategy would not be possible,
since, for instance, σ4 would not be free to move along the spoke v0v2. In fact, no strategy using only four searchers is
possible, as the graph then contains the graph W11 from Fig. 8 as a minor, and s(W11) > 4.

Theorem 4. A reduced biconnected generalized wheel graph is 4-searchable if and only if it does not contain any of the graphs
in Fig. 8 as a minor.
76



Ö.Y. Diner, D. Dyer and B. Yang Discrete Applied Mathematics 306 (2022) 70–82

a

P

i

m
v

a
s

p
S

o
a

Fig. 8. A complete list of minimal minors W1,W2, . . . ,W12 that cannot be contained in any biconnected generalized wheel graph with search number
t most 4.

roof. Label the graphs in Fig. 8 as W1,W2, . . . ,W12.
‘‘⇒’’. Let W be a reduced biconnected generalized wheel graph with s(W ) ≤ 4. Observe that for each Wi, 1 ≤ i ≤ 12,

n Fig. 8, we have s(Wi) > 4. Thus W cannot contain any of them as a minor.
‘‘⇐’’. Let W be a reduced biconnected generalized wheel graph that does not contain any Wi, 1 ≤ i ≤ 12, in Fig. 8 as a

inor. Consider a planar embedding of W and label the vertices of W as v0, v1, . . . , vn−1, where v0 is the center vertex and
1, . . . , vn−1 clockwisely lie on the boundary of the outer face. Denote the graph induced by the vertices {vi, vi+1, . . . , vj}

s Pi,j, where the indices except n − 1 are modulo n − 1. We also call Pi,j the boundary path from vi to vj. Let ES be the
et of all non-parallel spokes in W . We have the following cases regarding the structure of W .
Case 1: The multiplicity of each edge on the boundary of the outer face of W is at most two. From this structure, we

lace the searcher σ1 on v0 and the other three searchers on v1. The searcher σ3 can clean all edges between v0 and v1.
ince W does not contain any outer 3K2, σ3 and σ4 can move along the boundary of the outer face to clean all boundary

edges and spokes easily. Thus, in the cases that remain, we assume that the multiplicity of some boundary edge is 3 or
more.

Case 2: |ES | ≤ 2. If |ES | = 1, it is easy to see that s(W ) ≤ 4. Suppose ES = {v0vi, v0vj}. We first place four searchers
n vi. While σ4 stays still on vi, the other three searchers can move along Pi,j from vi to vj to clean all edges one by one
long the path. Then σ1 slides from vj to v0. So σ2 can clean all edges between v0 and vi and also clean all edges between

v0 and vj. After that, σ1 and σ2 move back to vj, and then three searchers can move along Pj,i from vj to vi to clean all
remaining edges.

Case 3: |ES | = 3. Let ES = {v0vi, v0vj, v0vk}, where 1 ≤ i < j < k ≤ n − 1. Depending on the multiplicity of each spoke
in ES , we have the following four subcases.

Case 3.1: Each spoke in ES has multiplicity of at least three. Since W1 is not contained in W as a minor, among the
three paths Pi,j, Pj,k and Pk,i, there is at least one of them, say Pi,j, on which every edge has multiplicity of at most two.
We first place σ1 on vj and move the other three searchers along Pj,k from vj to vk to clean all edges on the path. After
that, σ3 and σ4 slide to v0 and then σ3 cleans all spokes between v0 and vk and all spokes between v0 and vj. Then σ1 and
σ4 move along Pi,j from vj to vi to clean all edges on this path. While σ1 stays still on vi, σ4 cleans all spokes between v0
and vi. Finally, σ2, σ3 and σ4 move along Pk,i from vk to vi to clean all edges on this path.

Case 3.2: Only one spoke in ES , say v0vk, has multiplicity of at most two and the other two spokes have multiplicity
of at least three. If there is at least one of the three paths Pi,j, Pj,k and Pk,i, on which every edge has multiplicity at most
two, then similarly to Case 3.1, we can clean W using four searchers. Suppose that each of Pi,j, Pj,k, Pk,i contains an edge
of multiplicity at least three. We first place σ1 on vi and move the other three searchers along Pi,j from vi to vj to clean
all edges on the path. After that, σ3 and σ4 slide to v0 and then σ3 cleans all spokes between v0 and vi and all spokes
between v0 and vj. Then σ3 and σ4 slide to vk. Since W2 is not contained in W as a minor, at least one of Pj,k and Pk,i
contains exactly one edge of multiplicity at least three, and this edge is incident with vk. Without loss of generality, let

vk−1vk be this edge. While σ1 stays on vi and σ4 stays on vk, σ2 and σ3 move along Pj,k−1 from vj to vk−1 to clean all edges
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o
n this path. Then σ2 cleans all edges between vk−1 and vk. Finally, σ2, σ3 and σ4 move along Pk,i from vk to vi to clean
all remaining edges.

Case 3.3: Only one spoke in ES , say v0vi, has multiplicity of at least three and the other two spokes have multiplicity of
at most two. If there is at least one of Pi,j, Pj,k and Pk,i, on which every edge has multiplicity at most two, then similarly
to Case 3.1, we can clean W using four searchers. Assume that all of Pi,j, Pj,k, Pk,i contain an edge of multiplicity at least
three. Place σ1 on vi and move the other three searchers along Pi,j from vi to vj to clean all edges on the path. Since W3
is not contained in W as a minor, Pj,k contains at most two edges of multiplicity at least three, each of which is incident
with vj or vk. Without loss of generality, suppose that vjvj+1 and vk−1vk have multiplicity of at least three. Slide σ3 to vj+1
and use σ4 to clean the edges between vj and vj+1. Move σ3 and σ4 along Pj+1,k−1 to clean all edges on this path. Use σ2
and σ3 to clean the spokes v0vj, v0vi and v0vk. Then clean the edges between vk−1 and vk. Finally, move σ2, σ3 and σ4
along Pk,i from vk to vi to clean all remaining edges.

Case 3.4: Each spoke in ES has multiplicity at most two. Suppose that each of Pi,j, Pj,k, Pk,i contains an edge of multiplicity
at least three. Since W4 is not contained in W as a minor, one of Pi,j, Pj,k and Pk,i, say Pj,k, contains only one edge of
multiplicity at least three which is incident to vj or vk, or contains exactly two non-parallel edges of multiplicity at least
three. Similarly to Case 3.3, we can first clean Pi,j, then all spokes and Pj,k, and finally clean Pk,i.

Case 4: |ES | = 4. Let ES = {v0vi, v0vj, v0vk, v0vl}, where 1 ≤ i < j < k < l ≤ n − 1. Depending on the multiplicity of
spokes in ES , we have the following five subcases.

Case 4.1: Each spoke in ES has multiplicity of at least three. Since W1 is not contained in W as a minor, among the four
paths Pi,j, Pj,k, Pk,l and Pl,i, there are at least two of them on which every edge has multiplicity of at most two. We have
two cases for these two paths: they either share a terminal vertex, or they do not. We only prove the latter; the former
can be proved similarly. So assume that every edge of Pj,k and Pl,i has multiplicity of at most two. Place σ1 on vi and move
the other three searchers along Pi,j from vi to vj to clean all edges on Pi,j. Slide σ2 from vj to v0 and use σ4 to clean the
spokes v0vj and v0vi. Move σ3 and σ4 along Pj,k from vj to vk and then move σ1 and σ4 along Pl,i from vi to vl to clean all
edges on these two paths. Use σ4 to clean the spokes v0vk and v0vl. Finally, move σ2, σ3 and σ4 along Pk,l from vk to vl to
clean all remaining edges.

Case 4.2: Only one spoke in ES has multiplicity of at most two and the other three spokes have multiplicity of at least
three. This case can be proved in a way similar to Case 4.1.

Case 4.3: Two spokes in ES have multiplicity of at most two and the other two have multiplicity of at least three. We
have two subcases regarding the relative positions of the two kinds of spokes.

Case 4.3.1: Spokes v0vi and v0vk have multiplicity of at least three and v0vj and v0vl have multiplicity of at most two.
We have six subcases regarding the distribution of the outer edges with multiplicity at least three.

Case 4.3.1.1: One of Pi,k and Pk,i contains no edge of multiplicity at least three. Suppose each edge of Pi,k has multiplicity
of at most two. Place σ4 on vi and move the other three searchers along Pl,i from vi to vl to clean all edges on Pl,i. Move
σ2 and σ3 from vl to v0 to clean the spoke(s) between v0 and vl. Use σ3 to clean the spokes between v0 and vi. Move σ3
and σ4 along Pi,j from vi to vj to clean all edges on the path. Use σ3 to clean the spoke(s) between v0 and vj. Move σ3 and
σ4 along Pj,k from vj to vk to clean all edges on Pj,k. Use σ3 to clean the spokes between v0 and vk. Finally, move σ2, σ3
and σ4 along Pk,l from vk to vl to clean all remaining edges.

Case 4.3.1.2: One of Pj,l and Pl,j contains no edge of multiplicity at least three. Suppose each edge of Pl,j has multiplicity
of at most two. Similarly to Case 4.3.1.1, we first place one searcher on vj and use the other three searchers to clean Pj,k.
Then clean the spoke(s) v0vj and move two searchers along Pi,j from vj to vi to clean it. Clean the spokes v0vi, v0vk and
v0vl. Move two searchers along Pl,i from vi to vl to clean it. Finally, move three searchers along Pk,l from vl to vk to clean
all remaining edges.

Case 4.3.1.3: Pi,j and Pk,l contain no edge of multiplicity at least three. Similarly to Case 4.3.1.2, we first clean Pj,k, and
then clean Pi,j. After that, clean all the spokes. Then move two searchers along Pk,l from vk to vl to clean it. Finally, move
three searchers along Pl,i from vl to vi to clean all remaining edges.

Case 4.3.1.4: Pj,k and Pl,i contain no edge of multiplicity at least three. This case can be proved in a way similar to Case
4.3.1.3.

Case 4.3.1.5: Exactly one of Pi,j, Pj,k, Pk,l and Pl,i contains no edge of multiplicity at least three. Suppose Pj,k is such a
path. Since W2 is not contained in W as a minor, at least one of Pk,l and Pl,i contains exactly one edge of multiplicity at
least three, and this edge is incident with vl. Without loss of generality, suppose that vlvl+1 is the only edge on Pl,i with
multiplicity at least three. Similarly to Case 4.3.1.2 or Case 4.3.1.3, we first clean Pi,j and then clean Pj,k. After that, clean
all the spokes. Then move two searchers along Pl+1,i from vi to vl+1 to clean it. Then clean edges between vl and vl+1.
Finally, move three searchers along Pk,l to clean all remaining edges.

Case 4.3.1.6: Each of Pi,j, Pj,k, Pk,l and Pl,i contains at least one edge of multiplicity at least three. SinceW2 is not contained
in W as a minor, W cannot have either of the following properties: each of Pi,j and Pj,k contains an edge of multiplicity at
least three which is not incident with vj; or each of Pk,l and Pl,i contains an edge of multiplicity at least three which is not
incident with vl. Thus, at least one of Pi,j and Pj,k contains exactly one edge of multiplicity at least three which is incident
with vj, and at least one of Pk,l and Pl,i contains exactly one edge of multiplicity at least three which is incident with vl.
Without loss of generality, suppose Pj,k contains exactly one edge of multiplicity at least three which is incident with vj,
that is, vjvj+1. If Pk,l contains exactly one edge of multiplicity at least three which is incident with vl, that is, vlvl−1, then
we first clean P and then clean the edges between v and v and further clean P . After that, clean all the spokes.
i,j j j+1 j+1,k
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T
hen move two searchers along Pk,l−1 from vk to vl−1 to clean it. Then clean edges between vl and vl−1. Finally, move
three searchers along Pl,i from vl to vi to clean all remaining edges. If Pl,i contains exactly one edge of multiplicity at least
three which is incident with vl, that is, vlvl+1, then similarly, we clean Pi,j, vjvj+1, Pj+1,k, and clean all the spokes. Then
move two searchers along Pl+1,i from vi to vl+1 to clean this path, then the edges between vl and vl+1, and finally, clean
Pk,l.

Case 4.3.2: Spokes v0vi and v0vj have multiplicity of at least three and v0vk and v0vl have multiplicity of at most two.
For this and subsequent (sub)cases, as the reader is now familiar with the style of proof employed, we will simplify a

monotonic cleaning strategy to a cleaning order if the searchers’ positions and sliding directions can be determined from
the context without ambiguity. For example, given two paths, Pi,j and Pj,k, the first containing at least one edge with
multiplicity three and the second containing no edge with multiplicity greater than two, and having specified that there
are 4 searchers on vertex vi, we might give a cleaning order of ⟨Pi,j, Pj,k⟩, to indicate that three searchers would proceed
to clean the path Pi,j (one remaining on vi). Then with another remaining on vj, the two remaining searchers would clean
Pj,k.

Case 4.3.2.1: Two of Pi,j, Pj,k, Pk,l and Pl,i contain no edge of multiplicity at least three. Similarly to Case 4.3.1.1 – Case
4.3.1.4, we can clean W .

Case 4.3.2.2: Exactly one of Pi,j, Pj,k, Pk,l and Pl,i contains no edge of multiplicity at least three. Since W5 is not contained
in W as a minor, Pk,l must contain at least one edge of multiplicity at least three. Then we have three cases.

Case 4.3.2.2.1: Each edge of Pi,j has multiplicity of at most two. If Pk,l does not contain an edge of multiplicity at least
three which is not incident with vk or vl, then W can be cleaned in the following cleaning order ⟨Pj,k, vkvk+1, v0vk, v0vj,
Pi,j, v0vi, v0vl, Pk+1,l−1, vlvl−1, Pl,i⟩. If Pk,l contains an edge of multiplicity at least three which is not incident with vk or
vl, since W7 is not contained in W as a minor, either Pj,k contains exactly one edge of multiplicity at least three which is
incident with vk, or Pl,i contains exactly one edge of multiplicity at least three which is incident with vl. Without loss of
generality, suppose Pj,k contains exactly one edge of multiplicity at least three which is incident with vk. Then W can be
cleaned in the cleaning order ⟨Pk,l, vkvk−1, Pj,k−1, v0vk, v0vj, Pi,j, v0vi, v0vl, Pl,i⟩.

Case 4.3.2.2.2: Each edge of Pj,k has multiplicity of at most two. Since Pi,j contains an edge of multiplicity at least three
and W2 is not contained in W as a minor, either Pk,l contains exactly one edge of multiplicity at least three which is
incident with vl, or Pl,i contains exactly one edge of multiplicity at least three which is incident with vl. Without loss of
generality, suppose Pk,l contains exactly one edge of multiplicity at least three which is incident with vl. Then W can be
cleaned in the cleaning order ⟨Pi,j, v0vj, v0vi, Pj,k, v0vk, v0vl, Pk,l−1, vlvl−1, Pl,i⟩.

Case 4.3.2.2.3: Each edge of Pl,i has multiplicity of at most two. Similarly to Case 4.3.2.2.2, we can clean W .
Case 4.3.2.3: Each of Pi,j, Pj,k, Pk,l and Pl,i contains an edge of multiplicity at least three. Since W5 is not contained in W

as a minor, this case cannot occur for W .
Case 4.4: Only one spoke in ES has multiplicity of at least three and the other three spokes have multiplicity of at most

two. Let v0vi be the spoke in ES has multiplicity of at least three. We have three subcases regarding the distribution of
the outer edges with multiplicity at least three.

Case 4.4.1: Two of Pi,j, Pj,k, Pk,l and Pl,i contain no edge of multiplicity at least three. The strategies to clean W in this
case are similarly to those in Case 4.3.1.1 – Case 4.3.1.4.

Case 4.4.2: Exactly one of Pi,j, Pj,k, Pk,l and Pl,i contains no edge of multiplicity at least three. By symmetry, we only
need to consider the following two subcases.

Case 4.4.2.1: Each edge of Pi,j has multiplicity of at most two. If Pk,l does not contain an edge of multiplicity at least
three which is not incident with vk or vl, then W can be cleaned in the same way as that in Case 4.3.2.2.1. If Pk,l contains
an edge of multiplicity at least three which is not incident with vk or vl, Since W7 is not contained in W as a minor, either
Pj,k contains exactly one edge of multiplicity at least three which is incident with vk, or Pl,i contains exactly one edge of
multiplicity at least three which is incident with vl. So W can be cleaned in the same way as that in Case 4.3.2.2.1.

Case 4.4.2.2: Each edge of Pj,k has multiplicity of at most two. Since Pi,j contains an edge of multiplicity at least three
and W6 is not contained in W as a minor, either Pk,l contains exactly one edge of multiplicity at least three which is
incident with vl, or Pl,i contains exactly one edge of multiplicity at least three which is incident with vl. Thus W can be
cleaned in the same way as that in Case 4.3.2.2.2.

Case 4.4.3: Each of Pi,j, Pj,k, Pk,l and Pl,i contains an edge of multiplicity at least three. Since W3 is not contained in W
as a minor, either Pi,j contains exactly one edge of multiplicity at least three which is incident with vj, or Pl,i contains
exactly one edge of multiplicity at least three which is incident with vl. Then we have the following three subcases.

Case 4.4.3.1: If vj−1vj is the only edge on Pi,j with multiplicity at least three and vlvl+1 is the only edge on Pl,i with
multiplicity at least three, then W can be cleaned in the cleaning order ⟨Pj,k, vj−1vj, Pi,j−1, v0vj, v0vi, v0vk, v0vl, Pl−1,i,
vlvl+1, Pk,l⟩.

Case 4.4.3.2: If vj−1vj is the only edge on Pi,j with multiplicity at least three, and Pl,i contains an edge of multiplicity at
least three which is not incident with vl, then vl−1vl is the only edge on Pk,l with multiplicity at least three because W6 is
not contained in W as a minor. So W can be cleaned in the cleaning order ⟨Pj,k, vj−1vj, Pi,j−1, v0vj, v0vi, v0vk, v0vl, Pj,l−1,
vl−1vl, Pl,i⟩.

Case 4.4.3.3: If vlvl+1 is the only edge on Pl,i with multiplicity at least three, and Pi,j contains an edge of multiplicity at
least three which is not incident with vj, then similarly to Case 4.4.3.2., we can prove this case.

Case 4.5: All four spokes in ES have multiplicity of at most two. We have the following three subcases regarding the
distribution of the outer edges with multiplicity at least three.
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Case 4.5.1: Two or fewer of Pi,j, Pj,k, Pk,l and Pl,i contain edges with multiplicity at least three. By symmetry, we only
need to consider two cases: (1) If all edges of Pk,l and Pl,i have multiplicity at most two, then clean W in the order ⟨Pi,j,
l,i, v0vi, v0vj, v0vl, v0vk, Pk,l, Pj,k⟩; (2) if all edges of Pj,k and Pl,i have multiplicity at most two, then clean W in the order
Pi,j, Pj,k, v0vj, v0vi, v0vk, v0vl, Pl,i, Pk,l⟩.

Case 4.5.2: Exactly one of Pi,j, Pj,k, Pk,l and Pl,i contains no edge of multiplicity at least three. Without loss of generality,
uppose that each edge of Pi,j has multiplicity of at most two. We have the following three subcases.
Case 4.5.2.1: If Pj,k contains only one edge with multiplicity at least three which is incident with vk, then W can be

cleaned in the order ⟨Pk,l, vk−1vk, Pj,k−1, v0vk, v0vl, v0vj, v0vi, Pi,j, Pl,i⟩.
Case 4.5.2.2: If Pl,i contains only one edge with multiplicity at least three which is incident with vl, then W can be

cleaned in the order ⟨Pk,l, vlvl+1, Pi,l+1, v0vl, v0vk, v0vi, v0vj, Pi,j, Pj,k⟩.
Case 4.5.2.3: Suppose that Pj,k contains an edge with multiplicity at least three which is not incident with vk and Pl,i

contains an edge with multiplicity at least three which is not incident with vl. Since W7 is not contained in W as a minor,
we have the following two subcases.

Case 4.5.2.3.1: Pk,l contains only one edge with multiplicity at least three which is incident with one of vk or vl, say vk.
Then W can be cleaned in the order ⟨Pj,k, vkvk+1, Pk+1,l, v0vk, v0vl, v0vj, v0vi, Pi,j, Pl,i⟩.

Case 4.5.2.3.2: Pk,l contains exactly two edges with multiplicity at least three such that one is incident with vk and the
other is incident with vl. Then W can be cleaned in the order ⟨Pj,k, vkvk+1, Pk+1,l−1, v0vk, v0vj, Pi,j, v0vi, v0vl, vl−1vl, Pl,i⟩.

Case 4.5.3: Each of Pi,j, Pj,k, Pk,l and Pl,i contains an edge of multiplicity at least three. Since W8 is not contained in W
as a minor, at least two of Pi,j, Pj,k, Pk,l and Pl,i contain exactly one edge with multiplicity at least three. By symmetry, we
only need to consider the following two subcases.

Case 4.5.3.1: Pi,j and Pj,k contain exactly one edge with multiplicity at least three.
Case 4.5.3.1.1: The edge with multiplicity at least three in Pi,j is not incident with vi and vj, and the edge with multiplicity

at least three in Pj,k is not incident with vj and vk. If Pk,l has an edge with multiplicity at least three which is not incident
with vk or Pl,i has an edge with multiplicity at least three which is not incident with vi, then W4 is a minor of W . This is a
contradiction. Thus, there is only one edge on Pk,l whose multiplicity is at least three and which is incident with vk, and
there is only one edge on Pl,i whose multiplicity is at least three and which is incident with vi. Then W can be cleaned
in the order ⟨Pi,j, vi−1vi, Pl,i−1, v0vi, v0vj, v0vl, v0vk, Pk+1,l, vkvk+1, Pj,k⟩.

Case 4.5.3.1.2: The edge with multiplicity at least three in Pj,k is incident with vj. Then we have the following three
subcases.

Case 4.5.3.1.2.1: There is an edge with multiplicity at least three on Pk,l which is not incident with vk and vl. If there is
an edge with multiplicity at least three on Pl,i which is not incident with vl and vi, then W4 is a minor of W , which is a
contradiction; if there is an edge with multiplicity at least three on Pl,i which is not incident with vl, then W7 is a minor
of W , which is a contradiction; otherwise, the edge with multiplicity at least three on Pl,i must be incident with vl, which
implies that W can be cleaned in the order ⟨Pi,j, vjvj+1, Pj+1,k, v0vj, v0vk, v0vi, v0vl, Pl+1,i, vlvl+1, Pk,l⟩.

Case 4.5.3.1.2.2: There are only two edges with multiplicity at least three on Pk,l, one is incident with vk and the other
is incident with vl. If there is an edge with multiplicity at least three on Pl,i which is not incident with vl, then W8 is a
minor of W , which is a contradiction; otherwise, the edge with multiplicity at least three on Pl,i must be incident with
vl; so W can be cleaned in the same cleaning order as that in Case 4.5.3.1.2.1.

Case 4.5.3.1.2.3: There is only one edge with multiplicity at least three on Pk,l which is incident with vk or vl. Similarly
to Case 4.5.3.1.2.1, we can prove this case.

Case 4.5.3.2: Pj,k and Pl,i contain exactly one edge with multiplicity at least three. This case can be proved using the
analysis in Case 4.5.3.1.

Case 5: |ES | = 5. Let ES = {v0vi, v0vj, v0vk, v0vl, v0vm}, where 1 ≤ i < j < k < l < m ≤ n − 1. Depending on the
multiplicity of spokes in ES , we have the following six subcases.

Case 5.1: Each spoke in ES has multiplicity of at least three. Since W1 is not contained in W as a minor, among the five
paths Pi,j, Pj,k, Pk,l, Pl,m and Pm,i, there are at most two of them which contain edges of multiplicity at least three. These
two paths either share a terminal vertex, or not. We consider the latter case. Without loss of generality, suppose that only
Pi,j and Pk,l contain edges of multiplicity at least three. Then W can be cleaned in the order ⟨Pi,j, v0vi, v0vj, Pj,k, v0vk, Pm,i,
v0vm, Pl,m, v0vl, Pk,l⟩. The former case is proved similarly.

Case 5.2: Only one spoke in ES has multiplicity of at most two and the other four spokes have multiplicity of at least
three. Let v0vl be the spoke that has multiplicity of at most two. Since W1 is not contained in W as a minor, among the
four paths Pi,j, Pj,k, Pk,m and Pm,i, there are at most two of them which contain edges of multiplicity at least three. By
symmetry, we have four subcases.

Case 5.2.1: Only Pj,k and Pm,i contain edges of multiplicity at least three. In this case we can clean W in the order ⟨Pj,k,
v0vk, Pk,l, v0vl, Pl,m, v0vm, v0vj, Pi,j, v0vi, Pm,i⟩.

Case 5.2.2: Only Pi,j and Pm,i contain edges of multiplicity at least three. We can clean W similarly to Case 5.2.1.
Case 5.2.3: Only Pi,j and Pk,m contain edges of multiplicity at least three. Regarding the positions of edges of multiplicity

at least three on Pk,l and Pl,m, we have two subcases.
Case 5.2.3.1: Only one of Pk,l and Pl,m contains edges of multiplicity at least three. Without loss of generality, suppose

that all edges on Pl,m have multiplicity at most two. Then we can clean W in the same order as that in Case 5.1.
Case 5.2.3.2: Both Pk,l and Pl,m contain edges of multiplicity at least three. If both Pk,l and Pl,m contain edges of

multiplicity at least three which are not incident with v , then W is a minor, a contradiction. Thus one of P and P , say
l 2 k,l l,m
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k,l, contains only one edge of multiplicity at least three which is incident with vl. Then W can be cleaned in the order
⟨Pi,j, v0vi, v0vj, Pj,k, v0vk, Pm,i, v0vm, v0vl, Pk,l−1, vl−1vl, Pl,m⟩.

Case 5.2.4: Only Pj,k and Pk,m contain edges of multiplicity at least three. This case follows in a similar fashion as Case
5.2.3.

Case 5.3: Two spokes in ES have multiplicity of at most two and the other three have multiplicity of at least three. By
symmetry, we have two subcases.

Case 5.3.1: Spokes v0vj and v0vl have multiplicity of at most two. Since W1 is not contained in W as a minor, among
the three paths Pi,k, Pk,m and Pm,i, there are at most two of them which contain edges of multiplicity at least three. By
ymmetry, we have two subcases.
Case 5.3.1.1: Pi,k and Pk,m contain edges of multiplicity at least three. If both Pk,l and Pl,m contain edges of multiplicity

t least three which is not incident with vl, then W2 is a minor. This is a contradiction. Thus one of Pk,l and Pl,m, say
Pk,l, contains only one edge of multiplicity at least three which is incident with vl. Similarly, one of Pi,j and Pj,k, say Pi,j,
contains only one edge of multiplicity at least three which is incident with vj. Then W can be cleaned in the order ⟨Pj,k,
vj−1vj, v0vj, v0vk, Pi,j−1, v0vi, Pm,i, v0vm, v0vl, Pk,l−1, vl−1vl, Pl,m⟩.

Case 5.3.1.2: Pi,k and Pm,i contain edges of multiplicity at least three. If both Pi,j and Pj,k contain edges of multiplicity
at least three which is not incident with vj, then W2 is a minor. This is a contradiction. Thus one of Pi,j and Pj,k, say Pi,j,
contains only one edge of multiplicity at least three which is incident with vj. Then W can be cleaned in the order ⟨Pm,i,
v0vi, v0vm, Pl,m, v0vl, Pk,l, v0vk, v0vj, Pi,j−1, vj−1vj, Pj,k⟩.

Case 5.3.2: Spokes v0vk and v0vl have multiplicity of at most two. Since W1 is not contained in W as a minor, among
the three paths Pi,j, Pj,m and Pm,i, at most two contain edges of multiplicity at least three. By symmetry, we have two
subcases.

Case 5.3.2.1: Pi,j and Pj,m contain edges of multiplicity at least three. If both Pj,k and Pl,m contain edges of multiplicity
at least three, then W5 is a minor, a contradiction. Thus only one of Pj,k and Pl,m, say Pj,k, contains edges of multiplicity
at least three. If both Pj,k and Pk,l contain edges of multiplicity at least three which are not incident with vk, then W2 is a
minor. Again, a contradiction. Thus only one of Pj,k and Pk,l, say Pj,k, contains only one edge of multiplicity at least three
which is incident with vk. Then W can be cleaned in the order ⟨Pk,l, vk−1vk, v0vk, v0vl, Pj,k−1, v0vj, Pl,m, v0vm, Pm,i, v0vi,
Pi,j⟩.

Case 5.3.2.2: Pi,j and Pm,i contain edges of multiplicity at least three. If Pl,k contains at least one edge of multiplicity at
least three, then W has W11 as a minor, a contradiction. If Pj,k (or Pl.m) contain at least one edge of multiplicity at least 3,
then W has a W2 minor, another contradiction. Thus, all edges in Pj,k, Pk,l, and Pl,m may be assumed to have multiplicity
two or less. Then W can be cleaned in the order ⟨Pi,j, v0vi, v0vj, Pj,k, v0vk, Pk,l, v0vl, Pl,m, v0vm, Pi,m⟩.

Case 5.4: Three spokes in ES have multiplicity of at most two and the other two have multiplicity of at least three. This
case follows the same pattern as Case 4.4.

Case 5.5: Four spokes in ES have multiplicity of at most two and one has multiplicity of at least three. Without loss
of generality, suppose that spoke v0vi has multiplicity of at least three. If each of the paths Pi,j, Pk,l and Pm,i contains an
edge with multiplicity at least three, then W contains W9 as a minor, a contradiction. Then the rest of this case follows
similarly to Case 4.5.

Case 5.6: All five spokes in ES have multiplicity of at most two. Since W10 is not contained in W as a minor, among
the five paths Pi,j, Pj,k, Pk,l, Pl,m and Pm,i, there are at most four which contain edges of multiplicity at least three. Suppose
that among the five paths Pi,j, Pj,k, Pk,l, Pl,m and Pm,i, there are at least three of them, say Pi,j, Pk,l and Pl,m, which contains
edges of multiplicity at least three. Since W11 is not contained in W as a minor, one of Pk,l and Pl,m contains only one edge
of multiplicity at least three. The rest of this case can be proved similarly to Case 4.5.

Case 6: |ES | ≥ 6. We only consider the case where |ES | = 6 because the proof for the case where |ES | > 6 is similar.
Let ES = {v0vh, v0vi, v0vj, v0vk, v0vl, v0vm}, where 1 ≤ h < i < j < k < l < m ≤ n − 1. Among the six paths Ph,i, Pi,j, Pj,k,
Pk,l, Pl,m and Pm,h, if there exist three vertex-disjoint paths which contains an edge of multiplicity at least three, then W12
is a minor of W . This is a contradiction. By symmetry, we only consider the following two subcases; the other cases are
either similar or simpler.

Case 6.1: Each of Ph,i, Pi,j, Pj,k and Pk,l contains an edge of multiplicity at least three while Pl,h does not contain an
edge of multiplicity at least three. If there are at least four spokes with multiplicity at least three, then W1 is a minor,
a contradiction. If one of v0vi, v0vj and v0vk has multiplicity at least three, then W3 is a minor, another contradiction. If
three of Ph,i, Pi,j, Pj,k and Pk,l each contains an edge of multiplicity at least three which is not incident with any terminal
vertices of these paths, then W4 is a minor, which is again a contradiction. Without loss of generality, assume that each
of Ph,i and Pj,k contains an edge of multiplicity at least three which is not incident with any terminal vertices, while any
edge with multiplicity at least three on Pi,j and Pk,l is incident with some terminal vertex. Under this assumption, W11 is
a minor. This is a contradiction. The rest of this case can be proved as previously, or there is a simple cleaning strategy.

Case 6.2: Each of Ph,i, Pi,j, Pk,l and Pl,m contains an edge of multiplicity at least three while Pj,k and Pm,h do not contain
an edge of multiplicity at least three. If one of the six spokes has multiplicity at least three, then W3, W6 or W9 is a minor,
a contradiction. If three of Ph,i, Pi,j, Pj,k and Pk,l each contains an edge of multiplicity at least three which is not incident
with any terminal vertices, then W4 is a minor, another contradiction. If three of Ph,i, Pi,j, Pj,k and Pk,l each contains an
edge of multiplicity at least three such that two of them are not incident with the same terminal vertex, then W11 is
a minor, a contradiction. The remaining versions of this case can be proved as previously, or there is a simple cleaning
strategy. ■
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. Conclusion

We have constructively characterized when a biconnected outerplanar graph is 4-searchable. Observe that each graph
n Fig. 6 is a combination of houses and tents. The gluing rules are as follows: (1) A combination of exactly three of
he houses and tents suffice to form a graph in Fig. 6; and (2) the houses are glued at the two end vertices of their base
dges. Thus, these graphs are composed of smaller sub-structures that can be called base graphs. One future direction is to
haracterize forbidden minors for k-searchable graphs constructively using a set of base graphs. In the case of outerplanar
raphs, the base graphs correspond to the house and tent, thus, there are only 2 base graphs needed.
Ideally, the result given in Section 3 would be extended to any 4-searchable outerplanar graph. This could be done by

iving the exact structure of such a graph by giving (1) the rules for attaching biconnected components that have a smaller
earch number to a biconnected 4-searchable outerplanar component and (2) the rules for glueing two biconnected
-searchable outerplanar components to each other. In this paper, we only gave the structure of the biconnected
omponents for the graph classes we are interested in. The extensions of these results to general outerplanar graphs
an be done by the analysis mentioned above.
As another extension of Section 4, one can obtain the obstructions for 4-searchable 2-outerplanar graphs in F4.

lthough we do not give them here, by analyzing such obstructions that we have obtained, we notice the difficulty of
he characterization of graphs in F4 in general. If we can find each member of this family, we may be able to observe the
ransition between the obstructions for 4-searchable k-outerplanar graphs and 4-searchable (k + 1)-outerplanar graphs.
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