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a b s t r a c t 

In this paper, we introduce a new, single-component model for maintenance optimization under time- 

varying costs, specifically oriented at offshore wind turbine maintenance. We extend the standard age 

replacement policy (ARP), block replacement policy (BRP) and modified block replacement policy (MBRP) 

to address time-varying costs. We prove that an optimal maintenance policy under time-varying costs 

is a time-dependent ARP policy. Via a discretization of time, the optimal time-dependent ARP can be 

found using a linear programming formulation. We also present mixed integer linear programming mod- 

els for parameter optimization of BRP and MBRP. We present a business case and apply our policies for 

maintenance planning of a wind turbine gearbox and show that we can achieve savings up-to 23%. 

© 2021 The Author(s). Published by Elsevier B.V. 
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. Introduction 

One of the most efficient ways to generate sustainable energy is 

y wind turbines, especially at sea. The United Kingdom, Germany 

nd the Netherlands already generate 14 GW of power in offshore 

ind farms and plan to triple that by 2030. Nowadays the opera- 

ion and maintenance costs make up around 25–30% of the total 

ife cycle costs for an offshore wind farm ( Röckmann, Lagerveld, & 

tavenuiter, 2017 ). Since larger wind turbines are developed every 

ear to generate more electricity, the operation and maintenance 

osts are likely to increase. It is therefore important that the main- 

enance operations are optimized to keep the costs of wind energy 

t a reasonable level. 

To keep wind turbines operating, both preventive and correc- 

ive maintenance is done. Preventive maintenance may be time- 

ased or condition-based. Time-based maintenance is much easier 

o plan than condition-based maintenance as the latter depends on 

he changes in condition, which are typically unpredictable. Both 

ypes of maintenance require preparation and shutdown of the 

ind turbine, which results in production loss. Yet the level of pro- 

uction loss depends very much on the wind speed, which varies 

ver the year. In winter average wind speeds are much higher than 
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uring summer and working conditions are much harsher. Accord- 

ng to the ( Royal Academy of Engineering, 2021 ) the energy a wind

urbine generates increases with a third power of the windspeed 

p to a level of about 5 Beaufort (12m/s), after which the energy 

enerated remains constant. Figs. 3 and 4 in Section 6 show these 

elations in detail. As a result one wants to do maintenance during 

r around summer. Yet this may conflict with the best moment 

o do preventive maintenance. Solar energy output also exhibits 

 cyclic pattern over the year, but in that case one wants to do 

aintenance in winter. Note that a similar problem setting, main- 

enance optimization under time-varying downtime cost, is rele- 

ant for maintenance problems in other industries, e.g. equipment 

aintenance in touristic facilities, agriculture industry, and avia- 

ion. 

Quite some research has been done on maintenance optimiza- 

ion. The classic work by Barlow & Proschan (1965) has been fol- 

owed by very many papers. Yet few consider time-varying mainte- 

ance costs and if they do, they consider opportunity maintenance, 

here maintenance execution is triggered by a random event. 

nother related stream considers maintenance execution together 

ith production planning, yet those papers often consider fitting 

aintenance into a short-term production plan. Finally, there ex- 

st some research works directly oriented at wind turbine mainte- 

ance. This studies are either technical or consider condition-based 

aintenance, like ( Ciang, Lee, & Bang, 2008 ), while bypassing the 

ption to coordinate it with the periods with low wind speed. The 

ost relevant papers are by Besnard, Fischer, & Tjernberg (2013) , 
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ho provide a general maintenance cost model for wind turbines 

ut do not present general maintenance optimization results, and 

y Besnard, Patrikssont, Strombergt, Wojciechowskit, & Bertling 

2009) , who consider opportunity maintenance for wind turbines. 

In this paper, we consider the wind turbine maintenance plan- 

ing problem for a single component with predictable time- 

ependent maintenance costs. Maintenance is performed by re- 

lacing the component by an as-good-as-new component. We 

eneralize classic, single-component maintenance policies, age- 

ased and block-based replacement, which assume time-invariant 

osts. Under mild conditions, we prove the structure of the op- 

imal maintenance policy, viz. periodic-age replacement policy. 

n addition, we suggest periodic-block replacement and modified 

lock replacement policies, which can easily be applied to multi- 

omponent systems. We also present mathematical programming 

odels to optimize policy parameters under the conditions where 

he finiteness of policy parameters are guaranteed. We present a 

usiness case for the implementation of our results in practice. 

ur results show that substantial savings (up to 20%) can be ob- 

ained advancing or deferring maintenance actions to the periods 

ith lower cost rates. The modified block replacement policy per- 

orms similarly to the age replacement policy as variability in cost 

ates (over year) increases. In addition, we find that replacement 

imes (over a year) are determined by low cost periods rather than 

y the increase of component failure rate. 

The structure of this paper is as follows. In the next section, 

e present an overview of the relevant literature. In Section 3 , we 

resent the formal model. Section 4 presents three maintenance 

olicies and provides conditions necessary for preventive mainte- 

ance to be cost-effective. It also provides mathematical program- 

ing formulations to determine the best policy. Numerical results 

re given in Section 5 , while Section 6 presents an application of 

he maintenance policies to a case study on a wind turbine gear- 

ox. 

. Literature review 

The literature focusing on maintenance problems consists of 

 large number of studies with applications in many industries. 

n this section, we first review general maintenance optimization 

odels. Next, we summarize models integrating maintenance and 

roduction planning decisions and finally we review wind park 

aintenance. 

Literature on maintenance optimization models has been re- 

iewed by Pierskalla & Voelker (1976) , Sherif & Smith (1981) , 

aldez-Flores & Feldman (1989) in the 1980s and by Ding & Ka- 

aruddin (2015) as well as ( de Jonge & Scarf, 2020 ) recently. In

aintenance planning, there are two primary decisions: the type 

nd time of maintenance. Most common maintenance policies are 

he block and the age replacement policies, introduced already by 

arlow & Proschan (1965) , where preventive maintenance is done 

f a critical time or age has been reached. One useful result is that 

or a single component system with constant preventive and cor- 

ective maintenance costs, under mild conditions, the age-based 

aintenance policy is proven to be optimal with respect to aver- 

ge cost criterion (see e.g. Ross, 1970 ). This result was extended in 

any directions such as integrating maintenance and production, 

s executing maintenance often interferes with the latter. 

The literature on maintenance planning in production facili- 

ies is relevant for our study as, similar to the maintenance of 

ind turbines, maintaining production equipment leads to down- 

ime cost due to disrupted production. Budai, Dekker, & Nicolai 

2008) and Hadidi, Al-Turki, & Rahim (2012) review studies in this 

art of the maintenance literature. They recognize the relation be- 

ween job scheduling and opportunity maintenance, where main- 

enance interferes with production and (seldom and unplanned) 
980 
aintenance opportunities arrive randomly. Several critical level 

olicies are suggested where an opportunity is used whenever the 

ge or time has exceeded a threshold. Only one level of reduced 

osts is considered, while for wind turbines there are many levels. 

Studies on maintenance policies for wind parks constitute an- 

ther research stream relevant to this paper. Shafiee & Sørensen 

2017) give an overview of the logistical challenges that are en- 

ountered in optimizing all aspects of a wind park and present 

esearch that has been performed on many different topics. De- 

ign, infrastructure, transportation, operations, and maintenance 

hould be jointly optimized for efficient generation of electricity. 

umbreras & Ramos (2013) give an overview of the research that 

as been performed on the optimization of the design of a wind 

ark. They discuss which optimization models can be used to de- 

ide at which sites it is economical to build a wind park and how 

arge the wind park should be. Besnard et al. (2013) suggest an 

lgorithm for the number of maintenance teams required at all 

imes and the number of vessels that should be available for trans- 

ortation of the maintenance team. Besnard et al. (2013) and Seyr 

 Muskulus (2019) give an overview of the different maintenance 

trategies that are used for the maintenance of offshore wind 

arks. Byon, Ntaimo, & Ding (2010) and Byon & Ding (2010) con- 

ider the stochastic nature of weather conditions and solve par- 

ially observed Markov decision process models. In our paper, we 

xtend some of these strategies to include time-varying costs. 

Many studies on the maintenance optimization of wind turbine 

omponents assume the availability of sensor data. In these ap- 

lications, the deterioration of components can be measured by 

eans of sensors deployed on wind turbines ( Ciang et al., 2008 ). 

ot all deterioration, however, can be measured and even if mea- 

urements are available, sensor readings might be different from 

he actual deterioration level due to uncertain environmental fac- 

ors. Another problem with condition-based maintenance is the 

ack of plannability, which is needed for logistics. That is, we 

ould like to know months ahead whether a failure is impending 

r not. We, therefore, focus on models that use a deterioration pro- 

ess of which we only know the statistical behavior and where fail- 

res occur unexpectedly. Well-known maintenance strategies asso- 

iated with this problem are the (modified) block-based mainte- 

ance policies (or (modified) block replacement policies) and the 

ge-based maintenance policies (or age replacement policies). 

In the maintenance literature it is commonly assumed that 

he cost rates are known (in expectation) and constant over time 

 Nakagawa, 1984 ). Also in some studies age-dependent cost rates 

re considered for the maintenance optimization policies ( Boland 

 Proschan, 1982; Chien, 2010; Sanoubar, Maillart, & Prokopyev, 

021; Sheu & Griffith, 2001 ). However, these assumptions rarely 

old for wind farms where the production rates (and the down- 

ime costs) mainly depend on wind speed and are hence time- 

arying in a cyclic way and not varying or increasing with age. To 

ddress this challenging feature, we generalize the constant cost 

ate assumption of maintenance policies in Section 3 by allowing 

osts to change over periods of a cycle, e.g. weeks of a year. To 

he best of our knowledge, our paper is the first study addressing 

ime-dependent cost rates in single-component maintenance opti- 

ization. 

. Model description 

We consider a single component in a continuously operating 

nstallation. For ease of exposition, we refer to an offshore wind 

urbine, but the model can also be applied to other installations 

ith predictable time-varying production. We assume that failure 

f the component reduces production, hence corrective mainte- 

ance (CM) has to be performed directly. The system is maintained 

y replacing the failed component by an as-good-as-new compo- 
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Table 1 

Nomenclature. 

N Number of periods within a year 

N 
+ Set of positive integers, { 1 , 2 , ... } 

N̄ Set of extended natural numbers, { 0 , 1 , 2 , ..., ∞} 
I 1 Set of periods within a year 

I 2 Set of component ages 

I State space of the Markov decision process 

I b Set of states representing a failed component 

c p (i 1 ) PM cost in period i 1 ∈ I 1 . 
c f (i 1 ) CM cost in period i 1 ∈ I 1 . 
c̄ p Average PM cost 

c̄ f Average CM cost 

p x Failure rate of a component at age x . 

X Random lifetime of a component 

E (X ) = μ Average lifetime of a component 

c 2 X Squared coefficient of variation of X 

g(T ) Expected cost rate of ARP policy when the replacement age is equal to T . 

g(∞ ) Cost rate of pure corrective maintenance policy 

A (i 1 , i 2 ) The set of possible actions in Markov decision process in state (i 1 , i 2 ) . 

R s Class of stationary policies. 

h (t) Renewal density for age t . 

H(t) Renewal function, i.e., the expected number of failures by age t

m The number of years in a p-BRP cycle. 

M A large number representing the maximum age of the component. 
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ent. We discretize time into periods (say weeks or months). The 

ifetime of the component is denoted by X and P (X = k ) > 0 for all

 ∈ N̄ \ {∞} , where N̄ = { 0 , 1 , . . . , ∞} is the set of extended natural

umbers. We assume that the cdf of the lifetime is known. More- 

ver, the component has an increasing failure rate. Let μ = E (X ) 

nd c 2 X denote its squared coefficient of variation. Notations used 

n this paper are given in Table 1 . 

To prevent failure, the component can be replaced preventively 

y an as-good-as-new component. This action is called preventive 

aintenance (PM). We assume a seasonal cycle in which CM and 

M execution costs vary periodically, e.g., by weather conditions. 

ypically we consider a yearly cycle but the model and its results 

an also be used for any other cycle lengths. The objective is to 

etermine a preventive replacement policy which minimizes the 

ong-run average costs. Such a policy should specify the age and 

he period (of the cycle) in which a PM is to be performed. 

.1. Markov decision process 

We model the life of the component by a discrete-time Markov 

ecision process (MDP) with a partially ordered state space con- 

isting of periods of a year, I 1 ⊆ N 

+ , and the component age, 

 2 ⊆ N̄ , where N 

+ is the set of positive integers. The state space 

is given by I = I 1 × I 2 . I 1 = { 1 , 2 , . . . , N } where N represents

he number of periods in a year ( N = 12 for months or N = 52 in

ase of weeks). The actions in each state, except the ones with the 

ailed state, are either to replace the component ( a = 1 ) or to do

othing ( a = 0 ). For the states with age 0, i.e. the failed state de-

oted by i 2 = 0 , we can only perform a CM. For all other states,

e perform a PM. Hence, the state-dependent action space can be 

xpressed as follows: 

 (i 1 , i 2 ) = 

{{ 1 } if i 2 ∈ { 0 , M} , 
{ 0 , 1 } otherwise, 

(1) 

here M represents the maximum age. At age M, a PM is per- 

ormed. Note that M might be equal to ∞ , in which case we never

erform a PM. 

Transitions of the Markov chain are dependent on whether we 

lan a PM or a failure occurs. Specifically, the system jumps to 

 state with age 0 and a higher time period in case of failure

hereas there is a transition to a state with a higher age and time 

eriod if there is no failure. In case of PM, there is an instanta-
981 
eous jump to age 0, after which the component can reach age 1 

t the end of the period, or have a failure and end with age 0. 

The probability of failure depends on the age of the component, 

ut is assumed to be independent of the time of the year whereas 

osts rates of PM and CM are time-dependent. Let π(i 1 ,i 2 )( j 1 , j 2 ) 
(a ) 

e the transition probability from state (i 1 , i 2 ) to state ( j 1 , j 2 ) un-

er action a ∈ A (i 1 , i 2 ) . We have 

(i 1 ,i 2 )( j 1 , j 2 ) (0) = 

{ 

1 − p i 2 for j 1 = i 1 + 1 (mod N) , j 2 = i 2 + 1 , i 2 / ∈ { 0 , M} 
p i 2 for j 1 = i 1 + 1 (mod N) , j 2 = 0 , i 2 / ∈ { 0 , M} 
0 else, 

(2a) 

(i 1 ,i 2 )( j 1 , j 2 ) (1) = 

{ 

1 − p 1 for j 1 = i 1 + 1 (mod N) , j 2 = 1 , 

p 1 for j 1 = i 1 + 1 (mod N) , j 2 = 0 , 

0 else. 
(2b) 

here p i 2 = P (X = i 2 | X ≥ i 2 ) indicates the failure probability at age

 2 and mod is the modulo operator. It is easy to verify that the 

arkov decision chain defined by (1), (2a) and (2b) is unichain. 

.2. Cost parameters 

The costs of PM and CM depend on the period i 1 of the year

nly and are denoted by c p (i 1 ) and c f (i 1 ) for i 1 ∈ I 1 . The cost of

aking action a in state (i 1 , i 2 ) c (i 1 ,i 2 ) 
(a ) is 

 (i 1 ,i 2 ) (a ) = 

{ 

0 , if a = 0 , 

c p (i 1 ) , if a = 1 , i 2 � = 0 , 

c f (i 1 ) , if a = 1 , i 2 = 0 . 

(3) 

Throughout the rest of this paper we denote the yearly average 

M and CM cost rates by 

 p := 

1 

N 

N ∑ 

i 1 =1 

c p (i 1 ) , c f := 

1 

N 

N ∑ 

i 1 =1 

c f (i 1 ) . (4) 

We will make comparisons with the case where PM and CM 

osts are constant through the year, and with values c p and c f re- 

pectively. We refer to this case as the constant cost case . 
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. Analysis 

.1. Age replacement policies 

In the standard age replacement policy (ARP), PM is performed 

hen the component reaches (or is above) a critical age. In the 

onstant cost case with increasing failure probabilities, ARP is op- 

imal, see e.g. Ross (1970) . 

When the costs are time-varying, the optimal policy is not nec- 

ssarily a policy with a constant critical maintenance age over the 

ear. Intuitively, it makes sense to have a lower critical mainte- 

ance age in periods where preventive maintenance is relatively 

heap. Accordingly, we introduce a period-dependent variant of the 

RP policy. 

efinition 1 (p-ARP) . A p-ARP is a policy in which in each pe-

iod i 1 ∈ I 1 of the year, there is a period-dependent critical main- 

enance age t(i 1 ) ∈ N̄ \ { 0 } at or above which PM is performed. 

Note that critical maintenance age t(i 1 ) may be ∞ for i 1 ∈ I 1 .
ndeed, the CM policy is a special case of p-ARP policy where 

(i 1 ) = ∞ for all periods i 1 ∈ I 1 . If a p-ARP policy has t(i 1 ) < ∞ for

t least one period i 1 ∈ I 1 , we have a finite p-ARP policy. Similar to

 Ross, 1970 ), we have the following result, for which the proof is 

n Appendix. 

heorem 1. There exists an optimal maintenance policy under time- 

arying costs that is a p-ARP policy. 

This theorem holds due to the following. For i 0 
1 

∈ I 1 and i ∗
2 

∈ I 2 ,
f it is optimal to perform a PM in state (i 0 

1 
, i ∗

2 
) , then it is optimal to

erform a PM in all states (i 0 
1 
, i 2 ) with i 2 ≥ i ∗2 , which is equivalent

o a p-ARP policy. 

If the lifetime distribution has infinite support the age of the 

omponent can be arbitrarily large and the cut-off to a finite value 

may be too restrictive. We, therefore, need a sufficient condition 

or the optimal critical maintenance age to be finite. In the con- 

inuous time case with constant PM and CM costs (denoted by c p 
nd c f , respectively), a sufficient condition for the optimal critical 

aintenance age to be finite is that the failure rate is increasing 

nd c f > c p , see e.g. Barlow & Proschan (1965) . For discrete lifetime

istributions with constant costs, Nakagawa (1984) shows that the 

ptimal critical maintenance age is finite if the failure rate is in- 

reasing, c f > c p and 

p ∞ 

= lim 

k →∞ 

p k > 

1 

E (X ) 

c f 

c f − c p 
, (5) 

n our paper, we extend these results to the time-varying cost case. 

emma 1 is a building block towards the result for time-varying 

ost case. Its proof is in Appendix. 

emma 1. Let g(T ) denote the long-run average maintenance cost for 

 p-ARP policy, where we maintain at age T ∈ N̄ \ { 0 } in all periods

 1 ∈ I 1 . Then, we have g(T ) = g (T ) , where g (T ) is the long-run av-

rage cost for the problem where the time-varying maintenance costs 

re replaced by the averages over the year (i.e. c p and c f ). 

Lemma 1 implies that the cost g(∞ ) under the CM policy is 

(∞ ) = 

c f 

E (X ) 
. (6) 

We can now extend the result of ( Nakagawa, 1984 ) to the time-

arying cost case and obtain Theorem 2 . 

heorem 2. If c f > c p and p ∞ 

> 

1 
E (X ) 

c f 
c f −c p 

, then there exists a finite 

ptimal p-ARP policy. 

roof. Consider a constant cost case for which condition (5) is sat- 

sfied and a time-varying cost case where average PM and CM costs 
982 
re c p = c p and c f = c f , respectively. By Lemma 1 , the long-run av-

rage cost of the time-varying cost case is equal to that of the con- 

tant cost case under corrective maintenance policy. For the con- 

tant cost case, there exists an optimal finite ARP policy according 

o Nakagawa (1984) . Consider this ARP policy in the time-varying 

ost case, i.e., consider the same critical maintenance age in all 

eriods. By Lemma 1 , this policy has the same long-run average 

ost as the minimum long-run average cost in the constant cost 

ase and hence less costly than the corrective maintenance pol- 

cy. Hence, in the time-varying cost case, this policy leads to lower 

osts than the corrective maintenance policy. �

It is possible to sharpen the condition in Theorem 2 , as in fact,

he PM cost needs to be low enough in one period only. It is, how-

ver, complex to give a simple condition for the time-varying cost 

ase, as there can be a coordination between the period where PM 

s performed and the periods where failures are likely to occur. 

herefore, it may be that if PM is performed in a cheap period, 

he failures occur in expensive periods. In case failure costs are the 

ame for all periods, we have the following result, for which the 

roof is provided in Appendix. 

heorem 3. Suppose c f (i 1 ) = c f for all i 1 ∈ I 1 . If there exists i 0 
1 

∈ I 1 
atisfying c f > c p (i 0 

1 
) and p ∞ 

> 

1 
E (X ) 

c f 

c f −c p (i 0 
1 
) 
, then there exists a fi- 

ite optimal p-ARP. 

Notice that, under the existence of a finite optimal p-ARP policy, 

here exists a finite maximum age the component can attain, hence 

t is allowed to truncate the state space. That is, if the conditions 

n Theorem 2 or 3 are met, it is justified to limit the age dimension

f the state space to a large number M. 

Finding the optimal policy in an MDP can be done in several 

ays. Tijms (2003) provides a linear programming (LP) formula- 

ion. Alternatively, one can use policy improvement or value itera- 

ion algorithms for optimization. The LP approach is not only fast 

nd easy-to-implement, but also it allows us to find specific types 

f policies by manipulating the constraint set and variables. There- 

ore, we proceed with the this approach. 

To optimize the long-run average cost, we need to distinguish 

he states with a failed component. We denote the set of states 

epresenting a failed component by I b = I 1 × { 0 } . The following LP

eads to the optimal policy with respect to the long-run average 

ost criterion (see Tijms (2003) ): 

p-ARP) min 

∑ 

i =(i 1 ,i 2 ) ∈I \I b 
c p (i 1 ) x i, 1 + 

∑ 

i =(i 1 ,i 2 ) ∈I b 
c f (i 1 ) x i, 1 

(7a) 

.t. ∑ 

a ∈A (i ) 

x i,a −
∑ 

j∈I 

∑ 

a ∈A ( j) 

π ji (a ) x j,a = 0 , ∀ i = (i 1 , i 2 ) ∈ I (7b) 

∑ 

i 2 ∈I 2 

∑ 

a ∈A (i 1 ,i 2 ) 

x i 1 ,i 2 ,a = 

1 

N 

, ∀ i 1 ∈ I 1 (7c) 

x i,a ≥ 0 , ∀ i = (i 1 , i 2 ) ∈ I, a ∈ A (i ) (7d) 

Decision variables x i,a can be interpreted as the long-run prob- 

bility that the system is in state i = (i 1 , i 2 ) ∈ I at the beginning

f the period and the decision a ∈ A (i 1 , i 2 ) is chosen. The objec-

ive function (7a) represents the long-run average cost. Suppose 

e have an optimal solution x ∗
i,a 

to the LP problem. Let the set 

 LP = { i | x ∗
i,a 

> 0 for some action a } and define the strategy R ∗ by

 

∗(i ) = a if x ∗
i,a 

> 0 . For all other states i one chooses an action a

uch that p i j (a ) > 0 for some j ∈ I LP and add the states i recur-

ively to the set I until no remains. The resulting policy R ∗ is 
LP 
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verage optimal. In case the policy R ∗ does PM for a state (i 0 
1 
, i 0 

2 
)

ith i 0 
2 

� = M then by Theorem 1 the policy which replaces for all

tates (i 1 , i 2 ) with i 2 ≥ i 0 
2 

is optimal as well. Hence, we can con-

truct an optimal p-ARP from the solution to LP (7a) - (7d) . 

.2. Block replacement policies 

A block replacement policy (BRP) replaces a component pre- 

entively after a fixed amount of time since the previous PM. If 

he component fails before the fixed PM time, an immediate CM is 

erformed. In that case, the next PM is still performed at the pre- 

etermined fixed time. In other words, PM times do not depend on 

he time passed since the preceding CM. Since the costs for wind 

urbine maintenance vary in time, we allow intervals between the 

o-called block times to vary as well, yet with a repetitive pattern, 

.g. do maintenance after 4 months, then after 6 months and re- 

eat this sequence. Formally, we perform maintenance at periods 

 1 , T 2 , . . . , T n , where T k ∈ N 

+ ∀ k = 1 , 2 , . . . , n and n ∈ N 

+ . To limit

he scope of possible policies, we restrict ourselves to policies that 

epeat themselves every m years for some m ∈ N 

+ . In this way, we

eneralize block maintenance policies. 

efinition 2 (p–BRP) . A p-BRP is a policy with a finite cycle of 

 years in which PM is performed at times T 1 , T 2 , ..., T n < mN, for

ome n ∈ N 

+ , since the start of the cycle, regardless of the age of

he component at those times. 

The intervals between PM may be different within one cycle, 

ut they are the same in subsequent cycles. We chose this way of 

xtending the BRP as it guarantees the execution of maintenance 

n always the same periods, whereas if we would stick to constant 

ntervals, the time periods in which we maintain may shift every 

ear. We call a p-BRP optimal if it has the lowest long-run average 

ost compared to all p-BRPs and the CM policy. 

The Markov decision process that we discussed in 

ection 3.1 needs a small adaptation to incorporate p-BRP. In- 

tead of limiting i 1 to values in { 1 , 2 , ..., N} , we now allow them

o take values in I 1 = { 1 , 2 , ..., mN} in order to allow varying

lock periods in a cycle of multiple years. The set I is extended 

ccordingly. For the constant cost case, the condition for the opti- 

al maintenance block time T to be finite is given by Nakagawa 

1984) and in Lemma 2 . We give the proof in order to show the

rigin of the condition. This condition is stricter than the condition 

or p-ARP. 

emma 2. In the constant cost case, if 
c p 
c f 

< 

1 
2 (1 − c 2 

X 
− 1 

μ ) , then the

ptimal block time is finite. 

roof. The long-run average cost under BRP with block 

ime t , g(t ) ≤ g(∞ ) for t large enough, which follows from 

im t→∞ 

(
H(t) − t 

μ

)
= 

1 
2 (c 2 

X 
− 1 + 

1 
μ ) , ( Feller, 1949 , Eq. (6.7)), where 

(·) is the discrete renewal function. �

If we maintain preventively at the cheapest moment once ev- 

ry m years in the time-varying cost case, min i 1 
{ c p (i 1 ) } is in-

urred as PM cost instead of c p . The total CM cost over a period

f length t are however, no longer c f H(t) as in the constant cost 

ase, since they depend on the periods in which failures occur. We, 

herefore, need an adjustment term, which expresses the relative 

ifference in total costs when starting in period i 1 compared to 

he total costs in the constant cost case. We denote the expected 

umber of failures at time t in the discrete renewal process by 

 (t) = H(t) − H(t − 1) . As we allow only one failure per period,

 (t) is the probability of failure at time t . Let 

(i 1 ) = lim sup 

n →∞ 

{ 

nN ∑ 

t=1 

h (t ) 

(
c f (i 1 + t ) 

c f 
− 1 

)} 

, (8) 
n

983 
here the lim sup is taken over numbers n ∈ N 

+ only and i 1 is any

tarting period in the cycle. The parameter b(i 1 ) depends on the 

ailure distribution but is finite for example for Weibull distribu- 

ions. As long as the renewal density converges to 1 
E(X ) 

fast enough, 

(i 1 ) is finite for all i 1 ∈ I 1 . The convergence needs to be of the

rder O(t −a ) for some a > 1 for the limit to exist. Note that the

arameter b(i 1 ) can be negative or positive. Using b(i 1 ) , we give

n adjusted condition for the existence of an optimal policy within 

he class of p-BRPs in Theorem 4 , which is proved in Appendix. 

heorem 4. If there exists a period i 0 
1 

∈ I 1 satisfying 
c p (i 0 

1 
) 

c f 
+ b(i 0 

1 
) <

1 
2 (1 − c 2 

X 
− 1 

μ ) , then there exists an optimal p-BRP. 

If the limit exists for all periods i 1 ∈ I 1 , then 

∑ 

i 1 ∈I 1 b(i 1 ) = 0 .

his implies that the condition in Theorem 4 is weaker than the 

ne for the constant cost case, as we require it only for one period, 

ather than for all periods. If PM and CM costs are constant over 

he year, then b(i 1 ) = 0 for all i 1 ∈ I 1 . 

heorem 5. If 
c p 
c f 

< 

1 
2 (1 − c 2 

X 
− 1 

μ ) and b(i 1 ) is finite for all i i ∈ I 1 ,
hen there exists an optimal p-BRP. 

The idea behind the proof of Theorem 5 is as follows. If the 

ondition in Theorem 5 holds, then there exists a period i 0 
1 

∈ I 1 
atisfying the condition in Theorem 4 . In this case, there exists a p- 

RP which is cheaper than the BRP that is optimal for the constant 

ost case. 

We can calculate the optimal parameters of the p-BRP with a 

ixed integer linear programming (MILP) formulation, developed 

ith the introduction of some extra constraints to the model (7) . 

o our opinion, this formulation is new and avoids explicit calcu- 

ation of the renewal function H(t) . 

We define variables indicating in which periods to perform PM 

y 

 i 1 = 

{
1 , if we maintain preventively in period i 1 ∈ I 1 , 
0 , else . 

(9) 

The following MILP leads to the optimal p-BRP policy with re- 

pect to the long-run average cost criterion. 

p-BRP) minimize 
∑ 

i =(i 1 ,i 2 ) ∈I \I b 
c p (i 1 ) x i, 1 + 

∑ 

i =(i 1 ,i 2 ) ∈I b 
c f (i 1 ) x i, 1 

(10a) 

.t.: ∑ 

 ∈A (i ) 

x i,a −
∑ 

j∈I 

∑ 

a ∈A ( j) 

π ji (a ) x j,a = 0 ∀ i = (i 1 , i 2 ) ∈ I (10b) 

 i, 0 + y i 1 ≤ 1 ∀ i = (i 1 , i 2 ) ∈ I : i 2 > 0 (10c) 

 i, 1 − y i 1 ≤ 0 ∀ i = (i 1 , i 2 ) ∈ I : i 2 > 0 (10d) 

∑ 

 2 ∈I 2 

∑ 

a ∈A (i ) 

x i,a = 

1 

mN 

∀ i 1 ∈ I 1 (10e) 

 i,a ≥ 0 ∀ i = (i 1 , i 2 ) ∈ I, a ∈ A (10f) 

 i 1 ∈ { 0 , 1 } ∀ i 1 ∈ I 1 (10g) 

For p-BRP, the maintenance decision depends on the period 

ithin the cycle and it is independent of the age of the compo- 

ent. If we maintain preventively ( a = 1 ) in a period i 1 ∈ I 1 (or do

ot maintain preventively), we are not allowed to take the other 
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ction a = 0 (or a = 1 ) for any age i 2 > 0 . We enforce this by con-

traints (10c) and (10d) . 

If the condition in Theorem 4 holds, the policy parameters 

ound are optimal. Otherwise, one has to compare the long-run 

verage cost of the p-BRP found with those of the CM policy. The 

ptimal p-BRP policy can be obtained in a similar way as for LP 

7) . 

It may be optimal to plan preventive maintenance on a yearly 

asis, then it suffices to consider m = 1 only. This depends on the 

ost and distribution parameters of the problem. Considering a 

arger m may improve the solution, but does increase computation 

ime, since the number of decision variables increases. One should 

herefore check if the optimal policy remains the same for larger 

 . 

Note that p-BRP is a special case of p-ARP, where the critical 

aintenance age is 1 for the periods that we maintain and infinity 

or other periods. The long-run average cost induced by a p-BRP is 

hus at least the cost induced by the optimal p-ARP. 

.3. Modified block replacement policies 

The advantage of block over age replacement is that it is eas- 

er to plan the maintenance ahead and to coordinate maintenance 

f multiple components. Yet it may also replace a component at 

 relatively young age. Berg & Epstein (1976) proposed a modifi- 

ation of block replacement in which preventive replacements are 

ossible at fixed times, like in block replacement, but the actual re- 

lacement is performed only if the component’s age is larger than 

 certain threshold. We will extend this policy to the time-varying 

ost case. The periodic MBRP is formally defined in Definition 3 . 

efinition 3 (p–MBRP) . A p-MBRP is a policy with a finite cy- 

le of m years, in which PM can only be performed at times 

 1 , T 2 , . . . , T n ≤ mN, for some n ∈ N 

+ . PM is performed at occasion

 if a critical maintenance age t (k ) has been reached, where t (k ) ≤
 k − T k −1 for k = 2 , 3 , . . . n and t (1) ≤ T 1 − T n + mN. 

The MBRP with constant PM, CM costs c p and c f in which the 

lock size is constant is referred to as the standard MBRP. The re- 

uirement that t (k ) ≤ T k − T k −1 is added to differentiate the policy 

rom ARP, as choosing T k = k, k = 1 , 2 , . . . , mN would yield an ARP

olicy. In the sequel we use another, equivalent specification of the 

BRP, where to each period in I 1 , we associate a threshold age, 

enoted by t k for k ∈ I 1 , of when to perform PM at period k . So,

f T k = i 1 , then t i 1 = t (k ) which is the minimum age at which we

aintain in period i 1 ∈ I 1 . The periods in which PM is not per-

ormed get a threshold larger than the maximum age M. Notice 

hat in this way the policy looks similar to a p-ARP. In fact, a p-

RP policy which maint ains only in one period per year and thus 

as thresholds ∞ in all other periods is a p-MBRP. 

Similar to the p-ARP and p-BRP, we develop sufficient condi- 

ions for MBRP to be better than the CM policy for some finite 

ycle m and finite opportunities T k and critical ages t k . Archibald & 

ekker (1996) state that the necessary conditions for block times 

o be finite in the constant cost case are sufficient for the standard 

BRP problem, but also observe that these conditions may be too 

trict. Here, we confirm that conjecture by stating that the weaker 

onditions for ARP are sufficient for the MBRP and p-MBRP. The 

roofs are in Appendix. 

heorem 6. If c f > c p and p ∞ 

> 

1 
E (X ) 

c f 
c f −c p 

, then the optimal stan- 

ard MBRP has a finite optimal critical maintenance age t and block 

ime T . 

A similar condition holds for the time-varying costs case. 
984 
heorem 7. If c f > c p and p ∞ 

> 

1 
E (X ) 

c f 
c f −c p 

, then the optimal p- 

BRP has finite cycle m , block times T 1 , T 2 , . . . , T n , and critical ages

 (1) , t (2) , . . . , t (n ) . 

The proofs rely on the observation that a MBRP and p-MBRP are 

ust versions of ARP and p-ARP where PM is restricted to certain 

eriods. Under finiteness conditions, we again develop a MILP for- 

ulation to determine the optimal parameters of p-MBRP. We first 

ntroduce extra variables that decide for which period and which 

ge we maintain. 

 i = z i 1 ,i 2 = 

{
1 , if we maintain for age i 2 ∈ I 2 in period i 1 ∈ I 1 ,
0 , else. 

(11) 

The following MILP leads to the optimal p-MBRP policy with 

espect to the long-run average cost criterion. 

p-MBRP) minimize 
∑ 

i =(i 1 ,i 2 ) ∈I \I b 
c p (i 1 ) x i, 1 + 

∑ 

i =(i 1 ,i 2 ) ∈I b 
c f (i 1 ) x i, 1

(12a) 

.t. ∑ 

 ∈A (i ) 

x i,a −
∑ 

j∈I 

∑ 

a ∈A ( j) 

π ji (a ) x j,a = 0 ∀ i = (i 1 , i 2 ) ∈ I (12b) 

∑ 

 2 ∈I 1 

∑ 

a ∈A (i ) 

x i,a = 

1 

mN 

∀ i 1 ∈ I 1 (12c) 

 i 1 ,i 2 − y i 1 ≤ 0 ∀ i 1 ∈ I 1 , ∀ i 2 ∈ I 2 (12d) 

 i 1 ,i 2 − z i 1 , j 2 ≤ 0 ∀ (i 1 , i 2 ) ∈ I, ∀ j 2 ∈ I 2 : i 2 < j 2 (12e) 

 i 1 + j 1 y j 1 + mNy j 1 ≤ mN + i 1 ∀ i 1 , j 1 ∈ I 1 : j 1 < i 1 (12f) 

 i 1 + j 1 y j 1 ≤ mN + i 1 ∀ i 1 , j 1 ∈ I 2 : j 1 > i 1 (12g) 

 y i 1 − M z i 1 ,i 2 − t i 1 ≤ M − 1 − i 2 ∀ i 1 ∈ I 1 , i 2 ∈ I 2 (12h) 

z i 1 ,i 2 + t i 1 ≤ M + i 2 ∀ i 1 ∈ I 1 , i 2 ∈ I 2 (12i) 

 i,a ≥ 0 ∀ i ∈ I, a ∈ A (12j) 

 i ∈ { 0 , 1 } ∀ i ∈ I (12k) 

 i 1 ∈ { 0 , 1 } ∀ i 1 ∈ I 1 (12l) 

 i 1 ∈ N 

+ ∀ i 1 ∈ I 1 (12m) 

In constraint (12d) , y i 1 is as defined in (9) . Constraint (12d) en-

ures that if we maintain for age i 2 in a certain period i 1 , then

e must maintain for all ages j 2 with j 2 > i 2 in this period. Con-

traints (12f) and (12g) ensure that the condition on the critical 

aintenance age holds. When y i 1 = 0 , t i 1 can take any value, since

aintenance is never performed in period i 1 ∈ I 1 . If y i 1 = 1 , then

 i 1 
is less than or equal to the time since the previous opportu- 

ity, where we take the repetition of the cycle at mN into account. 
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Table 2 

Yearly costs, in thousands of €, savings with respect to constant cost model, and maintenance 

months for p-ARP, p-BRP and p-MBRP. We let c f = 50 , c p = 10 , � f = � · c f and �p = � · c p for dif- 

ferent �. We let α = 1 year and β = 2 . 

p-ARP p-BRP ( m = 1 ) p-MBRP ( m = 1 ) 

� costs savings costs savings mos. costs savings mos. ages 

0% 40.098 41.501 40.311 

10% 40.035 0.16% 41.420 0.20% 6, 11 40.263 0.12% 6, 11 4, 4 

20% 39.701 0.99% 40.933 1.37% 6, 11 39.855 1.13% 6, 11 4, 4 

30% 39.224 2.18% 40.361 2.75% 6, 10 39.338 2.41% 6, 10 5, 3 

40% 38.461 4.08% 39.439 4.97% 6, 10 38.556 4.35% 6, 10 5, 3 

50% 37.635 6.14% 38.466 7.31% 7, 10 37.773 6.30% 6, 10 5, 3 

CPU < 1 s < 1 s 3 s 

∗Optimal age for � = 0 is t ∗ = 6 months with costs 40.098. ∗∗Optimal block for � = 0 is T ∗ = 6 

months with costs 41.501. ∗∗∗Optimal modified block for � = 0 is (t ∗, T ∗) = (4 , 6) with costs 40.311. 
∗∗∗ Costs for not maintaining at all is g(∞ ) = 53 . 885 . 

Table 3 

Yearly costs, in thousands of €, savings with respect to constant cost model, and maintenance months for p-ARP, 

p-BRP and p-MBRP. We let c f = 50 , c p = 10 , � f = � · c f and �p = � · c p for different �. We let α = 3 years and 

β = 2 . 

p-ARP p-BRP ( m = 3) p-MBRP ( m = 3) 

� costs savings costs savings mos. costs savings mos. ages 

0% 13.530 14.173 13.622 

10% 13.252 2.05% 13.828 2.43% 6, 21 13.338 2.08% 6, 21 11, 9 

20% 12.707 6.08% 13.135 7.32% 7, 19, 31 12.707 6.72% 7, 19, 31 12, 12, 12 

30% 11.779 12.94% 12.114 14.53% 7, 19, 31 11.779 13.53% 7, 19, 31 10, 10, 10 

40% 10.844 19.85% 11.093 21.73% 7, 19, 31 10.844 20.39% 7, 19, 31 8, 8, 8 

50% 9.900 26.83% 10.072 28.94% 7, 19, 31 9.900 27.32% 7, 19, 31 7, 7, 7 

CPU < 1 s 2 s 17 s 

∗Optimal age for � = 0 is t ∗ = 19 months with costs 13.530. ∗∗Optimal block for � = 0 is T ∗ = 18 months with 

costs 14.173. ∗∗∗Optimal modified block for � = 0 is (t ∗, T ∗) = (11 , 18) with costs 13.622. ∗∗∗∗Costs for not main- 

taining at all is g(∞ ) = 18 . 516 . 
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n addition, maintenance times for all i 1 ∈ I 1 and i 2 ∈ I 2 should

atisfy: 

 i 1 ,i 2 = 

{
y i 1 , if i 2 ≥ t i 1 , 
0 , elsewhere . 

(13) 

sing the relatively large number M (the maximum age), we re- 

rite (13) as linear constraints (12h) and (12i) . 

. Numerical results 

We are interested in the effect of the yearly weather cycle on 

he optimal maintenance interval and the cost savings due to the 

oordination of preventive maintenance with low wind periods. 

n this section we present the results of our numerical experi- 

ents for several components with different lifetime and cost pa- 

ameters. We assume that the component’s lifetime X follows a 

iscretized Weibull distribution, with cdf F (x ) = 1 − exp( x α ) β and 

 (X = x ) = F (x ) − F (x − 1) for x ∈ N̄ , where α > 0 is the scale pa-

ameter and β > 0 is the shape parameter of the Weibull distri- 

ution. Hence, the probability mass is shifted to the right and the 

istribution is strictly positive. Moreover, we assume that both pre- 

entive and corrective maintenance costs are time-varying with a 

early cycle. That is, 

 p (i 1 ) = c̄ p + �p cos 

(
2 π i 1 

N 

+ φ

)
, c f (i 1 ) = c̄ f + � f cos 

(
2 π i 1 

N 

+ φ

)
. 

We will express time i 1 in months, hence N = 12 and i 1 = 1

ndicates January. The constant φ is chosen such that the lowest 

osts are obtained in July and highest in winter months. Hence 

= 

−2 π
12 . This typically models Northern European wind patterns. 

he parameter m is given in each table. We solve the MILPs using 

PLEX 12.8.0 in Java. 
985 
Tables 2 and 3 show the results for two cases, Weibull scale 

arameters α being either 1 or 3 years (the corresponding mean 

ifetimes E (X ) are 0.9 and 2.7 years respectively), Weibull shape 

arameter β being 2, and c̄ f being 5 times larger than c̄ p . Note the 

ifference in behaviour of the two cases as the mean lifetime is 

ither shorter or longer than a year. 

Cost savings are calculated as the relative cost difference under 

eriod-dependent policies p-ARP, p-BRP, and p-MBRP compared to 

RP, BRP, and MBRP, respectively. ARP, BRP, and MBRP policies are 

btained considering the constant cost case. Table 2 shows that the 

ost savings are larger when there are larger cost fluctuations (i.e. 

 higher �) over the year. Increasing the maintenance cycle hori- 

on, m , from 1 to 2 , 3 , . . . , 8 does not lower the costs and gives the

ame policy for p-BRP and p-MBRP as obtained with m = 1 . Hence, 

hese results are omitted. The savings in Table 2 (with E (X ) = 0 . 9 )

re relatively small, since we maintain multiple times a year and 

t is therefore difficult to maintain only at cheap moments. Fig. 1 

hows that for the constant cost case, the optimal critical replace- 

ent age is 6 months. As � increases the optimal critical age be- 

omes more dependent on the period of the year and it varies be- 

ween 3 and M months. In this way, one prevents PM in winter 

onths and allows earlier PM in summer and fall months. 

Table 3 (with α = 3 , E (X ) = 2 . 7 year) also shows that the cost

avings are larger when there are larger fluctuations over the year. 

e found that an increase in m to m = 4 , . . . , 8 does not give

ower costs, and hence these results are omitted. The savings in 

able 3 are much larger than in Table 2 , since we do PM mostly on

 yearly basis and we are therefore able to maintain preventively 

t cheap moments only. For � = 10% the p-BRP and p-MBRP poli- 

ies maintain in June (month 6), then 15 months later in Septem- 

er (month 21), then 21 months later in June and so forth. In this 

ay we save 2.43% and 2.08% with respect to maintaining every 
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Fig. 1. Critical maintenance ages for p-ARP with α = 1 year, β = 2 , c f = 50 , c p = 10 . 
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Fig. 2. Critical maintenance ages for p-ARP with α = 3 year, c f = 50 and c p = 10 . 

1

c

n

r

y

p

r

c

i

M

J

i

I

a

r

l

s

v

α  
8 months, as dictated by BRP and MBRP policies for the constant 

ost case. As the fluctuations increase to � = 20% , . . . , 50% , mainte- 

ance in summer only yields the lowest cost rates and the interval 

educes to 12 months. As a result maintenance is performed on a 

early basis in July for these scenarios. The minimal age for the 

-MBRP decreases for increasing fluctuations, since maintenance is 

elatively cheap in summer for large cost fluctuations. 

In Fig. 2 , we show how the critical p-ARP ages change if the 

ost fluctuations ( �) increase. We observe that PM is performed 

n July only for � ≥ 30 %. Thus, the p-ARP policy reduces to an p- 

BRP policy. The explanation is that the savings of doing PM in 
p

986 
uly versus other months outweigh the costs of having a smaller 

nterval compared to the constant cost optimum of 19 months. 

ndeed, average cost curves for ARP or BRP are often quite flat 

round the optimum. Moreover, an increasing � implies a higher 

atio of PM costs in summer versus CM costs in winter, implying a 

ower age threshold for PM in summer. 

The savings depend heavily on the parameters of the model. We 

hould consider many parameters to be able to assess the added 

alue of considering the cost fluctuations. We, therefore, consider 

= 1 , 3 , 5 , 8 , 10 years, β = 2 , 3 and 

c f 
c p 

= 5 , 10 and compute the

ercentage savings for each scenario. Table 4 gives the summarized 
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Table 4 

Average percentage savings of the p-ARP, p-BRP, p-MBRP policies compared to the constant cost model. The average savings are 

given for each parameter, averaged over the other parameter settings. 

� Method α = 1 α = 3 α = 5 α = 8 α = 10 β = 2 β = 3 c = 5 c = 10 Average 

ARP 0.06% 3.80% 2.73% 5.15% 5.23% 2.95% 3.85% 3.06% 3.73% 3.40% 

10% BRP 0.14% 4.47% 4.45% 5.42% 5.48% 3.28% 4.70% 3.55% 4.43% 3.99% 

MBRP 0.14% 4.30% 4.06% 5.02% 5.15% 2.96% 4.51% 3.22% 4.24% 3.73% 

ARP 0.66% 9.25% 7.76% 10.73% 10.74% 6.82% 8.84% 7.39% 8.26% 7.83% 

20% BRP 0.87% 10.45% 10.65% 11.28% 11.28% 7.49% 10.32% 8.51% 9.30% 8.91% 

MBRP 0.83% 9.86% 9.99% 10.69% 10.70% 6.98% 9.85% 7.82% 9.01% 8.41% 

ARP 1.62% 16.55% 13.48% 16.92% 17.12% 11.52% 14.76% 12.95% 13.33% 13.14% 

30% BRP 1.94% 18.05% 17.14% 17.89% 18.17% 12.45% 16.83% 14.64% 14.64% 14.64% 

MBRP 1.83% 17.26% 16.36% 17.09% 17.31% 11.75% 16.19% 13.67% 14.27% 13.97% 

ARP 2.95% 24.10% 20.98% 23.80% 23.94% 16.69% 21.61% 19.21% 19.10% 19.15% 

40% BRP 3.33% 25.65% 24.36% 24.93% 25.09% 17.84% 23.51% 21.02% 20.32% 20.67% 

MBRP 3.16% 24.73% 23.39% 23.94% 24.05% 16.90% 22.81% 19.85% 19.86% 19.86% 

ARP 4.78% 31.68% 28.61% 31.14% 31.32% 22.18% 28.83% 25.71% 25.30% 25.51% 

50% BRP 5.34% 33.25% 31.57% 32.45% 32.60% 23.51% 30.57% 27.62% 26.46% 27.04% 

MBRP 5.00% 32.25% 30.46% 31.30% 31.54% 22.39% 29.82% 26.30% 25.92% 26.11% 
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esults for the p-ARP, p-BRP, and p-MBRP policies respectively for 

hese parameters. In each column the average of the savings for 

he value of all other parameters is given, i.e. in the column for 

= 1 the savings are given over the constant cost model, averaged 

ver the savings for the parameters β = 2 , 3 and c = 

c f 
c p 

= 5 , 10 . 

Table 4 shows that the savings are very small for α = 1 year 

nd significantly larger for higher α values. The behavior is not 

onotonic in α. First, we see an increase (between α = 1 , 3 years), 

hen a decrease (between α = 3 , 5 years) and then again an in-

rease (between α = 5 , 8 years). The differences between α = 8 

nd α = 10 years are very small. The explanation is that the change 

f maintenance interval (such that we maintain in summers only) 

eads to a relatively smaller change in case of a large lifetime, dic- 

ated by a large α value. The non-monotonic behavior is due to 

veraging over different parameters. If we fix β and c, the figures 

ecome almost monotonic (the rare differences are small in mag- 

itude). In those cases, the non-monotonicity can be explained by 

 discretization effect. 

All three policies have more savings for β = 3 than for β = 2 

or all � considered. The explanation is that for a larger β , the av- 

rage cost curves become more peaked and there are less failures 

efore the optimum maintenance moment. Hence, a coordination 

ith seasons is easier to achieve and costly failures in the winter 

eason can be avoided. For c = 10 the savings are slightly larger 

han for c = 5 for low cost fluctuations (i.e. � ≤ 30% ). For large

ost fluctuations (i.e. � ≥ 40% ) the savings for c = 5 are mostly 

arger than for c = 10 , yet the differences are small and may be

aused by the particular behavior in case of α = 1 . Changing c = 5

nto c = 10 then forces BRP to do PM 3 times a year instead of

 times, with much lower savings compared to the constant cost 

odel. Note that the savings of the three policies are comparable, 

n Table 4 the p-BRP has often the highest savings, next p-MBRP 

nd least p-ARP, but in other cases the savings order can be differ- 

nt (see Schouten, 2019 ). 

. Wind turbine gearbox example 

In this section, we will apply our methods on a realistic exam- 

le for illustration: a gearbox within a Vestas V164 9.5 MW wind 

urbine in the North Sea. The data we give below are assembled 

rom various literature sources and are scaled up, as today’s (2020) 

ind turbines are much bigger than those of 10 years ago. The cost 

ata are obtained through a scaling procedure by Fingersh, Hand, & 

axson (2006) from the published costs of a 2.0 MW wind turbine. 

he cost for every component in a wind turbine is approximated 

s a function of the power output and the size of the turbine. For 
987 
urther details of our approximation and scaling scheme, we refer 

o Schouten (2019) . 

We use data from Tian, Jin, Wu, & Ding (2011) for the lifetime 

istribution, which is based on a 2.0 MW offshore wind turbine. 

or the gearbox the time to failure can be modeled by a Weibull 

istribution with a scale parameter α = 80 months and β = 3 , im- 

lying an average time to failure of 71 months. 

Maintenance costs consist of the following components: man- 

ower, material, and lost production costs due to downtime for 

reventive or corrective maintenance. The lost production costs 

ary over the year. We will relate the lost production costs to the 

eekly average wind speed at sea level, corrected for the height 

f the rotor. The lost production costs can be computed using the 

xpected downtime of the components, the power output curve, 

nd historical wind speed data. For each maintenance action, we 

ssume that we know the downtime of the component. 

Note that the average power output cannot be computed from 

he mean wind speed over the month, since the relation between 

ower output and wind speed is non-linear. Fig. 3 shows such a 

elation for the V164 9.5 MW turbine, the newest and most pow- 

rful Vestas wind turbine to date (2018). The data is obtained from 

 Netherlands Commission for Environmental Assessment (NCEA), 

016 ), which contains the power output for a V164 8.0 MW tur- 

ine which we scaled up to the 9.5 MW turbine. 

The daily data from ( Royal Netherlands Meteorological Institute, 

018 ) will be used to estimate the power output on every day of 

he year. This contains the daily average wind speeds in IJmuiden, 

 coastal city in the Netherlands, from 1971 to 2017. For every day, 

e approximate the power output by P ( v ) in which v is the mean 

ind speed over the day. Taking the average over all years and 

ithin each week yields the average historical power output for 

ach week of the year. To these rather fluctuating values we fitted 

 cosine approximation. This historic power output and cosine fit 

re given in Fig. 4 . This figure also indicates in the bottom curve 

er week the lowest daily wind speed, averaged over the 47 years, 

lso with a cosine fit. 

Fig. 4 indicates that there is a big difference in the mean and 

inimum over the week. The intra-week fluctuations are thus sig- 

ificant and if we would be able to predict the wind accurately 

eforehand for each day in a week, we will be able to save a lot

n the downtime costs. These downtime costs for a complete day 

f downtime is given in Eq. (14) , where we use a constant elec- 

ricity price of € 0.06/kWh. This is the guaranteed price in a 2018 

erman project. This leads to the following downtime cost esti- 

ates per day (in euros, where t is in weeks and the shift term in 

he cosine has therefore changed from the value in months given 
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Fig. 3. This figure shows the approximated power output of a Vestas V164-9.5 MW wind turbine as a function of the wind speed. 

Fig. 4. This figure shows the approximated power output of a Vestas V164-9.5 MW wind turbine as function of the time of the year in IJmuiden (a coastal city in The 

Netherlands). The lower data and fit represent the minimum (over all days) power output for each week averaged over all years. The upper data and line represent the 

average output per week average over all years. 
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 mean (t) = 6836 + 1295 cos 

(
2 πt 

52 

+ 0 . 034 

)
, (14a) 

 min (t) = 2061 + 850 cos 

(
2 πt 

52 

+ 0 . 020 

)
. (14b) 

Tian et al. (2011) state that the lead time for corrective main- 

enance is a month. Papatzimos, Dawood, & Thies (2018) state that 

ome 10 days are needed for the preventive maintenance of a gear- 

ox for a 2.3 MW turbine and therefore we use a downtime of 40 
988 
ays (lead time plus 10 days) for corrective maintenance. Hence, 

he manpower and material costs for preventive and corrective 

aintenance of the gearbox are estimated as 148.20 and 592.80 

housand euros respectively. Adding the downtime costs for PM 

f 10 days (in total 68.36 thousand euros) and 40 days for CM 

in total 273.44 thousand euros) to these numbers we arrive at 

he following cost values in thousand euros for the average wind 

peeds. 

 p (i 1 ) = 216 . 56 + 12 . 9 cos 

(
2 π i 1 

52 

+ 0 . 034 

)
, (15) 
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Table 5 

Annual costs under the different models. 

p-ARP p-BRP p-MBRP 

Constant cost model 89.740 95.331 89.958 

Model using mean wind speed (14a) 87.369 92.984 87.996 

Model using lowest wind speed (14b) 68.456 73.019 69.081 

Average savings using (14a) 2.64% 2.46% 2.18% 

Optimistic savings using (14b) 23.72% 23.40% 23.21% 

Table 6 

Critical maintenance ages (in weeks) for the p-ARP. 

Week 27 28 29 30 31 

Average using (14a) 204 192 180 167 165 

Optimistic using (14b) 205 195 185 175 165 
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 f (i 1 ) = 866 . 24 + 51 . 6 cos 

(
2 π i 1 

52 

+ 0 . 034 

)
. (16) 

or the case we maintain preventively at the days with the lowest 

ind speed we get 

 

low 

p (i 1 ) = 168 . 81 + 8 . 5 cos 

(
2 π i 1 

52 

+ 0 . 020 

)
, (17) 

hile the failure cost remain the same. Using these cost functions 

e can compute the optimal p-ARP, p-BRP and p-MBRP using for- 

ulations (7), (10) , and (12) and using m = 4 . If we do not al-

ow for short-term planning and have to maintain at the start of 

he week that we plan far ahead, we pay the costs of C mean (t)

or downtime. Using our model we obtain the average costs that 

re somewhat pessimistic estimates. If we are able to forecast the 

eather in the chosen week perfectly and can plan the mainte- 

ance on the days with the lowest wind speed in that week, we 

ould incur downtime costs of C min (t) per day and hence c low 

p (i 1 )

or preventive maintenance. This function therefore gives an op- 

imistic estimate on the costs we incur. The results are given in 

able 5 . 

Since we take m = 4 , we consider 4 × 52 periods in the model.

n the p-BRP, for both average and optimistic settings, we main- 

ain in week 131 and this corresponds to a cycle of three years 

nd maintaining the component approximately the first week of 

uly. In the p-MBRP, for both average and optimistic settings, we 

aintain in the exact same week if the age is 121 weeks or above.

he standard ARP with average settings, maintains at 191 weeks, 

he standard BRP at 187 weeks. Taking the varying wind condi- 

ions into account therefore leads to a much shorter maintenance 

nterval. In Table 6 , we give the critical maintenance ages for the 

-ARP, depending on the week of the year. 

. Conclusion 

In this paper, we generalize the standard ARP, BRP and MBRP 

olicies to time-varying maintenance costs case, which is appro- 

riate for wind farm operations. Using time-discretization, we 

ormulate a Markov decision process describing a component’s 

aintenance optimization problem. We derive conditions for the 

xistence of finite replacement policies and find that these are 

eaker than those for the case with constant costs. The optimal 

ime-dependent p-ARP can be obtained from an LP formulation 

nd the optimal time-dependent p-BRP and p-MBRP policies from 

ILP formulations. Our numerical results indicate that considering 

he cost fluctuations in maintenance optimization can save a 

ignificant percentage of costs (i.e. up-to 23%) compared to the 

onstant cost policies. 
989 
For the time-varying cost case, the p-ARP is the optimal policy. 

ut this policy can complicate long-term planning as the planned 

aintenance execution time changes every time a component fails. 

he p-BRP results in somewhat higher costs, but maintenance ac- 

ions can be planned in advance and are never canceled, which 

s convenient for maintenance teams and spare parts provision- 

ng. The p-MBRP is slightly more expensive than the p-ARP and 

heaper than the p-BRP. Under p-MBRP, maintenance can still be 

lanned in advance, but can be canceled if the component has not 

eached a specific age at the preventive maintenance moment. Our 

umerical experiments reveals that the p-MBRP policy equals the 

-ARP policy in case of high cost fluctuations. The p-BRP and p- 

BRP policies have the advantage that they can easily be extended 

o multi-component situations with economic dependencies, while 

his is more complicated for p-ARP policies. 

In this paper, we consider time-varying costs, which we as- 

ume driven by the energy output rate of generators. Considering 

he value of the output rate might require the dynamics of energy 

rices and demand-supply balance in the market. This requires fur- 

her research and is left to future studies. 
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ppendix 

heorem 1. There exists an optimal maintenance policy under time- 

arying costs that is a p-ARP policy. 

roof. This theorem holds due to the following. For i 0 
1 

∈ I 1 and 

 

∗
2 

∈ I 2 , if it is optimal to perform a PM in state (i 0 
1 
, i ∗

2 
) , then it is

ptimal to perform a PM in all states (i 0 
1 
, i 2 ) with i 2 ≥ i ∗2 , which is

quivalent to a p-ARP policy. 

The proof follows similar lines as that in Ross (1970) p.129,147. 

e start with the α-discounted case and apply value iteration to 

rove that the value increases with age. Next we let α → 1 and 

btain the results for the average cost case. Hence, let v α, 0 
(i 1 ,i 2 ) 

= 0 

or all states i = (i 1 , i 2 ) ∈ I . In the following we keep i 1 fixed. Next

e determine: 

 

α, 1 
(i 1 ,i 2 ) 

= min 

a ∈A (i 1 ,i 2 ) 

( 

c (i 1 ,i 2 ) (a ) + α
∑ 

j 1 , j 2 

π(i 1 ,i 2 )( j 1 , j 2 ) v 
α, 0 
( j 1 , j 2 ) 

) 

= 

{
0 , i 2 � = 0 

c f (i 1 ) , i 2 = 0 

Hence v α, 1 
(i 1 ,i 2 ) 

is increasing in i 2 ≤ 1 and v α, 1 
(i 1 ,i 2 ) 

≥ v α, 1 
(i 1 , 0) 

= 

 f (i 1 ) ∀ (i 1 , i 2 ) ∈ I. Next assume that v α,n −1 
(i 1 ,i 2 ) 

is increasing in i 2 ≥ 1

nd v α,n −1 
(i 1 ,i 2 ) 

≤ v α,n −1 
(i 1 , 0) 

∀ (i 1 , i 2 ) ∈ I for some n > 1 . We then have 

 

α,n 
(i 1 ,i 2 ) 

= min 

a ∈A (i 1 ,i 2 ) 

( 

c (i 1 ,i 2 ) (a ) + α
∑ 

j 1 , j 2 

π(i 1 ,i 2 )( j 1 , j 2 ) v 
α,n −1 
( j 1 , j 2 ) 

) 

= min 

(
p i 2 αv α,n −1 

(i 1 +1 , 0) 
+ (1 − p i 2 ) αv α,n −1 

(i 1 +1 ,i 2 +1) 
, c p (i 1 ) 

+ p 0 αv α,n −1 
(i 1 +1 , 0) 

+ (1 − p 0 ) αv α,n −1 
(i 1 +1 , 1) 

)
otice that the second term in the minimum is constant in i 2 . The

rst term we can rewrite into (
p i 2 v 

α,n −1 
(i 1 +1 , 0) 

+ (1 − p i 2 ) v 
α,n −1 
(i 1 +1 ,i 2 ) 

) + (1 − p i 2 )(v 
α,n −1 
(i 1 +1 ,i 2 +1) 

− v α,n −1 
(i 1 +1 ,i 2 ) 

) 
)
, 

hich is larger than (
p i 2 −1 v α,n −1 

(i 1 +1 , 0) 
+ (1 − p i 2 −1 ) v α,n −1 

(i 1 +1 ,i 2 −1) 

)
, 
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hich is the left term in the minimum equation for v α,n −1 
(i 1 ,i 2 −1) 

. 

ence v α,n 
(i 1 ,i 2 ) 

is increasing in i 2 . It is easy to see that v α,n 
(i 1 ,i 2 ) 

v α,n 
(i 1 , 0) 

. 

The following step is to let n → ∞ and because of the bound- 

dness of all terms v α,n 
(i 1 ,i 2 ) 

→ v α
(i 1 ,i 2 ) 

. We obtain that v α
(i 1 ,i 2 ) 

is in-

reasing in i 2 > 0 and v α
(i 1 ,i 2 ) 

≤ v α
(i 1 , 0) 

. Since the right term in the

efinition of v α
(i 1 ,i 2 ) 

is constant it means that if for some (i 1 , i 2 0 )

he left term exceeds the right term, it does so for all (i 1 , i 2 ) with

 2 ≥ i 2 0 . The result for the average cost criterion is obtained by let- 

ing α ↑ 1 and observing that all terms are bounded, which means 

e can invoke Theorem 6.18 from ( Ross, 1970 ) implying that for 

ome sequence αk ↑ 1 there exist a function 

 (i 1 ,i 2 ) = lim 

k →∞ 

v αk 

(i 1 ,i 2 ) 
− v αk 

(1 , 0) 
(A.1) 

nd lim α↑ 1 (1 − α) v α
(1 , 0) 

= g, where g and h (i 1 ,i 2 ) 
satisfy the average 

ptimality equations and h (i 1 ,i 2 ) 
is increasing in i 2 . This implies our 

esult. �

emma 1. Let g(T ) denote the long-run average maintenance cost for 

 p-ARP policy, where we maintain at age T ∈ N̄ \ { 0 } in all periods

 1 ∈ I 1 . Then, we have g(T ) = g (T ) , where g (T ) is the long-run av-

rage cost for the problem where the time-varying maintenance costs 

re replaced by the averages over the year (i.e. c p and c f ). 

roof. Let T ∈ N̄ \ { 0 } arbitrary. Let A denote the limiting distri-

ution of the age of the component at any period. This limiting 

istribution exists under the unichain result and is time-invariant, 

ince the lifetime distribution is strictly positive and the policy has 

onstant maintenance age. The expected cost for Markov decision 

rocesses can be computed using the long-run distribution as fol- 

ows. 

(T ) = 

1 

N 

∑ 

i 1 ∈I 1 

{
c p (i 1 ) P (A = T ) + c f (i 1 ) P (A = 0) 

}
(A.2) 

= c p P (A = T ) + c f P (A = 0) = g (T ) . 

his proves the desired result. �

heorem 3. Suppose c f (i 1 ) = c f for all i 1 ∈ I 1 . If there exists i 0 
1 

∈ I 1 
atisfying c f > c p (i 0 

1 
) and p ∞ 

> 

1 
E (X ) 

c f 

c f −c p (i 0 
1 
) 
, then there exists a fi-

ite optimal p-ARP. 

roof. Consider the case where c p (i 1 ) = c p (i 0 
1 
) for all i 1 ∈ I 1 . This is

 constant cost case and by Nakagawa (1984) there exists a finite 

ptimal maintenance policy. 

We now compare the MDP for the constant cost case with 

nly age i 2 as state variable with the extended MDP for the time- 

arying cost case, i.e. with period i 1 and age i 2 as state variables. 

ote that there is a correspondence between the extended states 

i 1 , i 2 ) and the original state i 2 . The transitions and cost in the

xtended MDP only depend on the i 2 part of the state in this 

ase. Consider now the CM policy in both models. For the steady- 

tate probabilities ω i for the extended MDP we have ω (i 1 ,i 2 ) 
(∞ ) = 

1 
N ω i 2 

(∞ ) under the CM policy. The long-run average cost under 

he corrective maintenance policy for both MDPs are the same. 

ote further that the value functions v are the same in both mod- 

ls, as the period information does not influence costs nor transi- 

ion probabilities. In other words, we have v (i 1 ,i 2 ) 
(∞ ) = v i 2 (∞ ) for

ll i 2 ∈ I 2 under the CM policy. 

As in the constant cost case there exists a finite optimal main- 

enance policy, it means that some policy improvement equations 
990 
.r.t the corrective maintenance policy have negative solutions, i.e. 

here exists a i ∗2 ∈ I 2 for which we have 

min 

 ∈A (i 2 ) 
c i 2 (a ) + 

∑ 

p i 2 , j 2 (a ) v j 2 (∞ ) − v i 2 (∞ ) − g(∞ ) < 0 , ∀ i 2 ≥ i ∗2 , ∈ I 2 , 

(A.3) 

here 

 (i 2 ) = 

{{ 1 } if i 2 = 0 , 

{ 0 , 1 } otherwise. 

et us now turn to the case with time-varying PM costs and the 

xtended MDP. Note that the value function for the CM policy re- 

ains the same. Moreover, the policy improvement equations re- 

ain the same for the (i 0 
1 
, i 2 ) states. This means that the policy

hich takes the PM action for the states (i 0 
1 
, i 2 ) with i 2 ≥ i ∗

2 
and

he no PM action for all other states has average costs which are 

ess than those under the CM policy. �

heorem 4. If there exists period i 0 
1 

∈ I 1 satisfying 
c p (i 0 

1 
) 

c f 
+ b(i 0 

1 
) 

 

1 
2 (1 − c 2 

X 
− 1 

μ ) , then there exists an optimal p-BRP. 

roof. Suppose in period i 0 
1 

∈ I 1 we do preventive maintenance at 

osts c p (i 0 
1 
) , while the component is at age t 0 and never again. The

ost d(n ) of such a policy over nN periods with n ∈ N 

+ is as fol-

ows: 

(n ) = 

1 

nN 

{ 

c p (i 0 1 ) + 

nN ∑ 

t=1 

c f (i 0 1 + t ) h (t ) 

} 

. (A.4) 

The desired result is obtained by showing that there exists an 

 such that d(n ) < 

c̄ f 
E [ X] 

where the right-hand-side is the cost rate 

f the CM policy. Suppose that such an n does not exist, i.e. d(n ) ≥
c̄ f 

E [ X] 
for all n ∈ N , and the following inequality holds. 

c p (i 0 1 ) 

c f 
+ b(i 0 1 ) < 

1 

2 

(
1 − c 2 X −

1 

μ

)
(A.5) 

For d(n ) − c̄ f 
E [ X] 

we can write the following equations. 

(n ) − c̄ f 

E (X ) 
= 

1 

nN 

{ 

c p (i 0 1 ) + 

nN ∑ 

t=1 

c f (i 0 1 + t ) h (t ) 

} 

− c̄ f 

E (X ) 
, (A.6) 

= 

1 

nN 

{ 

c p (i 0 1 ) + 

nN ∑ 

t=1 

[ c f (i 0 1 + t) − c̄ f ] h (t) 

} 

+ 

1 

nN 

nN ∑ 

t=1 

c̄ f h (t) − c̄ f 

E (X ) 
, 

(A.7) 

= 

c̄ f 

nN 

{ 

c p (i 0 1 ) 

c̄ f 
+ 

nN ∑ 

t=1 

[
c f (i 0 1 + t) 

c̄ f 
− 1 

]
h (t) 

} 

+ 

c̄ f H(Nn ) 

nN 

− c̄ f 

E (X ) 
, 

(A.8) 

here the second equality follows from h (i 0 
1 

+ t) = h (t) for t ≥ 1

hen there is a PM at period i 0 
1 
. The definition of b(i 0 

1 
) in (8) im-

lies that 

(n ) − c̄ f 

E (X ) 
≤ c̄ f 

nN 

(
c p (i 0 1 ) 

c̄ f 
+ b(i 0 1 ) 

)
+ 

c̄ f H(Nn ) 

nN 

− c̄ f 

E (X ) 
. 

Due to Feller (1949 , Eq. (6.7)), 

lim 

→∞ 

[ 
H(t) − t 

E [ X ] 

] 
= 

E [ X 

2 ] 

2 E [ X ] 2 
− 1 + 

1 

2 E[ X ] 
. 

his implies that for any real number ε there exists a k ∈ N 

+ such

hat 

(kN) < 

kN 

E [ X ] 
+ 

1 

2 

(
c 2 X − 1 + 

1 

μ

)
+ ε. 
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riting (A.8) for k leads to 

(k ) − c̄ f 

E (X ) 
≤ c̄ f 

kN 

(
c p (i 0 1 ) 

c̄ f 
+ b(i 0 1 ) 

)
+ 

c̄ f H(kN) 

kN 

− c̄ f 

E (X ) 

< 

c̄ f 

kN 

(
c p (i 0 1 ) 

c̄ f 
+ b(i 0 1 ) −

1 

2 

(
1 − c 2 X −

1 

μ

)
+ ε

)
. 

ince ε is arbitrary, (A.5) implies that d(k ) − c̄ f 
E (X ) 

is negative which 

s a contradiction. Hence there exists a finite n that leads to a cost 

ate lower than the pure corrective maintenance policy. �

heorem 5. If 
c p 
c f 

< 

1 
2 (1 − c 2 X − 1 

μ ) and b(i 1 ) is finite for all i 1 ∈ I 1 ,
hen there exists an optimal p-BRP. 

roof. Let b = 

1 
N 

∑ N 
i 1 =1 b(i 1 ) and notice that we already established 

hat b = 0 (see (8) and the text thereafter). As 
c p 
c f 

+ b < 

1 
2 (1 − c 2 

X 
−

1 
μ ) , 

1 

N 

N ∑ 

i 1 =1 

(
c p (i 1 ) 

c̄ f 
+ b(i 1 ) 

)
< 

1 

2 

(1 − c 2 X −
1 

μ
) . 

ne can show by contradiction that there will be a period i 0 
1 

∈ I 1 
or which the condition of Theorem 4 holds. �

heorem 6. If c f > c p and p ∞ 

> 

1 
E (X ) 

c f 
c f −c p 

, then the optimal stan- 

ard MBRP has a finite optimal critical maintenance age t and block 

ime T . 

roof. Since condition (5) is met, we know that there exists a fi- 

ite optimal critical age for the standard ARP. Denote this optimal 

ge by i ∗. Consider next the MDP for age replacement, where state 

 indicates the age of the component. Now we extend the state 

pace with a counter variable, T . This construction and the remain- 

er of the proof are similar to the proof of Theorem 3 . We obtain a

BRP by restricting preventive maintenance actions to states with 

ounter variable T = i ∗ only. �

heorem 7. If c f > c p and p ∞ 

> 

1 
E (X ) 

c f 
c f −c p 

, then the optimal p- 

BRP has finite cycle m , block times T 1 , T 2 , . . . , T n , and critical ages

 (1) , t (2) , . . . , t (n ) . 

roof. This proof follows similar lines as that of Theorem 6 , by 

tarting with the original MDP being p-ARP from Theorem 2 , so 

ith states (i 1 , i 2 ) indicating age and period and extending it with

 counter T . �
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