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ABSTRACT In this paper, we compare and analyze light-weight approaches for instantaneous smart
meter (SM) data obfuscation from a group of consumers. In the literature, the common approach is to
use additive Gaussian noise based SM data obfuscation. In order to investigate the effects of different
approaches, we consider Gaussian, Rayleigh, generalized Gaussian and chi-square distributions to achieve
either additive or multiplicative data obfuscation. For each type of obfuscation approach, we calculate the
required parameters to achieve obfuscation such that 50% of the obfuscated data fall outside an interval
equalling twice the mean of the instantaneous SMmeasurements. We also calculate the minimum number of
SMs required to estimate the mean of the actual SM measurements, such that the estimate varies within only
0.5% of the actual mean with a 99.5% probability. Simulation results are used to verify the calculations, and
it is shown that multiplicative Rayleigh and generalized Gaussian noise require the least number of SMs,
which is 90% less than the traditional approach of additive Gaussian noise-based SM data obfuscation.

INDEX TERMS Smart meter, data obfuscation, additive noise, multiplicative noise.

I. INTRODUCTION
The emergence of smart grid has enabled two-way com-
munication of electricity and data between suppliers and
consumers. This communication is achieved based on the
integration of information and communication technology
with the energy and distribution infrastructures [1]. Smart
meter (SM) is an important component of smart grids.
The SMs are installed at customers’ premises and provide
real-time information about the energy usage [1] by transmit-
ting their energy usage to a utility center [2].

This information can enable grid operators, distributors
and suppliers to achieve electricity demand forecasting,
fault detection, optimization of services [2], load balancing,
dynamic pricing [3], etc. These benefits are achieved usually
at the cost of privacy risks, which include leakage of infor-
mation that can identify personal and behavioral informa-
tion [3]. Using the periodic information transmitted by the
SMs, an eavesdropper can gain information about the energy
consumption behavior and habits of customers, as well as
their presence or absence in their homes [4].
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Thus, it can be gathered that there are two conflicting
issues that obstruct the use of SMs: 1) transmission of data
from the consumers at periodic intervals so that the sup-
pliers can utilize the data, 2) hiding the periodic data from
eavesdroppers and possibly the suppliers to avoid invading
the privacy of the consumers. To solve these issues, differ-
ent privacy-preserving approaches have been proposed to
protect the privacy while simultaneously ensuring extraction
of useful information from the SM data. In the following
paragraphs, we carry out a review of these approaches.

In [5], a rechargeable battery was used to modify meter
readings, which could mask the actual energy consumption.
In [6], the authors proposed an online control algorithm
based on a Lyapunov function to simultaneously attain the
objectives of protecting a consumer’s privacy, while minimiz-
ing the electricity cost using a rechargeable battery. In [7],
the author proposed the use of physically unclonable func-
tions and channel state estimation to provide authentica-
tion and confidentiality, respectively for advanced metering
infrastructure.

Pseudonymization provides the energy supplier (ES) with
individual SM data, while the identity of each SM is kept
hidden. This approach requires the presence of a trusted third
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party. In [4], it was shown that an appearance of a new
pseudonym or the disappearance of an existing pseudonym
could be traced back to a new or departing customer, which
could be used to identify a customer from the corresponding
pseudonym. In [8], the authors showed that pseudonyms
needed to be changed more frequently as the number of SMs
increased.

In the aggregation approach, user privacy is protected by
providing the ES with the aggregated power consumption of
a group of SMs. The aggregated consumption is calculated by
a trusted third party, or by using cryptographic methods [9].
Data encryption encodes the SM data using an encryption
key. This approach is generally computationally intensive
and requires coordination between different SMs and other
entities. In [10] and [11], the authors used secure multiparty
computation based on Shamir secret sharing algorithm and
homomorphic encryption to protect user privacy. In [12], the
authors presented a scheme to preserve privacy in communi-
cation between SMs and neighborhood gateways using hash
and Exclusive-OR operations.

Unlike existing aggregating schemes that assumed only a
single entity that receives the aggregated readings, the authors
in [13] considered the presence of several entities that could
access the aggregated data of different sets of SMs. Each SM
used homomorphic encryption to send data to a local gate-
way. In [14], the authors used ElGamal encryption to protect
against attacks on intermediate data collection nodes present
between SMs and the ES. In [15], the authors proposed a
privacy-preserving schemewhere each SMhomomorphically
encrypted part of its data and sent them to other SMs. Sub-
sequently, each SM then sent its aggregated readings to an
aggregator.

The aforementioned privacy-preserving approaches are
considered expensive, inefficient, poorly scalable, require
SMs to communicate with one another, require a trusted third
party, require generation and sharing of keys, etc. Another SM
privacy-preserving approach is data obfuscation [16]–[25] that
involves adding or multiplying the SM data with a random
number. It is considered a light-weight approach that neither
requires very extensive computations nor requires installation
of separate infrastructure. The statistics such as periodicmean
of a group of SM data can be estimated from the obfuscated
data. However, there is a trade-off between privacy and utility:
to achieve privacy for each SM user, a high variance noise
should be added to the SM data, which in turn decreases
the utility of the data. The mean or sum of the data should
be estimated with a high accuracy, e.g., the authors in [26]
provided an example for Brazil, where the relative percentage
error for billing purposes must stay between ±2%.
An existing SM data obfuscation approach based on addi-

tive noise requires a large number of consumers for accurate
calculation of statistics from the obfuscated data [18]. While
adding Gaussian noise is the most common approach for SM
data obfuscation, consideration of multiplication and other
distributions has not been pursued in general. In this paper,
we address the lack of such approaches by evaluating the

generation of random data using different distributions and
considering both multiplicative and additive approaches.

We compare the results of Gaussian, Rayleigh, generalized
Gaussian and chi-square distributions in terms of the noise
variance required to achieve effective data obfuscation, and
the minimum number of consumers needed to accurately
calculate the mean value. To the best of our knowledge, this
is the first time that these distributions have been proposed,
compared and analyzed considering both additive and multi-
plicative approaches. This evaluation can serve as a reference
in practical applications, providing merits or demerits of each
data obfuscation approach. We further present guidelines
for choosing a particular obfuscation approach. In the next
section, we carry out a review of four types of obfusca-
tion approaches: Additive, multiplicative, additive with other
(additive+), and miscellaneous approaches.

II. LITERATURE REVIEW
A. ADDITIVE
In [16], random data obfuscation was carried out using the
Laplace distribution. In [17] and [18], random noise with
Gaussian distribution was added to the consumers’ energy
usage data. These approaches could not accurately estimate
the electricity consumption. In [23] and [24], the authors used
additive noise to obfuscate SM data using Laplace distribu-
tion and uniformly distributed noise, respectively. In [27], the
authors used correlated noise to achieve SM data obfuscation,
and also proposed a generative adversarial networks (GANs)-
based technique to achieve data obfuscation. The technique
required the presence of a third party.

In [28], the authors used Laplace distribution and showed
that by temporally smoothing the aggregated data, a group
size of the order of thousands of SMs is sufficient for
estimation of aggregated consumption. The authors in [29]
introduced a model for local obfuscation of probability dis-
tribution by probability perturbation, which perturbed each
single ‘‘point’’ datum by adding controlled probabilistic noise
before sending it out to a data collector. The authors in [30]
studied noise addition as a data privacy providing technique.

B. MULTIPLICATIVE
The authors in [31] proposed using truncated triangular dis-
tribution for masking survey data using multiplicative noise.
In [32], the authors proposed data masking using orthogonal
matrices, where the data weremultiplied by orthogonal matri-
ces before being released. The released data allowed exact
statistics to be estimated from the masked data. In [33], the
authors considered the case of using multiplicative noise to
perturb original data. The authors showed that if the perturbed
and original data were highly correlated, and if a malicious
entity knew that the multiplicative noise was the data obfus-
cation mechanism, it could recover the original data by using
linear regression for a large number of consumers.

The authors in [34] stated that multiplicative noise has
the advantage of the size of perturbation being directly
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TABLE 1. Comparison of existing data obfuscation techniques.

proportional to the size of the original value. In [35], the
authors evaluated linear and non-linear log-based multiplica-
tive noise schemes for protecting the confidentiality of micro
data. The authors showed that the linear scheme was good if
the data disseminator wanted to make minor changes to the
original data, in exchange for data security. The non-linear
scheme destroyed data utility for some items but maintained
it in log-scale.

C. ADDITIVE+

The authors in [36] showed that by hiding some parts of
the weekly consumption data of individual consumers, and
adding artificial noise could decrease the accuracy of attribute
identification, such as employment status, household family
size, etc. In [37], the authors proposed a two-step scheme.
First, an SM added uniform noise, followed by homomor-
phic encryption before sending the data to an aggregator.
The authors also compared different distributions in terms
of the output of different values falling in different intervals
between −∞ to +∞ and concluded that the uniform dis-
tribution was the best one as it affected all values equally.
In [38], the authors proposed a method to preserve the privacy
of training data in machine learning applications. The authors
either added random noise to sensitive samples, or augmented
the dataset with fake noisy samples to change the statistical
properties of groups of samples.

In [39], the authors considered data such that each user’s
data had a normal distribution with a different mean for

each user. The authors considered both obfuscation and
anonymization, and showed that higher levels of anonymiza-
tion and obfuscation would thwart the adversary’s ability to
correctly identify the consumers. The authors did not consider
utility.

D. MISCELLANEOUS
The authors in [40] proposed to obfuscate appliance con-
sumption signature by constructing a sparse dictionary of
appliances’ consumption data. The obfuscated data were then
generated by randomly assigning different sparse coefficients
with different probabilities. However, the authors underlined
that the obfuscated data might lose their utility. In [25],
an SM data obfuscation method based on the Gaussian mix-
ture model (GMM)was proposed. Unlike existing data obfus-
cation approaches, this technique did not require a large
number of consumers. However, it was shown in [27] that
an eavesdropper could identify the original SM data using
clustering techniques, thus posing privacy risks.

In [41], the authors used the GANs for generating the
privacy-preserved data for mobile data sets and protected the
recovery of consumers’ trajectories from publicly available
distributions. The authors in [42] studied linear and data
shuffling masking models, which required information on the
entire data set. The authors in [43] proposed a privacy-aware
obfuscation method for web data. The authors further
proposed an adversarial machine learning technique that
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combined differential privacy-based noise addition with the
probabilistic method.

In this paper, we investigate in detail the light-weight
SM data obfuscation technique, which does not require any
additional or special infrastructure, other than an SM. Unlike
the work in [18] that only considered additive Gaussian
noise-based data obfuscation approach, we consider several
random distributions and compare both additive and multi-
plicative approaches. To the best of our knowledge, this is
the first time that such an evaluation has been carried out
for a light-weight SM data obfuscation method. Although the
authors in [37] compared different distributions, our work is
different from two aspects:

1) The work in [37] considered additive noise followed
by homomorphic encryption-based obfuscation, whereas our
work considers the performance of additive and multiplica-
tive noise-based light-weight data obfuscation techniques.

2) The authors in [37] compared different distributions
by only considering the values falling in different intervals.
We carry out a detailed analysis by considering the change in
distributions after data obfuscation as well as after calculation
of mean, and provide an approximate value of variance and
number of SM consumers required to achieve a reasonable
level of privacy and utility performance, respectively.

In the following sections, we use a bold symbol such as xxxp
to denote a vector, whereas we use a non-bold symbol such
as xqp to refer to the qth single entry of xxxp. Other symbols such
as X , x, Xn and xn denote a scalar. Table 2 provides the list of
symbols used in this paper.

III. SYSTEM MODEL
The SM scenario considered in this paper is shown in Fig. 1.
We consider a group of M consumers, each of which has an
SM installed at their premises. These consumers are supplied
with energy by the ES, to which they also transmit their
energy consumption several times in an hour. The accumu-
lated energy consumption at the end of a billing period is
used for billing purpose, while the periodic energy consump-
tion received from each consumer is accumulated at the ES
to understand the daily/hourly consumption patterns of the
consumer group.

We consider that an SM sm,m = 1, 2, . . . ,M transmits
its readings at evenly-spaced time-instants given by the set
t = t1, t2, . . . , tN . The readings measured by the mth SM at
the nth time-instant is given by rmn . The ES is interested in
obtaining the sum of the readings at the nth time-instant from
all the consumers, i.e., Rn =

∑M
m=1 r

m
n , or the mean of the

readings, i.e., µn =
Rn
M .

A consumer wants to hide his/her periodic electricity con-
sumption from the ES. Similarly, the transmitted consump-
tion should be protected from an eavesdropper, who can
try to intercept these readings and gain insight into a user’s
behavior, or note his/her presence or absence in the premises.
For this purpose, readings from each consumer are obfuscated
such that the obfuscated readings r̃mn are different from their

original readings, i.e.,

r̃mn 6= rmn , ∀m. (1)

However, it should also be kept in mind that the ES should
be able to accurately calculate the actual mean of the electric-
ity consumption from these obfuscated readings, i.e.,

µ̃n ≈ µn, (2)

where µ̃n is the mean estimated from the obfuscated readings,
i.e.,

µ̃n =

∑M
m=1 r̃

m
n

M
. (3)

Thus, (1) ensures privacy, i.e., the actual instantaneous
consumption of the user is hidden from an eavesdropper,
and (2) ensures utility, the actual instantaneous mean of
the electricity consumed by M consumers can be calculated
accurately from the obfuscated data. This data obfuscation
can be carried out using random noise. The random nature
of noise means that in the calculation of the mean from the
obfuscated data, either the effect of noise would cancel out,
or it would create a known constant offset in the calculated
mean. However, to achieve an accurate estimate of the mean,
the number of consumers over which the mean is calculated
should be sufficiently large.

The data obfuscation approach should not require any extra
infrastructure, so that it can be integrated in the current setup
without any excessive additional expenditure or change of
protocols. At the same time, it should be flexible so that any
extra entity can be added in the future to provide an extra
layer of security. Each SM should be able to carry out data
obfuscation independently of other SMs without any intra-
SM communication, and the communication from the ES to
SMs should be kept to a minimum.

Our system model assumes that each SM records and
reports its obfuscated readings truthfully to the ES without
any tampering, and all the SM readings are synchronized in
time. The obfuscation mechanism is fixed into the SM. It is
considered that each SM has an accumulator that separately
sums the total energy consumption at the end of the billing
period and transmits it to the ES. We are only interested
in obfuscating the periodic information sent by the SMs to
the ES. The ES can know some of the parameters used for
data obfuscation. Each SM has a unit for random number
generation, as well as for carrying out multiplications and
additions. An eavesdropper can note the transmitted readings,
but not tamper with them. It is assumed that there is a single
SM installed per consumer, although the proposed technique
is not limited by this assumption.

In the following sections, we evaluate different noise dis-
tributions to be used in additive andmultiplicative data obfus-
cation, as these techniques can be considered as lightweight
approaches, which do not require the addition of any new
infrastructure. We evaluate them in terms of the required
parameters to achieve effective obfuscation, as well as the
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TABLE 2. List of symbols.

FIGURE 1. System model showing the obfuscated data transmitted to the ES by the consumers. The ES estimates the mean of the actual consumption
from these data.

minimum number of consumers required to obtain accurate
estimate of the mean value.

IV. ADDITIVE AND MULTIPLICATIVE NOISE BASED DATA
OBFUSCATION AT SMART METERS
First, we consider a data obfuscation method that adds noise,
preferably with zero-mean where possible, to the actual read-
ings. According to this model, the new readings after the
addition of noise are given as

r̃̃r̃rn = rrrn + ξξξn, (4)

where r̃̃r̃rn represents the obfuscated readings at a time-instant
tn for all the smart meters, and ξξξn is the additive noise vector
at that time. The mean and standard deviation of the noise are

represented by µξn and σξn , respectively. The corresponding
mean of the obfuscated data is

µ̃n = µn + µξn , (5)

and the standard deviation is given as

σ̃n = σξn . (6)

The obfuscated readings are then sent to the ES that calculates
the mean of r̃̃r̃rn.

We also considermultiplicative noise based SMdata obfus-
cation, where the original data are obfuscated by multiplica-
tion with a random noise vector ζζζ n, i.e.,

r̃̃r̃rn = rrrn � ζζζ n, (7)
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where � represents element-by-element multiplication. The
mean and standard deviation of this noise vector are given
by µζn and σζn , respectively. The mean of the obfuscated
readings is given as

µ̃n = µnµζn , (8)

and the standard deviation is given as [44]

σ̃n =

√
(σ 2
ζn
+ µ2

ζn
)× (σ 2

n + µ
2
n)− (µnµζn )2. (9)

When zero-mean noise distribution is used for multiplicative
data obfuscation, (6) simplifies to

σ̃n = µnσζn . (10)

Based on the details presented in [18], it is clear that effective
data obfuscation is achieved if there is a high probability
that a reading received by an eavesdropper is different from
the actual reading. This probability can be measured by the
width of the 50% confidence interval of the obfuscated data
distribution, where a large width would ensure that the obfus-
cated reading is different from the actual reading with a high
probability. Given the mean of the readings transmitted byM
SMs as equal to µn, we consider that noise should be added
such that the width of the 50% confidence interval is at least
2µn, which means that either
• at least half of the obfuscated readings would fall outside
the interval of [0, 2µn] or

• at least half of the obfuscated readings would fall outside
the interval of [−µn,+µn]

The former criterion is used when the noise distribution only
consists of positive samples, and the latter criterion is used
when the noise distribution consists of both positive and
negative values. The standard deviation of the required obfus-
cation noise can be calculated by either using the formula
for the confidence interval, or the cumulative distribution
function (CDF) of the obfuscated data’s distribution.

Next, we calculate the required standard deviation for
additive and multiplicative data obfuscation using Gaussian,
Rayleigh, generalized Gaussian and chi-square distributions.

1) ADDITIVE GAUSSIAN DISTRIBUTION
As shown in [18], zero-mean random Gaussian noise, i.e.,
ξξξn ∼ N (0, σξn ) can be added to obfuscate the readings.
Equation (35) given in the Appendix can be used to calculate
the required standard deviation, which is given as

σξn =
µn

0.6745
. (11)

This approach is presented in [18] and used as the benchmark
model in this paper.

2) ADDITIVE RAYLEIGH DISTRIBUTION
The Rayleigh distribution is made up of two components as
follows:

ξξξn ∼

∣∣∣∣N (
0,
σξn
√
2

)
+ jN

(
0,
σξn
√
2

)∣∣∣∣, (12)

whereN (0, σξn√
2
) is a distribution with mean equal to zero and

standard deviation equal to σξn√
2
, i.e., each component making

up the distribution has a standard deviation of σξn√
2
. The mean

of the resulting distribution is [45]

µξn
=

1.253
√
2
σξn , (13)

and the standard deviation is [45]

σξn
=

0.655
√
2
σξn . (14)

The required standard deviation can be calculated using (36),
which results in

σξn =
2µn

√
−ln(0.5)

, (15)

that can be used to generate the noise for SMdata obfuscation.

3) ADDITIVE GENERALIZED GAUSSIAN DISTRIBUTION
Generalized Gaussian distribution depends on parameters
mean µGG, scale βGG and shape ρGG. It is written as [46]

ξξξn ∼ NGG(µGG, βGG, ρGG). (16)

We consider a zero-mean generalized Gaussian noise, i.e.,
µGG = 0, because a zero-mean additive noise does not
require the ES to have any knowledge of the data obfuscation
parameters for estimating the mean. The standard deviation
of the distribution is [46]

σξn =
1
√
βGG

√√√√√0
(

3
ρGG

)
0
(

1
ρGG

) , (17)

where 0(.) is the Gamma function. The required standard
deviation can be calculated using (37), which simplifies to

γ
(

1
ρGG

, |µn
√
βGG|

ρGG
)

0
(

1
ρGG

) = 0.5. (18)

In (18), γ (.) is the lower incomplete Gamma function. Keep-
ing ρGG fixed, we can solve (18) to get the value of βGG
required to achieve effective obfuscation.

4) ADDITIVE CHI-SQUARE DISTRIBUTION
Chi-square distribution depends on the parameter k and is
expressed as follows:

ξξξn ∼ χ
2(k/2). (19)

The mean of the noise generated from the above distribution
is [47]

µξn = k, (20)

and the standard deviation of the distribution is [47]

σξn =
√
2k. (21)
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The value of k required to achieve effective obfuscation can
be obtained using the expression of the CDF of the Chi-square
distribution in ((38)). The result is

γ
( k
2 , µn

)
0
( k
2

) = 0.5, (22)

which can be used to calculate the required value of k .

5) MULTIPLICATIVE GAUSSIAN DISTRIBUTION
We consider a Gaussian distribution having zero mean and a
standard deviation of σζn , i.e., ζζζ n ∼ N (0, σζn ). Using (10)
and (39), the required standard deviation value of the noise is
equal to

σζn ≈
1

0.48
√
2
. (23)

6) MULTIPLICATIVE RAYLEIGH DISTRIBUTION
Multiplicative data obfuscation using a non-zero mean noise
vector will ensure that the mean of the original data is shifted.
This shifting increases the probability of an eavesdropper
receiving a reading different from the actual reading, and
consequently, data obfuscation can be carried out by using
a noise with a smaller standard deviation, compared to (35).
In turn, the use of noise with a smaller standard deviation
facilitates using a lower number of SMs. Motivated by this,
we consider using noise with a Rayleigh distribution to carry
out multiplicative data obfuscation. The distribution is given
as follows:

ζζζ n ∼

∣∣∣∣N (
0,
σξn
√
2

)
+ jN

(
0,
σξn
√
2

)∣∣∣∣. (24)

The CDF of the Rayleigh distribution can be used to calculate
the expression required to achieve effective data obfuscation,
as shown in (40). Solving (40) gives

σξn =
2

√
−ln(0.5)

, (25)

which can be used for SM data obfuscation.

7) MULTIPLICATIVE GENERALIZED GAUSSIAN DISTRIBUTION
In this case, noise is generated according to (16). To calculate
the required standard deviation, (18) can be modified to

γ
(

1
ρGG

, |
√
βGG|

ρGG
)

0
(

1
ρGG

) = 0.5.

Keeping ρGG fixed, we can solve to get the value of βGG
required to achieve effective obfuscation, which can then be
used in (42) to calculate the required standard deviation.

8) MULTIPLICATIVE CHI-SQUARE DISTRIBUTION
Using the expression of the CDF of the distribution of
the obfuscated signal in (46), we can obtain the following
equation:

γ
( k
2 , 1

)
0
( k
2

) = 0.5. (26)

Subsequently, we can solve (26) to get the value of k required
to achieve effective obfuscation.

V. CALCULATION OF MEAN AT THE ENERGY SUPPLIER
The ES generates an estimated mean of the actual readings.
This estimate should be close to the actual average value µn
with a high probability. This is ensured by having a high
probability of the estimated mean to be close to the actual
mean, which can be measured by a very small width w of
the confidence interval of the distribution of the average
obfuscated readings. We consider that the 99.5% confidence
interval of the resulting distribution of the averaged result is
equal to w = 0.005µn. Next, we describe the calculation of
mean and the minimum number of SMs required to obtain an
accurate estimation for both additive andmultiplicative noise.

A. ADDITIVE NOISE BASED DATA OBFUSCATION
The obfuscation readings are summed to calculate the mean.
If the additive noise used has a zero-mean, the mean of the
original data is equal to that of the obfuscated data; otherwise,
the mean of the obfuscation noise should be subtracted from
the estimated mean. Using the Central Limit Theorem, the
calculated mean is considered to be normally distributed
with mean µn and standard deviation σ̃n√

M
. Consequently,

using (47), the number of meters to estimate the mean accu-
rately should be

M =
(

2.81σ̃n
0.005µn

)2

, (27)

for Gaussian, generalized Gaussian and chi-square distribu-
tions. In the case of Rayleigh distribution, the number of
meters can be written as

M =
( 2.81σξn
0.005µn

)2

. (28)

B. MULTIPLICATIVE NOISE BASED DATA OBFUSCATION
In case ofmultiplicative noise, themean of the actual readings
is calculated in two different ways depending on the types of
noise distributions used:

1) MULTIPLICATIVE GAUSSIAN AND GENERALIZED
GAUSSIAN
As the mean of the noise is zero, the estimated mean is cal-
culated by dividing the standard deviation of the obfuscated
readings by that of the obfuscation noise, i.e., µ̂n =

σ̃n
σζn

.
Using the Central Limit Theorem, the calculated mean will
be normally distributed with mean µn. On the other hand, the
standard deviation of the calculated mean can be considered
as standard deviation of the samples of standard deviation,
known as the standard error of standard deviation [48]. It is
equal to σ̃n√

2Mσζn
for multiplicative Gaussian noise.

As described in the previous section, a value of w =
0.005µn for the confidence interval of the standard error
ensures that an accurate estimate of the mean is obtained from
the obfuscated readings. Using this value and the expression
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FIGURE 2. Cumulative distribution obtained from simulated obfuscated data (a) additive Gaussian (b) additive
Rayleigh (c) additive generalized Gaussian (d) additive chi-square (e) multiplicative Gaussian (f) multiplicative
Rayleigh (g) multiplicative generalized Gaussian (h) multiplicative chi-square.
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of the standard error in (47), the number of SMs required to
achieve the necessary estimation accuracy is

M =

(
2.81σ̃n

0.005
√
2µnσζn

)2

, (29)

which can be simplified to

M =
(

2.81

0.005
√
2

)2

. (30)

Using the Central Limit Theorem, the calculated mean in the
case of generalized Gaussian is considered to be normally
distributed with mean µn and standard deviation σ̃n√

3.7Mσζn
,

where the value of 3.7 is derived empirically, as described
in the Appendix. Consequently, using (47), the number of
meters to estimate the mean accurately should be

M =

(
2.81σ̃n

0.005
√
3.7σζnµn

)2

, (31)

which can be simplified as

M =
(

2.81

0.005
√
3.7

)2

. (32)

2) MULTIPLICATIVE RAYLEIGH AND CHI-SQUARE
In this case, the mean of noise is non-zero, and the estimated
mean is calculated by dividing the mean of the obfuscated
readings by that of the obfuscation noise, i.e., µ̂n =

µ̃n
µζn

.
Using the Central Limit Theorem, the calculated mean for
both multiplicative Rayleigh and Chi-Square data obfusca-
tion is considered to be normally distributed with mean µn
and standard deviation σ̃n√

Mµζn
. Consequently, the number of

meters to estimate the mean accurately can be calculated
using (47) as follows:

M =
(

2.81σ̃n
0.005µnµζn

)2

. (33)

VI. VALIDATION AND ANALYSIS
We consider an average reading µn equal to 0.2 kW and
calculate the parameters required to achieve effective obfus-
cation, as well theminimum number of consumers required to
achieve an accurate estimate of the mean value. We carry out
these calculations for each obfuscation approach presented
in Sections III and IV. For additive Gaussian obfuscation,
which is the approach presented in [18], σξn is equal to
0.3 kW. To accurately calculate the mean of the consumers’
readings, M should be high, e.g., around 700000 consumers.
This approach is used as a reference for comparing to other
approaches, and is called the benchmark approach in the
following discussion.

A. PARAMETERS AND COMPARISON OF M WITH THE
BENCHMARK APPROACH
1) ADDITIVE APPROACHES
According to (15), the standard deviation of the Rayleigh
noise σζn used in (12) and the standard deviation σ̃n of the

obfuscated SM readings equal approximately to 0.2225 kW.
Using this value in (28), the minimum number of required
SMs is approximately equal to 390000, which is about 40%
less than that required by the benchmark approach.

Considering ρGG = 5, according to (37), βGG = 5.31,
the standard deviation σξn of the generalized Gaussian noise
in (17) and the standard deviation σ̃n of the obfuscated SM
readings is approximately equal to 0.2472 kW. Using this
value in (27), the number of required SMs is approximately
equal to 480000, which is about 30% less than that required
by the benchmark approach.

According to (38), k = 0.93, and the standard deviation
σξn of the chi-square distributed noise in (21) and the standard
deviation σ̃n of the obfuscated SM readings is approximately
equal to 1.3638 kW. Using this value in (27), the minimum
number of required SMs is approximately equal to 15 mil-
lion, which is phenomenally higher than that required by the
benchmark approach. This high number is due to the large
standard deviation of the obfuscated SM readings.

2) MULTIPLICATIVE APPROACHES
According to (23), the standard deviation σζn of the Gaussian
noise used in (7) is approximately equal to 1.473 kW. The
standard deviation σ̃n of the obfuscated SM readings equals
0.295 kW. Using this value in (29), the number of required
SMs is approximately equal to 158000, which is about 80%
less than that required by the benchmark approach.

According to (14) and (25), the standard deviation σζn
of the Rayleigh noise used in (7) is approximately equal to
1.1 kW. However, the standard deviation σ̃n of the obfuscated
SM readings is equal to 0.22 kW. Using this value in (33),
the number of SMs required comes out to be about 85000,
which is approximately 90% less than that required by the
benchmark approach.

Considering ρGG = 5, according to (43), βGG = 0.2122,
the standard deviation σζn of the generalized Gaussian noise
in (42) and the standard deviation σ̃n of the obfuscated
SM readings are approximately equal to 1.2364 kW and
0.2472 kW, respectively. Using these values in (31), the num-
ber of required SMs is approximately equal to 85000, which
is about 90% less than that required by the approach presented
in [18].

According to (46), k = 2.6, and the standard deviation σζn
of the chi-square multiplicative noise and the standard devi-
ation σ̃n of the obfuscated SM readings are approximately
equal to 2.2804 kW and 0.456 kW, respectively. Using these
values in (33), the number of required SMs is approximately
equal to 243000, which is about 65% less than that required
by the benchmark approach.

B. OBFUSCATED DATA AND CALCULATED MEAN
Next, we use the parameters calculated in the previous
sub-sections to simulate the SM scenario shown in Fig. 1.
We generate noise according to these parameters, and obfus-
cate the SM data with the generated noise. We carry out this
process for a total of 1000 times, and plot the cumulative
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FIGURE 3. Cumulative distribution obtained from calculated mean (a) additive Gaussian (b) multiplicative
Rayleigh (c) additive generalized Gaussian (d) multiplicative chi-square.

distribution of the resulting obfuscated data. We used Matlab
R2019a to perform the simulations on a system with Intel i5-
4200U processor and 12 GB RAM.

The results are shown in Fig. 2, where Figs. 2(a) - 2(d) rep-
resent additive noise data obfuscation, and Figs. 2(e) - 2(h)
represent multiplicative noise data obfuscation. We also plot
two parallel lines placed 0.4 kW apart to show the corre-
sponding cumulative probability at these values. The dif-
ference of probability values in between these lines should
be 0.5, which shows that 50% of the obfuscated data lie
within an interval of 0.4 kW. All the simulated results show
that 50% of the obfuscated data lie within these lines, thus
confirming that the calculated parameters are correct. Note
that the data obfuscated using Gaussian and generalized
Gaussian noise consist of both positive and negative val-
ues, and the data obfuscated using the chi-square distribu-
tion is spread over large values, especially for the additive
case.

Next, we calculate the mean of the obfuscated data over
the number of SMs calculated in the previous sub-sections
for each approach. We again carry out the simulations over
1000 iterations and plot the corresponding cumulative dis-
tribution of the calculated mean values. As all the results
are identical, we only show four figures in Fig. 3. Two
parallel lines are placed corresponding to 0.201 kW and
0.199 kW, which represent an interval such that the minimum

and maximum boundaries of the interval are lower and higher
than 0.5% of 0.2 kW. The difference between the probability
values shown on the y-axis at intersection of these two bound-
aries and the cumulative distribution plot should be 0.995,
i.e., very close to 1. It can be clearly observed that most of the
readings are very close to 0.2 kWand fall inside the area of the
parallel lines, underlining the fact that the number of SMs is
sufficient to accurately estimate the mean. The multiplicative
data obfuscation using Rayleigh distribution requires the least
number of SMs.

As the minimum number of SMs is 85000, required by
the Rayleigh and generalized Gaussian distributions based
multiplicative data obfuscation, we also show the mean esti-
mated using 85000 SMs for each data obfuscation approach.
The results are plotted in Fig. 4. As it can be observed, the
area between the two parallel lines decreases, meaning that
the accuracy of the estimated mean decreases. The addi-
tive approaches are affected the most, because they require
a higher number of SMs, compared to the multiplicative
approaches. The additive chi-square approach is affected the
most, followed by additive Gaussian noise based approach.
The additive Rayleigh and generalized Gaussian approaches
are affected almost equally. As noted earlier, the multiplica-
tive approaches are not significantly affected. The multiplica-
tive chi-square noise is affected the most, followed by the
multiplicative Gaussian approach.
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FIGURE 4. Cumulative distribution obtained from calculated mean for M = 85000 (a) additive Gaussian
(b) additive Rayleigh (c) additive generalized Gaussian (d) additive chi-square (e) multiplicative Gaussian
(f) multiplicative Rayleigh (g) multiplicative generalized Gaussian (h) multiplicative chi-square.
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As mentioned in [49], Laplace and Cauchy noise are com-
monly found in practical applications. The former noise dis-
tribution has also been used for additive SM data obfuscation,
as shown in Table 1. Therefore, we find it pertinent to com-
ment on the use of these distributions for additive and mul-
tiplicative SM data obfuscation. Our simulations show that
the minimum numbers of SMs required to accurately recover
the mean of the SM readings should be about 500000 and
200000 for additive and multiplicative Laplace distribution
based SM data obfuscation, respectively.

The required number of SMs for additive Laplace noise
is the second highest after that for chi-square distribution,
and almost the same as that for generalized Gaussian dis-
tribution. The number of SMs for multiplicative Laplace
noise is the second highest after that required for chi-square
distribution. This behavior shows that the performance of
the Laplace distribution, if used for SM data obfuscation,
will be between that of chi-square and generalized Gaussian
distributions. On the other hand, the mean and standard devi-
ation of Cauchy distribution do not exist [50]. As the main
constraint on SM data obfuscation is to be able to accurately
recover the mean of the SM readings for a group of con-
sumers, it is not possible to use this distribution for SM data
obfuscation.

C. DATA OBFUSCATION WITH VARYING MEAN
As the mean of the readings may vary over time, and the
obfuscation noise is calculated for a fixed mean, we show
the impact of fixed noise on data obfuscation. The data are
obfuscated according to an assumed value of 0.2 kW, while
the mean is expected to vary by ±0.04 kW, i.e., a ±20%
variation. We first show the results for +0.04 kW varia-
tion in Fig. 5. An impact is expected to increase the area
in between the two parallel lines, because the obfuscation
noise is calculated for a mean that is lower than the actual
mean. This will not impact the estimation of the mean, but
would rather affect the privacy level, meaning that there is
a higher chance of the privacy of a customer being invaded.
The additive approaches are affected, whereas the multiplica-
tive approaches are not affected, because the latter are inde-
pendent of the value of the readings being obfuscated, and
depend only on the desired obfuscation level. This can also
be confirmed by the expressions of the obfuscation noise’s
variance calculated in Sections III and IV. It appears that
the additive chi-square noise is affected less than the other
approaches.

We show similar results where the actual mean is 0.16 kW,
while the noise parameters are calculated for a mean of
0.2 kW. The results are shown in Fig. 6. As expected, the
area between the two parallel lines for the additive approaches
decreases as the actual obfuscation is less than the desired
level. A higher number of obfuscated data samples will lie
outside the 0.2 kW ±0.2 kW interval and consequently, this
higher percentage of obfuscated readings would degrade the
estimated mean’s accuracy, or would require a higher num-
ber of SMs to estimate the mean. The additive chi-square

approach is affected the least, followed by the additive
Rayleigh data obfuscation approach. As expected, the multi-
plicative approaches are not affected by a change in the mean
value.

These results show that for the additive approaches, the
SMs should generate noise according to the changing mean.
Thus, the ES should send the value of an estimated mean to
the SMs at periodic intervals or whenever it estimates the
current obfuscation mechanism to be insufficient. Another
option is to always use a high standard deviation of obfus-
cated than that was calculated in Section III, which will
require the use of a higher number of SMs.

D. OBSERVATIONS
We can make the following observations based on the results:

• Multiplicative approaches in general require a lower
number of SMs to accurately calculate the mean.

• Multiplicative approaches can carry out same level of
data obfuscation, irrespective of the actual mean. Addi-
tive approaches, on the other hand, either require an
estimate of the expected mean to carry out effective data
obfuscation, or require more than the calculated number
of SMs to avoid any decrease in the estimation accuracy.

• Multiplicative Rayleigh and generalized Gaussian data
obfuscation approach require the least number of SMs,
meaning that they are suitable for smaller neighborhoods
compared to other approaches.

• The zero-mean additive approaches, do not require
any information by the ES to calculate the mean. The
non-zero mean additive approaches require the knowl-
edge of the mean value.

• The zero-mean multiplicative data obfuscation
approaches require the ES to be aware that the mean can
be estimated by the standard deviation of the received
obfuscated readings. The ES should also have knowl-
edge about the obfuscation noise’s standard deviation.
The non-zero multiplicative approaches, on the other
hand, require the value of the mean of the obfuscation
noise used to obfuscate the data. Thus, these approaches
require the ES to have more knowledge of the obfusca-
tion mechanism, compared to the additive approaches.

Smart meter data obfuscation is practically applicable in cur-
rent scenarios to protect the privacy of consumers. It does not
require any particular new infrastructure, and only requires
SMs equipped with a small processing unit. Current SMs are
equipped with this feature, while the conventional meters can
also be replaced by this type of SMs once they are phased
out. At the ES, there is no particular hardware requirement
for the calculation of mean from the obfuscated data pro-
vided by a group of consumers. The calculated mean can
be used by grid operators, distributors and suppliers to pro-
vide different services, as outlined in Section I. Furthermore,
the SMs, once installed, can be integrated along with new
privacy-preserving methods by providing an extra layer of
privacy.
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FIGURE 5. Cumulative distribution obtained from simulated obfuscated data with mean = 0.24 (a) additive
Gaussian (b) additive Rayleigh (c) additive generalized Gaussian (d) additive chi-square (e) multiplicative
Gaussian (f) multiplicative Rayleigh (g) multiplicative generalized Gaussian (h) multiplicative chi-square.
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FIGURE 6. Cumulative distribution obtained from simulated obfuscated data with mean = 0.16 (a) additive
Gaussian (b) additive Rayleigh (c) additive generalized Gaussian (d) additive chi-square (e) multiplicative
Gaussian (f) multiplicative Rayleigh (g) multiplicative generalized Gaussian (h) multiplicative chi-square.
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FIGURE 7. Procedure for calculating the cost for the j th obfuscation
mechanism.

E. GUIDELINES FOR CHOOSING AN OBFUSCATION
MECHANISM
A cost criterion is used to select the most suitable data obfus-
cation mechanism. It is calculated based on F = 5 factors,
represented as fi, i = 1, 2, . . . , 5. The individual penalty due
to each factor is represented by pi, i = 1, 2, . . . 5. The cost
criterion for the jth obfuscation mechanism can be written as

Cj =
5∑
i=1

wipi (34)

where wi is the relative weight given to each factor. The
cost can be calculated for each obfuscation mechanism, and
a lower cost is considered as better. Figure 7 illustrates
the procedure of calculating the cost for the ith obfuscation
mechanism. Each individual penalty is assigned a value from
1, 2, 3 based on the requirement of each factor, where 1, 2 and
3 represent low, medium and high, respectively. Note that this
assignment of value is relative. Based on Sections IV and V,
we select the following factors for choosing a particular data
obfuscation mechanism:

1) Computational complexity at the SM (f1): We assume
that the complexities of generating a random number,
addition and multiplication are low and fixed. Thus,
the computational complexity of data obfuscation at the
SM does not vary with the choice of a particular noise
distribution and obfuscation mechanism. The genera-
tion of required standard deviation needed to generate
a random number requires division by constant num-
bers for Gaussian and Rayleigh distributions. However,
the generalized Gaussian and chi-square distributions
require calculation of βGG and k , as shown in (18)
and (22), respectively. Thus, the complexities are con-
sidered as high and medium for the generalized Gaus-
sian and chi-square distributions, respectively, while

the complexities of the remaining distributions are con-
sidered as low.

2) Computational complexity at the ES (f2): The computa-
tional complexity for calculating the mean or standard
deviation increases linearly as M increases. Thus, it is
dependent on the minimum number of required SMs,
and increases as this number increases. We consider
the complexities as high for additive Gaussian, addi-
tive chi-square, medium for additive Rayleigh, addi-
tive generalized Gaussian, multiplicative Gaussian and
multiplicative chi-square, and low for the remaining
data obfuscation approaches.

3) Knowledge at the SM (f3): The additive approaches
require the SM to know an estimated value of the mean
of the original data readings for calculating the standard
deviation of the obfuscation noise. The requirement
is classed as medium for these approaches. Additive
generalized Gaussian distribution further requires the
SM to know the value of ρGG. This information may
need to be transmitted to each SM at a low frequency
and the requirement is classed as high. The multiplica-
tive approaches do not require any knowledge of the
mean of the original data readings at the SM and the
requirement of this factor is classed as low.

4) Knowledge at the ES (f4): Zero-mean additive noise
does not require any knowledge at the ES for calcu-
lation of mean and the requirement is considered as
low. Non-zero additive and multiplicative obfuscation
require knowledge of the mean, and knowledge of
either the mean or standard deviation of noise and
whether to calculate themean or the standard deviation.
Thus, for non-zero additive obfuscation, we consider
the requirement as medium, while it is considered as
high for multiplicative obfuscation.

5) Spread of values (f5): Chi-square distribution is spread
over large values, especially for multiplicative obfusca-
tion. This means that high amplitude obfuscated read-
ings will be generated, which requires a more complex
modulation mechanism for transmission of the obfus-
cated data to the ES. The complexity is considered as
medium and large for additive and multiplicative chi-
square obfuscation, respectively. Other distributions
are almost identically spread over a low range and are
assigned a low complexity.

The individual penalties for each data obfuscationmechanism
is represented by Table 3. In the table,+ and× refer to addi-
tive and multiplicative obfuscation mechanisms, respectively,
andG, R, GG andCS refer to Gaussian, Rayleigh, generalized
Gaussian and chi-square distributions, respectively. Based on
Table 3 and with all weights equal to 0.2, the costs are equal
to 1.6, 1.8, 2, 2.4, 1.6, 1.4, 2.2, 2.4 for +G, +R, +GG,
+CS, ×G, ×R, ×GG, ×CS, respectively. This mean that if
all factors are equally important, multiplicative Rayleigh is
the best obfuscation mechanism. As another example, if low
computational complexity at the SM is very important, and
that at the ES does not matter, we assign the weights 0.4 and
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TABLE 3. Cost factor calculation.

0 to f1 and f2, respectively. In this case, the costs are 1.2, 1.4,
2.2, 1.8, 1.4, 1.4, 2.6, 2.4, meaning that additive Gaussian is
the best data obfuscation mechanism.

VII. CONCLUSION
In this paper, we presented and analyzed light-weight data
obfuscation methods. These methods involved either additive
or multiplicative noise. We evaluated the use of different
noise distributions, including Gaussian, Rayleigh, general-
ized Gaussian and chi-square distributions. We first calcu-
lated the required noise parameters for achieving a given
level of data obfuscation, as well as the minimum number of
smart meters (SMs) required to accurately estimate the mean
electricity consumption from the obfuscated data.We verified
the calculations via simulations. Our results indicated that
multiplicative noise based data obfuscation required a lower
number of SMs compared to the additive noise based data
obfuscation, and it was independent of the mean value of
the actual consumption data. We further showed that SM
data obfuscation using Rayleigh and generalized Gaussian
distributions required the least number of SMs. We further
presented guidelines for selecting the obfuscationmechanism
according to various requirements. This work can be used in
practical scenarios to calculate noise parameters according to
a given data obfuscation level, and also define the size of the
neighborhood required to estimate the mean at a given data
obfuscation level.

APPENDIX
A. CALCULATION OF STANDARD DEVIATION
1) ADDITIVE GAUSSIAN DISTRIBUTION
To calculate the standard deviation of the noise required to
achieve this level of data obfuscation, we follow the steps
presented in [18]. We use the formula of the 50% confidence
interval of a Gaussian distribution, which can be used to
calculate standard deviation of the noise required to achieve
effective data obfuscation:

µn = 0.6745σξn . (35)

2) ADDITIVE RAYLEIGH DISTRIBUTION
To calculate the standard deviation of the required noise,
we again consider that at least half of the readings should
fall outside the interval [0, 2µn]. As noise generated by (12)
is always positive valued, it means that the probability of
obfuscated readings being greater than 2µn should be at

least 50%. Making use of the formula for the CDF of the

Rayleigh distribution, i.e., FR(µn) = exp
(
−

0.5µ2
n

(σξn/
√
2)2

)
,

we can calculate the required standard deviation by solving
the following equation:

1− FR(2µn) = 0.5. (36)

3) ADDITIVE GENERALIZED GAUSSIAN DISTRIBUTION
To calculate the parameters of the required noise for achiev-
ing affective data obfuscation, we use the expression of
the CDF of the generalized Gaussian distribution, i.e.,
FGG(µn) = 1

2 +
sgn(µn)

20(1/ρGG)
γ
(

1
ρGG

, |µn
√
βGG|

ρGG
)
, where

sgn(.) is a function that gives the sign of its input and γ (.)
is the lower incomplete Gamma function [46]. At least half
of the obfuscated readings should be greater than |µn|. This
is expressed as

FGG(µn)− FGG(−µn) = 0.5. (37)

4) ADDITIVE CHI-SQUARE NOISE
To calculate the required value of k , we use the CDF of the
chi-square distribution. The expression of the CDF is given

as Fχ2 (µn) =
γ
(
k
2 ,
µn
2

)
0
(
k
2

) [47]. The parameter k should be such

that at least half of the obfuscated readings are greater than
2µn, i.e.,

1− Fχ2 (2µn) = 0.5. (38)

5) MULTIPLICATIVE GAUSSIAN NOISE
To achieve effective obfuscation, the multiplicative noise
should be such that at least 50% of the obfuscated readings
should be greater than |µn|. To calculate the required standard
deviation of the noise for achieving this level of data obfusca-
tion, we use the formula of the CDF of a normal distribution,
which is denoted as FG(µn). We get the following expression:

FG(µn)− F(−µn) = 0.5,

erf
(
µn

σ̃n
√
2

)
= 0.5, (39)

where erf(.) is the error function.

6) MULTIPLICATIVE RAYLEIGH NOISE
The standard deviation of the noise components that will give
readings greater than 2µn with a 50% confidence interval can
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be calculated by making use of the expression for the CDF of
the Rayleigh distribution, i.e.,

1− exp

(
−0.5

(2µn)2

(µnσξn/
√
2)2

)
= 0.5, (40)

where the denominator in (40) is obtained because using (24)
in (7), we get

r̃̃r̃rn ∼

∣∣∣∣N (
0,
µnσξn
√
2

)
+ jN

(
0,
µnσξn
√
2

)∣∣∣∣. (41)

7) MULTIPLICATIVE GENERALIZED GAUSSIAN NOISE
The standard deviation of the obfuscated readings is as
follows:

σ̃n = µnσζn ,

=
µn
√
βGG

√√√√√0
(

3
ρGG

)
0
(

1
ρGG

) . (42)

Subsequently, (37) is modified as

γ
(

1
ρGG

, |
√
βGG|

ρGG
)

0
(

1
ρGG

) = 0.5, (43)

where the difference in the above expression compared to (37)
is due to the presence of an additional term µn in the standard
deviation of the obfuscated readings, compared to the stan-
dard deviation of obfuscated data in the presence of additive
noise.

8) MULTIPLICATIVE CHI-SQUARE NOISE
To calculate the CDF of the obfuscated readings, we note
that the CDF of the chi-square distribution can be written as
follows in terms of a scale θ :

Fχ2 (µn) =
γ
( k
2 ,

µn
θ

)
0
( k
2

) , θ = 2. (44)

Given the fact that now themean and standard deviation of the
obfuscated readings are equal to kµn and

√
2kµn, the CDF of

the obfuscated readings can be written as:

Fo
χ2 (µn) =

γ
(
k
2 ,

1
2

)
0
( k
2

) , i.e., θ = 2µn. (45)

Thus, to find the parameter k such that 50% of the obfuscated
readings fall outside the interval [0, 2µn], we get the follow-
ing expression:

1− Fo
χ2 (2µn) = 0.5. (46)

B. CALCULATION OF MEAN
1) WIDTH OF THE CONFIDENCE INTERVAL
The width w of the 99.5% confidence interval required to
accurately calculate the mean should be equal to [47]

w =
2.81σξn
√
M

. (47)

2) STANDARD DEVIATION FOR MULTIPLICATIVE
GENERALIZED GAUSSIAN DISTRIBUTION
Asmentioned in Section V-B1, the calculated mean is consid-
ered to be normally distributed with mean µn and standard
deviation σ̃n√

3.7Mσζn
. The factor of 3.7 in the denominator is

derived empirically by 1) generating random numbers fol-
lowing generalized Gaussian distribution for varying values
of M , 2) estimating the mean of the generated random num-
bers for each value ofM , 3) calculating the standard deviation
of the estimated mean for each value of M , and 4) finding a
factor f that matches the standard deviation values calculated
using the random numbers with those calculated using the
expression σ̃n√

fMσζn
.
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