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ABSTRACT There are emerging trends to use the Industrial Internet of Things (IIoT) in manufacturing and
related industries. Machine Learning (ML) techniques are widely used to interpret the collected IoT data for
improving the company’s operational excellence and predictive maintenance. In general, ML applications
require high computational resource allocation and expertise. Manufacturing companies usually transfer
their IIoT data to an ML-enabled third party or a cloud system. ML applications need decrypted data to
perform ML tasks efficiently. Therefore, the third parties may have unacceptable access rights during the
data processing to the content of IIoT data that contains a portrait of the production process. IIoT data
may include hidden sensitive features, creating information leakage for the companies. All these concerns
prevent companies from sharing their IIoT data with third parties. This paper proposes a novel method
based on the hybrid usage of Generative Adversarial Networks (GAN) and Differential Privacy (DP) to
preserve sensitive data in IIoT operations. We aim to sustain IIoT data privacy with minimal accuracy loss
without adding high additional computational costs to the overall data processing scheme. We demonstrate
the efficiency of our approach with publicly available data sets and a realistic IIoT data set collected from
a confectionery production process. We employed well-known privacy six assessment metrics from the
literature and measured the efficiency of the proposed technique. We showed, with the help of experiments,
that the proposed method preserves the privacy of the data while keeping the Linear Regression (LR)
algorithms stable in terms of the R-Squared accuracy metric. The model also ensures privacy protection
for hidden sensitive data. In this way, the method prevents the production of hidden sensitive data from the
sub-feature sets.

INDEX TERMS Data privacy, differential privacy, generative adversarial networks, IIoT, privacy metrics.

I. INTRODUCTION
There are emerging trends for monitoring industrial produc-
tion processes by sensor devices. With the Industrial Internet
of Things (IIoT), a massive amount of collected data is used
to forecast production tools’ aging or failures by Machine
Learning (ML) techniques. Some examples are the detection
of equipment failure, supply chain optimization, performance
monitoring, and predictive maintenance [1]. IIoT is an infras-
tructure of software and hardware that connects the physical
world of the company processes with the Internet [2]. IIoT
devices typically have limited computing power and small
memories [3]. In general, this data analysis is performed
offline using a cloud-based service.
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Transferring the data from the production place to the
processing place on the cloud is a significant bottleneck.
The transmitted data will be open to third eyes, which can
cause privacy leaks related to the company [4], [5]. The data
from IIoTs often incorporate implicit or explicit knowledge
of specific production areas gained from experience. It is key
to unlocking new opportunities and can reveal how industries
operate. Recent events have shown apparent failures in cyber-
security issues. They are becoming a real threat to IIoTs’
competitive advantage and profitability [6], [7]. In this con-
text, ensuring that the IIoT data is handled with the highest
care regarding privacy is of tremendous importance. This
paper will focus on the problem arising from the processing
needs of IIoT data on cloud systems.

As shown in Figure 1, the IIoT data transmission to third
parties can be performed safely by applying encryption pro-
cedures. In most cases, ML applications need decrypted data
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FIGURE 1. Conceptual representation of IIoT transmission.

to perform ML tasks efficiently. Therefore, the third parties
may have unacceptable access rights during the data process-
ing to the content of IIoT data that contains a portrait of the
production process.

In this paper, we proposed a novel hybrid model to ensure
the privacy of IIoT data for both direct and hidden sen-
sitive features while preserving the accuracy of the target
ML approach. Our method is based on the hybrid usage
of Generative Adversarial Networks (GAN) and Differential
Privacy (DP). The DP was introduced by Dwork to sustain
privacy preservation with random noise and parameters [16].
Hitaj et al. [17] mentioned privacy violation cases with DP.
It is insufficient to preserve privacy in shared learning against
active adversaries [18]. Liu et al. [19] showed the DP inef-
fectiveness in data having solid correlations, such as social,
medical, or mobile data. We know those explanations do not
violate the DP since the DP can be parameterized. The GAN
is an adversarial method that generates new data by learning
the probability distribution from an original data set [20].
Liu et al. used a GAN variant to generate a synthetic copy
of the sensitive data to protect its privacy [21]. We improved
ourmodel’s privacy preservation abilities by combiningGAN
and DP methods. It is a new hybrid privacy-preserving model
to maintain privacy-aware edge-based ML systems. We aim
to sustain IIoT data privacy with minimal accuracy loss with-
out adding high additional computational costs to the overall
data processing scheme. We selected Linear Regression (LR)
as our target ML approach for its simplicity and vast usability
opportunities in real-world industrial applications. We also
employed well-known privacy assessment metrics from the
literature to measure the efficiency of the proposed technique.
We used four data sets (wind turbine, steam production,
energy efficiency, synchronous motors) in our experiments.
The mentioned data are collected from several Supervisory
Control and Data Acquisition (SCADA) systems. They are
publicly available on a repository of community-published
web sources except for the private steam production data set
obtained from a food and confectionerymanufacturer.We use
the steam production data set to demonstrate the efficiency of
the proposed method in a realistic environment. The details
of the data sets and involved LR applications are given in
detail in Section IV.

The main contributions of this study can be summarized as
follows:

1) A novel hybrid privacy protection mechanism based on
GAN and DP is developed.

2) The numerical experiments show that the proposed
method preserves the privacy of the data while keeping
the LR algorithms stable in terms of the R-Squared
accuracy metric.

3) The model also ensures privacy protection for hidden
sensitive data. In this way, the method prevents the pro-
duction of hidden sensitive data from the sub-feature
sets.

4) The efficiency of the method is tested on four dif-
ferent IIoT SCADA data sets: a) wind turbine (pub-
licly available [22]), b) steam production belongs to a
confectionery producer, c) energy efficiency (publicly
available [23]), d) synchronous motors (publicly avail-
able [24]).

The remaining of this paper is organized as follows. The
second section presents an overview of the literature on data
privacy preservation, including GAN and DP implementa-
tions with IoT data protection approaches. The third section
discussed the proposed methodology and its mathematical
background. Furthermore, the privacy metrics used to assess
the model’s efficiency are defined in this section. Section IV
describes the four data sets involved in the study, and the
numerical results obtained from the proposed model are eval-
uated. In the last section, we assess the overall benefits of the
proposed model and discuss our future research directions.

II. RELATED WORK
Data privacy concerns for IoT devices have dramatically
increased in recent years, in parallel with the importance
of data security. The IoT data protection literature mainly
focuses on infrastructure and sensor device security. Tahsien
et al. grouped the possible attack types related to IoT [5].
They mentioned passive attacks as attackers collect victims’
data without permission. They called privacy leakage, sharing
private IoT data with others without data owners’ awareness.

The cloud is mainly preferred for IoT solutions for data
storing and ML operations [29]. Stout et al. prepared a sur-
vey about IoT security. They mentioned IoT devices’ large-
scale data mining security risks in their interactions with
the cloud [30]. Although there are a lot of research and
proposals for protecting the stored IoT data in the cloud,
their majority focus techniques on encryption of the data in
the cloud and secure connection between IoT sensors and
cloud storage [4], [12], [29], [31]. The data in the cloud
need to be decrypted for ML operations. IoT data own-
ers prefer to sign Non-Disclosure Agreements (NDA) with
cloud providers for legal prevention. There is a high privacy
risk. Shokri et al. showed empirically that machine-learning-
as-a-service platforms could lead to data leakage in their
training data sets [32]. Jeong et al. proposed sending par-
tially processed data to the cloud instead of raw IoT data.
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They suggested using DL operation to ensure irreversibil-
ity [10]. Their research is one of the different approaches to
IoT-Cloud Data security. It is based on partially processed
neural network (NN) computations’ irreversibility. They also
mentioned homomorphic encryption’s inconveniences.

Hitaj et al. showed that GAN usage could break DL
methods, and privacy can be disclosed [17]. Another
research to prevent security is the distributed/federated learn-
ing approach. Zeng et al. presented a framework for federated
learning to ensure IoT data privacy and security [33]. Qi and
Wei discussed that the method is not convenient for industrial
IoT platforms since the data are generated at a high rate,
and collecting data among clusters may create a waiting
queue [12].

In the literature, several approaches exist for using
encrypted data in the ML operations, such as homomorphic
encryption [8] and cryptographic techniques [9]. Comparing
them with standard ML techniques that process decrypted
data can be very costly in computation. The homomorphic
approach aims to keep the data encrypted and perform ML
prediction operations on encrypted data using Deep Learning
(DL) methods. Although the technique enables ML opera-
tion on the encrypted data set, it still needs decrypted data
to train the pattern [8], [10]. The cryptographic techniques
can be considered a secure multiparty computation. They
use DL methods to perform distributed/federated learning.
The construction and employment of a distributed computing
environment may be too costly for an industrial production
environment [11]. Sensors generate records at high speed
and need to be processed fast [12]. DL models do not have
strong explainability due to their black-box structure, which
is essential for industrial data analysis [13]. Moreover, even
in a secure cloud system, various recent hardware-centric-
cyber-attack types are based on exploiting cache-based side
channels such as Meltdown and Spectre. These attack types
focus on extracting sensitive information from shared com-
putational resources [14].

Besides all these potential risks regarding the IIoT data, the
data may contain direct or hidden sensitive data. It is the case
when some feature subset selected from the data allows the
production of a set of sensitive data with a proper ML model.
Malekzadeh et al. mentioned those possible threats against
privacy when raw sensor data are shared with cloud-assisted
applications [15]. Although their discussion is on personal
wearable or portable devices, similar threats exist for indus-
trial systems. For instance, collected raw material consump-
tion IIoT data may disclose the data owner’s production
cost with profit margins and expose related product recipes.
The IIoT data can also display the production area structure
with possible production bottlenecks desirable for competi-
tors, attackers, and potential investors. All these concerns
prevent companies from sharing their IIoT data with third
parties.

To make more clarification, we prepared this section in the
subsections.

A. DP IMPLEMENTATIONS WITH IoT DATA PROTECTION
APPROACH
The DP is privacy protection by injecting some random noise.
In 2006, Dwork et al. proposed a complete approach for
DP [16]. It is different from a Data Anonymization (DA)
technique. There is new research onDA, such as [26]. TheDA
generally removes individual names/identities from the data
sets, creating primary vulnerabilities against linkage attacks.
A linkage attack can be considered a threat. It is possible to
combine the pieces of apparently anonymous data from sev-
eral different sources to reveal the real identities of individu-
als. In 1997, Sweeney showed that the remaining data after an
anonymization operation could be sufficiently disclosed by a
linkage attack [27]. As shown in a related study, it is possible
to identify 87% of all Americans with only three pieces of
information: zip code, birthday, and gender. In 2008, It was
proven that it is possible to identify people from the Netflix
anonymized data published in 2006, with publicly available
user data of IMDb(International Movie Database) [28].

Husnoo et al. listed privacy preservation in IoT-enabled
systems in a survey in 2021 [25]. They mentioned the appli-
cation and implementation of DP in IoT infrastructures.
Jiang et al. [51] showed DP implementation alternatives for
IIoT in a survey of 2021. In that study, DP implementations
were summarized into seven groups: IoT-related industrial
logistics, IoT of smart cities, IoT in bioengineering, IoT
of autonomous vehicles, IoT of intelligent manufacturing,
blockchain in the industrial IoT, and social network in the
industrial IoT. Although each of those groups is another
subject for a detailed study, we can clearly say that data
protection needs have become a crucial topic, and the DP
is one of the attractive approaches. The DP is still in the
investigation stage for IIoT topics, especially in lowering
latency to enhance efficiency [51], [52]. The following con-
cerns related to the DP for IoT applications include inte-
gration complexity of business and industry, big data, real-
time conditions, privacy optimization, and development of
industrial applications [51]. Yang et al. [53] researched the
implementation of DP in the IoT to confirm data utility.
Liang et al. [54] suggested an edge computing-based DL
model, which can relocate DL between cloud servers and
edge solutions. Xu et al. [41] presented the GANobfusca-
tor about information leakage using GAN based on DP in
IoT systems. The IoT environment contains some sensitive
data, and some data owners are unwilling to share the data
to the cloud for proper purposes. The DP application load
balancing over nodes in edge training is an open issue [51].
Feng et al. [55] presented an edge computing solution to pre-
serve privacy. Usman et al. [56] depicted RaSEC as an intel-
ligent framework. The DP algorithm in real-time conditions
is a problem for IIoT. It requires fast computing and trans-
mission. Langarica et al. [57] investigated fault identifica-
tion in industrial motors with fast computing IIoT. One of
the main problems of IIoT is preserving cloud data privacy.
Hu et al. [58] mentioned the fog computing framework. Sim-
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ilarly, there are alternative studies [55], [59]. Our approach as
GAN and DP presents a new approach to this problem.

B. GAN IMPLEMENTATIONS WITH IoT DATA PROTECTION
APPROACH
In 2014, Goodfellow et al. designed the GAN as an adversar-
ial process [20]. It is based on simultaneously training models
G and D. G is a generative model that tries to catch the data
distribution. D is a discriminative model that simultaneously
attempts to guess the probability that a sample came from
the training data rather than G. Some research uses GAN for
privacy protection by creating a synthetic copy of the original
data [34], [35], [36], [37].

Besides the GAN algorithm, several alternative ways exist
to make synthetic data statistically. Ping et al. showed a
Bayesian correlation among features in the data synthe-
sizer [38]. The primary advantage of using GAN instead
of other statistical models is the GAN’s effectiveness in
approximating the actual distribution. Xu and Veeramacha-
neni showed that GAN could generate high-quality synthetic
data to benefit data science [39]. Xu et al. in 2019 introduced
the synthetic conditional tabular GAN (CTGAN) as tabular
data generation. CTGAN could learn better distributions than
Bayesian solutions [40].

We can not see many samples of GAN usage for data
protection in IoT. Huang et al. [60] mentioned in their
study to use of the GAN for IoT data protection in med-
ical data. The authors confirmed that a few studies exist
about privacy-preserving in industrial IoT. They used Gener-
ative Adversarial Imitation Learning (GAIL) as an alternative
GAN method with backward reinforcement learning. Shahid
et al. [61] presented a method with GAN for IoT Network
Traffic Generation. They used GAN for categorical data gen-
eration and combined it with a WGAN autoencoder.

C. GAN AND DP HYBRID IMPLEMENTATIONS
There are some hybrid approaches for privacy preservation
based on GAN and DP. However, to our knowledge, there
is no such study on IoT-enabled systems [25]. For example,
Xu et al. named GANobfuscator, using GAN and DP to
preserve the privacy of semantic-rich data (e.g., image, text,
audio, video) [41]. Liu et al. proposed a model with DP
and GAN to protect sensitive data such as patient medical
records [21]. Studies about hidden sensitive data mainly exist
in data mining rule associations. Cheng et al. mentioned that
proper mining could disclose confidential data and proposed
a rule-hiding approach [42]. One of the first studies avoiding
association rules uses data sanitization [43]. Jones et al. [35]
proposed a method for protecting clinical medical data by
combining GAN and DP.

III. METHODOLOGY
We propose a novel approach that fits the privacy require-
ments for industrial IoT (IIoT) environments. The proposed
model transforms the raw data obtained from IIoT sensors

into a protected data set before transmitting it to third parties.
We used a hybrid mechanism based on GAN and DP for this
aim. The transformation process is scalable for a medium-
size, affordable computational device that can be a local
server located on the company premise. It needs a preliminary
analysis of the data. This section will briefly introduce the
building blocks of the proposed approach and evaluation
metrics. Then, the algorithm of the proposed methodology
will be depicted.

A. THE GENERATIVE ADVERSARIAL NETWORKS (GAN)
GAN is defined as two neural networks that are working
against each other: Generator(G) and Discriminator(D) [20].
GAN can generate a fake/synthetic data set (XG), and this fake
data set gets the same statistics similar to a given test data
set (XO). GAN trains simultaneously G and D. G generates
a synthetic copy (XG). It uses input value as random noise
z ∼ pz(z) and tries to create fake outputs x ∼ pdata(x) that
have a similar distribution to the given data set, where pz
represents the probability distribution of random noise. At the
same time, D learns how to differentiate real from synthetic
ones. It calculates whether the probability output comes from
the given data set rather than fake G. The GAN trains D to
maximize the probability of assigning the correct label to
training examples and samples from G. Besides, the GAN
also trains G to minimize log(1 − D(G(z))) simultaneously.
The following objective function V represents these two
training procedures:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+Ez∼pz(z)[log(1− D(G(z)))] (1)

where E represents the expected value.
In this paper, we used Conditional Tabular GAN

(CTGAN) [40] approach to creating a synthetic copy of the
original data sets. It is a synthetic data generation method
with GAN for tabular data distribution. It uses mode-specific
normalization, and it processes each column independently.
The basic principle of CTGAN and instead of GAN is that the
GAN works with the image data. We used CTGAN to create
synthetic tabular data.

B. THE DIFFERENTIAL PRIVACY (DP)
Dwork introduced the DP as a privacy preservation tech-
nique using random noise [16]. DP perturbs the data to add
an uncertainty that does not affect the overall probability
distribution of the original data. Since the noise level and
distribution are known, they can be compensated during the
statistical evaluation. The DP defines (ϵ, δ)-differential pri-
vacy where ϵ represents differential privacy, and δ is the
probability of error such as disclosing information. In other
words, δ defines the probability of DP failure. Assume thatA
is a randomized algorithm, N is a domain of all non-negative
integers, including zero, and x and y are any two data sets
such that all x, y ∈ N. The algorithm A: N→ R with range
R satisfies (ϵ, δ)-differential privacy for any subset of outputs
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S ∈ R with the following definition,

Pr [A(x) ∈ S] ≤ exp(ϵ)Pr [A(y) ∈ S]+ δ (2)

where ϵ corresponds to the maximum l1 distance between x
and y, such as

∥∥x − y∥∥1 =∑
x,y∈N | xi − yi | ≤ 1.

The Laplace distribution spreads data over a more exten-
sive range. When it is used in differential privacy, it increases
anonymity [44]. Mainly, the Laplace distribution is used to
add noise centered at 0 with the parameter
b = 1

ϵ
: Lap(x | b) = 1

2bexp(−
|x|
b )). The DP can be

defined as a function f :N→ Rwith the Laplace distribution,
as given follows,

Af (N) ≜ f (N)+ Lap(x | b). (3)

To perform the DP approach, in this study, we randomly
added noise obtained from Laplace distribution to only sen-
sitive features determined by the data owner. The Algorithm-
2 shows the proposed model DP approach between 13 and
20 lines. We also test DP (XD), where we add noise to all
columns. The Algorithm-1 shows the DP (XD) approach. The
following subsection briefly introduces the privacy metrics
used in the proposed algorithm to measure its privacy preser-
vation performance.

Algorithm 1 DP(XD)
Require: Original data set: XO ∈ ℜm×n.
Ensure: DP data set: XD.
1: for j = 1 to n do
2: for k = 1 to m do
3: θ = randn(0, 1)
4: if (θ ≥ 0.5) then
5: XD(k, :) = XO(k, :)+ Laplace (ϵ)
6: end if
7: end for
8: end for
9: return XD

C. PRIVACY METRICS
The proposed approach is based on creating perturbed sen-
sitive data from the original data. Therefore, several reliable
metrics are needed to evaluate howmuch the proposed model
differs from the original. We used the following six met-
rics in our tests: a) Mean Square Error (MSE) error-based
metrics [45], b) Normalized Variance (VAR) data similarity
metrics [45], c) Directed Hausdorff (HAUS), a metric space
between two data sets [46], d) Kullback-Leibler Divergence
(KL) information gain or loss metrics [45], [47], e) Procrustes
(PRO) a comparison of the shape of the probability distri-
bution of given two data sets [48], and f) Pearson’s Correla-
tion Coefficient (PCC) information gain or loss metrics [45].
When the perturbed data differs enough from its origin, MSE,
VAR, HAUS, KL, PRO, and PCC metrics produce a value
different from zero. Similarly, when the metrics get zero
value, we can say there is no privacy protection.

We prefer those six metrics due to their measurement
approaches. MSE and HAUS use Euclidean to show differ-
ences and metric distances of data sets, respectively. VAR
uses statistical variance and shows dispersion between two
data sets. PCC shows the linear dependency of data sets. The
KL uses entropy to show statistical distances, and the PRO
shows shape analysis of two data sets. For example, we can
add the same constant value to each item to differentiate a
data set. In this case, MSE, KL, and HAUS metrics show that
the new data set differs from the original. VAR, PCC, and
PRO metrics show no difference. Thus, we can understand
there is a difference, but it may not be enough for privacy
protection. Although it makes a different data set, its original
version can be easily analyzed. The six metrics help us assess
the differences between data sets from a different point of
view. Indeed, each metric defined in this section measures
and compare a different property of the transformed data set
with the original data set. Hence, if all of these metrics behave
in a similar way, one can be sure that the privacy of the data
set is ensured.

1) MEAN SQUARED ERROR (MSE)
The MSE is a well-known statistical metric. We use it as a
privacy metric to measure the Euclidean difference between
the original and test data set features. MSE statistically aims
to minimize the mean of squared errors. It ensures better
privacy when it diverges from zero to higher values.

PMSE =
1
n

∑
x∈X

∥∥x − y∥∥2, (4)

Here, X is the original data set (x ∈ X ), Y is the test data set
(y ∈ Y ), and n corresponds to the number of observations.

2) NORMALIZED VARIANCE (VAR)
VAR measures the distribution difference between the X and
Y [49]. The metric is based on the statistical variance σ 2.
It shows the dispersion between X and Y :

PVAR =
σ 2(X − Y )

σ 2(X )
(5)

VAR as a privacy metric ensures better privacy when it has a
higher variance.

3) DIRECTED HAUSDORFF (HAUS)
HAUS measures the distances of two subsets in metric space.
It measures the similarity according to the corresponding data
set position in metric space [46]. It equals zero when the two
data sets are perfectly matched. If higher than zero, the data
sets can be considered independent and have higher privacy.
Note that higher values mean better privacy protection. The
HAUS can be defined as the maximum set distance to the
nearest point in the other set as follows,

PHAUS = maxx∈X (miny∈Y (d(x, y))). (6)
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Here, x and y are points of sets X and Y orderly. The d(x,
y) denotes any metric between these points, such as the
Euclidean distance between x and y.

4) KULLBACK-LEIBLER DIVERGENCE (KL)
KL is called relative entropy, and it measures statistical dis-
tances between data sets by comparing the data set’s probabil-
ity distributions. AssumeP andQ are probability distributions
of the same probability space S,

PKL = PKL(X ||Y ) =
∑
x,y∈S

P(x) log2(
P(x)
Q(y)

) (7)

where X and Y represent, the original and test data sets,
respectively. The formulation shows that the relative entropy
from Q to P can be considered an indicator of how the distri-
bution of Y is far from the distribution of X . Thus, it needs to
be different from zero for better privacy protection.

5) PROCRUSTES(PRO)
In statistics, PRO analysis is a form of statistical shape
analysis used to analyze the distribution of a set of shapes.
It measures the similarity according to other’s data set distri-
bution shapes. Assume that X and Y are (p x k) dimensional
matrices. PRO analysis is transforming a given matrix X into
Y such that an orthogonal transformation matrix T minimizes
the sum of squares of the residual matrix [48].

PPRO = tr((XT − Y )T (XT − Y )) (8)

However, it can also be employed to measure privacy in
terms of the variance of the residual matrix. Since the trace
calculation given in (8) corresponds to that value, if it is equal
to zero, we can conclude that X and Y are identical after the T
transformation, and there is no privacy protection. So, higher
values for this metric mean higher privacy preservation.

6) PEARSON’s CORRELATION COEFFICIENT (PCC)
PCC calculates linear dependence among two variables. It can
calculate linear dependence between two data sets as a pri-
vacy metric. The PCC is a privacy metric that shows the
correlation between the original data set X and the test data
set Y [45]:

PPCC =

∣∣∣∣| cov(X ,Y )
σXσY

| −1

∣∣∣∣ (9)

Here cov means covariance, and σ means standard devi-
ation. When there is a linear dependency between two data
sets, the PCC gives the values one or minus one. To stan-
dardize the output value of PCC, we added absolute value to
the original formula, subtracted one, and retook the absolute
value. In that way, the PCC shows zero when there is no pri-
vacy protection and one, meaning perfect privacy protection.

D. PROPOSED APPROACH
Let XO ∈ ℜm×n represent the IIoT data collected from a

manufacturing environment, wherem and n represent sample

FIGURE 2. Illustration of the proposed approach with histograms. Step-1
corresponds the line-2, Step-2 defines the lines between 3 and 9 lines,
and Step-3 represents the lines from 10 to 17 in the Algorithm 2. (Here nf
means the number of features, and ns represents the number of sensitive
features.)

Algorithm 2 Hybrid Privacy-Preserving Algorithm

Require: Original data set: XO ∈ ℜm×n,
The subset of selected private features: S8,
The number of sensitive features in original data set: ns,

Ensure: Hybrid model data set: XHGD,
CTGAN data set: XG.

1: XH ← XO
2: XG← CTGAN(XO)
3: for i = 1 to n do
4: for j = 1 to ns do
5: if (i = j) then
6: XHG(:, i)← XG(:, j)
7: end if
8: end for
9: end for
10: for j = 1 to ns do
11: for k = 1 to m do
12: θ = randn(0, 1)
13: if (θ ≥ 0.5) then
14: XHGD(k, :) = XHG(k, :)+ Laplace (ϵ)
15: end if
16: end for
17: end for
18: return XHGD

and feature size, respectively. The primary motivation of this
study is to ensure the privacy protection of (XO) without com-
promising the accuracy (i.e., R-Squared score in this paper)
of the ML applications. The primary implementation-related
assumptions for the proposedmethod can be listed as follows:
a) The data owner should explicitly determine the sensitivity
of the IIoT data features due to its business, marketplace, and
competitive advantages. For instance, a raw material accessi-
ble over a few vendors can be a competitive advantage, and
its remaining inventory amount becomes sensitive content.
Similarly, any critical production machine maintenance data,
routes in production, and data that can disclose recipes are
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needed to be protected. Since companies have prior knowl-
edge of their competitive advantages, only they can define
the sensitive features and prevent their disclosure. b) The
proposed method transforms the selected features into syn-
thetic and randomly noise-added ones. c) This approach only
ensures privacy protection and is considered a pre-processing
operation on IIoT data. Its implementation can be adapted
to fit into any cost-effective computational server located in
the business environment. The IIoT data are considered high-
rate; in most cases, it needs to be processed in real-time or
nearly real-time. The proposed approach can be realized in a
pipeline with a data collection procedure. In that way, while
the algorithm produces the privacy-preserved copy of the
current data, edge servers can continue collecting data from
the production line’s sensors. d) The privacy-preserved data
will be transmitted to a cloud environment or third parties to
perform ML analysis.

The proposed model is illustrated in Figure 2, and its algo-
rithm is given in Algorithm 2. The first step in the proposed
method is to create a synthetic copy (XG) of the original data
(XO). We run the GAN operation for the whole data set to
protect the probability densities of the original data set.

Our primary motivation for using GAN is the ability of
GAN to learn the distribution of the original data set. The
GAN approximates the data distribution, whereas it creates
a different content. Although GAN can help protect data
privacy with this property, our experiments show that the
CTGAN (XG) application may not preserve the accuracy.
Therefore it is required to design a hybrid approach that
takes only the valuable part of the GAN. We perform the
GAN operation with the CTGAN function, a GAN model
for tabular data distribution, and can learn better distributions
than Bayesian networks [40].

In the second step, the selected sensitive features from the
original data set are replaced with synthetic ones. Then, the
new data set (XHG) is formed by taking the sensitive features
from the synthetic data set (XG) and the remaining ones from
the original data set (XO). At this step, the (XHG) is the data set
without a random noise model. We investigated whether this
data (XHG) alone can be enough to accomplish our targets.
We added it to our test list, where the experimental results
section shows the results. Then DP algorithm is implemented
to the marked sensitive features to add randomized pertur-
bation to these features. The resulting data set is shown by
(XHGD) in Algorithm 2. Thus, we not only reconstruct the
sensitive columns synthetically but also add noise to them
randomly with the help of the DP approach.

Another problem we want to emphasize is to prevent
deducing sensitive results from a subset of (XO). Our
approach aims to create overall protection for privacy, and
we also consider the hidden sensitive data. Different methods,
such as statistical or ML, can be done by separating sensitive
data from a subset of (XO). For instance, it is possible to train
an LRmodel with selected inputs from the subset of IIoT data
and get predictions for different purposes by adversarial LR
operations. We performed tests for hidden sensitive data and

assessed the proposedmodel’s performance in the experimen-
tal results section. The results in the related section show that
the proposed method ensures overall privacy protection of the
IIoT data. With the application of our proposed approach as a
preprocessor, the IIoT data set or its subsets can be used only
for the purpose it is prepared. It means they cannot be used
for different adversarial AI operations to extract sensitive
information regarding companies.

The implementation of the proposed approach is consid-
ered (ns = 2) in the illustration given in Figure 2. The original
data set (XO) is shown in blue color. The first step is to create a
synthetic copy (XG) of (XO) with the CTGAN function. (XG)
is shown in red color. There are two sensitive columns (ns =
2) in the example in Figure 2. In step 2, the sensitive columns
in the (XO) are replaced by (XG). The DP function runs over
the sensitive marked columns as the final step. These steps
are listed in Algorithm 2.

The complexity of Algorithm 2 is O(ns(n + m)). Since
the ns ≪ n and ns ≪ m in general, one can consider
the complexity of the algorithm depends on the max(m, n).
However, the pre-processing step as the CTGAN implemen-
tation covers two deep neural networks, (G) and (D) [20].
Consequently, this operation has O(m3) complexity. How-
ever, since the proposed algorithm can be implemented in a
pipeline structure within the IIoT data collection procedure,
the CTGAN application in the proposed approach requires
few data samples. The duration of data collection and the time
for performing the CTGAN operation will be overlapped.

IV. EXPERIMENTAL RESULTS
A. ENVIRONMENT
As a platform, we used a windows 10 operating system,
the Anaconda − Jupyter notebook. The computer we tested
has an Intel Core i7 2.7 GHz CPU, 16-GB RAM, and an
integrated graphics card that is Intel HD graphics 620 and
uses the system’s memory. In the environment where we
completed all the tests, we used the CTGAN function from
the CTGANSynthesizer library. The DP calculations were
managed by the NumPy library’s random and Laplace func-
tions. We mainly aimed to see standard IoT prediction results
in tested models. We preferred to use LR, and we called
it from Sklearn.linearmodel library. We used the Matplotlib
library in our graphics. During experiments of the standard
IoT tests, we tried to predict the class features, and then we
measured and compared the tested models’ accuracies and
privacymetrics. Herewe testedwhether the proposedmodel’s
accuracy and privacy protection are higher than other models.
When we experimented with the hidden sensitive data case,
firstly, we changed the training model of the data set, then
called linear regression, and tried to predict sensitive features.
We testedwhether the proposedmodel can protect predictions
for sensitive components.

We implement Algorithm 2 to four SCADA data sets
(wind turbine, steam production, energy efficiency, syn-
chronous motors). In the experiments, CTGAN was run with
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TABLE 1. Test results: wind turbine and steam production.

TABLE 2. Test results: energy efficiency and synchronous motors.

100 epochs, and the parameter for the DPwas set as ϵ = 0.01.
We apply traditional LR with a 0.2 ratio for splitting the data
into train and test parts to solve the regression problem. The
well-known R-Squared metric is used to evaluate the regres-
sion model accuracy. We measured the privacy protection
efficiency with the six metrics explained in Section III (PMSE ,
PVAR, PHAUS , PKL , PPRO, and PPCC ). The experimental setup
consists of the following test scenarios. There is an additional
case study to show the efficiency of the proposed algorithm
on mentioned data which also has hidden sensitive features:
i) Original data set (XO), ii) CTGAN approach (XG), iii)
DP approach (XD), iv) Proposed hybrid approach (XHGD)
with ns = 1 . . . 4, and finally v) Perturbed data with GAN
operation (XHG) with ns = 1 . . . 4. It is possible to extend the
selection of sensitive features by setting the ns parameter. The
code used in this paper is publicly available [50].

We compared the proposedmethod with the existing works
using CTGAN synthetic copy [40] and DP (Algorithm-1).
We compared R-squared as accuracy and privacy preserva-
tion. The details of the results over four data sets are shown
in Tables 1 and 2. Here, as an overview, as can be seen in
Figures 4 and 3, in comparison of R-squared for the LR
method, the CTGAN (XG) showed the lowest performance,
and DP (XD) showed less than 50 % performance in all four

data sets. The proposed method (XHGD) applications from
ns = 1 . . . 4 showed better performance close to the accuracy
values in the original data set (XO). In terms of privacy
preservation, CTGAN performed the best, and the proposed
methods served better.

B. PRIVACY PRESERVATION AND HIGHER ACCURACY
The first data set is the wind turbine data, where m =

49.000 and n = 66 columns were collected between 2014 and
2015. The data contains Wind Energy Converter (WEC) and
various temperature measurements from inverter cabinets,
front and rear bearing, rotor, and blades. In the experiments,
we considered the WEC as the dependent variable. We con-
sidered 8.655WEC-related observations until July 2014 from
the whole data with the following features: (F0-WEC average
wind speed), (F1-WEC average rotation), (F2-WEC average
power), (F3-WEC average reactive power), (F4-WEC aver-
age available power from wind), (F5-WEC operating hours),
and (F6-WEC production). We set up an LR model to pre-
dict the (F6-WEC production). The test results are shown in
Table 1.
We usedAlgorithm 2 to get the proposedmodels. As shown

in Table 1, the accuracy of the LR obtained from the data set
(XHGD) is comparable with the original data set (in the worst
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FIGURE 3. Four data sets (Wind Turbine, Steam Production, Energy Efficiency, Synchronous Motors) and tested models (Original XO, Proposed Model
XHGD (with ns=1 to ns=4), DP (XD), CTGAN (XG)) (Values are normalized).

case, with ns=4 R-Squared score, it is 0.9681). The privacy
preservation capabilities of the method are highly acceptable
in terms of the privacy metrics we are concerned about. The
original data set (XO) has the max accuracy value and no pri-
vacy protection. The proposed model (XHGD)(ns = 4) has a
closer accuracy value to the (XO) and has a much better PMSE
value than others. One can conclude that the proposed model
sustains high LR performance. It provides better privacy
protection than the other competitive approaches, such as
CTGAN (XG) and DP (XD). The proposed hybrid approach’s
benefit can be observed again in Table 1. As stated before,
the most crucial property of a proper privacy preservation
approach for an IIoT system should be able to preserve the
model accuracy while ensuring privacy protection.

On the other hand, modified data sets (XG) and (XD) have
limited accuracy preservation abilities for the given data set.
As defined in Section III, (XHG) is the GAN-applied data set
without a random noise model. We tested whether (XHG) was
enough to accomplish our targets. We completed tests (XHG)
with various ns values. As shown in Table 1, the R-Squared
scores in (XHG) are higher as much as the proposed model
(XHGD), where they both are close to 0.9685 for (ns = 1 . . . 3)
cases. On the other hand, (XHGD) offers higher privacy pro-
tection. For example the privacymetrics (PMSE , PVAR, PHAUS ,

PKL , PPRO, PPCC ) for the case (XHGD) (ns = 3) are (0.0886,
1.6186, 0.4872, 0.1071, 0.4668, 0.4257) more better than
(XHG) (ns = 3) which have (0.0557, 1.2871, 0.3528, 0.0914,
0.4042, 0.4243), respectively. Thus, one can conclude that
applying the DP approach along with the GAN protection
(XHG) will increase the privacy protection of the proposed
approach (XHGD) for this data set. We also observed similar
behaviors for the other data sets we used in our experiments.

The second data set is from a food and confectionery
manufacturer’s steam production unit, consisting of 2.500
observations and 11 columns. The data set contains the
following features: (F0-Natural gas amount), (F1-Natural
gas pressure), (F2-Steam pressure), (F3-Produced hot water
amount), (F4-Tank amount a raw material), (F5-Steam tem-
perature), (F6-Filling water temperature), (F7-Flue temper-
ature), (F8-Inlet temperature), (F9-Outlet temperature), and
(F10-Steam recovery). In our experiments, we considered
steam production as our dependent variable. We set up the
experimental model on the LR prediction of F10. We applied
the same approach in the wind turbine test structure. Steam
production test scores are shown in Table 1.

Let us explain how we set the sensitive features for
this data set. The amount of natural gas usage(F0), gas
pressure(F1), and steam pressure(F2) are related directly
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FIGURE 4. Relationship between privacy and accuracy. The X-axis shows the average of the six privacy metrics per
data set, where zero means weak privacy. The Y-axis shows the LR accuracy in terms of R-Squared values.

to production cost, and they can give precise estimations
about the manufacturer’s profit margins. Moreover, the tank
amount(F4) is related to a critical raw material. Its usage
pattern can disclose sensitive information about related prod-
uct recipes. Therefore, these features are selected as sensitive
ones that can be helpful for third parties to predict production
costs and leak the know-how about products. We prepared
the test structure as the number of sensitive features and
selected columns such that (ns = 1):(F0); (ns = 2):(F0) and
(F4); (ns = 3):(F0), (F4), and (F1); (ns = 4):(F0), (F4),
(F1), and (F2).
Although the LR performances are very close for differ-

ent cases, there are considerable differences in the observed
privacy metrics. The test on the steam production data set
supports the results in the wind turbine that adding random
noise to (XHG) improved privacy and protected LR accuracy
performance.

Figure 3 shows the change in the R-Squared scores and
the privacy metrics, including the steam production data set.
It can be seen that the CTGAN (XG) and DP (XD) obtained
better privacy metrics, whereas they degraded the R-Squared
score.We can clearly say that the (XG) and (XD) are successful
only for privacy protection. However, it is not helpful in terms
of the production of LR predictions. Hence, we can claim
that (XG) and (XD) approaches are not good candidates for
IIoT data privacy protection. The prediction and the privacy
metrics support us that within (XHGD), we could protect the
sensitive features while ensuring the minimum losses on the
LR accuracy.

As the last discussion, we want to depict the results
arising from the analysis of the behavior of the proposed
model for two additional public data sets: energy effi-
ciency and synchronous motors. The former data set shows
energy analysis with 768 observations and 9 features such as
(F0-Relative compactness), (F1-Surface area), (F2-Wall
area), (F3-Roof area), (F4-Overall height), (F5-Orientation),
(F6-Glazing area), (F7- Glazing area distribution), (F8-
Cooling load) and one output variable (F9-Heating load).
We built an LR model to predict (F9). The results of these
data sets are given in Table 2. The last data set represents
the real-time machine data operating environment. It has
557 rows and 5 columns: (F0-Load current), (F1-Power fac-
tor), (F2-Power factor error), (F3-Changing of excitation cur-
rent of a synchronous machine), (F4-Excitation current of a
synchronous machine). We predicted the (F4) feature with an
LR function in our test environment. Table 2 shows the related
results.

The most prominent observation from this last experi-
mental setup is the unusual behavior for the case (XHGD)
with (ns = 4) on synchronous motors SCADA data. As one
can see from Table 2, the R-Squared score is (0.0059),
which is worse than (XD):(0.4044). Additionally, cases from
(XHGD) with (ns = 1) to (ns = 3) show the highest R-Squared
score is (1.0000). The main reason for this deflection is
synchronous motors data’s highly correlated features. Its
correlations among features show that there are depen-
dent features. (F1) correlation coefficients to (F2), (F3),
and (F4) are (−1.0000), (−0.8610), and (−0.8610) orderly.
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Again (F3) has higher correlations, such as (F1):(−0.8610),
(F2):(0.8610), and (F4):(1.0000). Indeed, the high correlation
between the sensitive and non-sensitive features canmake our
approach fail. A possible solution for this problem is to apply
a proper dimensionality reduction method before using the
proposed technique.

Figure 3 gives the overall view of the proposed approach
for all test cases. The figure shows the changes in accuracy
values R-Squared and privacy metrics for all considered
cases together. The first plot in Figure 3 shows R-Squared
values for all tested data sets. It can be seen here the tested
models (XO), (XHGD) with (ns = 1,..,4), (XG), and (XD). The
remaining plots show each privacy metric performance for
all tested data sets with tested models. Please note that the
(XG) accuracy performance is deficient, whereas its privacy
metrics are the max in almost all cases. The proposed model
(XHGD) (ns = 4) shows better accuracy and privacy metrics
performance.

Figure 4 represents the overall summary of the experi-
mental results regarding the relationship between privacy and
accuracy. In the figure, X and Y axes represent the privacy
and accuracy values, respectively. In both axes, while zero
depicts low accuracy and weak privacy protection, a hun-
dred means max accuracy and maximum privacy protection.
As shown in the figure, the results for the proposed model
achieve both higher accuracy and privacy protection values
simultaneously.

One can consider whywe did not checkDP only in selected
features as we did for (XHG). Firstly, we need to explain the
reason for testing (XHG). The structure of the proposed model
is based on the transfer of sensitive features from (XG). Since
(XHG) is a milestone in our algorithm, we preferred to see its
performance without random noise addition. Secondly, in all
the tests with the four data sets, we saw that the CTGAN (XG)
could catch better privacy protection than other methods,
including our proposed model. In contrast, it could not be
successful in the LR operations. Thus, picking only sensitive
features from the (XG) can gain us higher LR performance.
On the other hand, the DP (XD) could catch average or worse
performance in our tests, both in privacy metrics and LR
performance. Therefore we did not repeat tests with picked
features from (XD), and we did not change our proposed
model based on DP-selected features. The DP supported our
model after the GAN operation.

C. HIDDEN SENSITIVE DATA PROTECTION
We have also tested the behavior of the proposed algorithm
when the data contains hidden sensitive features. Suppose a
subset of the data allows deducing sensitive information via a
proper ML model. In that case, this data is considered hidden
sensitive data. An attacker who has a whole data set without
any privacy preservation can apply some ML algorithms
to produce some predictions about a sensitive feature. For
instance, even though the steam production data set’s purpose
is to predict Y = (F10-Steam recovery), one can change the
input/output relations of the data set and produce predictions

TABLE 3. Case study test results.

on some sensitive contents such as (F0-Natural gas amount)
or (F4-Tank amount a raw material). One possible usage
of the proposed privacy protection mechanism is protecting
sensitive data from malicious prediction opportunities. Our
experiments also show that the proposed model works effi-
ciently for the above circumstances.

The purpose of the last experimental setup is to present the
proposed approach’s abilities to preserve the hidden sensitive
data on a switched data structure. One crucial indicator of
this preservation can be the low prediction accuracy values
obtained from the switched ML models. One can say that
LR models for predicting hidden sensitive data are not suc-
cessful if the proposedmethod has better privacy preservation
capabilities, such as proposed in this study. To demonstrate it,
we have changed the input/output structures of the four data
sets as the following:

1) The wind turbine regular LR model was built to predict
the (F6-WEC production). We changed the LR struc-
ture to get predictions about (F2-WEC average power).
So, we used the (F0), (F1), (F3), (F4), (F5), and (F6)
features as input features to predict (F2).

2) The steam production regular LR model was built to
predict the (F10-Steam recovery). We changed the LR
structure to predict (F0-Natural gas amount). We used
the following input features (F1), (F2), (F3), (F4), (F5),
(F6), (F7), (F8), (F9), and (F10) to predict (F0).

3) The energy efficiency regular LR was for (F9- Heating
load) prediction. We converted it to get (F0-Relative
compactness) prediction.

4) The synchronous motors’ regular LR structure was
getting a prediction (F4-Excitation current of a syn-
chronous machine). We restructured the model to get
a prediction for (F0-Load current).

Table 3 shows the algorithm’s accuracy for hidden sensitive
data. The results for the listed data sets represent that if
one has complete data without any privacy protection, the
hidden data can easily be predicted for malicious purposes.
Wind turbine, steam production, energy efficiency, and syn-
chronous motors (XO) model R-Squared scores are (0.9260),
(0.6527), (0.9912), and (0.6284), respectively. The proposed
model (XHGD) with all (ns) values show the lowest R-Squared
scores for this scenario. These experiments reveal a potential
privacy risk related to the hidden sensitive data in a data set.
The proposed model (XHGD) produced a limited prediction
performance for the hidden sensitive data. The data sets under
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the proposed privacy preservation scheme could not be used
for further LR analysis.

V. CONCLUSION
This paper introduces a novel hybrid approach that preserves
IIoT data privacy without compromising the ML applica-
tions’ accuracy. The experiments suggest that the proposed
method has an acceptable performance on privacy preser-
vation and LR accuracy for the IIoT data sets. Hence, the
proposed approach can be used as a pre-processing scheme
to preserve the critical industrial data with an acceptable
computational cost. Additionally, the proposed model has a
warrantable performance for protecting the hidden sensitive
data embedded in IIoT data. We conducted experiments on
four different data sets (Three publicly available to ensure
the reproducibility of the study) to demonstrate the proposed
model’s success. The boost of IIoT applications will trigger
more privacy preservation needs in the business. The pro-
posed model can motivate large-scale companies to share
their data with third parties with lesser concerns about privacy
context. The model can operate in parallel with the data
collection of an IIoT system at such a company. It provides a
safer data analytics environment for the collected IIoT data
set that can be handled with a higher privacy preservation
mechanism. The proposed model is suitable for applying
it in an efficient pipeline structure between collecting and
transmitting the IIoT data. Our future work will focus on
constructing an efficient pipelinemechanism for the proposed
approach to optimize the algorithm’s time complexities and
latency.
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