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Abstract

In this paper, we consider a wireless powered communication network where multiple users with

RF energy harvesting capabilities communicate to a hybrid energy and information access point (HAP)

in full-duplex mode. Each user has to transmit a certain amount of data with a transmission rate from

a finite set of discrete rate levels, using the energy initially available in its battery and the energy it

can harvest until the end of its transmission. Considering this model, we propose a novel discrete rate

based minimum length scheduling problem to determine the optimal power control, rate adaptation and

transmission schedule subject to data, energy causality and maximum transmit power constraints. The

proposed optimization problem is proven to be NP-hard which requires exponential-time algorithms to

solve for the global optimum. As a solution strategy, first, we demonstrate that the power control and

rate adaptation, and scheduling problems can be solved separately in the optimal solution. For the power

control and rate adaptation problem, we derive the optimal solution based on the proposed minimum

length scheduling slot definition. For the scheduling, we classify the problem based on the distribution

of minimum length scheduling slots of the users over time. For the non-overlapping slots scenario, we

present the optimal scheduling algorithm. For the overlapping scenario, we propose a polynomial-time

heuristic scheduling algorithm.
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Index Terms

Energy harvesting, wireless powered communication networks, full duplex networks, rate adaptation,

power control, scheduling.

I. Introduction

Due to easy maintenance, low installation cost and flexibility, time critical wireless sensor

networks are being rapidly adopted in cyber-physical and emergency alert systems [1], [2]. To

meet the traffic demand of such battery limited networks, minimum length scheduling is very

important but remained under cover except few studies [3], [4]. The recent advances in the energy

harvesting technologies have offered a great potential to overcome the battery replacement and

to provide a perpetual energy. Natural resources such as sun, wind and vibration are the possible

sources of energy harvesting [5], [6] but their randomness and environmental dependence is the

bottleneck for their implementation in such networks. Similarly, inductive or magnetic resonant

coupling technologies are also infeasible for such networks due to large size, calibration issues

and short energy transfer range. Radio Frequency (RF) based energy harvesting technology is

capable to master these hurdles with its high range, small form factor and full control on energy

transfer [7]. In RF energy harvesting, radio signals with frequency range 3 kHz-300 GHz are

used as a medium to carry energy in the form of electromagnetic radiation.

Basically, there are two operational models for RF energy harvesting known as simultaneous

wireless information and power transfer (SWIPT) and wireless powered communication networks

(WPCN). In SWIPT, the same RF signal is used for both wireless information transfer and

wireless power transfer. For a single user SWIPT, the trade-off between information transmission

rate and energy transfer efficiency have been studied for additive white Gaussian noise channel

[8], flat fading channel [9], and a non linear energy harvesting model [10]. The multi-user

SWIPT networks are studied, to minimize the base station transmit power [11] or to maximize

the energy transfer under a minimum signal to noise ratio (SNR) constraint [12], [13]. The

data buffer constrained throughput maximization is studied in [14]. The scheduling mechanism

in these SWIPT based models is missing except [15] where the scheduling is considered in

a different context i.e. a downlink multi-user scheduling for time slotted system is proposed



3

in which the HAP have to transmit data to all the users in the downlink and the information

recipient user is determined for each time slot. The scheduling algorithm is proposed for the

selection of this single information recipient user in each time slot.

In WPCN, “Harvest-then-transmit” is the introductory protocol, where all the users first harvest

the RF energy broadcost by the hybrid access point (HAP) in the downlink and then transmit their

information to the HAP in the uplink by using time division multiple access [16]. The objective

of this study is to maximize the sum throughput by jointly optimizing the time allocation under

a total time constraint. This sum throughput maximization results in an unfair time allocation

among the users by supporting the near users due to their favouring channel conditions and

low distance. For example, the user with maximum SNR can occupy the total time which will

result in a maximum throughput but the users with high path loss will be struggling to get

access to the channel. To overcome this unfair resource allocation some studies have focused on

the alternative objective functions such as maximization of weighted sum rate [17], [18], total

effective throughput maximization [19], minimum throughput maximization [20], and energy

efficiency maximization [21], [22]. In such half duplex systems, all the users have equal energy

harvesting time therefore, the transmission order is not important and scheduling is not required

for such system models. Although, in these studies the HAP is either restricted to transmit

a constant power [12], [16], [20], [23], [24] or its maximum and average transmit power is

constrained by a limit [17], [18], [25], [26], no maximum transmit power constraint for the

users is considered. Furthermore, these studies consider the continuous data rate which is hard

to realize practically. Also, the initial battery level of the users is not considered in these works,

except [21], [27].

Recently, the WPCN has started to incorporate the full duplex technology to achieve high

spectral and energy transfer efficiency by allowing the HAP to transmit energy and receive

information simultaneously in the same frequency band. Self-Interference is the major setback

for such co-time and co-frequency transmissions in which a part of the transmitted signal is

received by itself, thus causing an interference to the received signal. Thanks to the recent

self-interference cancellation (SIC) techniques [28], [29] and their practical implementations

[30], [31], full duplex has become the key transceiving technique for the 5G networks [32].
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The main objective of the full duplex WPCN is to maximize the sum throughput by assuming

either only the HAP is operating in full duplex mode [25], [33], [34] or the HAP and users

both are operating in the full duplex mode [35], [36] under the perfect SIC environment. The

studies in [25], [34], [35] consider the residual self interference proportional to the HAP transmit

power. Only [33] considers the schedule length minimization given the traffic demand of the

users. In full duplex systems, since the users are capable to harvest the energy during their

own and other users data transmission time, so all the users have different energy harvesting

time. This uneven energy harvesting time necessitates an efficient user ordering to minimize

the scheduling length. However, the foregoing studies assume the pre-determined transmission

order without incorporating any scheduling algorithm for an impracticable continuous data rate

assumption. Furthermore, none of the mentioned studies have considered maximum user transmit

power limitation, while assuming a constant HAP power [33], [34] or a maximum HAP power

constraint [25], [35]. Moreover, these studies have assumed that all the harvested power should

be used in the same transmission frame without considering the initial battery level of the users.

The goal of this paper is to determine optimal rate adaptation, power control and time

allocation, and transmission order with the objective to minimize the schedule length for a

realistic in-band full-duplex WPCN model. The original contributions of this paper are listed

below:

• We propose a new discrete rate WPCN optimization framework for a realistically-modeled

in-band full-duplex energy harvesting network, employing the energy causality constraint

and maximum user transmit power constraint which considers the initial battery levels and

the energy storage capability of the users based on the discrete-rate transmission model.

• We characterize the Discrete Rate Minimum Length Scheduling Problem (DR −MLSP)

to ascertain the optimal rate adaptation, power control, and schedule which minimizes

the transmission completion time of all the users subject to traffic demand, maximum

user transmit power and energy causality constraints based on the proposed discrete rate

WPCN model. We formulate the problem mathematically as a mixed integer non-linear

programming (MINLP) problem and proved that the problem is NP-Hard.

• We formulate the power control and rate adaptation problem for a pre-determined trans-
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mission order. The optimal solution is presented based on the proposed minimum length

scheduling slot definition.

• For the scheduling problem, we define the minimum length scheduling (MLS) slot as the

slot which yields minimum transmission completion time while starting transmission at

any time instant si for each user. We classify the DR −MLSP problem based on the

distribution of the minimum length scheduling slots of users over time into non-overlapping

and overlapping scenarios. For the non-overlapping scenario, we propose optimal scheduling

algorithm. For the overlapping scenario, we propose a polynomial-time heuristic scheduling

algorithm.

• We evaluate the performance of the proposed scheduling schemes for different network

scenarios and parameters including different minimum signal to noise ratio levels of the

users, different HAP transmit powers and different network sizes in comparison to the

optimality and pre-determined order transmission schemes. We illustrate that the proposed

polynomial time heuristic algorithm perform very close to optimal while outperforming the

predetermined schedule.

The rest of the paper is organized as follows. In Section II, we describe the discrete rate

WPCN system model and assumptions used throughout the paper. In Section III, we present

the mathematical formulation of the discrete rate minimum length scheduling problem and the

proof of NP-Hardness for the proposed problem. In Section IV, we present the optimal power

control and rate adaptation problem for a pre-determined transmission order and derive its optimal

solution. In Section V, we investigate the optimal scheduling problem. In Section VI, we evaluate

the performance of the proposed scheduling schemes. Finally, concluding remarks are presented

in Section VII.

II. SystemModel and Assumptions

The system model and assumptions are described as follows:

1) The WPCN architecture consists of a HAP and N users i.e., sensors or machine type

communication devices as shown in Fig. 1. The HAP and all the N users are equipped
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Figure 1: System Model for Wireless Powered Communication Network

with a full-duplex antenna which will be used to transfer the data on the uplink channel,

and to transfer energy on the downlink channel simultaneously.

2) In the proposed architecture, the uplink and downlink channel gains are assumed to be

different. The uplink channel gain from user i to the HAP is denoted by gi and the downlink

channel gain from the HAP to user i is denoted by hi. Additionally, both the channels are

assumed to be block-fadding channels i.e., the channel gains remain unchanged over the

scheduling frame [12], [20], [21], [23], [24], [37]. We also assume that the HAP has perfect

channel state information i.e., the channel gains are perfectly known at the HAP [16]–[18],

[20], [21], [25], [33], [34].

3) The HAP is connected to a fixed power supply, and it will transmit a constant power Ph.

In contrast to the HAP, the users have no other external power supply i.e., they are totally

dependent on the harvested energy. All the users will harvest the energy transmitted by

the HAP and they will store it in a rechargeable battery. The initial battery level of user

i is denoted by Bi which contains the harvested and unused energy during the previous

transmission cycles.

4) Time division multiple access protocol is used as the medium access protocol for the

uplink data transmission from the users to the HAP. The whole time, during which the
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system will remain operational is partitioned into variable length scheduling frames. Each

frame is further divided into variable time slots for user allocation. The HAP transmits

continuous power throughout the scheduling frame. Each user will transmit its uplink data

in the allocated time slot. In addition to stored energy, the energy harvested until the end

of transmission will also be used for the data transmission. The energy harvested after the

transmission will be stored for future usage.

5) We assume a realistic non-linear energy harvesting model based on logistic function [38]–

[40] which performs close to the experimental results proposed in [41]–[43]. In this non-

linear energy harvesting model the energy harvesting rate for user i is given as:

Ci =
Ps[Ψi −Ωi]

1 −Ωi
(1)

Where, Ωi =
1

1 + eAiBi
is a constant to make sure zero-input zero-output response, Ps is

the maximum harvested power during saturation and Ψi is the logistic function related to

user i and is given by:

Ψi =
1

1 + e−Ai(hiPh−B) (2)

Where, A and B are the positive constants related to the non-linear charging rate with

respect to the input power and turn-on threshold respectively. For a given energy harvesting

circuit, the parameters Ps, A and B can be determined by curve fitting.

6) We assume user i has a traffic demand Di bits to be transmitted over the scheduling frame.

7) We use discrete rate transmission model, in which a finite set of rates r = (r1, r2, · · · , rM)

and a finite set of SINR levels γ = (γ1, γ2, · · · , γM) are determined such that user i can

transmit at rate rk in the allocated time slot if the SINR achieved for user i is:

γi =
Pigi

NoW + βPh
≥ γk, (3)

where, No is the noise density and W is the bandwidth. The term βPh is the power of self

interference at the HAP.

8) We use continuous power model in which the transmission power of a user can take any

value below a maximum level Pmax, which is imposed to avoid the interference to nearby
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systems.

III. Optimization Framework

In this section, we characterize the discrete rate minimum length scheduling problem referred

as DR −MLSP. We first present the mathematical formulation of DR −MLSP as an mixed

integer non-linear optimization problem. Then, we prove the NP-hardness of DR −MLSP.

Finally, we propose the solution strategy followed in the subsequent sections.

A. Mathematical Formulation

The joint optimization of the time allocation, power control, rate adaptation and scheduling

with the objective of minimizing the schedule length given the traffic demands of the users

while considering realistic non linear energy harvesting model for an in-band full-duplex system

is formulated as follows:

DR −MLSP:

minimize
N∑

i=0

τi (4a)

subject to Pigi −

( M∑
k=1

zikγ
k
)(
σ2

o + βPh

)
≥ 0, (4b)

Bi + Ciτ0 + Ci

N∑
j=1,i, j

ai jτ j + Ciτi − Piτi ≥ 0 (4c)

τiχi ≥ Di, (4d)

Pi ≤ Pmax. (4e)

ai j + a ji = 1, i , j (4f)

χi =

M∑
k=1

zikrk (4g)

M∑
k=1

zik = 1 (4h)

variables Pi ≥ 0, τi ≥ 0, ai j ∈ {0, 1}, zik ∈ {0, 1}. (4i)
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The variables of the problem are Pi, the transmit power of user i; τi, the transmission time of

user i, ai j, binary variable that takes value 1 if user i is scheduled before user j and 0 otherwise

and zik, a binary variable which takes a value 1 if user i is allocated rate rk and 0 otherwise.

In addition, τ0 denotes an initial waiting time duration during which all the users only harvest

energy without transmitting any information.

The objective of the optimization problem is to minimize the schedule length as given by

Equation (4a). Equation (4b) represents the constraint on satisfying the rate adaptation of the

users. Equation (4c) gives the energy causality constraint: The total amount of available energy,

including both the initial energy and the energy harvested until and during the transmission

of a user, should be greater than or equal to the energy consumed during its transmission.

Equation (4d) represents the traffic demand constraint of the users. Equation (4f) represents the

scheduling constraint, stating that if user i transmits before user j, user j cannot transmit before

user i. Equation (4e) represents the maximum transmit power constraint. Whereas, Equation (4g)

and Equation (4h) represents the adapted rate and its uniqueness respectively.

This optimization problem is a Mixed Integer Non-Linear Programming problem thus difficult

to solve for the global optimum [44].

B. NP-hardness of the Problem

Theorem 1. Discrete rate minimum length scheduling problem, DR −MLSP, is NP-hard.

Proof. We prove by reduction from single machine makespan minimization problem with step

improving times studied in [45]. We first describe the make-span minimization problem: There

are n independent jobs {J1, J2, ..., Jn} available at time t = 0 with a common critical date D. Each

job Ji has two processing times dependent on the starting time of the job. If job Ji is started

at t < D, then its processing time is αi; if it is started at t ≥ D otherwise, its processing time

is βi where 0 ≤ βi ≤ αi. The goal is to determine a non-preemptive schedule minimizing the

make-span which is the completion time of the last scheduled job.

We construct the following instance of DR −MLSP: There are n users, M = 2 discrete

data rates r = (r1, r2) and SINR levels γ = (γ1, γ2) where all users can afford to transmit with

rate r1 until a common time T and with r2 for t ≥ T . Then it can be easily verified that the
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single machine make-span minimization problem with step improving times is polynomial-time

solvable if and only if this particular instance of DR −MLSP is polynomial-time solvable. As

a consequence, since the former problem is NP-hard, DR −MLSP is also NP-hard. �

C. Solution Framework

As the NP-hardness of the problem indicates, it is generally difficult to solve DR −MLSP for

a global optimum. In other words, finding a global optimum requires algorithms with exponential

complexity. Such optimal algorithms, on the other hand, are intractable even for moderate

problem sizes. In this paper, we present a solution framework to overcome this intractability

based on the decomposition of the optimal power control and rate adaptation problem and the

optimal scheduling problem as described below:

• For a given scheduling order of the users; i.e., for predetermined set of ai j values,DR −MLSP

requires determining the optimal power control and rate adaptation of the users with min-

imum schedule length while considering their data, maximum transmit power and energy

causality constraints. We first formulate this problem and introduce the minimum length

scheduling (MLS) slot definition which gives the best transmission slot for a user to complete

the transmission earliest. Then, we present the optimal power control and rate adaptation

policy.

• Determining the optimal power control and rate adaptation for a given scheduling order

reduces DR −MLSP to determining the optimal scheduling order. Based on the introduced

MLS slot definition, we first classify the scheduling problem to non-overlapping (i.e. in

which the best transmission slots are distributed in a way that they do not overlap each

other over time) and overlapping MLS slots scenarios (i.e. in which the MLS slots of

different users are coming into collision with each other over time). For non-overlapping

scenario, we propose an optimal scheduling algorithm. For overlapping scenario, we propose

a heuristic scheduling algorithm based on the investigation of the effect of the overlapping

slots on the optimal schedule.
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IV. Power Control and Rate Adaptation Problem

In this section, we will investigate the discrete rate optimal power control and rate adaptation

problem referred as DR − PCP for a given schedule i.e. ai j are given in the DR −MLSP with

the objective to allocate optimal power, transmission time, and rate adaptation. Without loss of

generality, we assume that the user i is transmitting its data in the ith transmission slot in the

schedule. The reformulated optimization problem is given below:

DR − PCP:

minimize
N∑

i=0

τi (5a)

subject to Pigi −

( M∑
k=1

zikγ
k
)(
σ2

o + βPh

)
≥ 0, (5b)

Bi + Ciτ0 + Ci

i∑
j=1

τ j − Piτi ≥ 0 (5c)

τiχi ≥ Di, (5d)

Pi ≤ Pmax. (5e)

χi =

M∑
k=1

zikrk (5f)

M∑
k=1

zik = 1 (5g)

variables Pi ≥ 0, τi ≥ 0, zik ∈ {0, 1}. (5h)

In order to solve DR − PCP optimally, we will first define the minimum length scheduling

(MLS) slot and then present the optimal algorithm.

We start by investigating the optimal power control policy for a single user. Initially, a user

may not be able to transmit with even the minimum possible transmission rate level r1 since

the initial available energy Bi may not be able to support the corresponding transmit power that

will satisfy the SNIR constraint given by Equation (3). Each transmission rate level rk requires

certain amount of energy available to complete the required data transmission for the user. Let

tk
i be the first time instant at which user i can afford to use transmission rate rk via satisfying
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Figure 3: Illustration of minimum length scheduling (MLS) slot for a user.

the SNIR constraint γi ≥ γ
k using the harvested energy. Note that t1

i ≤ t2
i ≤ ... ≤ tM

i .

Consider Fig. 2 illustrating the regions for transmission rates rks for a user for M = 3 rate

levels. τ0 region denotes the initial waiting time for user i to be able to transmit with r1 by

satisfying γi ≥ γ
1. Then, for a finite duration, user i can only transmit with r1; i.e., r1 region.

At t2
i , user i can support r2 for the first time and r2 is the maximum rate it can support for a

specific duration; i.e., r2 region. Then, finally at t3
i , user i can support r3 for the first time and r3

is the maximum rate it can support after t ≥ t3
i . Now, consider Fig. 3 illustrating the transmission
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completion (end time) vs. allocation time (start time) for a user i. Let si be the start time of the

transmission of user i. Then, the completion time of the transmission is given by ei = si + τi

where τi is the transmission time of user i such that τi = Di/χi. Since, user i can support a

higher transmission rate level at tk
i instants, ei is not a monotonically increasing function of si.

At any si = tk
i value, ei decreases discontinuously by an amount of Di/rk−1 − Di/rk since the

transmission rate jumps from rk−1 to rk. This suggests that waiting for the next transmission rate

may decrease the completion time for a single user depending on the time instant at which the

scheduling decision is given.

Next, we introduce the minimum length scheduling (MLS) slot definition in the following.

Definition 1. Let tdec
i is the time instant at which a scheduling decision is made for a user i.

Then, let s∗i ≥ tdec
i be the starting time for user i yielding the minimum completion time e∗i such

that e∗i = minsi≥tdec
i

si + τi(si). Minimum length scheduling (MLS) slot for user i at time tdec
i is

then defined as the time slot for user i allocated in the interval [s∗i , e
∗
i ] where s∗i ≥ tdec

i .

Lemma 1. For the MLS slot at time t given by the interval [s∗i , e
∗
i ] , e∗i and s∗i are non-decreasing

functions of t.

Proof. By Definition 1, MLS slot for a user i at t is defined as the interval [s∗i , e
∗
i ] where

e∗i = minsi≥tdec
i

si + τi(si). For two time instants t1 and t2 such that e1
i = t1 ≤ t2, minsi≥t1 si + τi(si) ≤

minsi≥t2 si + τi(si) = e2
i . Moreover, s1

i > s2
i only if e1

i < e2
i which is a contradiction. �

Then, it is evident that for a single user, the DR-MLSP problem is solved by allocation of

MLS slot at tdec
i = 0. Fig. 3 illustrates the MLS slot for a single user i. Note that the MLS slot

for user i starts at t2
i where user i can afford rate r2 for the first time. This suggests that even if

user i can transmit with r1 previously, the optimal policy is to wait until the time instant t2
i since

the decrease in the transmission time due to this rate increase is larger than the waiting duration.

Note that MLS slot for the user starts at a rate change instant tk
i which is not a coincidence for

this specific scenario. The following lemma illustrates this behaviour.

Lemma 2. MLS slot for user i at tdec
i starts at either tdec

i or tk
i ≥ tdec

i for some k ∈ [1,M].
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Proof. Let starting time for the MLS slot of user i be s∗i such that s∗i , tdec
i or s∗i , tk

i for

k ∈ [1,M]. Then, let the completion time be e∗i . Suppose that s∗i is inside rl region; i.e., tl
i <

s∗i < tl+1
i . If tdec

i ≤ tl
i, then starting the transmission time of user i at tl

i decreases the completion

time by s∗i − tl
i since the transmission rate remains the same within rl region. If tdec

i > tl
i, then

starting the transmission time of user i at tdec
i decreases the completion time by s∗i − tdec

i . This is

a contradiction by definition of MLS slot. �

Lemma 2 illustrates that for a single user, the optimal scheduling policy is allocation of the

user at either the time instant where the scheduling decision is made or at one of the time instants

where the transmission rate changes for the user. Then, MLS slot determination can be made

by evaluating at most M + 1 time instants where M is the number of rate levels.

Theorem 2. For a predetermined transmission order of users {1, 2, ...,N}, the optimal schedule

is obtained by the allocation of MLS slot for each user i at ti = ei−1 with e0 = 0.

Proof. By Lemma 1, the completion time of the MLS slot of a user is a non-decreasing function

of the decision time. Then, in order to minimize the schedule length; i.e., the completion time of

the last user, the decision for last user should be given at earliest which is the completion time

of the previously scheduled user. Then, tN = eN−1. By the same logic, it can easily be verified

that ti = ei−1 for i ≥ 2. For user 1, the earliest scheduling decision is t = 0. This completes the

proof. �

Algorithm 1 Optimal Power Control Algorithm (OPCA)
1: input: F
2: output: t(S)
3: tdec ← 0, t(S) ← 0, i ← 1
4: for i = 1 : |(F )| do
5: determine MLS slots for user i ∈ F at tdec,
6: tdec ← e∗i (tdec),
7: end for
8: t(S) ← tdec,

Based on Theorem 2, we present the Optimal Power Control Algorithm (OPCA), given in

Algorithm 1. The algorithm is described as follows. Input of OPCA algorithm is a set of users,
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denoted by F , with the characteristics specified in Section II (Line 1). The algorithm starts by

initializing the scheduling decision time tdec (Line 3). At each step of the algorithm, OPCA

determines the MLS slots for the ith user at tdec (Line 5), and allocates the transmission rate

which gives the minimum transmission end time (Line 6). Then, this user is allocated to its MLS

slot starting at s∗k and completed at e∗k. Algorithm continues by updating the scheduling decision

time (Line 6) and giving scheduling decisions for the remaining users (Lines 4 − 7). OPCA

terminates when all users in F are allocated the transmission slots and outputs the schedule

length t(S) (Line 8).

V. Optimal Scheduling

The aim of this section is to determine the optimal schedule; i.e., the transmission order of

the users, in order to minimize the length of the schedule. In Section IV, we have determined

the optimal time allocation and power control for a given transmission order of the users. On

the other hand, optimizing the schedule can further decrease the schedule length. For instance,

prioritizing the users that can reach their MLS slots earlier and delaying the users with further

MLS slots may result in a significant decrease in the completion time of the transmissions. A

straightforward solution to find the optimal schedule would be an exhaustive search algorithm

that enumerates all possible transmission orders of the users and then determines the one with

the minimum length using OPCA algorithm to determine the length of each. However, such

an algorithm is evidently computationally intractable for even a medium size network due to

N! possible transmission orders for a network of N users. However, computationally efficient

solutions are required to provide scalability for different networking scenarios.

We have shown in Section III-B that DR −MLSP is NP-hard. While this proves the non-

availability of computationally efficient optimal algorithms, it does not necessarily mean that all

instances of DR −MLSP require exponential-time solutions. In this section, we classify the

DR −MLSP problem based on the distribution of the MLS slots of users over time into non-

overlapping and overlapping scenarios. For the non-overlapping scenario, we propose optimal

scheduling algorithm. For the overlapping scenario, we propose a polynomial-time heuristic

scheduling algorithm.
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Figure 4: Illustration of the non-overlapping MLS slots scenario.

A. Non-overlapping MLS Slots Scenario

In this section, we investigate DR −MLSP problem for the non-overlapping MLS slots (non-

overlapping) scenario. First, we formally characterize the non-overlapping scenario. Let [s∗i , e
∗
i ]

be the time interval representing the MLS slot of any user i ∈ F at time tdec
i = 0. Then, the

condition for the non-overlapping scenario is given as follows:

s∗j < [s∗i , e
∗
i ],∀i, j ∈ F (6)

Non-overlapping MLS slots scenario is illustrated in Fig. 4 for a network of 4 users. As

the figure illustrates, each user can transmit within its MLS slot without interfering with other

users. Hence, the scheduling decision for any user can be given independently of the other

users. Moreover, since MLS slot allocation is the optimal scheduling policy for a single user by

definition, allocating their MLS slots to users in a non-overlapping scenario yields the optimal

schedule. The optimal scheduling algorithm based on the allocation of the MLS slots, Optimal

Scheduling for Non-overlapping Scenario (OSNS) is given in Algorithm 2.

As we have shown that this particular scenario covering particular instances of DR −MLSP

is polynomial-time solvable, we now illustrate the probability of such instances in the following

discussion.

Fig. 5 illustrates the probability of having non-overlapping MLS slots in various network

scenarios. Fig. 5a shows the behaviour of MLS slot when the network size increase. As for
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Algorithm 2 Optimal Scheduling for Non-overlapping Scenario (OSNS)
1: input: F
2: output: t(S)
3: sort s∗i in increasing order s.t. s∗1 < s∗2 < ... < s∗

|F |
,

4: for i = 1 : |(F )| do
5: allocate MLS slot for user i at s∗i ,
6: end for
7: t(S) ← e∗

|F |
,
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Figure 5: Probability of non-overlapping MLS occurrences
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a single user there is no chance of overlapping, therefore probability of non-overlapping starts

from one and decreases gradually as the number of users increase in the network because for

more users there are more chances that two users may have MLS slot in the same region. 5b

shows that as the coverage of the network increases, the users can be more distant from the

HAP and therefore, the channel gain reduces which results in a low energy harvesting rate. This

low energy harvesting rate increases the energy difference among the users which results in a

high probability of non-overlapping MLS slot. 5c shows that as the HAP power is increased the

energy harvesting rate increases which is directly proportional to the HAP power. This increase

allows the user to reach the highest SNR level quickly. Therefore, the probability of getting a

non-overlapping MLS slots decreases. Similarly, 5d shows that the high path-loss exponent will

lead to high probability of getting non-overlapping slots due to low channel gains and low energy

harvesting rates. Fig. 5 that having a non-overlapping scenario, for which the optimal polynomial-

time solution is given by OSNS Algorithm, is not a non-frequent scenario. For practical HAP

power values, almost 75% of the problem instances are polynomial-time solvable. While it is

observed that the probability of having a non-overlapping instance decreases as the number of

users increases, a large subset of instances fall in non-overlapping scenario for high path loss

values (which can also correspond to fast variations in the channel) and for large coverage areas.

Therefore, it is highly likely that a particular instance of DR −MLSP be polynomial-time

solvable.

B. Overlapping MLS Slots Scenario

In this section, we investigate DR −MLSP problem for the overlapping MLS slots (overlap-

ping) scenario. Overlapping MLS slots scenario is illustrated in Fig. 6 for a network of 4 users.

For instance, MLS slots of users 2 and 1 are overlapping meaning that at least one of the users

cannot be allocated to its MLS slot.

While the overlapping MLS slots scenario is generally difficult to solve due to NP-hardness

of the problem, some instances in this scenario may be still polynomial-time solvable using

a polynomial-time conversion to a non-overlapping instance. In the following we propose an
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Figure 6: Illustration of the overlapping MLS slots scenario.

adjustment algorithm that determines the polynomial-time solvability of an overlapping MLS

slots instance in polynomial-time.

The Polynomial-time Solvability Check Algorithm (PSCA), given in Algorithm 3, is described

next. Input of PSCA algorithm is a set of users, denoted by F . The algorithm starts by deter-

mining the MLS slots [s∗i , e
∗
i ] ∀ i ∈ F at t = 0 (Line 3). Then the users are sorted in increasing

order of MLS slot starting times si (Line 4). At each step of the algorithm (Line 5), PSCA

determines whether subsequent MLS slots of two users are overlapping or not (Line 6). If they

are overlapping, the MLS slot of the later user is delayed such that its starting time is set to

the completion time of the previous user (Lines 7 − 8). If the MLS slot of the last user is not

overlapping with the possibly adjusted time slot of the previous user (Line 11), then set of users

F is polynomial-time solvable (Line 12).

Note that if an overlapping instance of the problem is determined to be polynomial-time

solvable by PSCA algorithm, then OSNS can be used to solve this instance optimally since the

adjusted slots determined by PSCA constitutes a non-overlapping instance.

Non-overlapping instances and adjustable overlapping instances ofDR −MLSP are polynomial-

time solvable. However, scheduling the overlapping MLS slots optimally generally requires

determining which slots will be delayed among the overlapping ones to minimize the overall

schedule length. Note that the ending time of the last MLS slot among the users is the lower

bound on the minimum schedule length. Hence, one needs to focus on allocating the users such

that the user with the last MLS slot is delayed for a minimum duration. For example, if one
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Algorithm 3 Polynomial-time Solvability Check Algorithm (PSCA)
1: input: F
2: output: [s∗i , e

∗
i ] ∀i ∈ F

3: determine MLS slots [s∗i , e
∗
i ] ∀i ∈ F at t = 0,

4: sort s∗i in increasing order s.t. s∗1 < s∗2 < ... < s∗
|F |

,
5: for i = 2 : |(F )| − 1 do
6: if s∗i < e∗i−1 then
7: set s∗i ← e∗i−1,
8: set e∗i ← e∗i−1 + τ∗i ,
9: end if

10: end for
11: if s∗

|(F )| ≥ e∗
|(F )|−1 then

12: F is polynomial-time solvable,
13: end if

can allocate the users in an order such that the last scheduled user is allocated to the MLS slot

of that user at tdec = 0, then the resulting schedule is optimal. Hence, it is generally beneficial

to allocate the user with the earliest current MLS slot at the decision of scheduling time. In the

following, we propose a polynomial-time algorithm based on this idea.

The Earliest MLS Slot Algorithm (EMSA), given in Algorithm 4, is described next. Input of

EMSA algorithm is a set of users, denoted by F , with the characteristics specified in Section

II (Line 1). The algorithm starts by initializing the schedule S where the ith element of S is

the index of the user scheduled in the ith time slot and the scheduling decision time tdec (Line

3). At each step of the algorithm, EMSA determines the MLS slots for the unallocated users

at tdec (Line 5), and picks the user with the earliest MLS slot starting time s∗i (Line 6). Then,

this user is allocated to its MLS slot starting at s∗k and completed at e∗k (Lines 7− 8). Algorithm

continues by updating the scheduling decision time (Line 9) and giving scheduling decisions for

the remaining users (Lines 4 − 10). EMSA terminates when all users in F are scheduled and

outputs the schedule S with schedule length t(S) (Line 11).

VI. Performance Evaluation

The goal of this section is to evaluate the performance of the proposed scheduling algorithm

named as generic algorithm in comparison to the pre-determined transmission order denoted by

PDO. The PDO aims at minimizing the schedule length for a given transmission order of the
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Algorithm 4 Earliest MLS Slot Algorithm (EMSA)
1: input: F
2: output: S, t(S)
3: S ← ∅, tdec ← 0,
4: while F , ∅ do
5: determine MLS slots for all i ∈ F at tdec,
6: k ← argmini∈F s∗i (tdec),
7: S ← S + {k},
8: F ← F - {k},
9: tdec ← e∗k(tdec),

10: end while
11: t(S) ← tdec,

users by allocating each user as early as possible, without considering scheduling as given in

1. The generic algorithm uses all the proposed scheduling algorithms to find the best possible

schedule in polynomial time complexity. In the first step the algorithm evaluates the MLS slots

for all the users followed by determining the scenario of the slots by checking either they are

overlapping or non overlapping. For the non-overlapping slots, the algorithm will use the OSNS

algorithm presented in Algorithm 2 to find the optimal schedule and corresponding schedule

length. However, if the slots are overlapping then the generic algorithm will go for polynomial-

time solvability check by using the Algorithm 3 to find that the slots can be adjusted optimally

or not by using the PSCA given in Algorithm 3. For the overlapping slots if the slots can not be

adjusted then the generic algorithm will use earliest MLS slot algorithm presented in Algorithm

4to determine the schedule. The optimal solution is obtained by a brute force algorithm, denoted

by BFA, enumerating all the possible transmission orders and then picking the best schedule

with minimum length. Considering the exponential complexity of BFA, we have executed it only

for seven users i.e. N = 7 to show the performance of the proposed algorithms compared to the

optimal one.

A. Simulation Setup

Simulation results are obtained by averaging over 1000 independent random network realiza-

tions. The attenuation of the links considering large-scale statistics are determined using the path
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Figure 7: Schedule length vs. HAP trasmit power Ph

loss model given by

PL(d) = PL(d0) + 10αlog10

( d
d0

)
+ Z (7)

where PL(d) is the path loss at distance d in dB, d0 is the reference distance, α is the path loss

exponent, and Z is a zero mean Gaussian random variable with standard deviation σ. The small-

scale fading has been modelled by using Rayleigh fading with scale parameter Ωi set to mean

power level obtained from the large-scale path loss model. The parameters used in the simulations

are ηi = 1 for i ∈ [1,N]; Di is picked randomly between [100 10000] bits for i ∈ [1,N]; W = 1

MHz; d0 = 1 m; PL(d0) = 30 dB; α = 2.76, σ = 4 [25]. The self interference coefficient β is

taken as −80 dBm. We use M = 5 discrete rates with values 10kbps, 20kbps, · · · , 50kbps and

corresponding SNIR levels. For non-linear energy harvesting model, Ps = 7mW, A = 1500 and

B = .0022 [46].

B. Scheduling Performance

Fig. 7 illustrates the performance of the proposed generic algorithm for different values of the

HAP transmit power for a network of 50 users assuming zero initial battery level. The schedule

length is high for lower values of the Ph and decreases as the Ph increases because for high Ph

values, users can quickly achieve the higher SNR level resulting in faster data transmission and
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Figure 8: Schedule length vs. number of users

lower schedule length. The generic algorithm outperforms the PDO significantly for wide range

of HAP power Ph values. It is important to notice that for lower values of Ph, scheduling is more

critical due to the fact that the users with low energy level will need more time to achieve the

higher data rate. Therefore, if such users are scheduled in the start, they will be transmitting at

lower rate which will result in higher transmission time. Therefore, delaying such users will help

in schedule length minimization. The impact of the scheduling reduces as the Ph is increased,

because for high Ph values all the users are harvesting energy at higher rate which facilitates

them in achieving higher SNR values. If Ph is increased enough so that all the users can feasible

afford highest data rate then the schedule length for PDO and generic algorithm will converge

to each other which removes the need of scheduling. Note that the lower bound on the schedule

length is
∑N

i=1 τ
min
i , where τmin

i is the transmission time of user i corresponding to the highest

transmission rate i.e. 50kbps in this case.

Fig. 8 illustrates the impact of scheduling on the network size by comparing the PDO and

generic algorithm for different number of users in the network for Ph = 1W and zero initial

battery level. Note that due to exponential complexity of the brute force enumeration, we have

skipped the BFA in this analysis and at the end we have presented it for lesser number of users.

The figure illustrate that for a small network, the addition of each new user causes a linear

increase in the schedule length. However as the network size increase the effect on the schedule
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Figure 9: Schedule length vs SNR values

length start diminishing because for a large network, the probability of finding a user with higher

transmission rate increase for every slot and the users with low energy level will get more time

to harvest the energy which will allow them as well to achieve high SNR level. Furthermore,

as the number of users increase in the network, the scheduling becomes more critical because

an arbitrary transmission order may result an unnecessary delay in the transmission of high rate

users even if they do not need to harvest more energy. Moreover, increasing number of users

puts an arbitrary transmission order further away from the optimality hence increasing the sub

optimality of PDO. On the other hand, if the users are scheduled properly by eliminating the

unnecessary waiting intervals for achieving higher rates as in the generic algorithm, the optimality

performance is preserved showing the robustness of proposed algorithm to the network size. Note

that robustness to the network size is very important for future networks with high number of

machine type devices or sensors.

Fig. 10 illustrates the behaviour of the network for different required SNR levels for minimum

rate transmissions. This system can be assumed as constant rate model in which all the users

are supposed to transmit their information by using a fix SNR level. It is observed that initially,

increasing the minimum SNR level results in reduction of the schedule length. This reduction

is due to the fact that the users may harvest more then the needed energy even during the

transmission of first user and later on, all the users are just waiting for their transmission time.
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Figure 10: Schedule length vs SNR values

Due to low value of the allowed SNR, the users will be under-utilizing their energy. Therefore,

increase in the minimum allowed data rate will allow the remaining users to fully utilize their

harvested energy which will lead to a reduction in schedule length. However, after a certain

time, the schedule length starts increase, this increase in the schedule length is due to the longer

waiting time of the users to achieve the required SNR level.

Finally, Fig. 10 illustrates the comparison of the proposed algorithms with the optimal solution

obtained by enumerating all the possible schedules and selecting the one with minimum length.

As mentioned in the probabilistic analysis of the proposed problem, most scenarios of the problem

are optimally polynomial time solvable except the few overlapping non-adjustable scenarios.

Due to this reason the proposed generic algorithm performs very close to the optimal with a

significant low complexity. For smaller number of users, the slots are non-overlapping with a high

probability therefore the proposed algorithm is performing very close to the optimal. However,as

the network size increases the proposed algorithm deviates a little from the optimal because for

high number of users, the probability of overlapping non-adjustable scenario increases.

VII. Conclusion and FutureWork

In this paper, we have investigated minimum length scheduling problem considering discrete

rate transmission model in a full duplex wireless powered communication network. We have
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characterized an optimization framework to determine the optimal time allocation, rate adapta-

tion and scheduling subject to maximum transmit power, traffic demand and energy causality

requirements of the users. First we have mathematically formulated the problem as a mixed

integer non-linear programming problem which is difficult to solve for the global optimum in

polynomial time. It is proved that the formulated problem is NP-Hard. In order to solve the

problem fast and efficiently, the problem is analysed extensively and based on this analysis we

have introduced the minimum length slot. All the network scenarios are divided into overlapping

and non-overlapping scenarios. For non-overlapping scenarios, we have proposed optimal solu-

tion whereas, the overlapping scenarios are further analysed for adjustable and non-adjustable

scenarios. For adjustable topologies, an optimal algorithm is proposed and as the non-adjustable

scenarios can not be solved optimally in polynomial time, we have proposed a heuristic algorithm

for such scenarios which perform very close to the optimal solution.
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