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Abstract: The number of Internet of Things (IoT)-related innovations has recently increased exponen-
tially, with numerous IoT objects being invented one after the other. Where and how many resources
can be transferred to carry out tasks or applications is known as computation offloading. Transferring
resource-intensive computational tasks to a different external device in the network, such as a cloud,
fog, or edge platform, is the strategy used in the IoT environment. Besides, offloading is one of the key
technological enablers of the IoT, as it helps overcome the resource limitations of individual objects.
One of the major shortcomings of previous research is the lack of an integrated offloading framework
that can operate in an offline/online environment while preserving security. This paper offers a new
deep Q-learning approach to address the IoT-edge offloading enabled blockchain problem using the
Markov Decision Process (MDP). There is a substantial gap in the secure online/offline offloading
systems in terms of security, and no work has been published in this arena thus far. This system can
be used online and offline while maintaining privacy and security. The proposed method employs
the Post Decision State (PDS) mechanism in online mode. Additionally, we integrate edge/cloud
platforms into IoT blockchain-enabled networks to encourage the computational potential of IoT
devices. This system can enable safe and secure cloud/edge/IoT offloading by employing blockchain.
In this system, the master controller, offloading decision, block size, and processing nodes may be
dynamically chosen and changed to reduce device energy consumption and cost. TensorFlow and
Cooja’s simulation results demonstrated that the method could dramatically boost system efficiency
relative to existing schemes. The findings showed that the method beats four benchmarks in terms of
cost by 6.6%, computational overhead by 7.1%, energy use by 7.9%, task failure rate by 6.2%, and
latency by 5.5% on average.

Keywords: Blockchain; deep learning; IoT; Offloading; QoS; privacy

1. Introduction

The growth of the Internet of Things (IoT)-enabled services, including industrial au-
tomation, radar sensor data, e-healthcare, smart cities, vehicle routing control, smart homes,
and so on, has led to a massive rise in the volume of data and allows access to information
about the physical world [1–6]. Because of the excessive separation between IoT objects and
the cloud server, the traditional two-layered cloud-based IoT design suffers from significant
data processing delays, making it unsuitable for delay-sensitive apps [7,8]. To address
this limitation and meet the demands of delay-sensitive applications, a three-layered IoT–
edge–cloud structure has received a lot of attention. The edge platform provides cloud
services at the network’s edge to minimize the latency of processing activities performed
by terminal nodes [9]. Edge computing decreases latency and the quantity of data trans-
mitted to the cloud for processing, making it ideal for delay-sensitive IoT apps. This
massive expansion necessitates systems to handle the growing number of IoT objects as
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well as create and communicate the generated mobile data [10,11]. The devices’ low power
and processing capabilities, such as CPU and RAM, significantly limit their ability to
run such resource-intensive apps [12]. To improve Quality of Service (QoS), particularly
for IoT latency-sensitive applications, computation offloading is a strategy that transfers
compute-intensive jobs or applications from the resource-constrained IoT devices to more
processing-capable devices such as the cloud or edge. Therefore, delay-sensitive computa-
tions could be offloaded to more innovative platforms to overcome these restrictions and
fulfill the communication/processing latency requirement.

Additionally, Energy Harvesting (EH) is a promising way of extending the battery’s
life and supplying objects in a wide range of applications [13–16]. IoT objects using EH
components must resist eavesdroppers that analyze sensing data over radio channels to
reveal the user’s position and activities, such as the privacy of the use pattern [17–20].
Therefore, EH techniques can be used by IoT systems to use environmental energy, such as
body motion and ambient Radio Frequency (RF), to prolong battery life [21]. Furthermore,
privacy is vital in offloading systems. Imagine the IoT system offloads all of the sensing
data to the edge device while the radio channel is in excellent shape [22]. In such an
instance, an attacker might identify the usage pattern by estimating the amount of the newly
produced sensing data [23,24]. Consequently, the IoT system must cover user location
and usage pattern privacy in device offloading. Blockchain is used to initially record and
store transactions as an underlying Bitcoin technology [25,26]. Compared to a traditional
centralized ledger managed by a third party, a blockchain is a distributed ledger with a
Peer to Peer (P2P) network structure [27]. Therefore, it will guarantee the confidentiality
and authenticity of data effectively. Regardless of whether it is a permissionless blockchain
like Bitcoin or Ethereum, or an authorized blockchain like Byzantine Fault Tolerance (BFT),
they all require a lot of mining or consensus computational resources [28]. Therefore, the
reliability of blockchain computing and security are important concerns in the IoT [25,29].

This research aims to create a low-energy-consumed short-delay computing system
by combining IoT-edge, EH module, a blockchain platform, and Deep Learning (DL)
technique [30]. To optimize latency, energy consumption, and battery life, we offer a novel
version of the reinforcement learning approach to the Markov Decision Process (MDP)
problem, making the most of the optimal decisions for online/offline offloading. When
the state space is large, the MDP suffers from the well-known “curse of dimensionality”
issue. For this reason, to execute an optimum offloading policy as a learning agent for an
IoT system, we propose a Dynamic Online/Offline Q-learning-based approach for IoT-
Edge Offloading called DO2QIEO. In addition, we use a Post-Decision State (PDS)-based
learning approach to learn the best joint offloading for online scenarios. To overcome this
problem, the PDS-based learning algorithm uses the unique structure of the considered
EH’s state transitions, greatly boosting run-time performance and learning convergence
speed. Hence, we utilize the EH module to extend the life of the battery. The current state
and the Q-function value are used to determine the offloading policy, including the edge
device and the offloading rate of IoT objects to determine the incentive or efficiency benefit
based on energy consumption, task failure rate, and computation delay within, and time
slot. This procedure, in turn, generates the most recent policy by updating the Q-function,
the efficiency-based iterative Bellman equation in offline mode, and the PDS in online mode.
Once the system is online, the circumstance must be changed. An online deep Q-learning
algorithm has been presented to deliver the best policy on the fly. To expedite learning,
the PDS method employs partially known knowledge about dynamic systems and allows
the edge node to incorporate such knowledge into its learning experience. The DO2QIEO
method is based on the PDS, which can handle dynamic offloading in real-time. Thus,
to enhance long-term offloading performance, we use our DL method to handle highly
dynamic settings while also addressing computing complexity. We use Transfer Learning
(TL) during exploration to accelerate convergence by minimizing unnecessary exploration.
As a result, the TL is utilized in the technique to launch the system. Effective TL is required
to maximize learning outcomes. Furthermore, some of the primary benefits include reduced
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training data, improved model generalization, and increased DL usability. Further, because
the system can transition from offline to online, it could be used in real-world scenarios.
The key contributions of this study are listed below.

• Proposing a secure framework for integrating edge and blockchain technologies into
IoT networks to ensure data protection and energy efficiency;

• Taking into account the computing servers and the status of the controllers, we design
the optimization problem as an MDP by specifying state, action, and reward function
simultaneously, as well as the dynamic features of IoT systems;

• Providing a platform for dynamic online/offline offloading for various IoT-edge
applications called DO2QIEO;

• Using the TL method can assist in achieving the best offloading strategy;
• Using the EH module to increase the battery’s life and improve offloading performance;
• Increasing system performance by lowering energy consumption, reducing computa-

tional latency, increasing device efficiency, and minimizing the task failure rate.

The rest of this paper is structured in the following manner. Section 2 deals with
related work. Section 3 describes the system model and problem statements. Section 4
presents the proposed method. Section 5 deals with performance evaluation. Section 6
discusses the conclusions and future scope.

2. Related Work

The development of IoT offloading methods is a hot topic of study, and a lot of work
has been done in this field. Therefore, depending on their characteristics, advantages, and
weaknesses, we have listed the selected related works in this portion.

Several Q-learning spin-off techniques are used in this field. Aljanabi and Chalechale [3]
suggested a task offloading approach to a particular fog or the cloud node to establish
the best decision on where and when to offload a task. As an MDP, the topic is provided
and analyzed. Two decision-makers were discussed in their suggested MDP, where IoT
objects may choose the fog platform to which they need to offload their tasks, while fog
servers can decide to offload those jobs to other fog or to cloud nodes to balance the tasks.
A Q-learning-based model is applied to achieve the optimal policy to manage large-size
state and action space. The findings showed that their technique achieves improved load
balancing and decreases the latency relative to other works.

Fog computing allows IoT systems to enable applications insensitive to latency and
computational intensity with lower overhead in computation and energy consumption.
Therefore, Ramanathan, Williams [31] investigated fog-enabled IoT-eHealth networks’
offloading and migration problems. First, they described a total time allocation model that
considers transmission, migrations, calculation, and a penalty for unreasonable offloading
decisions. Thus, multi-stage stochastic programming was utilized to develop the offloading
issue as a stochastic optimization to determine the effect of ambiguity on the offloading
strategy in stochastic settings. Besides, they examined the efficiency of stochastic multi-
stage programming, considering the limited potential of energy and computation. The
results revealed that their method’s performance can be improved relative to baseline
systems, while their technique can lower total computational complexity.

Additionally, privacy is crucial for IoT-fog computing schemes, and several strategies
are applied to various offloading techniques that make the network reliable and powerful,
such as blockchain, etc. To build a node access allocation policy based on the types of health
information, Zhang, Cho [32] suggested a simulated annealing-based offloading algorithm.
In this manner, the quickest response can be obtained by users. Certain individuals may
eventually be recognized to suffer emergency injuries, which means these situations must
be managed with the highest priority; otherwise, life threats may be posed. The findings
showed that the algorithm for emergency measures would efficiently help patients find
the best way to connect with competent medical units. Their strategy primarily evaluated
offloading traffic to reduce latency in the healthcare system.
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Several DL spin-off techniques are used in fog/edge computing and industrial IoT
networks for offloading. Yuan, Tian [33] suggested a Two-Stage Possible Game-based
Computation Offloading strategy (TPOS) for Wireless Body Area Networks (WBANs).
They divided the game space into two stages to solve the multi-user game problem. Initially,
jobs with various priorities in WBANs were assigned offloading choices based on their
utility and penalty functions. The MEC node allocated computational resources on the
second level to offload tasks via the potential game. Even in heavy tasks and dense WBAN
scenarios, their research revealed that the TPOS algorithm could satisfy low latency and
low energy consumption. The estimate of various forms of uncertainty is required to create
active learning paradigms, novelty detection, error detection, and data fusion, all of which
are critical for developing successful and tailored activity recognition systems.

Besides, Wu, Wolter [34] highlighted significant offloading difficulties in blockchain-
enabled heterogeneity IoT-edge-cloud computing settings, where edge platforms can col-
laborate to reduce IoT object energy consumption while meeting delay limitations. They
presented the offloading issue as an optimization problem. They developed a polynomial-
time-complexity method using the Lyapunov optimization method, which evaluates if and
where to offload to reduce the IoT device’s energy consumption. They also demonstrated
that the cloud could be used as a long-term data processor for computation-intensive jobs,
whereas simulations confirmed the solution’s efficacy. Validating real-world blockchain
networks with smart agents was required.

Finally, Zuo, Jin [35] suggested a cooperative edge-assisted blockchain network, in
which Proof-of-Work (PoW) mining operations might be delegated to Base Stations (BSs),
and block data could be kept by a Cloud Service Provider (CSP). They used a 3-stage
Stackelberg game to model their network’s interaction process between IoT objects, BSs,
and CSP. Within every step, they also looked at the subgame optimization problem. They
developed the Stackelberg game’s backward induction-based iterative approach for com-
puting offloading, block storage strategies, and resource service prices for all equipment,
BSs, and CSPs. They found that their proposed backward induction-based iterative method
had a high convergence rate and discussed the interactions between the three stages of
the proposed game. In addition, the analysis results revealed that the two-cell method
had significant advantages over the two non-cooperative methods. Finally, a side-by-side
analysis of state-of-the-art IoT offloading methods is shown in Table 1.

Table 1. A comparison of the discussed IoT offloading methods and their characteristics.

Parameters
Mechanism Main Idea

Convergency Stability Energy Latency Task
Failure Security

Network Using TL?

Aljanabi
and

Chalechale
[3]

Proposing a Q-learning-based
method to fix the model and select

the optimal offload policy.
• • • • • • Fog-

cloud No

Ramanathan,
Williams

[31]

Dealing with the uncertainty of
link time using a multi-stage

offloading method.
• • • 3 • • Fog-IoT No

Zhang,
Cho [32]

Suggesting an offloading scheme
to create a node access policy. • • • 3 • • Edge-

cloud No

Yuan, Tian
[33]

Suggesting a two-stage
game-based offloading method. • • 3 3 • • IoT-MEC No

Wu, Wolter
[34]

Suggesting an online offloading
based on the

Lyapunov optimization.
• • • • • • IoT-edge-

cloud No

Zuo, Jin
[35]

Proposing a three-stage
Stackelberg game for
offloading together

• • • • • •

Mobile-
edge

comput-
ing

No

Our work
Proposing a DL method for

online/offline offloading
enabled blockchain.

• • 3 3 3 3
IoT-edge-

cloud Yes
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Using Deep Neural Network (DNN) approaches on IoT objects can result in overhead;
plus, finding ways to remove this overhead or lighten these algorithms on more capable
devices, such as edge nodes, can help to overcome these flaws. Additionally, considering
security and privacy mechanisms, blockchain technology can improve the security of
a system. Moreover, we are using an EH module to extend the system’s battery life.
However, we are attempting to build an intelligent and online/offline dynamic approach
for secure and cost-effective task offloading that outperforms the smart and dynamic
methods, employing the most up-to-date techniques and expertise.

3. System Model and Problem Statements

In this part, we introduce the system’s model and formulate the problem.

3.1. System Model

Offloading is useful for overcoming potential IoT constraints such as low battery
power and bandwidth [36]. Offloading is defined as determining which computing tasks
should be offloaded and how limited resources should be planned to ensure QoS metrics.
Furthermore, the offloading decision should take into account the user’s QoS needs, such
as processing delay, energy usage limits, and so on. Figure 1 shows a three-layer structure
for IoT task offloading. The edge computing structure is viewed as an interlayer between
the two. This structure is critical for increasing data offloading privacy while processing
tasks quickly and returning them to the IoT system. In this system, IoT delay-sensitive
tasks can be split into equal pieces and offloaded to other layers. Machine Learning (ML)
components are integrated into the objects and the edge nodes [37,38]. Nevertheless, thanks
to evolving edge device technology, the combination of blockchain and edge allow for
secure network and computation access and control at the edges. Since both blockchain and
edge have a distributed structure, they are better suited to each other. The incorporation
of edge and blockchain into IoT is advantageous, given the high-security requirements
and intensive computation in IoT networks. The proposed system model is divided into
three layers, as shown in Figure 2: IoT layer, edge layer, and blockchain. These three layers’
models are depicted and portrayed in the following manner. The list of symbols used in
the paper is provided in Table 2.
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Figure 2. The DO2QIEO network scenario’s architecture, which includes a cloud, edge, and
blockchain system.

Table 2. Notations List.

Symbol Description
O The number of IoT devices
E The number of edge devices

T Time slots
n The job of IoT devices

A Set of network tasks
p IoT object’s attributes
w Task attributes
g Network attribute
β Harvested energy

b Battery level
f Frequency of CPU clocks

Z The set of cells
Z” Group of controllers
di The size of the computation task
dj The delay provisions of the job

CE Contains the energy of all controllers
cc Computation’s overhead

CC(t) The total computing cycles
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Table 2. Cont.

Symbol Description
cc The controller z’s computing capability

trcd Rate of transmission between the controllers and the local edge server
trcb The transmission rate between the controllers and the blockchain

COo f f load The computation overhead
COserver Computation overhead by server
COtotal Total overhead
COblock Block overhead

M The number of consensus nodes
cc1 Request period’s computing cycles
ccm The necessary computing cycles at the MC

l The percentage of right transactions sent by the MC
tb The transaction batch’s total size.
ts The average transaction size

Cost System cost
j The block size
∂ The constant-coefficient
bt The broadcast delay among nodes
ti The block generation interval

Vn(t) Consensus time
E ft The IoT object’s efficiency
C The cumulative gain of the IoT antenna

3.2. Problem Formulation

In this section, we formulate the system with MDP to explain the problem, intending
to reduce the system weighted cost based on the specifications of large-dimensional and
high-dynamic blockchain-enabled IoT networks. The IoT object, which could be a camera or
a utility object, is attached to an energy harvester module, which must handle computation-
intensive tasks such as augmented reality apps. These jobs must be completed promptly
to provide high customer satisfaction and direct subsequent actions locally or remotely.
Additionally, our approach uses local edge nodes made up of basic computers and laptops.

Besides, EH components and electricity storage elements, including RF energy har-
vester, are included in the IoT object. The IoT system could either perform jobs locally
or offload jobs to an edge platform that could offer high computation efficiency with a
virtual machine, thanks to the energy provided by the EH element. Typically, IoT objects
are the slowest in terms of processing speed, and the cloud is particularly quick in terms of
preparing; on average, IoT processing power < edge processing power < cloud processing
power. As a result, IoT can connect to the cloud via Wide Area Network (WAN) and the
edge via ZigBee and Bluetooth at varying powerful transmission rates. Thus, the edge
platform and the IoT object can rapidly acquire the properties of the task.

In this system, the number of edge nodes represents by E and the number of IoT
objects represents by O, which can quickly obtain the properties of a network task. Ad-
ditionally, t ∈ T is the set of slots of all time. Job n ∈ A can be measured in this system
by the data size di. IoT apps are made up of computational jobs, all of which can be
offloaded. Additionally, each job can be broken down into multiple identical parts, and
the computation depends on the number of instructions. The object state for IoT systems
and tasks is specified as state s = (p , w, g), where p is the IoT object’s attributes, w is the
attributes of the task, and g contains networks status. In a nutshell, p = (β(t); b; f ), where
β, b, and f are harvested energy, battery level, and frequency of CPU clocks, respectively.
Additionally, w =(di; dj), where di , and dj are the data size and the delay provisions of the
job. The g = (CE, CC,
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computation resources, respectively. To simplify, we split spaces within discrete cells by
grid approach and configure delay provisions in multiple domains.

In this system, the IoT controller will pick one of the actions to be taken to deal with the
task at each decision time. The controller module is part of an IoT object, and it has the deep
method, which allows the object to select whether to process data locally or offload it to an
edge node. The actions can be viewed using the set
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the task at each decision time. The controller module is part of an IoT object, and it has the 
deep method, which allows the object to select whether to process data locally or offload 
it to an edge node. The actions can be viewed using the set Ȃ = {𝑎 , 𝑎 , 𝑎 , 𝑎 }, = {aMC, aO f f , aBS, aSS}, where aMC,

aO f f , aBS, and aSs indicate that the Master Controller (MC) selection, the offloading decision,
the block size, and the service selection, respectively. Where aMC(t) ∈ (1, 2, 3, . . . , U) which
controller is elected to be the MC. Additionally, aO f f ∈ (0, 1) refers to the task offloading
decision, with aO f f = 0 denoting that the IoT object performs the jobs locally and a aO f f = 1
denoting that the MC offloads the jobs. In addition, aBS(t) ∈ (1, 2, 3, . . . , x) is the block size
level, and aSS(t) ∈ (1, 2, 3, . . . , Q) means which node is chosen to support the consensus
process of nodes.

3.2.1. The IoT Layer

As shown in Figure 2, the system is made up of various IoT cells, and E edge nodes
are considered. Moreover, the functions of IoT objects should be completed on time to
provide a positive user experience and to direct subsequent actions taken remotely or
locally. The IoT object includes EH modules and electricity storage elements such as
RF energy harvesters and photovoltaic modules. A significant number of IoT objects
are deployed and connected to the local controller in each cell. These IoT objects collect
relevant local data during working hours and regularly offload the collected data to the
local controller. IoT objects, for instance, regularly send power consumption [38] data to
their local controller. Additionally, there is an MC assigned to gather the different IoT data
from all local controllers at each time slot t. The MC then processes and packages the data
before being sent to the blockchain system for data consensus and recording.

3.2.2. Edge Layer

There is one local controller and edge node in each cell. The local controller, in
particular, receives and sends data from the near edge node and can also handle and
package data on its own. The set of cells is denoted by Z = {1, 2, 3, . . . , z}, and the
local controller belongs only to its corresponding cell. In addition, Z” = Z = {1, 2, 3,
. . . , z} can be used to represent the group of controllers, with controller z′ collecting
IoT data from its corresponding cell z. The set of controller’s energy is denoted by
CE(t) = {e1(t), e2(t), e3(t), .., ez(t)}, and the computational capacity of the controller is
denoted by CC(t) = {cc1(t), cc2(t), cc3(t), .., ccu(t)}. Each controller gets various IoT data
from local devices while functioning. In this system, an MC is appointed among all con-
trollers to minimize transmission consumption between the controllers and the blockchain
network and relieve controllers with insufficient resources. Plus, the MC is in charge
of collecting and processing all controllers’ IoT data and interacting with the blockchain
network. The MC’s computational functions can be performed locally and with the aid of
the local edge node, which improves performance and saves energy. The following are
the computing overhead and energy consumption of the computation functions. If the
MC chooses local execution, Equation (1) can be used to calculate the energy consumption
Elocal at time slot t where qt is the computational complexity of the jobs and ßz is the
energy consumption coefficient [39], which can be expressed as Equation (2). cc denotes
the controller’s computing capability.

Elocal(t)=
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If the MC chooses to offload the computation jobs, the energy consumption 𝐸  
of data transmission paid by the local edge node at time slot 𝑡 could be represented by 
Equation (3). 𝑑  denotes the size of the computation task data, 𝑝𝑡 denotes the MC’s trans-
mission capacity, and 𝑡𝑟 denotes the transmission rate between the local edge node and 
the controllers [40]. 𝐸 (𝑡)= ∗ 𝑝𝑡   (3)

z ∗ qt (1)
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z = 10−27 ∗ (cc)
2 (2)

If the MC chooses to offload the computation jobs, the energy consumption Eo f f load
of data transmission paid by the local edge node at time slot t could be represented
by Equation (3). di denotes the size of the computation task data, pt denotes the MC’s
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transmission capacity, and trcd denotes the transmission rate between the local edge node
and the controllers [40].

Eo f f load(t)=
di

trcd
∗ pt (3)

Additionally, at time slot t, the computation overhead COo f f load imposed by the local
edge node can be defined by Equation (4). ξ(t) is the fixed charge, and Γ(t) is the overhead
variable set by the local edge node [41].

COo f f load = qt ∗ Γ(t) + ξ(t) (4)

The MC sends the unverified block to the blockchain system after processing and
packaging the data. Eblockchain(t) can be used to represent the transmission energy con-
sumption [42]. Additionally, bn denotes the number of blockchain nodes.

Eblockchain(t)=
d(t)
trcb
∗ pt ∗ bn (5)

The transmission rate between the controllers and the blockchain system is expressed
by trcb. The overall energy usage Etotal(t) and the computation overhead COserver paid by
the server if the MC performs the computations on its own at time slot t are as follows [40].

Etotal(t)= Elocal(t) + Eblockchain(t) (6)

COserver(t) = 0 (7)

On the other hand, if the MC assigned the jobs to a local edge node, the overall energy
usage Etotal(t) and the computation overhead COserver(t) incurred by the server are being
calculated as [43]:

Etotal(t)= Eo f f load(t) + Eblockchain(t) (8)

COserver(t) = COo f f load (9)

3.2.3. The Layer of the Blockchain

The blockchain system has m consensus nodes that are represented by M = {1, 2, 3, .., m}.
They check the MC’s transactions and then add the validated block to the blockchain. The
blockchain in the proposed method employs a Practical Byzantine Fault Tolerance (PBFT)
that could guarantee the system’s consistency when the number of misbehaving nodes
is less than one-third. Request, pre-prepare, prepare, commit, and respond are the PBFT
specific consensus process steps, as shown in Figure 3. The MC first sends the data
consensus specification and the unverified block to the blockchain network. The blockchain
then assigns a master node randomly to validate the block’s relevant information. The
chosen master node first verifies the block’s signature and Message Authentication Code
(MAC). If the above information is correct, the signature and MAC of each transaction
will be checked next. Then, the computing cycles are necessary to confirm one signature
and generate/verify, and one MAC is assumed to beω and Φ, separately. As a result, the
request period’s computing cycles can be written as Equation (10), assuming tb denotes the
transaction batch’s total size and ts denotes the average transaction size [42].

cc1(t)= 1 +
tb
ts
∗ (ω+ Φ) (10)
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Figure 3. PBFT consensus process, step by step shows how to communicate with each other.

The MC then creates a unique MAC and delivers it to each replicated node. The repli-
cated nodes then double-check this MAC and the signature and MAC of each transaction
in the block. In this step, the necessary computing cycles at the MC and replicated nodes
are expressed by Equation (11) [44].

ccm(t)= (m− 1) ∗Φ (11)

ccr(t)= Φ +
l ∗ tb

ts
∗ (ω+ Φ) (12)

Additionally, the percentage of right transactions sent by the MC is represented by l.
The duplicated nodes that have been checked generate and send a single MAC to other
nodes. Then, each node receives (m− 1) MACs from other nodes and verifies them. The
next phase is available if the number of appropriately checked nodes is greater than 2k
(where k = m− 1/3). The MCs and replicated nodes’ processing cycles can be interpreted
as [45]:

ccm2(t)= 2k ∗Φ (13)

ccr2(t)= (m− 1 + 2k) ∗Φ (14)

If they have received more than 2k correct messages, the checked node sends a single
MAC message to all other nodes. Meanwhile, each node verifies the MACs of all other
nodes. Then, the computing cycles are denoted by Equation (15) [45].

cc3(t)= (m− 1 + 2k) ∗Φ (15)

Eventually, nodes that have got more than 2k valid commit information give the
MC one reply response. If there are more than 2k correct reply messages, the consensus
process is considered complete and efficient. Therefore, the created block is delivered to
the blockchain system. There is also block overhead that is proportional to the block size,
as follows [46]:

COblock(t) = ∂ ∗ j(t) (16)

Here, j(t) is the block size and ∂ is the fixed coefficient to explain the relationship
between block overhead and block size. All nodes confirm a large number of signatures and
MACs at each stage of the verification process, resulting in a large number of complicated
and heavy jobs. Each PBFT consensus mechanism has a time limit t that is proportional to
the whole transaction size. The created block will not be modified if the consensus time
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surpasses the cap. The efficiency of the consensus is critical. Edge nodes and cloud servers
are used to facilitate the verification process of all nodes to deal with these complicated and
heavy computation jobs and satisfy the time constraints of the consensus process. Edge and
cloud servers have different computational capacities and charge different computation
costs. Plus, servers charge extra computational overhead when several consensus processes
are needed because of inadequate block size. Since devices share cloud or edge servers’
processing resources, it seems difficult to know precisely how much computing power and
overhead each server has at any given time. Therefore, the server computing overhead and
computation resources are expressed as random variablesψ and
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. As X = {x0, x1, . . . , xp−1}
and Y = {y0, y1, . . . , yp−1}, they are partitioned into q and p independent values, respectively.
The computation overhead and resources of the servers at time slot t could be represented
as ψ(t) and
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(t), respectively. The total computing cycles of one consensus phase could be
calculated based on the necessary computing cycles of each consensus stage [45].

CC(t) =
[

tb ∗ (l + 1)
ts

+ 1
]
∗ω+

[
tb ∗ (l + 1)

ts
+ 3m + 4k− 2

]
∗Φ , i f tb 6 z(t) (17)

Whenever the total transaction size exceeds the block size, the overall computing
cycles of multiple consensus processes can be calculated as follows (authors considered
that there are at most two consensus processes) [47]:

CC(t) =
[

tb ∗ (l + 1)
ts

+ 2
]
∗ω+

[
tb ∗ (l + 1)

ts
+ 6m + 8k− 2

]
∗Φ i f tb > z(t) (18)

The consensus time and the consensus process overhead can be calculated as
Equation (19) [40].

Vn(t)=


CC(t)
ψ(t) + 3bt i f tb 6 z(t)

CC(t)
ψ(t) + 3bt + ti i f tb > z(t)

1

(19)

Additionally, the broadcast delay among nodes is bt, and the block generation interval
is ti [48].

CObn(t)=


ψ(t) i f tb 6 z(t)

1
2ψ(t) i f tb > z(t)

(20)

The total overhead COtotal can then be expressed as (21).

COtotal = COserver(t) + CObn(t)+ COblock(t) (21)

If the consensus time, Vn(t), is less than the time limit ti, the consensus process is
considered active, the created block is appended to the blockchain, and the MC is notified.
In this system, Cost(t) represents the weighted amount of computation overhead and
energy consumption, which helps to balance the optimization and reflects the system’s
overall efficiency. It is referred to as Equation (22). When λ is 1, the weighted sum will turn
into the cost of energy and vice versa. Besides, we can tune the parameter if one aspect is
more important. The numbers were also normalized. There may be a few tasks that cannot
be done before the battery dies. If the battery level is equal to zero, the IoT object does not
perform the computing task. If a computation task fails, the task failure indicated by ξ
is defined as the cost. If failure happens, the purpose of the indicator denoted by
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considered active, the created block is appended to the blockchain, and the MC is notified. 
In this system, Cost(𝑡) represents the weighted amount of computation overhead and en-
ergy consumption, which helps to balance the optimization and reflects the system’s over-
all efficiency. It is referred to as Equation (22). When 𝜆 is 1, the weighted sum will turn 
into the cost of energy and vice versa. Besides, we can tune the parameter if one aspect is 
more important. The numbers were also normalized. There may be a few tasks that cannot 
be done before the battery dies. If the battery level is equal to zero, the IoT object does not 
perform the computing task. If a computation task fails, the task failure indicated by ξ is 
defined as the cost. If failure happens, the purpose of the indicator denoted by ΰ (ξ) is 
equal to one, and zero is the opposite. The IoT object’s efficiency in selecting the targeted 
edge node at time slot 𝑡 is indicated by 𝐸𝑓 , which is biased on system cost and task fail-
ure and is given by Equation (23) [49]: Cost(t) =  𝜆𝐸 (𝑡) + (1 − 𝜆) 𝐶𝑂  ,  𝜆 [0, 1], 𝑡 ∈ 𝕋 (22)
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3.2.4. Harvesting of Energy Unit 
In the DO2QIEO method, IoT objects that can convert renewable resources to electric-

ity include RF energy harvesters, wind turbines, and photovoltaic modules. It has a bat-
tery to help balance the power supply and demand. The stored renewable energy could 
be used for offloading as well as local computing. The total consumed energy by the IoT 
object at time slot 𝑡 is represented by 𝐸 (𝑡)  with 𝐸 (𝑡) = 𝐸 (𝑡) + 𝐸 (𝑡) 
and the amount of harvested energy at time slot 𝑡 is represented by β(𝑡). Additionally, 𝑏(𝑡) represents the battery stage at the start of time slot 𝑡, and it evolves based on Equa-
tion (24) [28]: 𝑏  = max {0, 𝑏 − 𝐸 (𝑡) + β(𝑡)}  (24)

If the IoT object’s energy is inadequate, it will drop the computation operation, i.e., 𝑏  = 0. Additionally, the RF-enabled wireless energy transfer technology in [50], in 

(ξ) is
equal to one, and zero is the opposite. The IoT object’s efficiency in selecting the targeted



Appl. Sci. 2022, 12, 8232 12 of 26

edge node at time slot t is indicated by E ft, which is biased on system cost and task failure
and is given by Equation (23) [49]:

Cost(t) = λEtotal(t) + (1− λ) COtotal , λ [0, 1], t ∈ T (22)

E ft= di −
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3.2.4. Harvesting of Energy Unit

In the DO2QIEO method, IoT objects that can convert renewable resources to electricity
include RF energy harvesters, wind turbines, and photovoltaic modules. It has a battery
to help balance the power supply and demand. The stored renewable energy could be
used for offloading as well as local computing. The total consumed energy by the IoT
object at time slot t is represented by Etotal(t) with Etotal(t) = Eo f f load(t) + Eblockchain(t)
and the amount of harvested energy at time slot t is represented by β(t). Addition-
ally, b(t) represents the battery stage at the start of time slot t, and it evolves based on
Equation (24) [28]:

bt+1 = max{0, bt − Etotal(t) + β(t)} (24)

If the IoT object’s energy is inadequate, it will drop the computation operation, i.e.,
bt+1 = 0. Additionally, the RF-enabled wireless energy transfer technology in [50], in
which the IoT system is operated by a designated wireless power transmitter that produces
constant and sustainable microwave energy over the air, is viewed as a special case. Let
W(0, 1) represent the energy conversion efficiency, µt is the transmitting power, ddistance
is the distance between the IoT system and the energy transmitter at time slot t, C is the
cumulative gain of the IoT antenna and the RF energy transmitter antenna at time slot t [45].

β(t) = W ∗ µt∗(ddistance)
−τ∗C (25)

The quantity of energy collected at time slot t could be calculated by the IoT system
based on the power harvested history and the modeling approach in [51]. The β′ represents
the expected amount of energy produced (t), Additionally, the estimation error for β(t) is
denoted by ∆(t) [28].

∆(t) = β(t)− β′(t) (26)

4. Problem Solution

The system model was detailed in-depth in the previous section; in this section,
we explain the DO2QIEO method. The system’s state and actions are distinct, and the
system status changes as operations are performed within a frame. The QL algorithm
is a gradual optimization method for selecting difficult actions that converge quickly.
Therefore, the method is suggested to direct object behavior to solve the MDP problem. The
DO2QIEO method is a hybrid of two algorithms that dynamically perform offline/online
functions. The network’s status can change from online to offline or vice versa. If the
system goes offline, the TL method will be activated and will begin initializing the system’s
Q-table and other settings as needed. While the network is online, the system enables the
PDS technique.

4.1. Offline Part

DO2QIEO addresses the problem in this paper due to the large-dimensional and high-
dynamic characteristics of the servers and controllers in blockchain-enabled IoT networks,
as well as the nature of the offloading problem. While Q-learning can handle formulated
MDPs by maximizing reward, it is not excellent. Therefore, if we are using Q-learning, we
must calculate and store the corresponding Q-value for each state-action group in a table.
In realistic issues, the number of potential states could be in the tens of thousands. If the
system stored all of the Q-values in the Q-table, the matrix Q (s, a) would be extremely large.
It may be difficult to obtain enough samples to traverse each state, resulting in method
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crashes. Besides, rather than calculating Q-values for each state-action pair, we utilize deep
Q-learning to estimate Q (s, a); this is the core principle of DO2QIEO. Additionally, the TL
is used in the method to initiate the system. To maximize learning outcomes, effective TL
is needed. Taking a model that has already been trained in one area and adapting it to a
different field has a lot of benefits. Besides, some of the key advantages are less training
data, better model generalization, and greater DL usability. TL emphasizes transferring
information obtained from addressing an issue to a separate but similar problem, and
this method will define the learning parameters. Q-values are initialized using offloading
experience in similar contexts, such as multiple outdoor or indoor networks with common
edge nodes. The method speeds up learning by reducing random experimentation at
the start of the complex computing process. In this method, the controller examines the
state s(t), which includes the controllers’ energy state, and also the computing resources
and overhead state of servers at t. Next, the controller chooses and operates, including
MC selection, offloading decision, block size, and server selection. In the meantime, the
controller is rewarded immediately r(t), and the setting is modified towards the next state
s(t + 1). The obtained average system efficiency from taking action a(t) in state s(t) could
be represented as a Q-function under a given Equation (27). The Q-optimal function’s value
will then be Equation (28) [52].

Q(s, a) = E a[ E ft + γE ft+1γ+ · · ·|st, at ] = Es+1[E ft + γQπ(st+1, at+1 ) |st, at ] (27)

Q∗ (s, a) = Es+1,′[ E ft + γmaxQ (s(t + 1) , a(t + 1)) |st, at ] (28)

Iteration on value and strategy can be used to determine optimal performance as well
as the best offloading methods. In each iteration of the learning process, the value of the
Q-function is modified as follows, where α is the learning rate.

Q(St , at , )← Q(St , at) + α((E ft +γmaxQ∗). (St+1, at+1)− (St, at)) (29)

On the other hand, the offloading method’s conditions are determined by the amount
of required computation queuing in the edge devices, which is a continuous value. Finding
the best strategy becomes difficult when the state space is divided discretely. Therefore, the
proposed traditional Q-learning method cannot be used to solve the MDP. To address this
issue, we convert the Q-function to a function approximator, a simple function type that
can be used in the optimal action acquisition process. We use a multi-layered neural net-
work [53,54] as a nonlinear approximator to capture complex interactions among different
states and actions. We use deep Q-learning techniques to find the best offloading solu-
tions depending on the Q-function estimation. The neural network-based approximator is
referred to as a Q-network, where
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address this issue, we convert the Q-function to a function approximator, a simple func-
tion type that can be used in the optimal action acquisition process. We use a multi-layered 
neural network [53,54] as a nonlinear approximator to capture complex interactions 
among different states and actions. We use deep Q-learning techniques to find the best 
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approximator is referred to as a Q-network, where ⱳ is the network’s set of parameters. 
Additionally, the Q-function in Equation (27) can be calculated using the Q-network as Q 
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Here ⱳ  is the Q-network parameters at time 𝑡. Q‘tar is a learning objective that rep-
resents the function’s optimal value in frame 𝑡 and could be described as [55]: 

Q‘tar = 𝐸𝑓 + γ𝑄 (𝑆 , argmax Q‘(𝑆 , 𝑎 , ⱳ )). (31)
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stage scale [55]. ⱳ ←ⱳ − 𝜒Δ ⱳ Loss (ⱳ ) (33)

We use the “greedy policy” to prevent local maximum when balancing exploration 
and exploitation in the learning experience. To gain better offloading strategies, randomly 
selected actions are taken with probability ε; otherwise, optimal actions are chosen with 
probability 1 − ε, where 0 < ε < 1. The DO2QIEO scheme is depicted in Algorithm 1. The 
entire procedure can be performed only when the system is turned off. If the system is 
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The experience replay method is being used in the learning process to maximize learning
performance, and the learning experience at each time is preserved in a replay memory. The
experience is made up of all observed state transitions and acquired utilities as a result of
behavior. (St, at; E ft; St+1) is the experience gained during time slot t. A batch of recorded
experiences taken at an arbitrary from the replay memory is being utilized as samples in
training the parameters of the Q-network throughout Q-learning updates. The training
aims to get the gap between Q (St, at) and Q‘(St, at,
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We use the “greedy policy” to prevent local maximum when balancing exploration
and exploitation in the learning experience. To gain better offloading strategies, randomly
selected actions are taken with probability ε; otherwise, optimal actions are chosen with
probability 1− ε, where 0 < ε < 1. The DO2QIEO scheme is depicted in Algorithm 1.
The entire procedure can be performed only when the system is turned off. If the sys-
tem is switched to online mode, the PDS approach will be used to determine the online
requirements. The section that follows explains how the system works when it is in on-
line mode. Figure 4 depicts a schematic representation of the DO2QIEO system for IoT
offloading computation.
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The situation must be changed once the system is online. Once all of the probability
distributions have been predicted, the optimum strategy could be computed offline using
standard Bellman equation solving techniques, such as value and strategy iteration. Several
of these probabilities are unknown in the situation under consideration, so these techniques
are impractical. An online deep Q-learning method has been proposed to generate the best
policy on the fly. Thus, our technique employs the PDS mechanism, which uses partially
known knowledge about dynamic systems and allows the edge node to incorporate such
knowledge into its learning experience to accelerate learning. The DO2QIEO method is
based on the PDS approach, which is capable of handling dynamic offloading online. In
this section, we will first explain the concept of PDS, which is an essential component of our
method. PDS is the intermediate system state that occurs just after the edge node performs



Appl. Sci. 2022, 12, 8232 16 of 26

the computational power demand action a(t) but before the β(t) is achieved. Since this
processing power demand action a(t) has no direct influence on these aspects of the system
state, the Post-Decision (PD) of device state for IoT system and tasks remains the same.
Moreover, the battery state b(t) is the sole aspect of the system state that could change,
which should be noted, nevertheless, that the PD battery state Pb(t) is simply a virtual
state and not the actual battery state. Considering the PDS description, we develop the PD
value function PDvalue (t) as shown below [49]:

PDvalue (t) = ΣaP
(
s′
∣∣pS) ∗Cost(t) +

(
s′
)
, ∀s s′ ∈ S (34)

If the activity no longer affects the transition P(s′|pS ) between PDS and the next
state. To distinguish them from their PD counterparts, we refer to s as the “normal” state
and Cost (t) as the “normal” value function. The normal value function Cost (t) has a
deterministic mapping to the PB value function V (t), which is as follows [49]:

Cost (t)= min (cost (s, a) + δPDvalue (pS)) (35)

The abovementioned equation demonstrates that the normal value function Cost (t)
for each time slot is generated from the equivalent PB value function V (t) in the same time
slot. The advantages of using the PDS and the PD value function are listed below. To begin,
in the standard state-based Bellman’s equation, expectations over the prospective state must
be completed before minimizing the probable electricity consumption a(t). Carrying out
the minimization requires an understanding of these dynamics. In the PDS-based Bellman
equations, on the other hand, the expectation process is decoupled from the minimization
operation. If we could somehow learn and estimate the PD value function V(t), we could
tackle the minimization problem without knowing anything about the system dynamics.
Secondly, assuming the energy demand a(t), the PDS breaks down the system dynamics
into such an a priori unknown component which evolution is independent of a priori
known element, namely the battery state evolution is partially controlled by a(t). The
pseudocode for the DO2QIEO is also shown in Algorithm 1.

5. Performance Evaluation and Simulation

In this section, we present three subsections: (A) experiment settings and measure-
ments and (B) TL method, and (C) simulation performance. The first discusses the sim-
ulation environments, parameters, and hyper-parameters used in the paper. The second
discusses the TL technique and its significance. The third explains the results and compares
the simulation to other benchmarks.

5.1. Experiment Settings and Measurements

Experiments are carried out using both Cooja and TensorFlow. Cooja is built for
IoT simulations, especially ad-hoc networks. TensorFlow provides APIs that encourage
ML and have a shorter compilation time than other ML frameworks. It is assumed that
the battery stage of the IoT objects is within normal distribution. To maximize the IoT
object’s performance, the object chooses the best offloading policy, with computation tasks
offloading to the target edge node. This model has 12 controllers and cells and three
computational nodes for the consensus process, incorporating four edge nodes and one
private cloud node. In addition, 8 servers are installed in the blockchain mechanism.
Besides, Table 3 formalizes the key parameter settings. The compute resource status of
the cloud server and edge nodes for the consensus process is categorized into four levels:
low, medium, high, and extremely high. Therefore, the compute overhead condition of
the cloud server and edge node consensus process is classified as cheap, ordinary, and
costly. Moreover, the workload arrival space has been set at = {10 units/s, 20 units/s,
. . . , 100 units/s}. Additionally, H = {20 ms/unit, 30 ms/unit, . . . , 60 ms/unit} is the
network congestion space. We build the environment states and extract their associated
energy-generating distributions using real-world green energy harvesting traces, including
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wind and solar. The time is set at 5 s for two adjacent time slot decisions. The method
will infer by experimenting with the optimal offloading policy of the IoT object in the
MDP. As expected, the radio channel between IoT objects and edge nodes is stable. An
IoT object recharged by an RF energy harvester was simulated to obtain real emergency
care advice. The computational assignments are produced at 100 kb/s, with every bit
requiring 1000 CPU cycles to complete. The IoT object uses the energy harvesting concept
to determine the amount of renewable energy provided by the EH component in this time
slot. The EH efficiency is 0.51, and the RF transmitter produces 3 W of corresponding
isotropically radiated energy power. Finally, each edge node consumes 150 watts of
electricity. Nevertheless, each edge node has a maximum service rate of 20 units/s.

Table 3. Parameters Tuning.

Parameters/Hyper-Parameters Value Parameters/Hyper-Parameters Value
Number of IoT devices 600 The block interval 0:5 s

Number of controllers and cells 12 Each cell’s average transaction batch size 2 MB
Number of users in each cell 50 Transaction size on average 100 MB

Number of an edge server 4 Controllers’ transmission power 400 mW
Blockchain nodes 8 Local edge computing power on average 20 GHz

The workload arrival rate 10, 20, . . . , 100 units/s Controllers’ average computing power 2 GHz
The network congestion 20, 30, . . . , 60 ms/unit Noice power 1 MBytes

Two adjacent time slot decisions 5 s λ 0.5
Computational assignments generation 100 kb/s A 0.9

Bit required to complete 1000 CPU cycles E 0.15
The EH efficiency 0.51 Γ 0.8

5.2. TL Method

We provide a DO2QIEO approach that leverages the TL method in this section. To
maximize learning outcomes, effective TL is required. Taking a model that has already been
trained in one sector and applying it to a different one has a lot of benefits. Additionally,
some of the primary advantages are less training data, higher model generalization, and
enhanced DL usability. As a result, TL focuses on collecting and applying information
obtained from overcoming these challenges to a distinct but interrelated issue, and this
technique may define learning parameters. Offloading experience in similar contexts, such
as many outdoor or indoor networks with typical edge nodes, initializes Q-values.

Additionally, the strategy speeds up learning by reducing random exploration at the
start of the dynamic computing process. Almost all of the tasks offloaded to the edge
platform were well handled and returned to IoT objects since the edge platform satisfied
user expectations. When the edge platform was unavailable or lacked the processing
capability to handle new activities, the suggested technique determined that the cloud
platform would be used instead. The most serious issue with IoT objects is the issue of
power consumption. Data flow and computing are the two factors that determine power. A
poor decision may drain a lot of energy. For example, 32-bit processing on an S-RAM chip
consumes 5 pico-joules for reading operations, whereas the D-RAM on the exterior of the
device consumes 640 pico-joules for the same amount. We must decrease data movements
if we are to lower this massive quantity of exponential energy usage. It is here that the
correct IoT offloading computation policy comes into play. Therefore, before the network
starts, pre-trained data is imported using the TL approach. Although this strategy has
some drawbacks, it will shorten network training time and improve network accuracy.
Weights and rules can be supplied to the network, and the weights can then be fine-tuned
to the data set. Except for specific formulations, TL cannot transfer the representation to the
most substantially comparable domains. As previously stated, in any learning but specific
problem formulation, there is a lack of reasoning or ability to generate understanding. The
network’s training time is reduced when this type of TL is used, and the system converges
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quickly. A network identical to the fundamental simulation environment is required to
extract the target parameters. We tested a similar scenario in which the IoT and edge
networks were in the same state. As a result, the targeted and extracted weights closely
resembled the core simulation situation.

5.3. Result of Simulation

In this experiment, we examine our strategy in various scenarios, taking into account
practically every situation that can illustrate how our method is performed. We considered
several scenarios in which our method was compared to other benchmarks, with or without
modules such as the EH component or the TL. In addition, the method is compared in
two benchmark methods in online mode and two more benchmark methods in offline
mode. Besides, we are striving to demonstrate how our strategy functions in various
scenarios to illustrate how our approach reacts. Therefore, criteria include delay, energy
usage, computing overhead, task failure rate, system cost, and device efficiency. The
proposed IoT offloading system’s network performance is evaluated utilizing four edge
devices. The task failure rate has been defined as the proportion of aborted computing tasks.
For this reason, we compare the DO2QIEO technique to the four methods listed below.
However, we run the simulations in two parts (the system’s offline and when the system
turns to the online method). At first, we analyze the system in the offline method with
two benchmarks (1) Energy-Efficient Dynamic Task Offloading computing (EEDTO) [34]
and (2) Blockchain Storage and Computation Offloading (BSCO) [35]. Then, we provided
performance evaluation in online mode with two other benchmarks: (1) Online Learning
and Control for Green Offloading called (OCGO) [56]. (2) Online Distributed Offloading
and Computing (ODOC) [57]. Experiments have revealed that the smallest amount of
memory required for DO2QIEO is 100 MB, which IoT nodes can readily backup.

Figure 5a describes the convergence of the DO2QIEO scheme in two modes. According
to this Fig, the learning process takes roughly 1893 s to reach the best offloading techniques
when TL is enabled and 2400 s when TL is disabled. It is worth mentioning that the
DO2QIEO technique in this part of the test is implemented offline in practice. Thus, the
expected execution time has minimal bearing on the job offloading app’s performance. Ad-
ditionally, the average IoT offloading object efficiency for diverse cell densities is depicted
in Figure 5b. As the number of cells increases, the performance of IoT objects degrades. The
utility of the DO2QIEO approach decreases as the number of cells increases. In addition,
Figure 5c illustrates the average cost of the proposed approach with and without TL; in
this mode, with increasing cells, the proposed method with TL surpasses the proposed
method without TL. Therefore, this test demonstrates the significance of the TL, which
plays a critical role in this scenario.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 18 of 27 
 

Offloading and Computing (ODOC) [57]. Experiments have revealed that the smallest 

amount of memory required for DO2QIEO is 100MB, which IoT nodes can readily backup. 
Figure 5a describes the convergence of the DO2QIEO scheme in two modes. Accord-

ing to this Fig, the learning process takes roughly 1893 s to reach the best offloading tech-

niques when TL is enabled and 2400 s when TL is disabled. It is worth mentioning that 

the DO2QIEO technique in this part of the test is implemented offline in practice. Thus, 

the expected execution time has minimal bearing on the job offloading app’s performance. 

Additionally, the average IoT offloading object efficiency for diverse cell densities is de-

picted in Figure 5b. As the number of cells increases, the performance of IoT objects de-

grades. The utility of the DO2QIEO approach decreases as the number of cells increases. 

In addition, Figure 5c illustrates the average cost of the proposed approach with and with-

out TL; in this mode, with increasing cells, the proposed method with TL surpasses the 

proposed method without TL. Therefore, this test demonstrates the significance of the TL, 

which plays a critical role in this scenario. 

 
  

(a) (b) (c) 

Figure 5. The IoT device efficiency in different scenarios, over time slot (a), The IoT device efficiency 

over the number of cells (b), and average cost versus cell count using TL and without it (c). 

Figure 6 describes the relationship between the number of cells and the performance 

of the network. According to Figure 6a–c, it could be seen that as the number of cells in-

creases, so does the energy consumption, computation overhead, and task failure rate. 

Furthermore, when compared to other benchmark systems, the DO2QIEO always has a 

lower computation overhead. Even though incremental computation assignments use 

more server resources and larger blocks are created to handle more transactions, the com-

puting overhead rises. Nevertheless, in the DO2QIEO, the acceptable offloading decision, 

the selection of the cheaper servers, and the quick and efficient modification of block size 

greatly reduce the additional computation overhead. Assume the number of cells rises 

from 10 to 14. In that situation, the DO2QIEO technique raises energy consumption, com-

putation overhead, and the rate of IoT task failure by 16.43 percent, 26.36 percent, and 12.5 

percent, respectively. With the number of cells equal to 14, the DO2QIEO method outper-

forms the BSCO by 14.1 percent in terms of energy consumption, 17.81 percent in terms 

of computation overhead, and 16.42 percent in terms of task failure rate. It outperforms 

the EEDTO method by 9.42 percent in terms of energy consumption, 8.91 percent in com-

putation overhead, and 12.2 percent in task failure rate. Therefore, when there are more 

cells, the DO2QIEO performs better. This is because the offloading decision can be dynam-

ically adjusted using the optimal strategy trained by DO2QIEO. The increasing computa-

tion tasks are typically offloaded to the local edge node to relieve the MC. The greater the 

workload, the greater the energy savings from offloading computing. Therefore, energy 

consumption is effectively reduced. 

Figure 5. The IoT device efficiency in different scenarios, over time slot (a), The IoT device efficiency
over the number of cells (b), and average cost versus cell count using TL and without it (c).

Figure 6 describes the relationship between the number of cells and the performance
of the network. According to Figure 6a–c, it could be seen that as the number of cells
increases, so does the energy consumption, computation overhead, and task failure rate.
Furthermore, when compared to other benchmark systems, the DO2QIEO always has a
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lower computation overhead. Even though incremental computation assignments use more
server resources and larger blocks are created to handle more transactions, the computing
overhead rises. Nevertheless, in the DO2QIEO, the acceptable offloading decision, the
selection of the cheaper servers, and the quick and efficient modification of block size greatly
reduce the additional computation overhead. Assume the number of cells rises from 10
to 14. In that situation, the DO2QIEO technique raises energy consumption, computation
overhead, and the rate of IoT task failure by 16.43 percent, 26.36 percent, and 12.5 percent,
respectively. With the number of cells equal to 14, the DO2QIEO method outperforms
the BSCO by 14.1 percent in terms of energy consumption, 17.81 percent in terms of
computation overhead, and 16.42 percent in terms of task failure rate. It outperforms
the EEDTO method by 9.42 percent in terms of energy consumption, 8.91 percent in
computation overhead, and 12.2 percent in task failure rate. Therefore, when there are
more cells, the DO2QIEO performs better. This is because the offloading decision can be
dynamically adjusted using the optimal strategy trained by DO2QIEO. The increasing
computation tasks are typically offloaded to the local edge node to relieve the MC. The
greater the workload, the greater the energy savings from offloading computing. Therefore,
energy consumption is effectively reduced.
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Figure 7a represents the total network working time following various methods. As
shown, the system working time lowers significantly as the quantity of cells increases.
The DO2QIEO, on the other hand, outperforms other benchmarks, as evidenced by the
extended system working time. A probable explanation is that as the number of cells
increases, the computation tasks become more difficult, putting additional strain on the
controllers. In addition, the agent prefers to offload tasks rather than execute them locally
to save energy. As a result, the system’s operating time is prolonged. The system weighted
cost is made up of the device’s system computing overhead as well as its energy usage.
In addition, Figure 7b demonstrates the relation between the system’s weighted cost and
the number of cells under different schemes. Figure 7 shows that the weighted system
cost grows significantly as the number of cells rises in all plans. Because of the combined
optimization of the controller selection, block size, offloading choice, and server selection,
the DO2QIEO always outperforms alternative baseline methods that just optimize a subset
of the optimization elements. Furthermore, due to its capacity to adapt to large-dimensional
optimization issues, the DO2QIEO outperforms EEDTO and BSCO in terms of effectiveness
and stability.

We proposed a secure framework for integrating edge and blockchain technologies
into IoT networks to ensure data security and energy efficiency. The optimization problem
was then designed as an MDP by specifying the state, action, and reward function simul-
taneously, as well as the dynamic features of IoT systems, while taking into account the
computing servers and the status of the controllers. Therefore, we developed a platform
for dynamic online/offline offloading for various IoT-edge applications that used the TL
method to help achieve the best offloading strategy. The EH module was used in our
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method to extend the battery’s life and improve offloading performance. Results demon-
strated superior performance to cutting-edge methods in terms of energy consumption,
computational latency, device efficiency, and task failure rate. Therefore, we built three
environmental states in our network: E = Low, Medium, and High. E = Low marks the
time six pm to six am; E = Medium marks six am to nine am and three pm to six pm, and
E = High marks the time nine am to three pm. We generate the environmental states and
derive their related renewable power distributions using both wind and solar real-world
green power harvesting traces.
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In addition, Figure 8a depicts the energy harvesting path over five days. The delay
performance after a 20,000-slot simulation for different maximum numbers of edge nodes
in online mode, as estimated automatically by simulation environments, is depicted in
Figure 8b. As the quantity of cells rises, the delay for all techniques decreases. Additionally,
the DO2QIEO method is faster than all benchmark methods. The suitable offloading choice,
the choice of the cheaper servers, and the faster and more effective modification of block
size considerably decrease the additional computing overhead in the DO2QIEO in online
mode. Suppose the cell count rises from 6 to 10. In that situation, the DO2QIEO technique
reduces time by 22%. In terms of latency, the DO2QIEO technique surpasses the OSGO
method by 7.6% and the ODOC method by 9.1% with 14 cells. As a result, when there are
more cells, the DO2QIEO performs better. This is because the offloading decision can be
adjusted dynamically using the optimal approach proposed by DO2QIEO.
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Additionally, Figure 9a depicts the task failure rate in online mode after 1000 time slot
simulations with different degrees of green energy supply. The study revealed that when
the green power supply grows, the task failure rate lowers for all three approaches used
in the experiment. This is because with a greater amount of green energy supply, backup
power is prevented, and more servers might well be switched on, lowering both backup
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power and delay costs. Furthermore, the DO2QIEO has the lowest cost across all stages
of the green energy supply. Figure 9b depicts the effect of computing task size on overall
computational overhead in online mode ranging from 50 to 300 KB in all approaches; as
the size of the calculation task grows, so does the total computational cost. The growing
quantity in the ODOC, in particular, is greater than that in the other systems. It is because,
unlike previous methods, ODOC performs its functions without the assistance of an energy
harvester. Moreover, we could see that the DO2QIEO has a lower total computational
overhead than other techniques. It is, in particular, extremely near the result obtained using
the OSGO algorithm.
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Figure 9. (a) Task failure rate performance with backup energy harvester module. (b) The impact of
computing task size on total computational overhead in online mode.

Additionally, we studied two computing situations to demonstrate the efficiency of the
system in online mode, which also included local processing and offloading to the edge for
IoT data processing. The IoT data are performed locally in the first case. In the second case,
we use our settings to offload IoT data for execution on edge computing. The suggested
technique was evaluated using a collection of sensor data files ranging in size from 50 kB to
250 kB. Additionally, every IoT data input is run ten times to generate an average result. As
seen in Figure 10, we analyzed the outcomes using two performance metrics: processing
time (a) and energy consumption (b). In the situation of task offloading to the edge node,
the processing time comprises offloading time, execution time, downloading time, and
so on. With each IoT data file size, the average processing time of local computation is
greater than that of edge computing in Figure 10a. For instance, the offloading system
could save up to 38% time when finishing the computation of a 50 kB file and up to 21%
time when completing the computation of a 200 kB file, demonstrating the benefits of the
offloading method. Because resource-intensive computational processes are offloaded to
the edge, IoT data tasks require less energy when done using the offloading strategy, as
shown in the results obtained for battery consumption in Figure 10b. Offloading the 150 kB
file, for instance, takes below 16% of the energy of local computing. Additionally, when the
data size increases, the energy utilization of the offloading system becomes more effective.
While running a 150 kB and 200 kB file, for example, offloading the operation to the edge
could save 19.33 percent and 21% energy, respectively, when compared to local execution.
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Figure 10. Results of online experiments for local and edge computation (a) processing time for given
IoT data file size (b) battery consumption for given IoT data file size.

Finally, the cost compositions of the online and offline algorithms in 20,000-time
slots are shown in Figure 11a,b. The online system considerably reduces costs by taking
conservative actions at low battery levels and avoiding backup power. On the other
hand, offline mode usually causes the battery to enter the inadequate mode, resulting in
considerable backup power expenses. Figure 12a shows that increasing the capacity of the
edge server has no meaningful effect on the system’s average cost. Since more emphasis
is placed on energy control during the transmission phase in the DO2QIEO network, the
edge side’s processing power will not significantly impact the system’s average cost. In
various scenarios of computation capacity, the suggested algorithm has a lower system-cost
than ODOC and OSGO. The simulations are done in circumstances where the channel
bandwidth provided in the network extends from 14 to 24 MHz, as shown in Figure 12b. As
the system’s channel bandwidth allocation rises, the relative advantages of offloading to the
edge diminish. The DO2QIEO method, on the other hand, outperforms ODOC and OSGO.
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Due to the advantages of scalability, privacy, and security of blockchain, there are
several benefits of incorporating blockchain into edge computing. Blockchain is essential
for secure data transmission in edge and wireless networks [58]. Within the enormous,
distributed edge nodes, blockchain enables dependable connections and management of
computing, communications, and storage resources. Blockchain-based service offloading is
thought to ensure security when offloading services across numerous edge nodes. Figure 13
compares the results of system latency under various blockchain nodes. The number of
blockchain nodes is configured to 2, 4, 6, 8, 10, 12, and 14. Because the number of nodes
affects consensus execution time, overall system latency is also influenced. As seen in
Figure 13, the DO2QIEO method has the lowest system latency for various blockchain
node settings since it produces superior offloading strategies than other methods. BSCO
needed the greatest system latency, almost 0.8–0.9 ms more than EEDTO. The rationale for
this outcome is that the BSCO has a heavy computational and consensus load. In terms of
system latency, the DO2QIEO method has the lowest latency compared to other schemes,
implying that our offloading strategy technique may significantly reduce the expected time,
particularly in latency-sensitive workloads and multiple node consensus settings.
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6. Conclusions and Future Work

This article provides DO2QIEO, a new learning-based technique for offloading in
IoT-edge platforms. We used DO2QIEO to solve the formulated problem we modeled
as an MDP. This method is applicable in both online and offline environments. Obtain-
ing sufficient samples to explore each state can be difficult, resulting in method crashes.
Therefore, rather than calculating Q-values for each state-action pair, we estimate pair
state-action utilizing deep Q-learning, which is the key premise of DO2QIEO. The TL
system is also employed in the process of initiating the system. In addition, an online deep
Q-learning method is presented for the online mode to generate the optimum policy on the
fly. In online mode, our solution applies the PDS mechanism, which makes use of partially
known knowledge about dynamic systems and allows the edge node to incorporate such
knowledge into its learning experience to accelerate learning. Moreover, edge computing is
employed in this system to reduce reaction time and conserve energy. Our proposed tech-
nique implies that RF energy harvesters, wind turbines, and solar modules are examples
of sources linked to IoT devices that can convert renewable resources to power to extend
battery life. In addition, there are various drawbacks in present blockchain-enabled IoT
systems, such as inadequate efficiency of the blockchain’s consensus mechanism, significant
computing overhead of network systems, and unacceptably high energy consumption for
computation jobs. To address the concerns and challenges, we have integrated an edge
system into blockchain-enabled IoT networks to boost IoT objects’ computing capability
and the consensus process’s competence. Compared to traditional online DL techniques,
the suggested technique substantially enhances high processing and is managed efficiently.
The circumstances for both local processing and fully offloading are supplied, and the
performance of the proposed system after convergence is tested under various standard
situations. A comparison of DO2QIEO and benchmarks revealed that the DO2QIEO out-
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performed in reduced energy consumption, system cost, lower computational overhead,
shorter delay, and lower task failure rate.

For future work, the Internet-of-Behavior (IoB) is thought to be the next generation of
the IoT. The IoB is based on IoT and results in dynamic adaption and behavior creation. Due
to its networked nature, data analytics could be used to adapt and manipulate behavior
rapidly. Our next project is online dynamic offloading in the IoB environment. Furthermore,
task reliability is a critical scenario due to the numerous network components. It is usually
true that the service provider must ensure the dependability of the edge servers. As we
all know, determining user-side reliability is difficult. Future researchers can also use
5G/6G technologies to tackle this problem. Additionally, using other methods such as a
recurrent neural network [59,60], fuzzy sets [61], recursive neural net (RvNN) [62], Elman
neural networks (ENN) [63,64], and temporal convolution network (TCN) [65] to solve this
problem can be investigated in the future. Additionally, the efficient mutation operator and
Gaussian process regression [66–68] can increase the efficiency of the proposed method.
Finally, considering other parameters such as multistability [69] must be investigated in
future work.
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