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Abstract: The broad availability of connected and intelligent devices has increased the demand for
Internet of Things (IoT) applications that require more intense data storage and processing. However,
cloud-based IoT systems are typically located far from end-users and face several issues, including
high cloud server load, slow response times, and a lack of global mobility. Some of these flaws can
be addressed with edge computing. In addition, node selection helps avoid common difficulties
related to IoT, including network lifespan, allocation of resources, and trust in the acquired data
by selecting the correct nodes at a suitable period. On the other hand, the IoT’s interconnection
of edge and blockchain technologies gives a fresh perspective on access control framework design.
This article provides a novel node selection approach for blockchain-enabled edge IoT that provides
a quick and dependable node selection. Moreover, fuzzy logic to approximation logic was used
to manage numerical and linguistic data simultaneously. In addition, the Technique for Order of
Preference by Similarity to Ideal Solution (TOPSIS), a powerful tool for examining Multi-Criteria
Decision-Making (MCDM) problems, is used. The suggested fuzzy-based technique employs three
input criteria to select the correct IoT node for a given mission in IoT-edge situations. The outcomes of
the experiments indicate that the proposed framework enhances the parameters under consideration.

Keywords: blockchain; security; IoT; fuzzy method; node selection; MCDM

1. Introduction

Recently, many types of network-based systems have become prevalent, such as
the Wireless Body Area Network (WBAN) [1], mobile networks [2], spatial-temporal
networks [3], and the Internet of Things (IoT) [4]. Since the invention of the IoT by Kevin
Ashton, the concept of IoT has become more prosperous and more powerful [5,6]. IoT has
been described as a network in which different objects with exclusive identifiers and the
capability to transmit data are interconnected without the need for human interaction over
the Internet [7–9]. The rapid growth of 6G-enabled IoT has recently piqued academia and
industry’s interest [10–12]. Further, the issues related to privacy, anomaly, and security are
becoming essential as the applications become more prevalent [13–16]. Safe and robust
communication and networks include authentication, data sharing, and analysis [17–19].

Blockchain is devised to present data availability and tamper resistance in a decentral-
ized environment and an immutable that is tailored to increase IoT data integrity, security,
and availability while optimizing IoT applications [20]. It is an encoded, dispersed ledger
technology for building tamper-resistant real-time records which is applicable in many
fields [21,22]. Furthermore, this platform provides a reliable environment for IoT devices
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by securely interconnecting them and protecting them from the adversarial attacks that
plague centralized client/server models [23].

Moreover, the network of IoT is assorted for a particular action, meaning that specific
IoT nodes will complete it better than others. The critical problem that has been considered
in this paper is determining which nodes are best suited. Obtaining the right nodes at the
right time and their selection helps mitigate common IoT-based concerns such as network
lifespan, allocation of resources, and trust in the gathered data [24]. The issue of energy
and routing could be solved by choosing the node rather than optimizing node numbers
and their location [25]. In this case, the nodes can be organized in any order, and only
a subsection of nodes is stimulated at any given time for a given mission. By selecting
the appropriate subset of nodes based on the task criteria, node selection aids energy
efficiency [26]. Furthermore, there is individual-based selection, in which every node is
evaluated independently and the best nodes are selected, or group-based selection, in which
possible clusters are evaluated as a whole and the finest set is selected. So, evaluations are
focused on the task specifications and constraints [27]. The latest selection strategies, in
particular, are not well-suited to localization tasks due to several flaws. First, the present
selection methods concentrate on comprehensive environmental monitoring, making them
less application-oriented [28]. The information gathered is not used in a response system
to update the community of nodes, which could be critical for increasing the speed of
localization. Most studies on the area of interest coverage in the literature are planned for
nodes with sensing ranges. However, this is not true for all sensors, for example, radiation
sensors, which do not have a range [29]. These flaws necessitate the use of a dynamic
selection outline that acclimates to the localization mission and uses the gathered readings
to update the node collection [30].

Fuzzy Logic (FL) is a method that employs approximation logic to manage linguistic
and numerical data simultaneously [31,32]. To achieve an actual output and determine the
details of the non-linear mapping, fuzzy logic works on stages of input likelihoods [33].
Furthermore, the models based on Markov Theory and Multi-Criteria Decision-Making
(MCDM) have been used to solve engineering problems in science, technology, economics,
and other fields in numerous studies [34–36]. However, MCDM models, which combine
computational and mathematical methods to provide a subjective assessment of perfor-
mance criteria by decision-makers, have emerged as a part of the process study. In addition,
the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), a powerful
tool for examining Multi-Criteria Decision-Making (MCDM) problems, is used. TOPSIS
has been widely utilized to tackle decision-making difficulties. This strategy is based on
comparing all the possibilities in the issue. The TOPSIS approach provides the following
advantages: Simplicity, rationality, comprehensibility, high computational efficiency, and
the ability to quantify the relative performance of each choice in a simple mathematical
form. Consequently, in this investigation, blockchain technology has been employed to
improve the privacy and security of the system. Using an edge platform can also improve
system efficiency, reduce latency, and improve performance. To select an appropriate node
for a specific mission, the proposed fuzzy-based method uses three input parameters:
IoT Node’s Free Buffer Space (INFBS), IoT Node’s Remaining Energy (INRE), and IoT
Node’s Distance to Event (INDE). Using a hybrid MCDM model, the node selection issue
in blockchain-enabled edge-IoT platforms using a fuzzy-based method has been analyzed.
This investigation’s significant outcomes are listed below:

• Proposing a secure framework for integrating edge and blockchain technologies into
IoT networks to ensure data protection and energy efficiency.

• Providing a platform for node selection for various IoT-edge frameworks.
• Utilizing an edge platform to increase performance, decrease latency, and increase

system efficiency.
• Introducing a novel fuzzy-based method using a hybrid MCDM model.
• Improving parameters such as INFBS, INRE, and INDE.
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The rest of this article is organized in the following manner. Section 2 deals with the
theoretical background. Section 3 covers the adopted methodology, Section 4 deals with
results, and Section 5 discusses the conclusion and future scope.

2. Related Works

In the last several years, much research has been conducted and is currently being per-
formed on distributed computation. Researchers have focused on various topics, including
architectural design, bug report prediction, and overall system performance [37,38]. More-
over, several optimization strategies are accessible for the mobile computing area [39,40].
Scholars have focused on many elements of IoT optimization under various restrictions.
Most researchers have focused on reducing power consumption and overall system delay
and optimizing additional factors such as cost and bandwidth utilization. Qureshi and
Kumar [41] provided a general logistics benchmarking process with the Fuzzy Analytic
Hierarchy Process (FAHP). Logistics’ essential success elements are recognized and prior-
itized in the literature. Using these crucial success indicators, LOGINET, a 3PL services
provider situated in western India, is benchmarked against four other service providers.
Their relative ranking has also been displayed using the standard.

Wudhikarn and Chakpitak [42] created an integrated technique for overcoming the
inadequacies and gaps observed in previous benchmarking studies, as well as for bench-
marking Intellectual Capital (IC) in the undeveloped logistics sector. The suggested tech-
nique integrated the analytic network process and the concept of thinking and non-thinking
assets with the generic benchmarking procedure to address the lack of consideration of
relationships among previous benchmarking concepts and the impacts of their managerial
factors, as well as to examine the wide range of elements and indicators of IC influencing
the sustainable development of organizations.

Riaz and Qaisar [43] developed a mathematical outline for minimizing latency and
choosing nodes in edge-based networks. Furthermore, a solution based on branch-and-
bound and outer approximation is thoroughly described. A comprehensive study of the
suggested algorithm’s convergence is provided, demonstrating that it converges linearly
and offers the best answer. According to experimental data, the Outer Approximation
Algorithm (OAA) successfully optimized the system as the total system throughput rose
with node numbers. According to their findings, their technique can considerably minimize
the time required for node selection and total latency while maximizing the output. To
compare OAA outcomes, a many-to-one matching-based method was employed as a
baseline. OAA beats the matching-based method, according to the results. Other features
of the service model and different service parameters, such as workload balancing among
MEC nodes, can be catered for in this work.

Furthermore, Redhu and Anupam [44] proposed an optimum relay node-choosing
technique to quickly forward data over time-varying IoT networks. Poisson point processes
are used to describe the movement of dense IoT networks. Relay nodes are selected by
balancing the network’s data latency and risk of packet loss. The suggested approaches’
performance is tested in a variety of network topologies. The effects of the risk of packet
loss in a time-varying network, the duration of the connection history on data latency, data
on delayed connectivity, node density, and transmission range are shown in the results.
The suggested bi-objective optimization issue is equated to single-objective optimization in
terms of performance. When the latter is optimized, the performance of such approaches is
found to deteriorate. On the other hand, the technique works well while minimizing data
delay and packet loss danger.

In addition, for eliminating IoT nodes and selection in OppNets, Cuka and Elmazi [45]
provided two fuzzy-based schemes: Node removal and node selection. They employed
three input measures for node removal, INDE, NFBS, and the IoT node’s battery level, and
four input measures for selecting nodes, namely ‘Node Contact Duration’, ‘Node Inter
Contact Time’, ‘Node’s Unique Encounters’, and Node’s Number of Past Encounters. IoT
Node Selection Possibility (INSP) is the output parameter. The findings demonstrate that
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the suggested techniques correctly excluded and selected IoT nodes. They found from
both systems that in the Node Elimination System (NES), the nodes that did not meet the
fundamental resource readiness criterion were removed from the selection process. They
discovered in NES that IoT nodes with adequate principal resources are chosen for further
job selection.

Lu and Wudhikarn [46] presented an integrated model for producing intellectual capi-
tal performance indicators, which can be used in a financial shared-services organization to
enhance the standard IC process model. Their research aims to employ IC management in
conjunction with the MCDM approach to build an IC measurement system and use the
best–worst method to determine the weights of IC performance indicators to prioritize
KPIs. These prioritized IC performance indicators assist managers in focusing on the
important components of their IC management and effectively allocating the organiza-
tion’s limited resources. Their hybrid solution was applied in four commercial courier
businesses. The suggested technique prioritized and determined the magnitude of the
aspects under consideration, including the IC elements and their performance metrics.
The findings show that management prioritizes the IC of the best performer and other
enterprises. Their benchmark results revealed gaps, the potential for improvement, and
prospects for sustainable development for inferior logistics businesses.

Shukla and Tripathi [27] developed a three-phase implementation technique. The
network is initially installed in a hierarchical cluster architecture, expanding to any level.
The effective relay node selection technique is used in the second stage to elect the sensor
node as a relay node. The quantity of relay nodes available in each cluster is determined by
the node and relay node communication range density, and it varies for every cluster. The
Energy-Efficient Communication (EEC) protocol transmits network data to the base station
in the last phase. They compared the suggested approach to several protocols and found
that it is superior in the context of depletion of energy and lifespan of the network. On
a green WSN-Assisted IoT deployment, the energy-efficient consumption may be simply
deployed. Furthermore, the method continues to outperform the comparable protocol as
the size of the network and the number of nodes grow.

Redhu and Hegde [47] offered an effective relay node selection technique based on
IoT network contact patterns. Digital traces of computer equipment give a priori connect
pattern information that aided in improving the data forwarding scheme’s performance.
This information was used in the approach, which combined data latency and connection
dependability for reliable data forwarding over time-varying IoT systems. The technique’s
performance is assessed in a variety of network topologies. The results showed how using
a priori network contact patterns may reduce data latency and improve dependability. The
impact of the reliability of a link and connection history duration on data latency, node
density, mobility variance, and transmission range is also investigated. The technique
works well while minimizing data latency and increasing connection dependability.

Finally, Alagha and Singh [24] suggested a two-stage node selection technique that
employed genetic and greedy algorithms. The first step used a cluster-based methodology
associated with a genetic algorithm to obtain primary data about the source. Then, the
active node readings are dynamically employed in the second phase to pick the following
best group of active nodes using an individual-based greedy selection process. Both steps
are combined in the Data-driven Active Node Selection (DANS) framework, a dynamic
framework for tackling localization issues in IoT sensing applications. In addition, a
methodology for determining coverage has been devised for sensors that may not have a
detecting range. Studies using real-life and synthetic datasets confirm the efficacy of the
technique. The findings showed that the suggested approach, DANS, surpassed current
benchmarks in terms of QoL by up to 52% on the synthetic dataset and up to 75% on the
real-life dataset. Furthermore, using a simulated dataset, DANS was found to accomplish
more for small groups of active nodes, outperforming benchmarks by up to four times in
terms of QoL. Finally, side-by-side analyses of state-of-the-art IoT node selection methods
are shown in Table 1.
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Table 1. A comparison of the discussed IoT methods.

Mechanism Main Idea Advantage Disadvantage Network Strategy of
Validation

Qureshi, Kumar [41]
Using the FAHP technique to assist a

generic logistics
benchmarking process.

-High utility -High
complexity - Implementation

Wudhikarn, Chakpitak [42]

Proposing an integrated strategy for
developing intellectual capital

performance metrics for use in a
financial shared services organization.

-High performance -High
complexity - Implementation

Riaz, Qaisar [43]

Presenting an optimization problem
including node selection based on the

quality of service and utility
maximization under power and

workload restrictions.

-Reduce node
selection time

-Poor load
balancing IoT-edge Simulation

Redhu, Anupam [44]
Providing an optimal relay node
selection method for robust data

forwarding in time-varying networks.

-Low latency
-Lower packet loss

-High energy
consumption
-Low
scalability

IoT Simulation by
MATLAB

Cuka, Elmazi [45]
Proposing two Fuzzy-based systems

NES and Node Selection System (NSS)
for IoT.

-Low energy usage -High
complexity IoT Simulation

Lu and Wudhikarn [46]

Presenting an integrated methodology
for producing intellectual capital

performance indicators to improve the
standard IC process model.

-Low latency -Low
scalability - Simulation

Shukla and Tripathi [27]
Using the RN selection technique,

providing a hierarchical cluster
architecture for network deployment.

-High network
lifetime
-Low energy
consumption

-Low security IoT Simulation by
MATLAB

Redhu and Hegde [47]

Proposing a technique for selecting
online relay nodes based on a priori

knowledge of network
contact patterns.

-Low latency
-High dependability

-High energy
consumption IoT Simulation

Alagha, Singh [24]
Using selection optimization, improve

the source localization process by
using fewer active nodes.

-Low latency
-High reliability

-Low security
-Low
scalability

IoT Python

3. Proposed Method

However, thanks to evolving edge device technology, the combination of blockchain
and edge allows for secure network and computation access and control at the edges.
Furthermore, since both blockchain and edge have a distributed structure, they are better
suited to each other. As a result, incorporating edge and blockchain into IoT is advanta-
geous, given the high-security requirements and intensive computation in IoT networks. In
this research, the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is
used for analyzing MCDM problems, which Lai and Liu [48] developed. This approach is
constructed on the concept that the selected options must have the shortest distance to the
positive ideal solution (which minimizes the criteria about cost (worst criteria) and maxi-
mizes the best measures) and the furthest distance to the negative ideal solution [49]. In
TOPSIS, the weights of the measures and rankings of the options considered for the analysis
are crisp numeric values. Hence, it does not consider the vagueness of human judgments.

Further, it may be noted that crisp values cannot evaluate real-life problems; therefore,
using linguistic terms and further analyzing the fuzzy environment would yield better
results [50]. Thus, the Fuzzy TOPSIS methodology has been employed in this research
study. Moreover, the terminologies used in the TOPSIS methodology are indicated in
Table 2.
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Table 2. Notations list.

Symbol Description
d Distance between 2 triangular functions

x and y Triangular functions
w Weight of the criteria

R = [rij] Fuzzy normalized decision matrix for ith alternative and jth criterion
V Fuzzy weighted normalized decision matrix
A∗ Fuzzy Positive Ideal Solution (FPIS)
A− Fuzzy Negative Ideal Solution (FNIS)
di

∗ Distance of every option from the FPIS
di

− Distance of each alternative from the FNIS

CCi closeness coefficient for each option

• System architecture

This architecture has been split into three layers after integrating the edge platform
and blockchain into the IoT system: Edge in the linked IoT devices on behalf of an IoT
domain at the bottom, and cloud computing at the top. Figure 1 shows the proposed
architecture of the blockchain-based IoT structure.
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Figure 1. The proposed Blockchain-enabled IoT System’s architecture.

In this architecture, the IoT area has a conforming edge gateway that becomes a peer
node in the blockchain network and communicates with the cloud via WiFi. If certain
conditions are met, the gateway node will also act as an orderer node in the consensus
process. Due to our design, IoT devices do not join the blockchain network as peer nodes.
Instead, they connect to their domain’s edge gateway and exchange access control data
with it via the lightweight MQTT protocol. Edge gateways can connect to the WiFi network
and communicate with the cloud in milliseconds, thanks to the WiFi base station, which
connects the edge and the cloud. For example, the industrial edge gateway can swiftly
and securely access storage resources in the industrial cloud and provide essential data for
remote monitoring.

The manager could modify the access control policy in our platform using the chain
code and send it to the blockchain. A collection of subject–object access permissions is
represented by every policy. The explicit content of the access control policy is kept in the
state database, and transaction details are recorded in the ledger. As a result, the access
control policy may be audited and traced. For behavior-gathering and credit computation,
the edge gateway will initially use MQTT to regularly gather behavior information from IoT
devices inside its area. The gateway subsequently standardizes the data before writing it to
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the blockchain to record its behavior. Finally, the gateway frequently checks the domain
credit value, guiding dynamic node selection in the following consensus procedure. The
handler could seek access permission for obtaining resources using chain code for user
authorization. The chain code will verify access control restrictions once the user submits a
request. The chain code will return the access authorization if the access request satisfies the
policy’s properties. The user might then utilize the edge gateway to connect to IoT nodes.

Algorithm 1, used to determine the rank using a fuzzy-based hybrid MCDM approach,
is as follows:

Algorithm 1. Proposed method

Step 0 Determine the measures (INFBS, INRE, and INDE) and options (27) for the analysis.
Step 1 Accept inputs or assignment ratings for three criteria and alternatives from the user

Step 2
Formulate criteria and alternatives decision matrix showcasing the magnitudes of
assignment ratings for INFBS, INRE, and INDE and 27 options.

Step 3
Formulate the ‘fuzzy normalized decision matrix’ for the benefit and cost criteria
using Equations (2) and (3), respectively.

Step 4
Develop the ‘fuzzy weighted normalized matrix’ using step 4 of the methodology,
which considers the influence of the node selection possibility.

Step 5 Compute the FPIS and FNIS using Equations (5) and (6), respectively.

Step 6
Determine the distance from every option to the FPIS and FNIS employing
Equations (7) and (8), respectively.

Step 7
Determine CCi for each option employing Equation (9). The Cci weights help in
identifying the ranks of the alternatives.

Step 8 Determine the rank of alternatives based on the magnitude of the Cci.

Step 9
Check if other options with high positions are feasible. If ‘No’ GOTO Step 3. If ‘Yes’
GOTO Step 10.

Step 10 Print-Optimal node selection as output

Step 11 STOP

On Hyperledger Fabric, the chain code may be thought of as a smart contract. The
chain code is how the user interacts with the ledger. We may develop interfaces that fulfill
specified logic functions for distinct chain codes with the aid of Fabric’s API. There are three
sorts of chain codes in the proposed architecture. (1) The Policy Management Chaincode
(PMC) adds and maintains access control policies based on the ABAC architecture in this
work. Only policy managers, such as object owners, could perform it. The Environment
Attribute (EA), Action Attribute (AA), Object Attribute (OA), and Subject Attribute (SA) are
the four components of an access control policy. The subject, role, group, and domain are all
part of the SA, representing the subject’s basic identity information. SubjectID distinguishes
whether the topic is a user or a user’s device. As with OA, we choose two unique identifiers,
ObjectID and MAC, as the object’s properties. The AA represents the permissions for a
subject–object pair. We utilize an integer to signify various storage permissions (4—Read,
2—Write, 1—execute). The EA reflects the policy’s context condition. The item could only
be accessed in a particular context by the subject. Each policy’s information will be kept
in PMC. Given the lack of security protection, the system is exposed to infiltration. IoT
devices with insufficient processing, memory, and resource availability are vulnerable to
becoming tools for thieves to start nefarious conduct. This will cause the infected IoT
system to behave abnormally, including deleting, changing, injecting, and retransmitting
data packets, among other things. Further, the monitoring and recording of this data, linked
with the access control system, for detecting harmful conduct, and its prevention from
spreading as quickly as feasible may be performed.
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• Suggested method

TOPSIS with extended triangular functions was proposed by Chen [25], in which the
distance between 2 triangular functions was calculated using the vertex method. So, if the
2 triangular functions are x = (a1, b1, c1) and y = (a2, b2, c2), then

d(x, y) =

√
1
3
[(a1 − a2)

2 + (b1 − b2)
2 + (c1 − c2)

2 (1)

The framework used for this study is given in Figure 2. Further, the fuzzy TOPSIS
methodology procedure has been detailed below, and a flowchart of the same is shown in
Figure 3.

1. Identify the measures and options for carrying out the analysis.
2. Assign ratings to the measures based on which alternatives would be ranked.
3. Formulate “R”.

where R = [rij], for the ‘benefit criteria’

rij =

(
aij

cj∗
,

bij

cj∗
,

cij

cj∗

)
; cj

∗ = max
i

{
cij
}

(2)

Furthermore, for the cost criteria, we have Equation (3).

rij =

(
a− j

cij∗
,

a− j

bij∗
,

a− j

aij∗

)
; cj

− = min
i

{
aij
}

(3)
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1. Compute “V”, where vij = rij * weight of the criteria (wj).

V = vij (4)

2. Using the following equations, calculate the Fuzzy Positive and Negative Ideal Solu-
tion (FPIS and FNIS).

A∗ = (v1
∗, v2

∗, vn
∗), where, vj

∗ = max
i

{
vij3
}

(5)

A−= (v1
−, v2

−, vn
−), where, vj

− = min
i

{
vij1
}

(6)

1. Calculate the distance of every option from ‘FPIS’ and ‘FNIS’ employing Equations (7) and (8).

di
∗ =

n

∑
j=1

d
(
vij, vj

∗) (7)

di
− =

n

∑
j=1

d
(
vij, vj

−) (8)

2. Compute “CCi” for each option based on Equation (9).

CCi =
di

−

di
− + di

∗ (9)

3. Grade the options using the CCi values. The higher the intensity, the better the alternative.

4. Results

In this study, for selecting a proper IoT node, three parameters, namely INFBS, INRE,
and INDE, have been considered. Furthermore, the fuzzy TOPSIS methodology has been
used to rank the IoT node possibilities. Table 3 highlights the parameters, term sets, and
triangular fuzzy membership functions.

Table 3. Parameters along with their term sets and membership functions.

S. N Parameters Term
Sets Code

Triangular
Fuzzy

Membership
Functions

Relative
Importance

of the
Parameters

Triangular
Fuzzy

Membership
Functions

1 INRE

Low L (1, 1, 5.5)

High (5.5, 10, 10)Medium M (1, 5.5, 10)

High H (5.5, 10, 10)

2
IoT Node’s
Free Buffer

Space (INFBS)

Small S (1, 1, 5.5)

Low (1, 1, 5.5)Average A (1, 5.5, 10)

Big B (5.5, 10, 10)

3 INDE

Near N (5.5, 10, 10)

Average (1, 5.5, 10)Middle Mi (1, 5.5, 10)

Far F (1, 1, 5.5)

As discussed earlier in the research methodology section, in the Fuzzy TOPSIS ap-
proach, the relative importance of the parameters is considered for ranking the alternatives.
Hence, the linguistic terms indicating the relative importance of the parameters have been
shown in Table 3, along with their membership functions. Figure 4 represents the Fuzzy
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triangular membership functions for INRE, INFBS, and INDE, and their relative impor-
tance. Table 4 indicates the linguistic terms for the INSPs, their codes, and corresponding
triangular fuzzy membership functions. For INSPs, seven levels have been considered,
namely “Extremely Low: EL”, “Very Low: VL”, “Low: L”, “Moderate: M”, “High: H”,
“Very High: VH”, and “Extremely High: EH”. Later, the fuzzy rule base was developed, as
shown in Table 5, reflecting each criterion’s nature and selection possibilities (See Figure 5).
Out of three parameters, INRE and INFBS are the benefit parameters, whereas INDE is
the cost criterion. It may be noted that the weights of the selection possibilities should
be considered for ranking the node possibilities, along with the relative importance of
the selected attributes. Table 6 shows the decision matrix with 27 selection possibilities
indicating fuzzy weights of the measures chosen and the node numbers.
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Table 4. Term sets and membership functions for node selection possibilities.

Linguistic Terms for INSPs Corresponding Triangular Fuzzy Membership Functions

EL (1, 1, 2)

VL (1, 2, 3)

Lw (2, 3.5, 5)

Mo (4, 5.5, 7)

Hi (6, 7.5, 9)

VH (8, 9, 10)

EH (9, 10, 10)

Table 5. Fuzzy rule base.

Weights (wj) 5.5 10 10 1 1 5 1 5.5 10

S.N. INRE INFBS INDE

1 1 1 5.5 1 1 5.5 5.5 10 10
2 1 1 5.5 1 5.5 10 5.5 10 10
3 1 1 5.5 5.5 10 10 5.5 10 10
4 1 5.5 10 1 1 5.5 5.5 10 10
5 1 5.5 10 1 5.5 10 5.5 10 10
6 1 5.5 10 5.5 10 10 5.5 10 10
7 5.5 10 10 1 1 5.5 5.5 10 10
8 5.5 10 10 1 5.5 10 5.5 10 10
9 5.5 10 10 5.5 10 10 5.5 10 10
10 1 1 5.5 1 1 5.5 1 5.5 10
11 1 1 5.5 1 5.5 10 1 5.5 10
12 1 1 5.5 5.5 10 10 1 5.5 10
13 1 5.5 10 1 1 5.5 1 5.5 10
14 1 5.5 10 1 5.5 10 1 5.5 10
15 1 5.5 10 5.5 10 10 1 5.5 10
16 5.5 10 10 1 1 5.5 1 5.5 10
17 5.5 10 10 1 5.5 10 1 5.5 10
18 5.5 10 10 5.5 10 10 1 5.5 10
19 1 1 5.5 1 1 5.5 1 1 5.5
20 1 1 5.5 1 5.5 10 1 1 5.5
21 1 1 5.5 5.5 10 10 1 1 5.5
22 1 5.5 10 1 1 5.5 1 1 5.5
23 1 5.5 10 1 5.5 10 1 1 5.5
24 1 5.5 10 5.5 10 10 1 1 5.5
25 5.5 10 10 1 1 5.5 1 1 5.5
26 5.5 10 10 1 5.5 10 1 1 5.5
27 5.5 10 10 5.5 10 10 1 1 5.5

A fuzzy normalized decision matrix is shown in Table 7, which was developed using
Equations (2) and (3). In addition, in this table, weights of the INSP are indicated, which
were taken into account for developing the fuzzy weighted normalized decision matrix
shown in Table 8. This table considered weights of relative importance and weights of the
selection possibilities, i.e., vij = rij *weight of the criteria (wj)*weight of the selection possibil-
ity (ws). Moreover, the FPIS and FNIS values are shown in Table 8, which were calculated
using Equations (5) and (6). The distance of each node from the FPIS (〖d_i〗ˆ*) and FNIS
(〖d_i〗ˆ-) was computed by employing Equation (1), Equation (7), and Equation (8) and
all the values of distances are shown in Table 9. These (〖d_i〗ˆ* and〖d_i〗ˆ-) values
help in calculating the Closeness Coefficients (CCi) using Equation (9), which helps in
identifying the ranks of the 27 alternatives. The CCi of all the node numbers is given in
Table 9, along with their ranks. It may be inferred from Table 9 that node numbers 27,
18, 17, 9, and 8 have the highest potential for selection as their weights (w27 = 0.960246,
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w18 = 0.875025, w3 = 0.744288, w9 = 0.677472, and w8 = 0.662365, respectively) are close to
the positive ideal solution. On the other hand, node numbers 22, 20, 19, 10, and 1 are the
least preferred numbers as their weights, i.e., w22 = 0.087472, w20 = 0.068519, w19 = 0.05284,
w10 = 0.050204, and w1 = 0.029671, respectively, are considerably distant from the FPIS.

Table 6. Decision matrix.

S. N INRE
(Benefit Criterion)

INFBS
(Benefit Criterion)

INDE
(Cost Criterion) INSP

1 L S N VL

2 L A N Mo

3 L B N VH

4 Me S N Lw

5 Me A N Hi

6 Me B N EH

7 H S N VH

8 H A N EH

9 H B N EH

10 L S Mi EL

11 L A Mi VL

12 L B Mi Mo

13 Me S Mi VL

14 Me A Mi Lw

15 Me B Mi Hi

16 H S Mi Lw

17 H A Mi Hi

18 H B Mi EH

19 L S Fa EL

20 L A Fa EL

21 L B Fa Lw

22 Me S Fa EL

23 Me A Fa VL

24 Me B Fa Mo

25 H S Fa VL

26 H A Fa Mo

27 H B Fa VH

Table 7. Normalized Fuzzy decision matrix.

Weights (wj) 5.5 10 10 1 1 5 1 5.5 10

S.N INRE INFBS INDE INSP (ws)

1 0.1 0.1 0.55 0.1 0.1 0.55 0.1 0.1 0.1818 1 2 3
2 0.1 0.1 0.55 0.1 0.55 1 0.1 0.1 0.1818 4 5.5 7
3 0.1 0.1 0.55 0.55 1 1 0.1 0.1 0.1818 8 9 10
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Table 7. Cont.

Weights (wj) 5.5 10 10 1 1 5 1 5.5 10

S.N INRE INFBS INDE INSP (ws)

4 0.1 0.55 1 0.1 0.1 0.55 0.1 0.1 0.1818 2 3.5 5
5 0.1 0.55 1 0.1 0.55 1 0.1 0.1 0.1818 6 7.5 9
6 0.1 0.55 1 0.55 1 1 0.1 0.1 0.1818 9 10 10
7 0.55 1 1 0.1 0.1 0.55 0.1 0.1 0.1818 8 9 10
8 0.55 1 1 0.1 0.55 1 0.1 0.1 0.1818 9 10 10
9 0.55 1 1 0.55 1 1 0.1 0.1 0.1818 9 10 10

10 0.1 0.1 0.55 0.1 0.1 0.55 0.1 0.1818 1 1 1 2
11 0.1 0.1 0.55 0.1 0.55 1 0.1 0.1818 1 1 2 3
12 0.1 0.1 0.55 0.55 1 1 0.1 0.1818 1 4 5.5 7
13 0.1 0.55 1 0.1 0.1 0.55 0.1 0.1818 1 1 2 3
14 0.1 0.55 1 0.1 0.55 1 0.1 0.1818 1 2 3.5 5
15 0.1 0.55 1 0.55 1 1 0.1 0.1818 1 6 7.5 9
16 0.55 1 1 0.1 0.1 0.55 0.1 0.1818 1 2 3.5 5
17 0.55 1 1 0.1 0.55 1 0.1 0.1818 1 6 7.5 9
18 0.55 1 1 0.55 1 1 0.1 0.1818 1 9 10 10
19 0.1 0.1 0.55 0.1 0.1 0.55 0.1818 1 1 1 1 2
20 0.1 0.1 0.55 0.1 0.55 1 0.1818 1 1 1 1 2
21 0.1 0.1 0.55 0.55 1 1 0.1818 1 1 2 3.5 5
22 0.1 0.55 1 0.1 0.1 0.55 0.1818 1 1 1 1 2
23 0.1 0.55 1 0.1 0.55 1 0.1818 1 1 1 2 3
24 0.1 0.55 1 0.55 1 1 0.1818 1 1 4 5.5 7
25 0.55 1 1 0.1 0.1 0.55 0.1818 1 1 1 2 3
26 0.55 1 1 0.1 0.55 1 0.1818 1 1 4 5.5 7
27 0.55 1 1 0.55 1 1 0.1818 1 1 8 9 10

Table 8. Weighted normalized Fuzzy decision matrix.

S.N INRE INFBS INDE

1 0.55 2 16.5 TRUE 0.2 8.25 0.1 1.1 5.454
2 2.2 5.5 38.5 0.4 3.025 35 0.4 3.025 12.727
3 4.4 9 55 4.4 9 50 0.8 4.95 18.182
4 1.1 19.25 50 0.2 0.35 13.75 0.2 1.925 9.091
5 3.3 41.25 90 0.6 4.125 45 0.6 4.125 16.364
6 4.95 55 100 4.95 10 50 0.9 5.5 18.182
7 24.2 90 100 0.8 0.9 27.5 0.8 4.95 18.182
8 27.225 100 100 0.9 5.5 50 0.9 5.5 18.182
9 27.225 100 100 4.95 10 50 0.9 5.5 18.182

10 0.55 1 11 0.1 0.1 5.5 0.1 1 20
11 0.55 2 16.5 0.1 1.1 15 0.1 2 30
12 2.2 5.5 38.5 2.2 5.5 35 0.4 5.5 70
13 0.55 11 30 0.1 0.2 8.25 0.1 2 30
14 1.1 19.25 50 0.2 1.925 25 0.2 3.5 50
15 3.3 41.25 90 3.3 7.5 45 0.6 7.5 90
16 6.05 35 50 0.2 0.35 13.75 0.2 3.5 50
17 18.15 75 90 0.6 4.125 45 0.6 7.5 90
18 27.225 100 100 4.95 10 50 0.9 10 100
19 0.55 1 11 0.1 0.1 5.5 0.182 5.5 20
20 0.55 1 11 0.1 0.55 10 0.182 5.5 20
21 1.1 3.5 27.5 1.1 3.5 25 0.364 19.25 50
22 0.55 5.5 20 0.1 0.1 5.5 0.182 5.5 20
23 0.55 11 30 0.1 1.1 15 0.182 11 30
24 2.2 30.25 70 2.2 5.5 35 0.727273 30.25 70
25 3.025 20 30 0.1 0.2 8.25 0.182 11 30
26 12.1 55 70 0.4 3.025 35 0.727 30.25 70
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Table 8. Cont.

S.N INRE INFBS INDE

27 24.2 90 100 4.4 9 50 1.454 49.5 100

A∗ 27.225 100 100 4.95 10 50 1.4545 49.5 100

A− 0.55 1 11 0.1 0.1 5.5 0.1 1 5.454

Table 9. Distance from a positive and negative ideal solution and ranks of the node possibilities.

S. N Distance from FPIS di
* Distance from FNIS di

− CCi Ranking

1 75.912 24.864 61.328 162.104 3.227 1.672 0.058 4.957 0.029671 27
2 66.680 9.905 57.089 133.675 16.116 17.116 4.362 37.595 0.219506 17
3 60.075 0.659 53.788 114.521 25.915 26.318 7.704 59.938 0.343564 14
4 56.871 21.831 59.244 137.946 24.862 4.766 2.167 31.795 0.187314 20
5 37.076 5.113 54.938 97.128 51.214 22.925 6.558 80.697 0.453801 11
6 28.990 0.000 53.636 82.626 60.156 26.469 7.808 94.433 0.533342 10
7 6.032 14.216 53.788 74.036 73.940 12.717 7.704 94.361 0.56035 8
8 0.000 3.495 53.636 57.132 78.387 25.885 7.808 112.079 0.662365 5
9 0.000 0.000 53.636 53.636 78.387 26.469 7.808 112.663 0.677472 4

10 78.387 26.469 54.019 158.874 0.000 0.000 8.398 8.398 0.050204 26
11 75.912 21.038 48.847 145.796 3.227 5.515 14.183 22.926 0.135879 22
12 66.680 9.180 30.752 106.612 16.116 17.357 37.356 70.830 0.399171 12
13 67.163 24.917 48.847 140.927 12.396 1.589 14.183 28.168 0.166581 21
14 56.871 15.414 39.233 111.518 24.862 11.308 25.759 61.929 0.357047 13
15 37.076 3.365 24.931 65.373 51.214 23.276 48.957 123.447 0.653781 6
16 48.899 21.831 39.233 109.962 30.040 4.766 25.759 60.565 0.355162 14
17 16.405 5.113 24.931 46.450 63.316 22.925 48.957 135.199 0.744288 3
18 0.000 0.000 22.808 22.808 78.387 26.469 54.835 159.690 0.875025 2
19 78.387 26.469 52.718 157.574 0.000 0.000 8.791 8.791 0.05284 25
20 78.387 23.894 52.718 155.000 0.000 2.611 8.791 11.402 0.068519 24
21 71.300 15.078 33.745 120.124 9.640 11.443 27.793 48.876 0.28921 16
22 73.125 26.469 52.718 152.312 5.809 0.000 8.791 14.600 0.087472 23
23 67.163 21.038 46.130 134.330 12.396 5.515 15.302 33.214 0.198239 18
24 46.157 9.180 20.584 75.920 38.032 17.357 40.915 96.304 0.559177 9
25 62.943 24.917 46.130 133.991 15.579 1.589 15.302 32.470 0.195062 19
26 32.423 9.905 20.584 62.912 46.656 17.116 40.915 104.687 0.624627 7
27 6.032 0.659 0.000 6.691 73.940 26.318 61.354 161.612 0.960246 1

5. Conclusions, Limitations, and Future Directions of Research

One of the most crucial IoT problems in real-world applications is object selection
based on customer demand. Effective object selection, identification, and selection of
relevant nodes are required to achieve optimal performance. As a result, experts may easily
comprehend diverse views on IoT object selection methods. The findings of this work
will also aid academics and provide insight into future research topics in this discipline.
Furthermore, the disadvantages and benefits of the suggested method were examined,
paving the way for the future development of more efficient and practical processes for
object selection in IoT contexts. Therefore, fuzzy TOPSIS is a powerful approach for effective
decision-making; however, the findings of this study may be validated by employing other
tools, namely AHP, ANP, VIKOR, and ELECTRE, in the fuzzy environment. Moreover, a
hybrid approach is used to validate and improve the accuracy of the results. In addition,
after integrating the edge platform and blockchain into the IoT system, we divided this
architecture into three layers: Edge in the center-connected IoT devices on behalf of an IoT
domain at the bottom and cloud computing at the top. However, the IoT’s deep integration
of edge and blockchain technologies offers a new access control framework design approach.
Therefore, this study proposes a unique node selection framework for blockchain-enabled
edge IoT that implements a fast and reliable node selection technique. In addition, we
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developed a hybrid MCDM model mechanism that can dynamically pick select nodes to
obtain a rapid and reliable result using the fuzzy approach. In this study, three evaluation
criteria, namely INRE, INFBS, and INDE, have been considered, and the Fuzzy TOPSIS
approach was used to rank the IoT node alternatives. The results of the experiments
indicate that the suggested framework improves the parameters under evaluation.

However, the data storage optimization of blockchain nodes for IoT is not the subject
of this article. Instead, we intended to investigate several optimization strategies to lessen
the future framework’s expanding storage load. Furthermore, in upcoming studies, the
number of criteria may increase, increasing the number of node possibilities. This would
make the model more robust and reliable. Moreover, GUI-based simulations could be
carried out. Finally, using machine learning techniques for defect prediction of IoT nodes
will be interesting in the future [51].
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