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Abstract: Nowadays, Wireless Power Transfer (WPT) technology is receiving more attention in the
automotive sector, introducing a safe, flexible and promising alternative to the standard battery
chargers. Considering these advantages, charging electric vehicle (EV) batteries using the WPT
method can be an important alternative to plug-in charging systems. This paper focuses on the
Inductive Power Transfer (IPT) method, which is based on the magnetic coupling of coils exchanging
power from a stationary primary unit to a secondary system onboard the EV. A comprehensive
review has been performed on the history of the evolution, working principles and phenomena,
design considerations, control methods and health issues of IPT systems, especially those based on
EV charging. In particular, the coil design, operating frequency selection, efficiency values and the
preferred compensation topologies in the literature have been discussed. The published guidelines
and reports that have studied the effects of WPT systems on human health are also given. In addition,
suggested methods in the literature for protection from exposure are discussed. The control section
gives the common charging control techniques and focuses on the constant current-constant voltage
(CC-CV) approach, which is usually used for EV battery chargers.

Keywords: wireless power transfer (WPT); Inductive Power Transfer; electric vehicles (EVs)

1. Introduction

The decrease in fossil fuel resources and the environmental pollution caused by their
use has made it necessary to look towards renewable energy resources. Solar power
plants, wind turbines, hydrogen energy, and wave energy are just a few of the methods
used to generate electricity. Electricity can be produced by more than one method, and
with sustainable production, interest in electric vehicles is increasing rapidly. Although
the prices of electric vehicles are high at the time of first purchase, they have important
advantages such as low maintenance costs compared to conventional vehicles with internal
combustion engines and being able to travel at much lower prices per kilometer. In recent
years, almost all the big vehicle manufacturers have announced that they will reduce the
production of diesel- and gasoline-based vehicles and focus on hybrid and fully electric
vehicles. However, before these vehicles are produced and put on the market, it is a
necessity to establish battery charging stations and to realize alternative charging methods.
Wireless charging is one of these methods for electric vehicle batteries. With this method, it
is possible to easily charge the vehicles without the need for any cable connection to the
vehicle and to increase the range by charging them in parking areas, while waiting at the

Energies 2022, 15, 4962. https://doi.org/10.3390/en15144962 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15144962
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-0213-884X
https://orcid.org/0000-0001-9405-6854
https://orcid.org/0000-0002-2563-1218
https://orcid.org/0000-0002-6090-9609
https://orcid.org/0000-0002-8650-7341
https://doi.org/10.3390/en15144962
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15144962?type=check_update&version=2


Energies 2022, 15, 4962 2 of 24

red traffic lights or when the vehicle is stopped at the garage. WPT systems due to the
absence of physical contact or wired connections bring advantages such as ease of use, high
safety, high reliability, low maintenance cost and long service life. Due to these advantages,
it has a wide range of use not only with electric vehicles but also in applications such as
mobile phones, biomedical implants, industries such as the space industry or textile and
military applications [1–6].

There are three main wireless charging methods for EVs, and they are given in Figure 1.
These are static, quasi-dynamic and dynamic charging. Static charging is the wireless
charging of EVs in parking areas when it is in a stationary position. There are some
limitations to this type of charging, such as limited overall driving range, typically long
charging times, etc. Quasi-dynamic charging offers increased driving range along the trip,
with charging pads implemented at the bus stations and at traffic light stops [7]. This
means the EV can be charged not only during parking but also at temporary stops or while
moving slowly. In dynamic charging, the primary track is buried into the road and spread,
with the target to energize the EV during the trip while driving. The cost of dynamic
charging is more than the other charging methods, but the most important problem of all
EVs is the limited range, which can be eliminated with this method. A good review on
cost comparisons for charging methods was performed by investigating two commercial
product costs, and it seems that stationary charging is the most cost-effective method [8].
The main focus of this paper is a review of the stationary charging of EVs.

Figure 1. Wireless charging methods for EVs.

In this article, the parameters that are critical in the design of WPT systems, how and
why they are selected in the studies in the literature and which methods are used more
frequently are explained and shown with graphics. In addition, health standards and the
compatibility of the proposed structures with these standards are emphasized. It is a study
that design engineers can benefit from, especially when determining the parameters of a
WPT system to be used in electric vehicle charging. This paper reviews IPT systems and
is organized as follows. Section 1 presents the usage areas of WPT systems and why it is
needed. In addition, a brief overview of types of Wireless charging methods for EV batteries
is given. Section 2 explains the history of the evolution of WPT systems from the first
time the idea was introduced up to the present. Section 3 describes the working principle
of IPT systems and the fundamentals of this technology. In Section 4, comprehensive
design considerations in IPT systems are given based on the related literature on the recent
developments for design parameters, control methods and health issues. Most cited articles
in the literature are given in tabular form in the Appendix A in Table A1.
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2. History of WPT

In order to prove the mathematical theory put forward by James Clerk Maxwell
in 1873, Heinrich Rudolf Hertz conducted a series of experiments in 1887, and as a result of
these experiments, the existence of radio waves was revealed [9]. With the contribution
of these developments, the idea of WPT was first put forward by Nikola Tesla in 1891.
Tesla has conducted research towards the goal of transmitting electrical energy wirelessly
around the world. For this purpose, in 1899, the construction of the Wardenclyffe Tower
near Long Island Sound was started. The tower was never operational since the resources
of the project were exhausted [10]. In order to see the development of WPT technology
from past to present, the historical development is shown in Figure 2.

Figure 2. History of evolution of WPT [10–18].

In the late 1800s, only a few studies had been conducted aside from Tesla’s discoveries.
One of these studies was a patent registered by Hutin and Le-Blanc in 1894 [11], which
was the first known idea for energizing Electric Vehicles wirelessly. With the end of the
war period in the world, studies began to be published at the end of the 1900s. In 1964,
with the invention of rectenna and the developments in microwave technology, William
Brown tested the first microwave-powered helicopter [12]. The studies carried out in
these examples were applications where power transfer was carried out from only a few
millimeters of distance using a large amount of cores. In a study conducted in this period,
it was aimed to transfer power from a distance of only a few millimeters between primary
and secondary windings using a long ferrite bar [13]. In a study conducted in 1989, it was
aimed to reduce the switching losses by connecting parallel capacitors to thyristors and to
transfer high-efficiency wireless power. The power value of 500 W has been transferred
as approximately 260 W with an efficiency of 52% [14]. The article author completed his
doctoral thesis on this subject at Paris University in 1988, and this thesis is one of the
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first doctoral dissertations in this field. There are similar works in the literature [15,16].
The dynamic wireless charging of an electric vehicle from a distance of 75 mm and at
an alignment of ±400 mm and a power transfer of 1.2 kW was performed [17]. In the
early 2000s, the idea of wirelessly charging electric vehicles was brought up in New Zealand.
However, one of the first applications of this idea was carried out in 2002 in Genoa, Italy, in
the electric bus project that charged busses wirelessly at the bus stop, as shown in Figure 2.
The most important milestone after the idea of WPT was put forward by Tesla undoubtedly
occurred in 2007, when a group of researchers at MIT powered a 60 W light bulb at a
distance of more than 2 m [18]. Thus, the interest of scientists and technology companies
around the world has increased, and the number studies on this subject has increased
rapidly. Nowadays, by increasing the efficiency of WPT systems using newly proposed
topologies and designs, the usage area of this technology is widening. In addition to these
developments, there are still challenges to the wireless charging of EVs. Especially for
long-distance travel, dynamic WPT systems can be preferred since the charging time is still
the most important problem for EVs. However, this option is not cost effective. In addition,
high-power EV charging has a significant effect on the grid system, which is another critical
problem for the EVs and their charging methods. Moreover, by increasing the power and
operating frequency, the magnetic field exposure becomes more important.

3. Fundamentals of IPT Systems

In this section, different types of WPT systems, basic features and working principles
are explained. WPT systems can be grouped under three main headings in which power
transfer can take place by magnetic coupling, capacitive coupling and microwave propaga-
tion. Microwaves are applications where power transfer occurs with low efficiency by using
high frequencies over long distances. For short-distance power transfer, Inductive and
Capacitive Power Transfer (CPT) systems are the most popular used systems. Capacitive
Power Transfer has some limitations on the power levels and the transfer distance since
it is based on a confined electric field distribution between two conductive plates [19,20].
Inductive Power Transfer (IPT) systems are the most frequently used and well-known
power transmission systems that take advantage of magnetic flux distribution, applicable
to all ranges of power and have considerably longer transfer distances than CPT systems.
IPT systems are divided into two main groups according to the short and long distance
between the coils. Due to the large distance between the coils in loosely coupled systems,
the amount of leakage flux is high, and this is why it is named as such. Especially electric
vehicle charging applications are considered in this group. In tightly coupled systems,
there is a small gap between the coils, and the leakage fluxes are reduced and coupling is
increased by using the core. The scheme of the basic classification of WPT systems is given
in Figure 3.

In this work, loosely coupled IPT systems are reviewed. The operation of IPT systems
is based on the same principles as those of transformers. In the conventional transformers,
there is a ferrite core and the primary and secondary coils are wound around this core.
However, WPT systems can have a large air-gap air core transformer with an appropriate
capacitive compensation topology. The system basically consists of two coils which are
magnetically coupled. Figure 4 shows a magnetically coupled IPT system.

In Figure 4, L1 and L2 are the primary and the secondary coils, and C1 and C2 are the
compensation capacitors. M shows the mutual inductance, and φl1 and φl2 are the leakage
flux for the primary and secondary sides, respectively. The coupling coefficient (k) equation
is given below:

k =
M√
L1L2

(1)

Since the coupling coefficient value varies typically from 0.1 to 0.3 for a loosely coupled
IPT system [21] for common low power EV charging applications, by adding compensation
capacitors to work at resonance, a system that is highly efficient and more tolerant to
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misalignment between the receiving coil can be obtained. The resonant frequency equation
for a series RLC circuit is as follows:

ω0 =
1√
LC

(2)

Figure 3. Classification of WPT.

Figure 4. Fundamental structure of an IPT system.

The block diagram showing all components of an IPT system is given in Figure 5.

Figure 5. Block diagram of an IPT System.
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In the system fed from an AC power supply, the output of the PFC is DC voltage
and must be converted to AC voltage in order to create a time-varying magnetic field. A
high frequency square wave is obtained by using a full bridge inverter. A current that
starts flowing through the primary coil creates a time-varying magnetic field, which results
with a voltage induced in the secondary coil. With the help of a full bridge rectifier, this
voltage is rectified, and the current flows through the load that is connected to the output
of the system.

4. Design Considerations in IPT Systems

In this part of the paper, critical design parameters of an IPT system are investigated
in detail under subsections, and different system designs that have been studied in the
literature are presented and discussed. First of all, a presentation of the critical design
parameters that affect an efficient power transfer system is given in Figure 6.

Figure 6. Overview of factors affecting an efficient IPT System.

4.1. Coil Design

Coil design is one of the most important and critical design parameters in IPT systems.
It is possible to transfer desired power values with different coil shapes according to the
application area and needs. While there are generally no restrictions on the size and shape
of the primary coils, there are restrictions on the size of the secondary coils in particular.
The main reason for this situation is that the secondary coil is located on the system to be
charged, and it is desired to be as compact as possible. For example, since the secondary
coils of electric vehicles are located under the vehicle chassis, the secondary coil can be in the
dimensions reserved for this section at most. There are basic and widely used coil structures
for IPT applications in the literature such as circular, rectangular, hexagonal and square. It is
seen that mostly circular and rectangular-square structures are used in the literature [22,23].
The coupling coefficient, which is an important determinant of power transfer efficiency
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and depends on the coil design, is desired to be as high as possible. In order to see the
coupling coefficients of the basic coil structures, we performed the analysis of IPT coil
models on ANSYS Maxwell 3-D electromagnetic finite element modelling software. With
this analysis, the magnetic coupling performances of simple coil structures were examined,
and these results are valuable in terms of giving behavioral insights to the designers. For
a fair comparison, the coil area, conductor cross-section, the use of copper mass and the
distance between the primary and secondary coils are the same for all structures, and
Aarea = 4 × 104 mm2, Aw = 3.14 mm2, mcopper = 7307 mm3 and g = 50 mm, respectively.
The dimensions of different coil structures and coupling coefficient values are given in
Table 1. Basic coil structures are given in Figure 7.

Table 1. Coil specifications and results.

Coil Shape Parameter Dimensions (mm) Coupling Coefficient (k)

Circular radius 112 0.269
Hexagonal length of side 124 0.249

Rectangular Length × width 141 × 282 0.209
Square length of side 200 0.194

Figure 7. Coil shapes: (a) rectangular, (b) square, (c) hexagonal and (d) circular.

According to the results in Table 1, it is seen that the circular coil structure has the best
coupling, and the hexagonal coil structure is the structure that gives the closest result to the
circular. The coupling coefficients of the rectangular and square coil shapes are also very
close to each other, and they are preferable structures.

For the transmission of a nominal power of 30 kW over a distance of 45 mm, 800× 600 mm
and identical rectangular coils with small ferrite cores on the edge of the coils were used on
the primary and secondary sides [24]. The same research group also has another work with
a coreless coil design [25]. A 2 kW power transfer was achieved with an 82% efficiency over
a 150 mm distance by using a rectangular coil design [23]. A 3.7 kW application for EV
charging system with rectangular coils was built and implemented [26]. In a study using
a circular coil structure, the coil diameter was determined as 700 mm, and a parametric
optimization method was used to ensure the use of minimum ferrite core. It was aimed to
choose the most suitable design by placing 12 pieces of “I”-type ferrite cores in different
sizes and shapes [27]. A 1 kW design with a flat spiral square coil design was proposed
for mid-power EV charging [28]. Hexagonal coil was proposed to have a high coupling
coefficient, more tolerance to misalignment and effective structure for multi-array coils
such as honeycomb designs [29–32]. A circular coil structure is the most common, but it
is particularly sensitive to misalignment. In addition, the length of the main flux path in
the circular coil structure is one-fourth of the coil diameter, where this ratio is one-half
for the novel coil structure called DD [33]. In another work, the dimensioning of the DD
coil structure, which is one of the most commonly used, with widths from 300 mm to
1000 mm was investigated to provide WPT in large air gaps that can be used in charging
the battery of all SUV- and sedan-type electric vehicles of different powers [34]. In an
application where a DD structure is used, ferrite bars are placed at the end corners to
prevent leakage fluxes, thereby reducing the leakage fluxes by 46% [35]. The article in
which the BP (Bipolar Pad) design is proposed and compared with the DD structure is one
of the important structures [36]. The BP pad is a new structure where the two windings are
independent of each other and partially intersect. Their performance at 20 kHz frequency
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was compared and 25% less copper was used, although it gave similar results with the
DD structure. A ferrite-less DD structure with a reflection coil is proposed to design a
cost-effective system [37].

Since the receiver coil is on the vehicle chassis, an important problem to be considered
when designing the coil is the alignment problem that occurs between the primary and
secondary coils. The effect of the variation in the distance between the primary and
secondary coils and the misalignment on the coupling coefficient were investigated for
a circular coil structure [38]. In order to investigate the effect of the misalignment on the
system performance, the secondary coil shifted along the axis, and a high-efficiency power
transmission region was obtained [39]. With ferrite bars, it is ensured that the flux stays
between the primary and secondary coils, and a performance improvement is aimed for
the alignment problem (zero region) with the DD coil structure and an additional Q coil,
a structure called DDQ [33]. In a work aiming to solve the alignment problems with the
suggestion of asymmetric coil structure, a maximum output power of 15 kW was obtained
in the case of a 15 cm air gap and 400 mm lateral and 200 mm longitudinal misalignments.
In addition, with the DOFA finite element method called Dominant Field Analysis, which
provides convenience especially in the analysis of time-varying magnetic field vectors,
the receiver and transmitter windings are designed independently of each other [40]. In
recent years, new coil structures have been proposed specially to reduce the alignment
tolerance and increase the coupling coefficient. One of these structures is called a QDQ
(Quad D Quadrature) coil design. The outer large square coil has a 300 mm side length,
and the diameter of the inner circular coil is 100 mm. The coils are electrically connected in
parallel and magnetically in series. While the efficiency was 91.4% in perfect alignment,
the efficiency decreased to 78% in the case of 50% lateral misalignment [41]. A cross shape
of two rectangles coil structure was proposed to reduce the misalignment effect on the
performance of the system. It has been shown that this design has less misalignment
sensitivity and a higher coupling coefficient than circular and square coil shapes with low
self-inductance values [42]. One of the most suggested structures in recent years to increase
the coupling coefficient is the idea of adding auxiliary coils to the main coils, and they are
called intermediate coils. The amount of flux produced and the coupling coefficient can be
increased by adding one or more intermediate coils [43–45]. Thus, it is possible to increase
the power transmission capacity and efficiency. The intermediate coils can be placed at
any point between the primary and secondary coils with an independent compensation
capacitor [46,47]. Since a flat spiral coil structure is used in electric vehicle applications,
there are applications that are placed more in the area of the main coils [48–50]. A three-coil
design with an assistive coil for the CC-CV charging of a battery was proposed in [51]. To
increase the transfer distance, a multi-transmitter coil system is proposed in [52]. In [53], a
new coil design named RC has been proposed and compared with DD design. An RC coil
design requires less copper than a DD coil in terms of coupling performance.

As seen in Figure 8, mostly circular and rectangular coil structures are considered in
literature. Apart from these basic structures, DD and intermediate coil structures have been
emerging in recent years.

4.2. Operating Frequency, Power and Efficiency

One of the most important design parameters in WPT systems is the selection of
the operating frequency, power and the targeted system efficiency. By choosing a high
frequency value, while the coil sizes are reduced, especially the switching losses increase.
In Figure 6, the operating frequencies encountered in the literature and the efficiency
values obtained are shown. The operating frequency ranges used are concentrated in
two bands. In most of the studies, a 20 kHz operating frequency was chosen. With the
emergence of renewed interest in high frequency resonant WPT more than a decade ago,
the objective was to stay out of the audible noise region within the constraints of the power
electronics switches capabilities and their losses. With suitable switches, WPT systems
having operating frequencies of hundreds of kilohertz have been reported. For automotive
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EV charging, the WPT operating frequency was later standardized, and 85 kHz became the
common resonant frequency for standardized charging power levels. This evolution can
also be seen in Figure 9. Frequency selection determines the winding sizes and the number
of turns to be used. As the frequency increases, the number of turns to be used in the
primary and secondary decreases. However, constraints such as increased switching losses
and semiconductor choices to be encountered in power electronics and interaction with
other in-vehicle equipment should also be taken into account. In addition, high frequency
values cause the current to flow from the surface, not through the conductor cross section,
and this situation is defined as the skin effect. Especially in studies with high frequency
values, the use of litz wire should be preferred. Thus, equal distribution of the current
across the conductor cross-section is ensured and the skin effect can be reduced. Another
parameter that the frequency value affects is the proximity effect. As the frequency value
increases, the winding resistance increases, and the system efficiency decreases. With the
use of Litz wire, the winding resistance decreases and losses are reduced.

Figure 8. Number of works on coil structures used in academic studies by year of publication.

As seen from Figures 9 and 10, the frequency and efficiency values are increasing over
the years. Efficiency values have been reaching more than 90–95% in recent years. In the
first years, the operating frequency was chosen as 20 kHz in many applications. However,
in recent years, parallel to the developments in semiconductor switching technologies, the
value of the operating frequency has increased, and 85 kHz has gradually become a standard
value for standard charging power levels. In addition, many commercial companies
produce their products at two different frequencies, 20 kHz and 85 kHz. Figure 11 shows
the variation of power values selected in academic studies on wireless charging of electric
vehicle battery applications over the years. According to the graph, the most used power
range is between 1 and 5 kW, and values of 3.3 and 3.7 kW are especially selected. There
are some higher power values which are especially for EV buses. The power values of 3.7,
7, 11 and 22 kW have become standard charging values for EVs [54].
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Figure 9. Frequency values used in academic studies by years of publication.

Figure 10. Efficiency values used in academic studies by years of publication.
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Figure 11. Power values selected in academic studies by years of publication.

4.3. Compensation Topology

The idea of transferring power over long distances and with higher efficiency gave
rise to the idea of developing highly resonant systems. Despite the low coupling coefficient,
the freedom of position for the secondary coil and the realization of high efficiency power
transmission are important advantages [55]. In order to produce a sufficient magnetic field
in WPT systems, it is aimed to reduce the total reactive power drawn by adding resonance
capacitors suitable for the coil inductance values on the primary and/or secondary sides.
Basically, while the purpose of the compensation on the primary side is to reduce the
apparent power at the input, maximum power transfer is provided by eliminating the
secondary inductance with the compensation capacitor added to the secondary side. At the
same time, the output load value changes during battery charging. It becomes difficult to
control the system, and in this case, control is facilitated with the help of compensation [56].
As a result, by adding compensation capacitors to the primary and secondary sides, the
system can operate in resonance. The selection of the appropriate compensation topology
depends on the requirements of the application, and there are quite different topologies.
Compensation structures can be divided into two main groups, namely, four basic structures
and hybrid topologies containing different combinations of these basic structures. The
four basic structures can be listed as Series-Series (SS), Series-Parallel (SP), Parallel-Series
(PS) and Parallel-Parallel (PP). These basic compensation structures are given in Figure 12.

In Table 2, the resonance capacitor equations for the basic topologies are given. The
most important advantage of the SS topology is that the compensation capacitor values
are independent of the resistive load and mutual inductance. It only depends on resonant
frequency and self-inductance. Thanks to this advantage, the system remains in resonance
and becomes less sensitive in case of misalignment. However, in the absence of the
secondary coil, the primary coil will not be able to transfer its energy and will damage
the primary side circuit. In case of misalignment, the mutual inductance value decreases,
and hence, the coupling coefficient decreases. When the impedance equations seen by
the source are examined (given in [23]), in the SS and SP topologies, the total impedance
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decreases depending on the mutual inductance, while it causes the load on the secondary
side, and therefore, the current drawn by the source at the input, to increase. In PS and
PP topologies, while the total impedance increases, the current drawn from the source
and the load decreases significantly. In PP and PS topologies, more complex equations are
needed to calculate the primary capacitor, while the capacitor value depends on the mutual
inductance and load values. Another disadvantage is that a current source is needed at the
input in order to not be affected by instantaneous voltage changes [56]. In order to increase
the efficiency of PP and PS structures and to provide an easier inverter current control,
it is necessary to add extra inductance to the topology [57]. In [23], in a 200 kW design,
the coil copper mass requirements for the same power value were compared for different
compensation topologies. It was stated that the SS topology requires less copper and that
the SP structure requires 4.6% more, PS requires 30% more and PP requires 24% more
copper compared to the SS topology.

Figure 12. Basic compensation topologies.

Table 2. Compensation capacitor equations [25].

Topology Primary Compensation Capacitor

SS Cp = 1
ω0

2 L1

SP Cp = 1
ω0

2(Lp−M2/Ls)

PS Cp =
Lp(

ω0
2 M2

Rload

)2

+ω0
2 Lp2

PP Cp =
Lp−M2/Ls(

M2 Rload
Ls2

)2

+ω0
2(Lp−M2/Ls)

2

In addition to the basic topologies, there are hybrid topologies proposed in the liter-
ature to bring the advantages of different topologies together. These hybrid topologies
have advantages and disadvantages compared to each other [58]. For example, the CCL-S
structure has an extra capacitor connected in series on the primary side, and thanks to
this capacitor, it provides lower switching losses compared to the LC-S [59] structure. The
output current and voltage values of the SS, S-LCL, S-CLC, and SP topologies are inversely
proportional to the mutual inductance value, and the output power is inversely propor-
tional to the square of the mutual inductance. In LCL-LCL, LCC-LCC, LCL-S, LCL-P, PS
and PP topologies, the output current and voltage are directly proportional to the mutual
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inductance while the output power increases proportionally to the square of the mutual
inductance [60].

An application of hybrid compensation topology with CLC on the primary side LC
on the secondary side was implemented [61]. When the application of LCC compensation
for both sides is compared with an application of S/CLC, the S/CLC topology has less
components with a higher power density [62]. A hybrid compensation topology was
proposed for massive electric bicycles, and the performance was observed in the constant
current-constant voltage operation mode [63].

In Figure 13 the number of works is given for the compensation topologies used in
academic studies over the years. SS is the most selected topology for almost all application
fields of WPT since it has great advantages. In recent years, the number of applications of
hybrid compensation topologies are increasing. In Figure 13, the number of works for LCC
and LCL are given separately from the hybrid topologies since they are the most selected
topologies in hybrids.

Figure 13. Number of works of compensation topologies used in academic studies by year of
publication.

4.4. Health Issues

In the design of WPT systems, the effects of the targeted system on human health and
its interaction with other devices should be considered. There are standards that various
organizations have prepared and constantly update on this subject. The most important of
these are listed as follows, and the frequency levels are given in Table 3:

- IEEE standard for determining the level of human exposure to radio frequency
electromagnetic fields. Basic Specifications: 3 kHz to 300 GHz frequency range
(2005–2019 versions available) [64];

- ICNIRP Guidelines for time-varying electric and magnetic field exposure limits. Basic
Specifications: 1 Hz to 100 kHz frequency range, which means it is for low-frequency
applications (LFA) [65];

- ICNIRP Guidelines for time-varying electric and magnetic field exposure limits. Basic
Specifications: Frequency range, 100 kHz to 300 GHz, which means it is for high-
frequency applications (HFA) [66]
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- Canada Environmental and Radiation Health Sciences Directorate (ERHSD) guide
for the protection of consumers from radiation. Basic Specifications: 3 kHz–300 GHz
frequency range, 2015 [67];

- SAE (Society of Automotive Engineers) J2954 standard is a constantly updated stan-
dard for Electric vehicles and Plug-in Hybrid Electric vehicles in the power ranges
from 3.7 kW to 22 kW, 2020 [54];

- The guidelines for Wireless Power systems prepared by the Broadband Wireless Forum
Japan. It is a standard that can be used for applications operating in the frequency
range of 10 kHz to 10 MHz, which was last updated in 2013 by a consortium formed
by a group of researchers in 2009 [68].

Table 3. Frequency ranges for standards.

Health Standard Frequency Range

IEEE 3 kHz–3 GHz
ICNIRP for LFA 1 Hz–100 kHz
ICNIRP for HFA 100 kHz–300 GHz

ERHSD 3 kHz–300 GHz
SAE 80 kHz–90 kHz.

Wireless forum of JAPAN 10 kHz–10 MHz

The most used and frequently updated guidelines on EMC issues on WPT systems
are listed in [69]. The most widely used of these standards are IEEE, ICNIRP and SAE,
and updated versions of these standards can be purchased for a fee. The variation in and
comparison of exposure values allowed by ICNIRP and IEEE standards over the years
are given in [70]. The threshold values for electric and magnetic field density allowed
according to the ICNIRP standard are relatively lower than other standards. While creating
the standards, the frequency values are roughly divided into low and high frequencies.
While 1 Hz–100 kHz is considered as a low-frequency region, values of 100 kHz–300 GHz
and above are considered as high-frequency regions and are published according to this
separation in the standards. One hundred kilohertz is considered as a limit value, and
when working above this value, the effect of heating effects should be taken into account,
and the Specific Absorption Rate (SAR) value should be calculated. Studies have shown
that if the human body is exposed to frequency values from 10 MHz to several GHz, the
body temperature will increase by 1 to 2 ◦C. In addition, there are studies showing that
there is an increase in childhood leukemia and various types of cancer in cases of long-term
exposure. However, it is not possible to make a definite judgment about the small number
of subjects in the studies and whether exposure was the root of the problems.

The conductivity (S/m) and relative permittivity (F/m) values for relevant human
tissues at 100 kHz frequency are given in [71]. In order not to exceed the permissible
threshold values, many methods have been proposed in the literature and supported by
studies. A shielding sensor coil was proposed for reducing the leakage magnetic field for a
500 W WPT system, and the measurement results were compared to SAE standards [72].
Magnetic field density values for a 2 kW WPT system with an operating frequency of
20 kHz, which is the frequency range commonly used in electric vehicle applications, are
investigated and measured in terms of human exposure can be shown as an example
study [27]. An aluminum plate is used as shielding to reduce magnetic field density values
in this work. In order to show the effect of aluminum shielding effect on magnetic field
density values of a 1 kW WPT system with an operating frequency of 20 kHz and hexagonal
coil, the 3D model was created and analyzed on ANSYS Maxwell [30]. The FEA (Finite
Element Analyses) results show that the aluminum shielding has a significant effect on
reducing the magnetic field density. The results are given in Figure 14.
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Figure 14. Effect of aluminum shielding on magnetic field density values [30].

In a study conducted at the University of Wisconsin, Madison, it was aimed to have
low electric field and magnetic field density values in the air gap at powers at the kW
level. With a six-step design, the optimal system parameters were obtained, and a design in
accordance with health standards was obtained [70]. Since it is operated at high frequencies
(a few MHz), losses increase due to proximity and skin effects. In order to reduce these
losses, the performances of different types of conductor cross-sections were studied, and
a new conductor cross-section shape was proposed [73]. Although the use of aluminum
as shielding provides significant success, it causes an increase in eddy losses. In order to
eliminate this, by adding auxiliary coils, the magnetic flux remains between the primary
and secondary coils, and a design in accordance with health standards is proposed [74].

4.5. Control System

The best switching frequency, the most suitable passive components and switches can
be selected according to defined objectives and desired trade-offs using the optimization
algorithms. The switching frequency is based on the losses and applied control techniques.
These control techniques are explained in this section.

4.5.1. Controller Location

The control techniques of wireless power transfer (WPT) typically aim to regulate
battery the CC/CV charging. A comparison of CC and CC/CV charging for a WPT system
is well studied in [75]. The results show that CC charging has a little higher efficiency than
the CC/CV method, and the CV stage takes most of the charging time. Generally, these
control techniques consist of three parts which are primary-side control, secondary-side
control and dual-sided control [76]. Wireless communication transmits the SoC data from
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the secondary side to the primary side as illustrated in Figure 15 [77]. To design a series-
series compensated primary controlled IPT battery charging system, the controller location
is very important because of the required and sufficient data to be obtained [78].

Figure 15. Block diagram of a series-series compensated primary controlled IPT battery charging
system [78].

The active rectification is required by the secondary-side control. In addition, this
control is used in the multiple pick-up coils connected applications [79–84]. However, both
full bridge and active rectifiers are controlled to manage the power flow to the load by
the dual-sided control [81–84]. To achieve maximum efficiency for multiple receivers by
determining an optimum primary side current and load resistance, a closed-form equation
was proposed [85]. For a three-coil system, the load-independent output current system
was investigated, and the results show that there are two different operating frequency to
achieve constant output current [86]. Implementation of a uniform voltage gain control
system for misalignment conditions is given and studied [87]. Three-phase charging based
on an equivalent three-phase grid connected inverter is given in Figure 16.

Figure 16. Three phase charging based on equivalent three-phase grid connected inverter [82].
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4.5.2. Control Variable

A control law of a WPT should keep track of:

• Output (battery) voltage, battery current and SOC;
• Reactive power and WPT network impedance;
• Maximum efficiency.

A variation in either the phase shift between the two converter bridge legs, the
switching frequency or the DC-link voltage occurs [76,77,88]. The basic voltage equations
can be written with fundamental frequency and depicted AC equivalent circuit in Figure 17
for IPT, where M is the mutual inductance of the transformer:

v1 = −jωM× i2 (3)

v2 = jωM× i1 (4)

Figure 17. Equivalent circuit for fundamental frequency approximation of IPT [88].

As it can be seen from these equations, although the load current reduces, transmitter
current is related to output voltage, and therefore, it remains the same for constant output
voltage applications, i.e., battery charging. Resulting in a reduced efficiency due to the
conduction losses of the switches and the resonant circuit for light load conditions [89].
This problem can be solved by implementing a half-controlled or fully controlled rectifier
and employing a dual-side phase shift control as explained in [90].

In order to control the output power, the switching frequency is increased to operate in
the region, where resonant tank impedance Zin is higher and the primary current i1, as well
as the transmitted power, is reduced. In case of magnetic coupling or load variations occur,
it may take time to settle to new operating point with frequency modulation, and excessive
output voltage may be observed during this transition [88]. Another important drawback
of this control method is high conduction losses, especially at light load conditions caused
by the increased reactive power as a consequence of the frequency detuning [89,90]. Dual
(self-sustained) control of IPT is giving in Figure 18 [90].

Figure 18. Dual (self-sustained) Control of IPT [90].

In [89], it is reported that a desired load performance can be achieved with the constant
switching frequency operation at the resonant frequency of the IPT and the two DC-link
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voltages U1 and U2 are used to control the output power. Control methods regarding bi-
directional power transfer are elaborated in [90]. The IPT-based control strategies to transfer
wireless power on the H-bridge inverter are phase shift control and frequency control.

5. Discussion

This paper has reviewed the development history and fundamentals of the Inductive
Power Transfer technology with a comprehensive review of the design of coil structures,
compensation topologies, health issues, control systems, selection of the operating fre-
quency and power ranges for EV applications. A comparison of basic coil structures in
terms of coupling coefficient has been performed by using ANSYS and Maxwell 3D FEM
software. According to analysis results, the circular coil structure has the best coupling
coefficient, and it is the most widely studied coil structure in the literature. The DD and
intermediate coil structures are receiving attention in recent years. In the first years of
the technology, a 20 kHz operating frequency was a typical choice. However, with the
development of semiconductor technology higher frequencies have been used and 85 kHz
became a standard for electric vehicle charging at standardized power levels up to 22 kW.
The primary and secondary sides need to be compensated in a high-efficient IPT system
with compensation capacitors. Series-Series (SS) compensation is the most used topology,
especially for EV battery charging applications. IPT systems have an effect on human
health, and this effect should be considered during the design. There are several standards
published and constantly updated on this issue. Applied control techniques have been
discussed. These discussions and reviews show that IPT systems will have a significant
role in the charging of EVs in the next years. From a technical view some of the literature
gaps and ideas for future works are as follows:

(a) High-power transfer with smaller size coils and smaller compensation topologies,
which will make the system lighter and lower cost;

(b) The role of the WPT systems in fast and extreme fast charging technologies since the
charging time is still a problem for EVs;

(c) The effect of time-varying electric and magnetic field in WPT systems on consumer
health need further detail studies and EMC problems should be discussed;

(d) Grid management according to Static and Dynamic WPT systems and Vehicle-to-Grid
(V2G) technology through Wireless EV charging;

(e) Modular systems for WPT applications are receiving more attention these days and
the power range of this type of applications could be varies from low power to
high power;

(f) Electrifying roads are another hot topic for this technology, which is under develop-
ment in some pilot projects around the world and expect to be commercially available
in the near future.

According to the state-of-the-art, higher switching frequencies, novel coil designs and
various compensation topologies will be proposed in the next future.
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Appendix A

Table A1. Most cited articles in the literature.

Work Year Frequency (kHz) Airgap (mm) Power (kW) Core Coil Structure C.Topology Efficiency (%)

[91] 2000 20 N/A 20 N/A N/A N/A N/A
[24] 2001 19.7 45 30 Yes Rectangular N/A N/A
[92] 2004 20 45 30 No Rectangular PP N/A
[93] 2004 20.9 45 30 No Rectangular LCL-P 85.8
[25] 2005 20 45 30 No Rectangular LCL-P N/A
[1] 2007 14.9 200 5 No Rectangular SS 89.8

[23] 2009 20.1 150 2 No Rectangular SS 82
[94] 2010 20 170 3 N/A N/A N/A 72
[27] 2011 20 100 2 Yes Circular PP 85
[95] 2012 20 255 5 Yes Circular LCL 90
[96] 2012 30 N/A 6.8 N/A N/A SS N/A
[33] 2013 20 200 2 Yes DD, DDQ PP N/A
[97] 2014 165 150 4 No Circular SS N/A
[98] 2014 96 40 4 Yes Circular SS N/A
[99] 2014 20 N/A 20 N/A N/A LCL 88

[100] 2014 85 N/A 22 N/A N/A SS N/A
[101] 2015 160 203.2 1 No Square SS 93.7
[102] 2015 30 150 2 Yes Circular SS 89.15
[103] 2015 35 135 3 Yes Circular SS 94.2
[104] 2015 90 200 3.3 No Intermediate SS 96.56
[105] 2015 95 150 5.6 Yes DD LCC 95.36
[106] 2015 20.3 120 6.6 No Circular SS 88.1
[107] 2015 N/A 100 N/A No Circular SS 90
[41] 2016 33 300 1 No Intermediate SS 80

[108] 2017 85 150 3 Yes Rectangular LCC 95.5
[109] 2017 20.15 185 1 Yes Circular SS 96
[50] 2018 59.5 200 3.7 No Intermediate SS 97.08
[110] 2019 62 300 3 Yes Square SS 90.9
[37] 2019 85 175 3.4 Yes DD PP 89
[111] 2019 85 150 3.09 Yes Intermediate LCC 95
[112] 2020 85 150 7.7 No Rectangular SS N/A
[113] 2020 85 200 3 Yes BP Hybrid 95
[114] 2020 85 N/A 3.8 N/A Circular LCL N/A
[115] 2020 85 N/A 0.5 Yes Circular LCC 95
[116] 2021 85 175 2.2 Yes Intermediate SS 89
[117] 2021 85 150 1 No Intermediate LCL 90
[30] 2021 20 100 1 No Hexagonal SS 85
[32] 2021 85 100 0.2 No Hexagonal SS 80
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