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Abstract: Wireless powered communication networks (WPCNs) will be a major enabler of massive
machine type communications (MTCs), which is a major service domain for 5G and beyond systems.
These MTC networks will be deployed by using low-power transceivers and a very limited set
of transmission configurations. We investigate a novel minimum length scheduling problem for
multi-cell full-duplex wireless powered communication networks to determine the optimal power
control and scheduling for constant rate transmission model. The formulated optimization problem
is combinatorial in nature and, thus, difficult to solve for the global optimum. As a solution strategy,
first, we decompose the problem into the power control problem (PCP) and scheduling problem.
For the PCP, we propose the optimal polynomial time algorithm based on the evaluation of Perron–
Frobenius conditions. For the scheduling problem, we propose a heuristic algorithm that aims to
maximize the number of concurrently transmitting users by maximizing the allowable interference
on each user without violating the signal-to-noise-ratio (SNR) requirements. Through extensive
simulations, we demonstrate a 50% reduction in the schedule length by using the proposed algorithm
in comparison to unscheduled concurrent transmissions.

Keywords: wireless powered communication networks; energy harvesting; full-duplex; power
control; scheduling; multi-cell network

1. Introduction

According to the recent Ericsson mobility report, 24.6 billion sensor nodes are expected
to be installed by 2025 [1]. The majority of the applications in real time monitoring and
industrial automation have strict delay requirements [2]. Therefore, increasing the lifetime
of this massive number of sensor nodes while satisfying their latency requirements is a ma-
jor challenge for future wireless networks. Moreover, to fulfill these diverse requirements,
this massive installation will be deployed by using low power transceivers with energy
harvesting capability, simple receiver circuitry, and intelligent medium access protocols [3].

For perpetual energy, due to full control of the energy transfer, small form factor,
long range and no alignment requirements, the radio frequency (RF) energy harvesting
(EH) is a promising technique for the wireless energy transfer for IoT and MTC type
applications. In the literature, RF-EH has been investigated with two models named the
simultaneous wireless information and power transfer (SWIPT) and wireless powered
communication network (WPCN). In SWIPT, the same signal is used for simultaneous
energy and information transfer.

The authors in [4,5] analyzed the trade off between energy efficiency and information
transmission capacity for a single user using additive white Gaussian noise and a flat fading
channel, respectively. The multi-user SWIPT was investigated for data buffer constrained
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sum throughput maximization [6] and energy efficiency maximization under the energy
causality constraint [7].

On the other hand, WPCN consists of a hybrid access point (HAP), which is respon-
sible for dedicated energy transmission in the downlink and a set of users that harvest
this energy to transmit back their information to the HAP in the uplink. The authors in [8]
introduced the first protocol for the sum throughput maximization of a WPCN, in which
the frame length is divided into two non-overlapping phases dedicated for energy and
information transfer. In this half-duplex model, as energy and information take place in
different phases, the information transmission order of the users is not important, thus, no
scheduling algorithm is required.

To increase the energy harvesting rate of such networks, the usage of multiple energy
transmitters is investigated in [9–11]. Particularly, [9] studied the time allocation and
load balancing for the throughput maximization, [10] provided the implementation of a
test-bed to maximize the amount of harvested energy, and [11] investigated a wireless
body area network with the objective of maximizing the sum throughput. Furthermore,
to increase the network coverage, multi-cell WPCN, in which multiple HAPs are used
for both energy transmission and information reception, were investigated for minimum
throughput maximization [12] and throughput maximization through beam-forming [13].

However, these objectives fail to provide any delay guarantee, which is necessary
for the time critical networks. Only [14] considered the minimum length scheduling
problem. All of these problems investigated for multi-cell network consider half-duplex
model, which results in an under utilization of the time and energy resources due to
non-overlapping energy and information transmission phases.

1.1. Related Works

Due to the recent advances in self-interference cancellation techniques for wireless
networks [15–18] and the related practical implementations [19,20], full-duplex has become
a potential transceiving technique for 5G and beyond networks. In full-duplex, the uplink
and downlink transmissions take place simultaneously using the same frequency reducing
the spectrum requirements to half, i.e., either the spectral efficiency or the total number of
users within a cell zone can be increased by a factor of two. From a practical implementation
point of view, [21] presented an experimental setup for low complexity full-duplex design
by employing the passive suppression with a patch antenna and active self-interference
cancellation by using estimation and reconstruction of the interfering signal.

The authors in [22] implemented a prototype for full-duplex operation by implement-
ing a wide-band RF canceller and an adaptive non-linear digital canceller. In the context of
full-duplex networks, [23] categorized all the users into lethargic users, i.e., users with low
energy levels and energetic users, i.e., the users with sufficient energy stored in their batteries.
The authors proposed a medium access protocol named FarMac, which aims to maximize the
energy transferred to the lethargic users and information received from the energetic users.

The authors in [24] investigated the minimum length scheduling problem for a single
cell continuous rate transmission model. To solve the problem, the authors used a penalty
function defined as the difference between the actual transmission time and the minimum
transmission time of a user at a particular scheduling decision time. Since the penalty
function is purely characterized for a single user, the solutions are not applicable for
concurrent transmissions. The authors in [25] solved the sum throughput maximization
problem for a single cell continuous rate model.

The continuous rate model is hard to realize practically for such low energy harvesting
networks. To address this issue and to simplify the receiver structure, The authors in [26–28]
studied an on–off transmission scheme for a single cell network with the objective to derive
the outage probability, minimize the schedule length, and maximize the sum throughput,
respectively. In an on–off transmission scheme, the users either transmit information using
the maximum allowed transmit power or remain silent if they do not not have enough
power to achieve this power level throughout their transmission.
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The researchers in [3,29,30] further extended these formulations to investigate the
minimum length scheduling problem and sum throughput maximization problem for a
discrete rate model, where any finite set of discrete transmission rate values are supported.
In [3], the authors defined the minimum length scheduling (MLS) slot, which is defined
as the slot corresponding to the minimum transmission completion time while starting
anytime after the scheduling decision time.

The scheduling problem is solved based on the allocation of the MLS slots to the
users. The MLS slot is purely defined for a single user without considering the concurrent
transmissions and inter-cell interference. Since the MLS slot specifically focuses on the
first time instant at which transmission is feasible for a specific user; it is not generalizable
to multi-cell networks in which the feasibility of the transmission of a particular user
depends on the other concurrently transmitting users. All of these studies consider a
single cell network, which limits their wide deployment due to low energy harvesting rate,
limited applications and impractical model for wide coverage, which does not consider the
inter-cell interference.

The major challenge for multi-cell WPCN is to determine the group of users that will
transmit simultaneously. For a single cell scenario, it is easy to come up with some certain
characteristics that can help to determine the optimal solutions. However, for a multi-cell
scenario, the per user characteristic based solutions, such as penalty or MLS slot-based
solutions, are not applicable since the transmit powers, transmission rates, interference, and
energy harvesting characteristics are now dependent on a set of concurrently transmitting
users rather than the characteristics of a single user.

In [3,24], the authors proposed solutions relying on the characteristics of the user
without considering the other users; however, in the multi-cell scenario, we need to
consider all the simultaneously transmitting users. To the best of the authors’ knowledge,
this is the first study to investigate the multi-cell full-duplex WPCN while considering the
self-interference and inter-cell interference for a simultaneous transmission of the users.

1.2. Contributions

The goal of this paper is to determine the optimal power control and scheduling for
the constant transmission rate model with the objective of minimizing the schedule length
for a realistic multi-cell full-duplex WPCN system. In full-duplex, all the users can harvest
energy during the information transmission of other users. Therefore, the users with lower
energy level can be scheduled later so that they harvest more energy and can transmit
their information in shorter time. Moreover, in multi-cell WPCN, the users transmitting
information simultaneously interfere with each other, which necessitates an intelligent
grouping mechanism to minimize the interference among the concurrently transmitting
users. The original contributions of this paper are listed below:

• We propose an optimization framework for the minimization of the schedule length
in a full-duplex multi-cell WPCN for the first time in the literature. The framework
considers the concurrent transmissions of the users, and incorporates the non-linear
energy harvesting model for a full-duplex WPCN, in which the HAPs and users both
operate in full-duplex mode.

• We formulate a mixed-integer non-linear optimization problem to minimize the
schedule length. The formulated optimization problem is non-convex and generally
hard to solve for the global optimal solution. As a solution strategy, we perform
decomposition of the optimization problem into the power control problem and
scheduling problem.

• For the power control problem, we propose an optimal polynomial time algorithm
based on the evaluation of the Perron–Frobenius conditions.

• For the scheduling problem, we propose a heuristic algorithm based on the max-
imization of the number of concurrently transmitting users within a transmission
slot by maximizing the allowable interference on each user without violating their
signal-to-noise-ratio (SNR) requirements.
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1.3. Organization of the Paper

The rest of the paper is organized as follows. Section 2 describes the system model
and assumptions. Section 3 presents the mathematical formulation of the minimum length
scheduling problem. Section 4 provides the problem formulation and solution for the
power control problem. The scheduling algorithm is given in Section 5. Section 6 provides
the performance evaluation of the proposed scheduling scheme. Finally, our concluding
remarks are given in Section 7.

2. System Model and Assumptions

The system model and related assumptions are described as follows:

• We consider a multi-cell WPCN, which consists of K HAPs and N users denoted by
N as shown in Figure 1. All the HAPs and users are equipped with a full-duplex
antenna. The HAPs are connected to a stable power line and transmit at a constant
power Ph continuously. On the other hand, users do not have any external power
supply and can only harvest energy from the HAPs. The harvested energy is stored
in a rechargeable battery with initial level Bn for user n, where n ∈ N , and capacity
Bmax. The users can harvest energy from all the HAPs but only transmit information
to a single HAP to which they are connected to. The set of users connected to HAP k
is denoted by Lk for k ∈ {1, · · · , K} such that

⋃K
k=1 Lk = N . The important symbols

used in this paper and their definitions are given in Table 1.
• We consider the time division multiple access (TDMA) protocol within each cell

for the uplink information transmission. The TDMA is more power efficient since
it allows the users to keep their transmitter circuitry inactive until their particular
allocated time slot. One of the HAP works as the central HAP, i.e., central gateway
and network manager in WirelessHART or system manager in International Society
of Automation (ISA) 100.11a [31]. During the initialization phase, all the HAPs collect
the channel state information (CSI) from the users and share it with the central HAP.
The central HAP then runs the algorithm and shares the resulting resource allocation,
scheduling decisions, and synchronization information by using a beacon transmitted
to all the HAPs.
Since the focus of this study is to design a resource allocation and scheduling algorithm,
the mechanisms for synchronization are out of scope of this paper and can be found
in [32]. The total time in which the system remains operational is partitioned into
frames, and each frame is further divided into M variable length non-overlapping time
slots. In each time slot, a subset of users from different cells transmits their information
simultaneously to their respective HAP. No intra-cell interference exists except the self
interference at the HAP due to full duplex operational mode. However, simultaneous
transmitting users from different cells may create interference to each other.

• The uplink information transmission and downlink energy transfer channels are
assumed to be different. The uplink channel gain from user n to HAP k is denoted
by gnk, and the downlink channel gain from HAP k to user n is denoted by hnk. We
assume that all the channels are quasi-static, i.e., the channel gains remain the same in
the current frame and can vary independently in the next frame [12,33–35]. We further
assume that the channel state information is perfectly known at the HAP [8,35,36].

• We assume that user n has a traffic demand Dn bits to be transmitted in each frame.
• We assume that each user allocated to the transmission slot m transmits information

at constant rate r if the SNR of user n is above a fixed threshold γn as

Pngnn

NoW + W ∑j 6=n Pjgjn + βPh
≥ γn, n ∈ N (1)

where Pn is the transmit power of user n, W is the channel bandwidth, No is the
noise density, βPh represents the interference created by the energy radiation by the
HAPs including self-interference and interference from the other HAPs, and the term
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W ∑j 6=n Pjgjn is the interference at the HAP to which user n is connected from other
users that are concurrently transmitting information in slot m.

• We consider a realistic non-linear energy harvesting model [37], in which the energy
harvesting rate for user n is

Cn = Ps[Ψn −Ωn][1−Ωn]
−1 (2)

where Ωn = (1 + eanbn)−1 is a constant to guarantee zero-input zero-output response;
Ps is the maximum harvested power during saturation; and Ψn = (1 + e−an(PT

n −bn))−1

is the logistic function related to user n. a and b are the positive constants related to
the non-linear charging rate with respect to the input power and turn-on threshold,
respectively. For a given energy harvesting circuit, the parameters Ps, a and b are
determined by curve fitting.

• We assume that the users can harvest energy from all the HAPs, and the total power
received by user n is given as follows:

PT
n =

K

∑
k=1

hnkPh (3)

Table 1. Symbols and notations.

Symbol Definition

N Total number of users

K Total number of HAPs

M Total number of time slots

gnk Uplink channel gain from user n to HAP k

hnk Downlink channel gain from HAP k to user n

τm The length of transmission slot m

xm
n Transmission rate of user n in slot m

zm
n Time slot allocation variable

Dn Data requirement of user n

ri Transmission rate of user i

γn Signal-to-noise ratio threshold for user n

Ph Transmit power of HAP

βPh Power of Self-interference at HAP

Pn Transmit power of user n

Iij Interference of user i on HAP j

Pmax Maximum transmit power of a user

Cn Energy harvesting rate of user n

Bn Initial battery level of user n

Imax
n Maximum allowed interference level for user n

S Set of concurrently transmitting users

W Bandwidth

N0 Noise density

PT
n Total received power by user n

En Energy of user n

α Path loss exponent



Sensors 2021, 21, 6599 6 of 17

Inter-cell Interference

Information Transfer

Energy Transfer
𝐻𝐴𝑃1 

𝐻𝐴𝑃𝐾  

𝑈1 

𝑈|𝐿1| 
𝑈𝐾1  𝑈|𝐿𝐾 | ...

Figure 1. Multi-cell wireless powered communication network architecture.

3. Minimum Length Scheduling Problem Formulation

The joint optimization of the power control and scheduling for concurrently trans-
mitting users with the objective of minimizing the schedule length with the traffic de-
mand, energy causality, and user transmit power constraints is formulated and denoted by
MC −MLSP . The formulation of the constant transmission rate model is as follows:

MC −MLSP :
minimize

∑M
m=1 τm (4)

subject to
∑M

m=1 zm
n = 1, n ∈ N (5)

∑n∈Lk zm
n ≤ 1, m ∈ {1, · · · , M}, k ∈ {1, · · · , K}, (6)

xm
n τm ≥ Dn n ∈ N , m ∈ {1, · · · , M}, (7)

xm
n = zm

n r n ∈ N , m ∈ {1, · · · , M}, (8)

Pngnn
NoW+W ∑j 6=n Pjgjn+βPh

≥ γn, n ∈ N , (9)

Bn + ∑m
j=1 Cnτ j − zm

n Pnτm ≥ 0, n ∈ N , m ∈ {1, · · · , M} (10)

Pn ≤ zm
n Pmax, n ∈ N , m ∈ {1, · · · , M}, (11)

variables
Pn ≥ 0, τm ≥ 0, zm

n ∈ {0, 1}, n ∈ N , m ∈ {1, · · · , M}. (12)

The variables of the problem are Pn, the transmit power of user n; τm, the length of
transmission slot m; and zm

n , a binary variable, which takes a value 1 if user n is allocated
to slot m and 0 otherwise. xm

n denotes the transmission rate of user n in time slot m and r is
the constant rate level.

The objective of the optimization problem is to minimize the schedule length as given
by Equation (4). Equation (5) states that each user should be allocated to only one time
slot. Equations (6) represents that, at most, one user can be allocated to a slot for the same
HAP. Equations (7) and (8) together represent the traffic demand of users. Equation (9)
represents the condition for SNR to achieve a constant rate. Equation (10) gives the energy
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causality constraint: The total amount of available energy, including both the initial energy
and the energy harvested until and during the transmission of a user, should be greater
than or equal to the energy consumed during its transmission. Equation (11) represents the
maximum transmit power constraint for the users.

The optimization problem formulated in Equations (4)–(12) includes both continuous
variables, which are Pn and τm, and integer (binary) variables, such as zm

n . Furthermore,
it is a non-linear problem due to the multiplication of two variables in energy causality
constraint given in Equation (10). Hence, this is a Mixed Integer Non-Linear Program-
ming (MINLP) problem, which are, in general, difficult to solve for optimal solutions in
polynomial time [7].

Solution Framework

As the optimization problem is a Mixed Integer Non-Linear Programming (MINLP)
problem, finding the global optimal solution requires exponential time algorithms, which
are intractable even for medium size networks [38]. To overcome this intractability, we de-
compose the optimization problem into the optimal power control problem and scheduling
problem as detailed below:

• For a given set of concurrently transmitting users, we formulate the optimization
problem to determine the minimum transmission slot length and the corresponding
transmit power vector while considering the maximum transmit power constraint,
traffic demand, and energy causality of the users. We first show that the power control
problem is a feasibility problem, and then, by using the Perron–Frobenius condition,
we find the optimal power vector if the problem is feasible.

• Determining the power vector and transmission slot length for a given set of users
reduces the problem to the optimization of the concurrently transmitting users within
a transmission slot. For the scheduling problem, we exploit the affordable interfer-
ence levels of all the users and group them based on these interference levels while
considering the maximum transmit power and energy causality of the users.

4. Power Control Problem

In this section, we determine the optimal power control and time slot length for a given
set of concurrently transmitting users from different cells with the objective of minimizing
the time slot length. For simplification, we remove the superscript m in Section 3, which
represents the time slot index. The optimal power control problem is formulated as follows:
minimize

t (13)

subject to
Dn
xn
≤ t, n ∈ S, (14)

Bn + Cnt− Pnt ≥ 0, n ∈ S, (15)

Pn ≤ Pmax, n ∈ S, (16)

xn = r, n ∈ S, (17)

Pngnn
NoW+W ∑j 6=n Pjgjn+βPh

≥ γn, n ∈ S (18)

variables
Pn ≥ 0, t > 0, n ∈ S. (19)

The objective of this problem is to determine the optimal time slot length for a given
set of concurrently transmitting users in S. The constraints in Equations (14)–(18) represent
the traffic demand, energy causality, maximum transmit power, and constant transmission
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rate constraint, respectively. Note that Bn refers to the energy available at the start of the
transmission slot, and we used the same notation for simplicity.

This optimization problem can be reduced to a feasibility problem. If a feasible
power vector exists, then the optimal time slot length is t = max

n∈S
Dn/r. In the following,

we present the feasibility of the concurrent transmission of the users in set S. For the
feasibility of concurrent transmission, there should exist a set of transmit power levels
Pn, ∀n ∈ S, such that the SNR constraint given in Equation (18) is satisfied for each user in
S without violating the maximum transmit power and energy causality constraints given
in Equations (15) and (16).

At any decision time tdec, the existence of such a set of transmit power levels that satisfy
the Pmax constraint can be determined by using Perron–Frobenius conditions described as
follows: Let GS be a |S| × |S| relative channel gain matrix, in which aij = gji/gii represents
the entry of the ith row and jth column for i 6= j and aij = 0 for i = j. Let DS represent a
|S| × |S| diagonal matrix with the ith entry equal to γi.

Let σS be a |S| × 1 normalized noise power vector with the ith entry equal to
γiWN0/gii. Then, the Perron–Frobenius condition states that there exists a power al-
location vector that satisfies the Pmax constraint if and only if the largest real eigenvalue
of DSGS is less than 1 and every element of the component-wise minimum power vector
(I−DSGS)

−1
S is less than or equal to Pmax, i.e., (I−DSGS)

−1σS � Pmax, where Pmax is
a vector with all entries equal to Pmax.

For a feasible solution, the users must also satisfy the energy causality constraint,
therefore, if the transmit powers also follow the energy causality constraint, the solution is
feasible at the time of the decision.

Lemma 1. If Pmin = (I−DSGS)
−1σS is an infeasible solution to problem in Equations (13)–(19),

then, there is no feasible solution.

Proof. Let Pmin = {Pmin
1 , · · · , Pmin

|S| } denote the minimum power vector for a set S. Any

other power vector P
′

satisfying the SNR constraint is component-wise greater than Pmin,
i.e., P

′ � Pmin. Then, if Pmin is infeasible, there exists either Pmin
k > Pmax for any particular

user k ∈ S or required energy Ej is greater than the available energy, i.e., Ej = Pmin
j Dj/r >

Eavailable
j for any particular use j. Then, if Pmin is infeasible, there is no feasible solution for

problem in Equations (13)–(19), since either P
′
k will be greater than Pmax or E

′
j will be still

greater than Eavailable
j , making P

′
also infeasible.

The following theorem states that a feasible Pmin vector is an optimal solution to the
optimization problem in Equations (13)–(19).

Theorem 1. Let Pmin = (I−DSGS)
−1σS denote the minimum feasible power vector obtained

from Perron–Frobenius conditions. Then, if Pmin is feasible, i.e., Pmin � Pmax, and it satisfies the
energy causality constraint of each user, then, Pmin is an optimal solution to optimization problem
in Equations (13)–(19).

Proof. Any feasible power vector gives the same solution to problem in Equations (13)–(19),
i.e., t = max

n∈S
Dn/r. Thus, if Pmin is feasible, it is an optimal solution.

Since the computational complexity of evaluating Perron–Frobenius conditions for |S|
users is O(|S|3), the computational complexity of solving the power control problem for
the constant transmission rate model is O(|S|3).

5. Scheduling

In Section 4, we solved the power control problem optimally for a known set of users
transmitting information simultaneously. For all the users transmitting concurrently, the
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information transmission may be too long due to the extensive interference caused to each
other. Therefore, the schedule length can further decrease by intelligently grouping the
users into a set of subsets for concurrent transmission. However, determining the optimal
subsets of the users transmitting concurrently and their schedule requires an exponential
computational effort. Let ν = {νj : 1 ≤ j ≤ |ν|} denote the set of all possible partitions of
the set of usersN = {1, · · · , N}, where a partition of setN is defined as a set of nonempty
mutually exhaustive and mutually exclusive subsets of set N , e.g., for the set of 10 users,
{{1, 5, 8}, {4, 7, 9, 10}, {2, 3, 6}} is one possible partition of set N .

The total number of such partitions for a set of N users is |ν| = ∑N−1
j=0 (N−1

j )Bj, where

Bj is a Bell number with B0 = 1 and Bj = ∑
j−1
z=0 (

j−1
z )Bz. For a given partition of N , each

subset of users transmits information concurrently within a time slot. Therefore, for a
specific partition νj with ζ j number of subsets, the total number of possible transmission
sequences are ζ j!, i.e., for the above mentioned example ζ j = 3 resulting in six possible
transmission sequences.

Then, total number of possible transmission sequences for a set of users N is ∑
|ν|
j=1 ζ j!.

This exponential computational complexity of the scheduling problem makes the problem
intractable even for medium size networks. Hence, scalable and fast solutions are required.
In the following, we present the scheduling problems.

In this section, we present a heuristic scheduling algorithm, which aims at maximizing
the number of users within each concurrently transmitting set by maximizing the interfer-
ence on each user without violating the energy causality, SNR requirements, and maximum
transmit power constraint.

Let Imax
n denote the maximum allowed interference level from other users that a

particular user n can afford, i.e., any interference level greater than Imax
n results in an

infeasible transmission scenario for user n. This maximum allowed interference can be
determined by using Equation (9) as follows:

Imax
n = 1

W

[
Pngnn

γn
− N0W − βPh

]
, (20)

It is important to note that the maximum allowed interference level of any user is
an increasing function of the transmit power of that user. Hence, increasing the transmit
power allows the user to accommodate more interference and possibly the allocation of
more simultaneously transmitting users in a slot.

Furthermore, for a user n, the earliest scheduling time tsn is defined as the first
time instant when it can afford transmission at constant rate individually and is given
by tsn = max(0, Pmin

n Dn/Cnr − Bn/Cn − Dn/r), where Pmin
n = γn(N0W + βPh)/gnn, is

the minimum power required to achieve the SNR γn without any interference, which
is derived from Equation (18) for the case when the user transmits individually. In the
following analysis, we assume that Pmin

n ≤ Pmax exists, otherwise, the problem is infeasible.
The addition of any user in set S results in a delay in the earliest time instant tsn due to
increased interference.

The scheduling algorithm should determine the subsets of users such that the max-
imum number of users transmit their information simultaneously with the interference
level close to the Imax

n for each user n. Therefore, at any decision time tdec, first, we de-
termine a set of users that can afford the constant rate at tdec, i.e., the users for which
tsn ≤ tdec. Then, for this set of users, we evaluate the maximum power that they can afford,
i.e., Pn = max(Pmax, En(tdec)/(Dn/r)) and the maximum level of interference they can af-
ford from other users in a concurrent transmission, i.e., Imax

n = 1
W (Pngnn/γn−N0W− βPh).

Then, CRSA evaluates the pairwise interference of the feasible users and groups the
users from different cells such that the number of concurrently transmitting users within
each time slot is maximized without violating the maximum allowed interference level.

The Constant Rate Scheduling Algorithm (CRSA) is given in Algorithm 1 and de-
scribed in detail next. Let S = {S1, · · · , SM} be a set of subsets of users concurrently



Sensors 2021, 21, 6599 10 of 17

transmitting in time slots t∗ = {t∗1 , · · · , t∗M} by using powers P∗ = {P∗1 , · · · , PM}. The mth
entry of S denoted by Sm contains a subset of users that transmit simultaneously in the
mth time slot with duration t∗m = max

s∈Sm
Ds/r and corresponding power vector P∗m.

Algorithm 1 Constant Rate Scheduling Algorithm (CRSA)
Input: A set of users N
Output: Simultaneously transmitting user set in each slot S, transmission time for each
slot t∗, transmit power vector P∗

1: m← 1, tdec ← 0, P← 0, Imax ← 0, I← 0
2: determine tsn, for all n ∈ N
3: while N 6= ∅ do
4: F ← ∅, Sm ← ∅
5: if tdec < min

n∈N
tsn then

6: tdec = min
n∈N

tsn

7: end if
8: for n ∈ N do
9: if tsn ≤ tdec then

10: F ← F + n
11: En(tdec) = Bn + Cn(tdec + Dn/r)
12: Pn ← min(Pmax, En(tdec)/(Dn/r))

13: Imax
n ← 1

W

[
Pngnn

γn
− N0W − βPh

]
14: end if
15: end for
16: evaluate interference Ins of user n to s, for all n, s ∈ F
17: u← arg max

j∈F
Imax
j

18: Is ← 0, for all s ∈ F
19: Sm ← Sm + {u}
20: for k = 1 : K do
21: if u /∈ Lk then
22: F k ← Lk ∩ F
23: sort F k in descending order of Imax

n
24: for v ∈ F k do
25: if ∑j∈Sm Ijv ≤ Imax

v then
26: if Imax

s − Is ≥ Ivs, ∀s ∈ Sm then
27: Iv ← ∑j∈Sm Ijv
28: Is = Is + Ivs, ∀s ∈ Sm

29: Sm ← Sm +F k(v)
30: break,
31: end if
32: else
33: break,
34: end if
35: end for
36: end if
37: end for
38: t∗m ← max

s∈Sm
Ds/r,

39: N ← N − Sm

40: tdec = tdec + t∗m
41: m← m + 1
42: end while

Let Imax be a N × 1 maximum affordable interference vector, in which j-th entry
represents the maximum allowed interference level from other users on user j. Let I be
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a N × K pairwise interference matrix, in which Iij is the entry of ith row and jth column
representing the interference caused by user i on the HAP j.

The input of CRSA is a set of users denoted by N , whereas its outputs include a set S,
and corresponding time and power allocation vectors denoted by t∗ and P∗, respectively.
The algorithm starts by initializing the transmission slot number m to 1, decision time tdec
to 0, power vector P, maximum affordable interference Imax, and interference matrix I to 0
(Line 1). Then, it determines the earliest starting time tsn for every user n, n ∈ N (Line 2).

In each iteration, the algorithm determines the set Sm as well as their powers. The
CRSA first updates the decision time by setting it equal to the minimum of earliest starting
times of the users, since no user has enough energy for transmission earlier than (Lines 5–7).
Then, it checks the feasibility of each unallocated user based on their earliest scheduling
time (Line 9). For the set of feasible users at time tdec, denoted by F , CRSA evaluates the
amount of energy each user needs to complete its transmission, the maximum transmit
power, and the maximum interference each user can afford (Lines 11–13).

Once the set of feasible users F and their parameters are determined, the algorithm
groups the users in set F with similar interference characteristics for concurrent transmis-
sion. For this purpose, the algorithm evaluates the pairwise interference that each user in
F causes to others while transmitting simultaneously (Line 16). CRSA picks the user that
can afford the maximum interference from other users, since this allows the addition of
more users in the set of simultaneously transmitting users (Line 17).

Then, it initializes the interference that is created on a certain user by concurrent
transmissions Is to 0 and adds the user that can afford maximum interference to the set Sm

for transmission in the current time slot (Lines 18–19). The algorithm attempts to group the
most suitable user from each cell iteratively (Lines 20–37). For this, CRSA visits each cell
one by one and terminates the search when either a feasible user is found or no user can be
grouped from the current cell.

For each cell, CRSA first sorts all the feasible users within the cell based on their Imax
n

values (Line 23). Then, it checks the compatibility for each user for possible concurrent
transmission until it finds a suitable user from current cell. For a user v to be compatible
for concurrent transmission in the set Sm, the total interference caused by all the users in
set Sm must be less than Imax

v , i.e., ∑j∈Sm Ijv ≤ Imax
v (Line 25), and the interference caused

by user v must be less than the affordable interference margin of the existing users in set
Sm, i.e., Imax

s − Is ≥ Ivs, ∀s ∈ Sm (Line 26).
If the first condition is not valid for the user with maximum Imax

n value in the current
cell, this implies that no other user from current cell can afford this much interference, and
hence the algorithm moves to the next cell without picking any user from this cell (Line 33).
If the first condition is true but the user is causing excessive interference to the users in set
Sm, the algorithm continues searching among the remaining feasible users within current
cell for simultaneous transmission (Lines 24–32).

If both of these conditions are true, the algorithm updates the interference levels of
set Sm, adds this user to set Sm and moves to the next cell (Lines 27–29). Once all the cells
are visited, CRSA evaluates the transmission time slot length for Sm, updates the set of
unallocated users, the decision time, and the slot number (Lines 38–41). The algorithm
terminates when all the users are allocated (Line 3).

Note that in half-duplex, the transmission frame is divided into two non-overlapping
phases named the energy harvesting phase, in which all users harvest energy, and the
information transmission phase, in which the users transmit their information by using
the harvested energy. Due to fixed and equal energy harvesting duration for all users,
the scheduling is not that important, i.e., the order of transmissions in the information
transmission phase in not relevant since the users are not harvesting energy during the
information transmission time of other users.

On the other hand, in full-duplex, since the users can harvest energy during the
transmission of previously allocated users, this allows us to reduce the schedule length
by intelligently scheduling the users. If we eliminate the impact of self-interference, the
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proposed algorithm can be used for a half duplex system with minor modifications as
follows. The users can be grouped by exploiting the maximum affordable interference from
other users as performed in CRSA algorithm, and the energy harvesting duration τm

0 can
be determined for each group by using the half-duplex assumption in which no energy is
harvested during the information transmission phase. Then, the overall energy harvesting
duration will be max τm

0 for m ∈ {1, 2, · · · , M}.

6. Simulation Results

The goal of this section is to evaluate the performance of the proposed scheduling
algorithm in comparison to the multi-cell transmission with no scheduling and a previously
proposed penalty-based scheduling algorithm for a single cell network. The multi-cell
transmission with no scheduling, denoted by MCNS, randomly selects a single user from
each cell for the concurrent transmission by using the constant rate within a transmission
slot. The previously proposed penalty-based scheduling algorithm in [24], denoted by MPA,
aims to minimize the schedule length for a single cell full-duplex WPCN by scheduling the
users in increasing order of their penalties.

The penalty function of user i is defined as the difference between the actual trans-
mission time and the minimum possible transmission time at any decision time, where
the minimum possible transmission time of user i is the time corresponding to maximum
transmit power, i.e., Pi = Pmax. MPA uses the continuous rate model, in which the Shannon
channel capacity formula for an additive white Gaussian noise (AWGN) channel is used to
calculate the transmission rate of the users as a function of the SNR. For our simulations,
MPA picks the user with the minimum penalty among all the users within all cells and
allocates it to the current time slot without allowing concurrent transmissions.

Simulation results are obtained by averaging 1000 independent random network
realizations. The cells are uniformly distributed within a circle with radius 100 m, and the
users are uniformly distributed within the coverage of each cell with radius 10 m. The
attenuation of the links considering large-scale statistics are determined by using the path
loss model given by

PL(d) = PL(d0) + 10αlog10

(
d
d0

)
+ Z, (21)

where PL(d) is the path loss at distance d, d0 is the reference distance, α is the path loss
exponent, and Z is a zero-mean Gaussian random variable with standard deviation σ. The
small-scale fading is modeled using Rayleigh fading with the scale parameter Ω set to the
mean power level obtained from the large-scale path loss model. The parameters used
in the simulations are Dn = 100 bits for n ∈ N and the constant rate r = 50 Kbps. The
constant rate and corresponding SNR are linked to each other by the Shannon capacity
formulation; W = 1 MHz; d0 = 1 m; PL(d0) = 30 dB; α = 2.7, σ = 4 [8,24]. The self
interference coefficient β is −70 dBm. The initial battery levels of the users are 10−9 J,
Pmax = 1 mW and Ph = 1 W for the simulations, unless otherwise stated [24].

Figure 2 shows the schedule length of the algorithms for different HAP transmit
powers in a network of 10 cells and 50 users. The schedule length decreases as the HAP
transmit power increases, since higher HAP power allows the users to harvest more energy,
which allows users to reach the constant rate earlier and, hence, a lower waiting time.
For lower values of HAP power, the schedule length of CRSA is 50% less than MCNS,
since CRSA considers the concurrent transmission of users while considering their energy
harvesting rates and interference levels.

On the other hand, MCNS randomly selects users for concurrent transmission without
considering the energy harvesting rates and interference characteristics, which may lead
to grouping the users with very low energy harvesting rates or severe interference levels,
resulting in longer slot lengths. The MPA has a higher schedule length than CRSA, although
the MPA uses the continuous rate model, which has a natural advantage over the constant
transmission rate model; however, CRSA still performs better. Since CRSA considers the
concurrent transmissions while MPA only schedules a single user in each time slot, i.e.,



Sensors 2021, 21, 6599 13 of 17

no concurrent transmissions. It is important to note that CRSA gives a lower schedule
length in comparison to MPA due to the proper scheduling of the users for concurrent
transmission.
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Figure 2. Schedule length of the algorithms for different HAP transmit powers in a network of
10 cells and 50 users.

Figure 3 shows the performance of the algorithms for different number of cells in
a network with five users in each cell. The schedule length increases as the number of
cells increases in the network, since a higher number of cells results in a higher traffic
load, which requires more transmission combinations due to the different interference and
energy harvesting rates of the users. For a single cell network, MPA and CRSA almost
perform similar. This is due to the fact that there are no concurrent transmissions in a single
cell network.

The schedule length of CRSA is half of MCNS and 30% lower than MPA for larger
networks due to the intelligent grouping of the users for concurrent transmission. For the
MCNS, the steep increase in the schedule length is due to the fact that MCNS randomly
selects one user from each cell for simultaneous transmission, which may cause severe
interference to other users. For MCNS and MPA algorithms, the addition of a new cell
results in an almost constant increase. This is due to the fact that the addition of a new cell
increases the number of users in the network and, hence, interference for the concurrent
transmission.

For CRSA, the addition of a new cell results in less increase in the schedule length
compared to other algorithms. This is because the CRSA attempts to allocate more users
within a transmission slot; therefore, the user from a new cell is mostly accommodated
within the same transmission slot without any increase in the transmission slot length.

Figure 4 illustrates the impact of network size on the schedule length for the algorithms.
The schedule length increases as the number of users increases within each cell, since this
increase requires more transmission slots to complete the transmission of all the users. The
schedule length of MCNS increases almost linearly as the number of users increases in a
cell. On the other hand, the effect of each new user on the CRSA algorithm diminishes,
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since a higher number of users within each cell increases the probability of finding a more
suitable user for the concurrent transmission, resulting in smaller schedule length.
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Figure 3. Schedule length of the algorithms for different number of HAPs with five users in each HAP.
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Figure 4. Schedule length of the algorithms for different number of users in each cell in a network of
10 HAPs.
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Figure 5 illustrates the schedule length for different values of self-interference coeffi-
cient β. For lower values of β, i.e., −90 to −70 dBm, the schedule length is constant due to
the low impact of self-interference. Since the self-interference is very small as compared
to noise value; therefore, the SNR values do not change too much to affect the required
energy and transmission time. However, as the β increases, the schedule length increases
drastically due to the dominating effect of self-interference as compared to the noise power.
Due to this reason, the SNR drops quickly resulting in a lower probability of concurrent
transmissions. It is important to note that, due to intelligent scheduling of the users, the
schedule length of CRSA is almost half of the MCNS for higher values of β.
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Figure 5. Schedule length of the algorithms for different interference levels in a network of 10 cells
and 50 users.

7. Conclusions

In this paper, we formulated a mixed integer programming problem for the minimum
length scheduling problem to determine the power control and scheduling, which is
difficult to solve for the global optimal solution. As a solution strategy, we decomposed the
optimization problem into the power control and scheduling problems. First, we solved the
power control problem based on the evaluation of Perron–Frobenius conditions. Then, the
proposed optimal power control solution was used to determine the optimal transmission
time for a subset of users that will be scheduled by the scheduling algorithm.

For the scheduling problem, we proposed a heuristic algorithm based on the max-
imization of the number of concurrently transmitting users by maximizing the allowed
interference on each user. Through extensive simulations, we demonstrated that the pro-
posed solutions outperformed the conventional successive transmission and concurrent
transmission of randomly selected users for different HAP transmit powers, network
densities, and network size.
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