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Abstract: Recently, the widespread adoption of the Internet of Things (IoT) model has led to the
development of intelligent and sustainable industries that support the economic security of modern
societies. These industries can offer their participants a higher standard of living and working services
via digitalization. The IoT also includes ubiquitous technology for extracting context information to
deliver valuable services to customers. With the growth of connected things, the related designs often
suffer from high latency and network overheads, resulting in unresponsiveness. The continuous
transmission of enormous amounts of sensor data from IoT nodes is problematic because IoT-based
sensor nodes are highly energy-constrained. Recently, the research community in the field of IoT and
digitalization has labored to build efficient platforms using machine learning (ML) algorithms. ML
models that run directly on edge devices are intensely interesting in the context of IoT applications.
The use of intelligence ML algorithms in the IoT can automate training, learning, and problem-solving
while enabling decision-making based on past data. Therefore, the primary aim of this research is
to provide a systematic procedure to review the state-of-the-art on this scope and offer a roadmap
for future studies; thus, a structure is introduced for industry sustainability, based on ML methods.
The publications were reviewed using a systematic approach that divided the papers into four
categories: reinforcement learning, semi-supervised learning, unsupervised learning, and supervised
learning. The results showed that ML models could manage IoT-enabled industries efficiently and
provide better results compared to other models, with significant differences in learning time and
performance. The study findings are considered from a variety of angles concerning the industrial
sector’s capacity management of the new elements of Industry 4.0 by combining the industry IoT
and ML. Additionally, unique and relevant instructions are provided for the designers of expert
intelligent production systems in industrial domains.

Keywords: internet of things; industrial IoT; machine learning; industrial digitalization; sustainability;
energy; digital economy

1. Introduction

Significant quantitative and qualitative changes in sustainable industries have oc-
curred due to rapid progress in the fields of information technology (IT) and the Internet,
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which is integrated into the elements of companies. According to experts, the fourth in-
dustrial revolution (Industry 4.0) will commence in the coming decades. Digitalization,
information and communication technology (ICT), machine learning (ML), robots, and
artificial intelligence (AI) will drive the industrial revolution and result in the transfer
of decision-making to machines. The following societal trends will significantly impact
management practices and research [1]. However, many risks are associated with digitizing
conventional processes and equipment, including volatility, ambiguity, complexity, and
uncertainty. Therefore, digitalization presents both enormous challenges and enormous po-
tential for enterprises. The digital economy is volatile, uncertain, sustainable, and complex
due to the impacts of emerging technology on all economic and social sectors [2].

In order to create and implement technology to maintain a competitive advantage,
firms must go digital; this will trigger the digital revolution, which will alter every industry.
The introduction of digital technologies has allowed digitalization to permeate every part
of our lives. An organization can modify its business model and organizational structure
with the help of digitalization to stay competitive, increase productivity, lower production
costs, and forge new connections with customers. The use of digital technologies in a
wide range of applications and the changes that these technologies bring in the context
of companies, people, and smart objects, are referred to as digitalization [2]. Upcoming
organizations must change to remain competitive and provide for their consumers and
staff [3]. The phrase “Industrial Internet of Things” (IIoT), on the other hand, describes the
application of IoT technology to the industrial sector. Integration and the advancement of
IoT and industrial automation technologies are its primary goals [4]. The IIoT enabled the
never-before-seen integration of monitoring, production, and management subsystems.

While some firms and sustainable industries are now resisting technological advance-
ment, others welcome the idea of artificial intelligence (AI). As a result of their willingness
to pay for AI hardware, software, and interfaces, many financiers are investing more money
in AI enterprises to accelerate the use of AI in marketing. Internet goliaths such as Facebook,
Google, and others try to create tools to jumpstart customized advertising and enhanced
search engines. However, it is crucial to comprehend how traditional industries invest their
money in AI projects. In terms of ML, AI is supposed to open up the next digitalization
frontier. In light of the impending digital developments, businesses should be ready for
this kind of development as this would give the corporate sector a competitive edge in the
real world [5].

One effective way to manage organizational and industrial digitalization is by inte-
grating ML methods into Industry 4.0. ML serves as a leader in recognizing, planning for,
and responding to occurrences in each area [6]. ML will spark the next wave of digital
disruption. It is predicted that businesses will prepare themselves. Businesses that used
ML early on are benefiting from its use, compared to others. Future technologies based on
ML include computer vision, agents, robotics, sustainable industries, natural language pro-
cessing, and autonomous vehicles. Digitalization is the foundation of the new generation
of ML applications. The majority of the time, industries that embraced digitization are also
setting the pace for ML. They are also expected to stimulate growth. ML is anticipated to
hasten market share, revenue, and profit margin changes. Conversely, there are numerous
industries, goods, and services that have been disrupted by technology [7].

The novel element of the current article is in the type of applied method (a systematic
literature review (SLR)) in the aforementioned fields. The systematic approach represents a
very important and widely studied method for reviewing articles in a specific domain, one
that has been emphasized in many papers, such as in Refs. [8–11]. In this study, the applied
method delivers a clear and comprehensive overview of available ML- and IoT-based
organizational and industrial digitalization methods. Moreover, SLR can help us to identify
research gaps in this field. However, as far as we know, there is as yet no systematic
review analyzing IoT-based organizational and industrial digitalization using machine
learning methods. In addition, unlike similar review papers, the grouping is complete in
this paper and covers all the papers in this domain. The provided categorization in this
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paper includes: (1) supervised, (2) unsupervised, (3) semi-supervised, and (4) reinforcement
learning methods. This categorization has not been used before in any published article on
this issue. The most important goal of a systematic review is also to obtain answers to the
questions that are most necessary for researchers in terms of a review of the related articles.
One of the most important results of an SLR is to help researchers who want to research
the topic under study to identify the journals that contribute the most to the publication of
the topic in question. Furthermore, it identifies the most important challenges and open
issues, which can provide a roadmap for future researchers to direct further investigation.
In addition to this, the applied method in this study can introduce researchers to the most
important articles related to the subject under study. In addition, the most important
innovation in this article is that we have reviewed new and updated articles in this study
that have not as yet been considered in any other study. The present article aims to solve
the issues of current papers; paper construction is subordinated to this target. This study
has been performed to deliver an inclusive summary of the management of IoT-based
organizational and industrial digitalization using ML methods. The authors have chosen
several targets that must be achieved via this study:

• Proposing an SLR and investigating the strategies for the management of IoT-based
organizational and industrial digitalization, using ML methods;

• Offering useful reports around the topic of IoT-based organizational and
industrial digitalization;

• Detecting obstacles, prosperity criteria, and total notions that the management of
the IoT-based organizational and industrial digitalization may encounter, utilizing
ML methods;

• Summarizing the chosen articles comparatively;
• Categorizing the studied approaches and highlighting their important features;
• Identifying gaps in previous studies and providing solutions for future studies.

The present investigation addresses the issues below: Section 2 offers background
and related works; Section 3 discusses the methodology; Section 4 reviews the background
and the chosen articles; Section 5 offers a discussion of the presented results. Section 6
concludes the article and acknowledges the limitations of this work.

2. Background and Related Works

Intelligent manufacturing systems and digitalization are the foundations on which
the modern manufacturing, production, and industry sectors are being built. These rev-
olutionary adjustments, also known as Industry 4.0, are being made to achieve digital
transformation for organizational advantage. The development and facilitation of the smart
manufacturing system follow data, information, and operational technologies through
edge computing, blockchain, and ML [12]. The development of IoT and other intelligent
automation applications is being significantly fueled by expanding digitalization, which is
becoming more widely accessible. Digitalization’s arrival is more than just a generational
shift; it creates new opportunities for all IT industries [13]. Many articles have been written
on this subject, which will be reviewed in the following section.

Bauer et al. [14] examined the digitalization of industrial value chains and evaluated
case studies regarding Industry 4.0 in Germany. Seven industrial partners made up part of
the project’s 14 partners, who also created methodologies and tools for implementing the
application of intelligent digitalization and industrial automation. Over 385 case studies
were examined using comparison criteria in the report. Additionally, application cases
were categorized according to the degree of development of industry 4.0 promises and
ambitions. In terms of Industry 4.0, the three tiers of “information”, “interaction” and
“intelligence” were utilized to separate applications, based on their level of maturity.

Matt et al. [15] addressed the current increase in publications on the subject of digiti-
zation by conducting a thorough study of the literature on this significant organizational
and technological change in the manufacturing industry. They established 4 thematic
areas (technologies, impacts, enabling factors, and impediments) and produced a relevant
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segmentation of the existing publications after describing the various conceptualizations
of digitalization and the stages of its progress. They then conceptualized and empirically
defined a future research agenda on industrial digitization.

Tian [16] systematically examined the research results of China’s industrial digital-
ization and economic practices to promote the deepening and systematization of research
in this field and provide a reference for enabling digital transformation. Firstly, the con-
notation, characteristics, and denotation of industrial digitalization were defined, based
on relevant domestic studies. Secondly, combined with a discussion of the changes in
industrial structure, their paper summarized the three driving modes of China’s industrial
digitalization: the backward-forcing mode, dominated by social motivation, the integration
mode, dominated by technological motivation, and the value-added service mode, domi-
nated by innovation motivation. Thirdly, the formation mechanism of the industry chain
being reshaped by digitalization was summarized and interpreted.

Osipova and Idrisov [17] studied the organizational and legal issues in the agro-
industrial complex, public–private partnerships, and the digitalization of production.
They addressed the major legal, social, and economic issues of the Russian Federation’s
agro-industrial complex. The Russian agro-industrial complex’s most pressing challenges
were shown graphically. The legal framework governing the agro-industrial complex and
government operations was also examined in the essay. Investigations were conducted into
the concept of public–private partnerships, the potential applications of digital technology
in agriculture, and the agroecologists’ effect on the agro-industrial complex. In legal science,
the issue of the legal status of agrarian law was considered. Other nations that dealt with
the organizational and legal issues of the agro-industrial complex were also examined.
A solution to the issue was suggested, considering the various outcomes in the field of
agricultural development.

Bigliardi et al. [18] discussed the digital transformation of the supply chain. The trend
of the article was related to the progress of digital technologies, such as blockchain, IoT, ML,
etc., toward a more intelligent model. Employing a keyword-based organizing framework,
they attempted to discover, categorize, and explore relevant intellectual contributions
in this subject in relation to the major conversation topics surrounding supply chain
digitization. The acquired results revealed the primary concerns surrounding supply
chain digitalization.

A summary of the five important review articles discussed in this section, including
the useful points made in the articles and the relevant details compared to the current
paper, is presented in Table 1.

Table 1. Summarization of the key points of the studied review articles.

Ref Year
Citations until
10 December

2022

Type of
Paper Journal

Examining
the

Challenges
Classification

Review of
ML

Methods

Examining
the Role of

the IoT

[14] 2018 41 Review LogForum No Done No No

[15] 2022 11 Systematic European
Management Journal Done Done No No

[16] 2022 No Systematic
Academic Journal of

Business &
Management

Done Done No No

[17] 2022 2 Review
Agriculture

Digitalization and
Organic Production

Done No No No

[18] 2022 6 Review Procedia Computer
Science Done No No No

Our
paper - - Systematic - Done Done Done Done
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As shown in Table 1, numerous studies have been published on the topic of digitiza-
tion, but none have been based on IoT-based digitalization utilizing ML. Therefore, the
literature on IoT-based organizational and industrial digitalization utilizing ML approaches
lacks adequate depth and systematization. This paper addresses the recent increase in
publications on IoT-based digitalization by conducting a systematic review of this signifi-
cant technological and organizational transformation using ML methods; this topic is of
relevant interest to the scientific community. Our goal is to improve knowledge of this
phenomenon and offer a critical assessment of the state of the art of IoT-based industrial
digitalization research.

3. Materials and Methods

This study addresses the recent increase in publications on IoT-based digitalization
by conducting an SLR of the literature on this significant technological and organizational
transformation using ML methods; this topic is of relevant interest to the scientific com-
munity. The goal is to achieve a better comprehension of this phenomenon and present
a critical assessment of the current status of the science regarding IoT-based industrial
digitalization [19]. This paper addresses four aspects of literature reviews:

1. The goals of the study

The purpose of a literature review may be to integrate (e.g., reconcile opposing view-
points or close the gap between theories and practices), critique (e.g., analyze the literature
critically to show how unwarranted the prior ideas were), or focus on a particular issue
(such as what topics have been studied in the past, what can be studied in the future, what
issues have hindered the development of some topics, etc.) [20,21]. This study intends
to consolidate prior material and identify the fundamental issue of the literature review
regarding IoT-based digitalization utilizing ML techniques.

2. Organization

The literature review could be ordered in chronological, conceptual, or methodological
order. In this research, the chronological order comes first, followed by the conceptual order.

3. Targeted readership

The audience of a review refers to the individuals or groups of individuals to whom it
is directed; in the case of a literature review, the audience consists of industrial decision-
makers and specialist scholars.

4. Coverage

Coverage focuses on the reviewer’s process for evaluating the studied documents’
suitability and caliber after a literature search, whether the author picked adequately
representational coverage out of several options, including exhaustive, exhaustive with
chosen reference, central, representative, or pivotal analyses. Various levels of rigor can be
applied to stand-alone literature reviews, from straightforward annotated bibliographies
to extensively studied summaries of the source material [22]. This article focuses on an
SLR, which is a more thorough method of completing a stand-alone literature review.
We adapted the definition in Refs. [23,24] of a research literature review as our operative
definition of an SLR for this article: a process that is systematic, explicit, and repeatable
for locating, assessing, and combining the already completed and recorded works of
researchers, academics, and practitioners [25,26]. Next, the steps in the SLR method are
documented below.

3.1. Research Questions

The selection of research topics is the most crucial stage of an SLR [27,28]. These
inquiries constitute the basis of the auto-search query; they specify the data gathered from
each source article and limit the aggregate process. The research questions are as follows:

• RQ1: What are the results of an SLR on IIoT-based digitalization using ML methods?
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• RQ2: What well-liked algorithms are employed to manage organizational and IIoT-
based digitalization using ML methods?

• RQ3: What are the next developments, unresolved problems, and difficulties in using
ML methods for organizational and IIoT-based digitalization?

3.2. Search Strategy

A methodical search was performed to identify pertinent publications that were
registered in the Medline and Web of Science databases between 1 January 2018 and
10 December 2022. Backward and forward snowball search types were employed to dis-
cover additional articles on Google Scholar using the reference lists of the included studies
and reviews [29]. The keywords that were searched for were “IoT”, “Internet of Things”,
“Digitalization”, “Industrialization”, “ML”, “Machine learning”, “Unsupervised learning”,
“Supervised learning”, “Semi-supervised learning”, and “Reinforcement learning”.

3.3. Inclusion and Exclusion Criteria

The papers that met the following criteria were included: (1) studies with any per-
spective in IoT-based digitalization using the ML methods; (2) published studies from
1 January 2018 until 10 December 2022; (3) studies published in English in a peer-reviewed
journal. Additionally, studies were omitted if they were: (1) reviews, notes, commentaries,
or editorials related to IoT-based digitalization, (2) duplicate articles, or (3) articles that
described the study protocol or study design. Figure 1 clearly outlines the procedures for
choosing the articles based on the inclusion/exclusion criteria.
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3.4. Selection and Data Extraction

After deleting any duplicate articles, all titles and abstracts were evaluated to deter-
mine which studies met the inclusion and exclusion criteria. After an initial screening,
the co-authors reviewed a random sample by assessing the comparability of the included
and omitted studies. The whole texts of the remaining studies were compared to the
inclusion criteria, after the papers that passed the initial screening’s exclusion criteria had
been eliminated, and any inconsistencies were discussed. Figure 2 depicts a flowchart
of the study selection approach. Figure 2 shows that 87 were articles identified during
the keyword search. Fourteen duplicate articles, 26 non-English articles, 9 articles with
irrelevant titles, and 18 items with irrelevant or unavailable full texts were eliminated.
Finally, twenty articles were chosen.
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The obtained 87 articles are shown in Figure 3. As can be seen, most of the articles
have been published in IEEE publications. Springer and MDPI are ranked second and third,
respectively.
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In addition, we present the articles of the last 8 years in Figure 4 to show that the
corpus of research using ML methods and that is related to IIoT-based digitalization is
increasing day by day, which shows the importance of this topic among researchers.
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The next section will analyze twenty selected articles, based on different filters. The
journals of the selected articles are shown in Figure 5. Most of the selected papers are from
IEEE publications.
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4. Systematic Literature Review

In recent decades, the advent of the IoT has been a crucial development and provided
the impetus for numerous additional advancements [30]. The philosophy of the IoT is a
crucial component of the next generation of data. Self-regulating, dispersed smart sensor
gateways and nodes comprise wireless sensor networking. The various sensors continu-
ously evaluate external physical data, such as sound, vibration, and temperature [31]. New
IIoT platforms attempt to solve the manufacturers’ most difficult problem: integrating all
production systems into a single model [32]. These technologies are utilized in smart cities,
in fields such as disaster preparedness, environmental applications, energy, healthcare,
logistics, manufacturing control, home automation, farming, and animal husbandry. These
items, machines, and tools can produce, gather, and exchange data without involving
humans or computers. The IIoT generates a flood of structured and unstructured data from
a growing army of sensors that are capable of registering, among other things, locations,
voices, faces, sounds, temperature, emotions, and health. There are billions of connected
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IoT devices, with an enormous amount of data being produced. Every device incorporates
automation to facilitate daily operational planning, management, and decision-making. ML
approaches are used to improve the intelligence and capabilities of a particular program.
Numerous academics are currently interested in integrating ML with IoT techniques to
create superior IoT technology [33]. IIoT devices learn to execute tasks such as prediction,
pattern recognition, classification, and clustering by means of ML [34]. To facilitate the
learning process, IoT devices are trained by analyzing sample data using various ML and
statistical models. Measuring the functional parameters characterizes the various sectors of
the datasets. Then, ML algorithms are applied to the data set to discover features, provide
output, classify patterns, make decisions, and draw inferences. Without using humans
or additional computers, machines and appliances can produce, gather, and distribute
data [35]. In the following section, the articles selected in the previous section will be
reviewed in the context of these four groups (see Figure 6).
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4.1. Supervised Learning

Real-world applications of supervised learning have been quite successful. The tech-
nique is utilized in virtually all domains, including text and web domains. ML also refers to
supervised learning as classification or inductive learning. This method of learning is akin
to how humans acquire new knowledge through past experiences and use it to enhance
their ability to accomplish real-world activities [36]. Mapping across a collection of input
variables, X, and an output variable, Y, is established by supervised learning, and this
mapping is then used to predict the outcomes for unknown data. This approach, which is
the most important ML methodology, is essential for processing multimedia data. Many su-
pervised learning techniques have been used to handle multimedia input, with supervised
learning accounting for the majority of ML research. The availability of annotated training
datasets supervised learning apart from unsupervised learning. The term “supervisor”
conjures up the idea of a “supervisor” who directs the learning system in terms of choosing
what labels to apply to training occurrences. In classification problems, these labels are
often classification labels. Models that can identify other unlabeled data are created by
supervised learning algorithms using these training data [37]. The remaining paragraphs
in this section address papers on supervised learning.

Rodriguez, Saed, and Li [38] investigated beverage freshness sensing using WPT/NFC
(wireless power transfer/near-field communication) technology that was compatible with
smartphones, using supervised ML. The classification performance of features of various
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types (such as magnitude, amplitude, and phase) was explored and assessed, using a circuit
model for the beverage–coil interaction. Employing supervised ML to classify the freshness
of milk resulted in accuracies as high as 96.7 percent when five distinct types of milk were
utilized. In addition, the required RF bandwidth for classification was reduced to 10 MHz
by means of singular value decomposition and boxplot examination, without impacting
the classification performance for two distinct feature extraction approaches.

Gantert et al. [39] addressed corrective maintenance using fault recognition that was
based on the sounds created by machine components. Different spectral characteristics were
retrieved from industrial sounds and fed into supervised learning algorithms to categorize
normal and abnormal activities. The f1 score was used to demonstrate that studies using the
dataset for malfunctioning industrial machines investigation and inspection, which includes
sound samples from components such as pumps, sliding rails, valves, and fans, have been
successful. They also analyzed the impact of the various spectral properties, validating
their incremental influence. Lastly, they contrasted the idea with a baseline option from the
existing literature that employs unsupervised learning and mel-spectrogram conversion.
Their strategy increased the metric of the area under the curve.

Using supervised learning classifiers, Gupta et al. [40] presented an intelligent defense
against distributed denial of service (DDoS) attacks in IoT networks. Utilizing local IoT
network-specific features, their approach enabled low-cost ML classifiers to detect attacks
at the local router. The testing results demonstrated that the proposed method attained
the greatest accuracy of 0.99, confirming its robustness and dependability in the context of
IoT networks.

Djenouri et al. [41] proposed a method that processes IoT data using DL models
and improves the interpretation of the results. They offered an updated Gamian angular
technique for converting the time series acquired by the various sensors into visual charac-
teristics that may be conveniently represented by a succession of photographs. This enables
the use of a promising visual geometry group architecture for learning sensor data correla-
tions from a set of photos. The authors’ framework investigates the relationships between
sensor data characteristics and then applies DL to learn prediction and intrusion detection
tasks (the most challenging problems in IoT applications). In addition, explainable artificial
intelligence (XAI) is used to establish the contribution of each feature to the prediction
and detection outputs. Extensive tests were conducted to demonstrate the efficacy of the
proposed technology in two unique applications: stream prediction and intrusion detection.
In terms of both runtime and precision, the experimental results revealed that the technique
is superior to that of the baseline approaches.

To enhance trustworthiness and collaborative communication in smart cities,
Haseeb et al. [42] presented a fault-tolerant supervised routing architecture for trust man-
agement in the IoT. The IoT nodes assessed their neighbors’ behavior in the proposed
architecture and built direct trust for a dependable and optimal network structure. In
addition, a fault-tolerant relaying system was developed, utilizing supervised ML without
incurring additional costs. In addition, it eliminated the burden of calculating the ideal de-
cision and training the IoT system to balance network costs. Finally, a secure technique was
presented to protect confidentiality and authentication in the presence of critical key-based
assaults. The performance of the proposed technique was superior to that of the existing
work.

In this section, five articles are reviewed. Table 2 summarizes the articles’ key topics
so that readers can access the articles’ specifics and compare them to one another. As the
results revealed, increasing the accuracy of the proposed system has been one of the most
important goals of the researchers. Furthermore, privacy and trust have been incorporated
in the next phase of the researchers’ attention.
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Table 2. The details of selected topics in the supervised learning articles.

Ref/ Year Evaluation Keywords Title Network/Model/
Structure Achievements

[38] 2020 Implemented

• Sensors
• Dairy products
• Impedance
• The dielectric

constant
• Couplings
• Near-field

communication
• Smartphones

• A WPT/NFC-based
sensing approach
for beverage
freshness detection
using supervised
ML

• WPT/NFC
technology

• IoT

• High level of
accuracy

• Reducing
bandwidth

[39] 2021 Implemented

• Rails
• Support vector

machines
• Fans
• Pumps
• Maintenance

engineering
• Feature

extraction
• Valves

• A supervised
approach for
corrective
maintenance using
spectral features
from industrial
sounds

• IoT

• Better area under
the curve
performance

• Improving
corrective
maintenance

[40] 2022 Simulated

• Smart defense
• Distributed

service
• IoT
• Supervised

learning

• Smart defense
against distributed
denial of service
attacks in IoT
networks using
supervised learning
classifiers

• IoT
• ML

• High level of
accuracy

• Less resource
consumption

• Low computational
overhead

• High level of
reliability

[41] 2022 Implemented

• XAI
• DL
• IoT applications
• Genetic

algorithm

• When explainable
AI meets IoT
applications for
supervised learning

• IoT
• ML
• AI
• DL
• Evolutio-nary

computing

• Reducing runtime
• High level of

accuracy

[42] 2022 Implemented

• IoT
• Routing
• Smart cities
• Relays
• Computational

modeling
• Security
• Fault-tolerant

systems

• Trust management
with fault-tolerant
supervised routing
for smart cities
using IoT

• IoT
• ML

• Improving trust
management

• Improving
trustworthiness

• Improving
collaborative
communication

• Low cost
• High level

of privacy

4.2. Unsupervised Learning

Recently, self-supervised and unsupervised learning has been proven to offer compa-
rable performance to existing methods while removing manually labeled training processes.
Unsupervised learning approaches exhibit self-organization to record patterns as proba-
bility densities or as a combination of neural feature preferences [43]. Additionally, this
technique reduces the complexity of the training technique in lightweight devices to boost
processing speed and effectively detect the health of equipment assets [44]. The selected
articles related to unsupervised learning are discussed in the rest of this section.

Bhatia et al. [45] proposed a network-centric and behavior-learning-based anomaly
detection technique for securing such vulnerable environments. Using unsupervised ML,
they proved that the predictability of transmission control protocol traffic from IoT devices
could be leveraged to identify various sorts of distributed denial of service attacks in
real time. The developed ML classifier can distinguish between regular and abnormal
traffic from a tiny set of features. Their method can be integrated into a wider system for
recognizing compromised endpoints despite IP spoofing, enabling specially designated
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national-based strategies to block attack traffic near the source. Their unsupervised ML
approaches are easier to implement than supervised ML methods and are more effective at
detecting new and previously unknown assaults.

Chen et al. [46] offered an online unsupervised anomaly detection method using
a variational autoencoder with a convolutional neural network (CNN) structure for an
industrial robot. This method utilized a reasonably long sliding window to better identify
regular data patterns. The CNN structure was also incorporated into the encoder and
decoder of the variational autoencoder model to extract temporal and spatial data. Data
were gathered from the robot controller at a relatively low frequency. It learned the typical
pattern from standard time series data and discovered anomalies by identifying the unseen
data pattern, saving time and effort in terms of fault data collection. In addition, the method
can be implemented online without accumulating data, accelerating anomaly detection
and resolution. Using a CNN structure, which helps capture the relationships of the input
data, this method may also automatically identify useful features that are sensitive to robot
failures, as opposed to robot motions. Overall, the experiments demonstrated that their
model could detect unknown spatial and temporal irregularities in the industrial robot
with reliability.

Using a self-supervised learning approach in a time-series dataset, Tran et al. [44]
developed a lightweight method for anomaly detection to improve the model’s perfor-
mance. Considering time-series data augmentation for pseudo-label generation, a classifier
employing a one-dimensional convolutional neural network was used to learn the features
of standard data. The output of their categorization model accurately indicated the degree
of irregularity. The experimental results demonstrated that their proposed strategy outper-
forms conventional anomaly detection techniques. In addition, the model was deployed
in a real testbed to demonstrate the efficacy of the self-supervised learning technique for
time-series anomaly detection.

Zhan et al. [47] presented a framework for an intelligent system utilizing the IIoT and
digital twin (DT) technologies to design real-time safety monitoring in the warehouse and
ensure synchronized cyber-physical spaces for information visibility and traceability. The
unsupervised deep neural structure of the stacked auto-encoder was created to differentiate
abnormal stationary behavior from human motion status, which was interpreted as a warn-
ing sign of an oncoming accident. The model was designed to automatically update online
by collaborating with the calibration samples to stay in sync with environmental changes.
Using a Bluetooth-based model, indoor localization was achieved so that management
could respond rapidly to an occurrence on-site. In addition, various intelligent services
were enabled to improve safety management efficacy. A case study was performed at a
cold storage warehouse used for air cargo to show the validity and logic of the proposed
framework and procedures. This implementation was developed to facilitate efficient
duplication and reproduction. The experiments were performed to investigate the impact
of distance and vibration-related learning features on anomaly detection performance.

Dinh-Van et al. [48] presented a comprehensive system framework for reconfigurable
intelligent surface-enhanced broadcast communications in the IIoT. In the system model,
they accounted for the coexistence of various sensor clusters in a smart factory wherein
direct connections between these clusters and a central base station were fully barred. In this
context, a reconfigurable intelligent surface was used to reflect the signals broadcast from
the base station toward cluster heads, which act as a representation of clusters, while the
base station has only the statistical channel’s state distribution information. Based on these
mathematical conclusions, two methods, the Riemannian conjugate gradient method and
the deep neural network approach, were developed to govern phase shifts at reconfigurable
intelligent surfaces. While the Riemannian conjugate gradient approach employs the
standard iterative method, the deep neural network technique is based on unsupervised
DL. According to their numerical findings, both methods achieved satisfactory performance,
using only statistical channel state data. In addition, when compared to the Riemannian
conjugate gradient technique, the computational delay was lowered by a factor of more
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than ten, while the total ergodic spectral efficiency was nearly comparable. While the
typical Riemannian conjugate gradient method may deliver insufficient latency, the deep
neural network technology showed great potential for providing reconfigurable intelligent
surfaces in ultra-reliable and low-latency communications.

In this section, five articles related to unsupervised learning are discussed. The
important points are summarized in Table 3. The findings show that reducing delays and
saving time, energy, and cost are the most important goals of these algorithms.

Table 3. The details of selected articles in the unsupervised learning articles.

Ref/ Year Evaluation Keywords Title Network/Model/
Structure Achievements

[45] 2019 Implemented

• Computing
methodologies

• ML
• Learning settings
• Semi-supervised

learning settings
• Neural networks

• Unsupervised ML for
network-centric
anomaly detection in
IoT

• IoT
• ML

• More effective in
detecting new and
unseen attacks

• The proposed model is
easier

[46] 2020 Simulated

• Service robots
• Anomaly

detection
• Time series

analysis
• Mathematical

model
• Real-time systems
• Robot sensing

systems

• Unsupervised anomaly
detection of industrial
robots using a
sliding-window
convolutional
variational
autoencoder

• CNN
• IoT

• Detecting anomalies in
the robot

• Saving effort and time
in collecting fault data

[44] 2022 Implemented

• Anomaly
detection

• Self-supervised
learning

• Edge computing

• Self-supervised
learning for time-series
anomaly detection in
IIoT

• IoT
• Edge computing
• One-dimensional

convolutional
neural network

• High level of accuracy
• Improving lightweight

method

[47] 2022 Implemented

• Occupational
safety
management

• Abnormal
stationary
detection

• DL
• Indoor positioning
• IoT
• Digital twin
• Cold chain

logistics

• IIoT and unsupervised
DL enabled real-time
occupational safety
monitoring in the cold
storage warehouse

• IoT
• DL
• Unsupervised

deep neural
structure

• Realizing real-time
occupational safety
monitoring

• Low energy

[48] 2022 Implemented

• IIoT
• Ultra-reliable low

latency
communication

• Downlink
• DL
• Base stations
• Wireless sensor

networks
• Smart

manufacturing

• Unsupervised
DL-based
reconfigurable
intelligent
surface-aided
broadcasting
communications in
IIoTs

• DL
• IoT
• Riemannian

conjugate gradient
method

• The deep neural
network method

• Low latency
communications

• High level of reliability

4.3. Semi-Supervised Learning

With both labeled and unlabeled data, the semi-supervised learning technique in-
vestigates how computer programs and natural systems learn. Both the supervised and
unsupervised paradigms have traditionally been used to study learning. In the supervised
paradigm, all data are labeled. Understanding how the mix of labeled and unlabeled inputs
affects learning behavior is the goal of semi-supervised learning, as is creating algorithms
that make use of this combination. This form of learning in ML and the role of data mining
are intriguing because ML can easily use unlabeled data for better-supervised learning
tasks when labeled data are rare or expensive. Additionally, it has promise as a quantitative
tool for studying human category learning since most of the inputs are unlabeled. Because
semi-supervised learning involves less human effort and provides greater precision, it is
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of tremendous theoretical and practical relevance [49]. The selected articles related to this
section will be analyzed below.

To adopt a CNN on fog-cloud infrastructures for SOD-based applications, Wang et al. [50]
presented a semi-supervised adversarial learning technique. A unique concatenated gen-
erative adversarial network (GAN) structure with partially shared parameters enabled
the SaliencyGAN model. The CNN can select its backbone, based on unique devices
and applications. Meanwhile, the authors’ training strategy utilized both labeled and
unlabeled data from several issue domains. Using a variety of well-known benchmark
datasets, they compared state-of-the-art baseline approaches to our SaliencyGAN, trained
on 10–100 percent of labeled training data. When the percentage of labeled data reached 30
percent, SaliencyGAN achieved a performance comparable to the supervised baselines and
surpassed the weakly supervised and unsupervised baselines. In addition, their ablation
analysis revealed that SaliencyGAN was more resistant to the “missing mode” problem
than the other GAN models. The visual representation of the ablation results demonstrated
that SaliencyGAN improved its estimation of data distributions.

Hassan et al. [51] suggested adaptive trust boundary protection for the IIoT by means
of a deep-learning, feature-extraction-based, semi-supervised technique. The proposed
approach does not require any manual effort to update the attack databases and can learn
the rapidly changing natures of unknown attack models using unsupervised learning and
unlabeled data from the wild. Thus, the suggested technique proved resistant to evolving
cyberattacks and their fluid character. The technique was verified using a real IIoT testbed.
An empirical analysis of the attack models and findings showed that the recommended
technique performs noticeably better in terms of recognizing assaults than conventional
security control tactics.

Li, Meng, and Au [52] proposed semi-supervised learning and designed distributed
antenna system-collaborative intrusion detection systems by applying disagreement-based
semi-supervised learning algorithms for collaborative detection systems. In this study, the
performance of distributed antenna system-collaborative intrusion detection systems was
evaluated using datasets and real IoT network scenarios to assess detection performance
and false alarm reduction. By automatically utilizing unlabeled data, their method was
more effective than the typical supervised classifiers at detecting intrusions and lowering
false alarms, as determined by the trial results.

De Vita, Bruneo, and Das [53] presented a technique for anomaly detection based
on an industrial data collection and monitoring framework. They addressed the dearth
of labeled data by developing a semi-supervised anomaly detection algorithm that uses
Bayesian Gaussian mixtures to evaluate the plant’s operational condition while accounting
for uncertainty during the diagnosis process. They then implemented the suggested frame-
work on a scale replica of an assembly plant that served as a real-world IIoT testbed. The
experimental results indicated that their anomaly detection system could detect plant func-
tioning conditions with 99.8% accuracy, and the semi-supervised technique outperformed
a supervised approach.

Aouedi et al. [54] presented a federated semi-supervised learning system that uses
unlabeled and labeled data in a federated manner. On each device, an autoencoder was
trained to learn the representative and low-dimensional features. Then, utilizing federated
learning, a cloud server combined these models into a global autoencoder. The global
encoder was later supplemented with fully connected layers to create a supervised neural
network. The resulting model was trained using labeled data that were made available to
the public. Their model: (a) guarantees that no local private data is transferred; (b) detects
attacks with excellent classification performance; (c) functions even with small amounts of
labeled data; (d) has low communication overheads.

In recent years, semi-supervised research has followed the general trends in ML, with
a significant focus on neural network-based models and generative learning. Additionally,
the literature on the topic has grown in the number of papers and scope, including a broad
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range of theories, methods, and applications [55]. The results of a review of 5 related papers
are shown in Table 4.

4.4. Reinforcement Learning

Reinforcement learning comprises both the science of the adaptive behavior of ratio-
nal humans in uncertain settings and a computer methodology for discovering optimal
behaviors for complex issues in control, optimization, and the adaptive behavior of in-
telligent entities. The area of reinforcement learning has advanced significantly over the
past decade. Reinforcement learning provides both qualitative and quantitative models
for comprehending and simulating adaptive decision-making in response to rewards and
punishments [56]. Various reinforcement learning studies are reviewed here.

Table 4. The details of selected semi-supervised learning articles.

Ref/ Year Evaluation Keywords Title
Network/

Model/
Structure

Achievements

[50] 2019 Implemented

• IoT
• Training
• Computational

modeling
• DL
• Data models
• Gallium nitride
• Feature

extraction

• SaliencyGAN: DL
semi-supervised
salient object
detection in the fog
of IoT

• Fog
• IoT
• DL
• GAN

framework

• Improving
supervised baselines

[51] 2020 Implemented

• Protocols
• Informatics
• IoT
• Security
• ML
• Adaptation

models
• Process control

• An adaptive trust
boundary protection
for IIoT networks
using a DL feature-
extraction-based
semi-supervised
model

• IoT
• DL

• Improving the
identification of
attacks over
conventional
security control
techniques

• High level of
flexibility

[52] 2020 Implemented

• Intrusion
detection

• Semi-
supervised
learning

• IoT

• Enhancing
collaborative
intrusion detection
via
disagreement-based
semi-supervised
learning in IoT
environments

• IoT
• Semi-

supervised
learning
algorithm

• Reducing false
alarms

• Improving detecting
intrusions

[53] 2021 Implemented

• Employee
welfare

• Uncertainty
• Measurement

uncertainty
• Data collection
• Sensor systems
• Bayes methods
• Telemetry

• A semi-supervised
Bayesian anomaly
detection technique
for diagnosing faults
in IIoT systems

• Bayesian
Gaussian
mixtures

• IoT

• High level of
accuracy

• Improving
monitoring
performance

[54] 2023 Simulation

• Data models
• IIoT
• Intrusion

detection
• Data privacy
• Training
• Radiofrequency
• Servers

• Federated
semi-supervised
learning for attack
detection in IIoT

• Cloud server
• Neural network
• IoT
• DL algorithms

• Low communication
overheads

• Improving attack
detection

• Improving
performance

• High level of
privacy

• Low cost

Yang et al. [57] presented a DT-enabled IIoT (DTEI) architecture wherein DTs capture
the characteristics of industrial equipment for real-time processing and intelligent decision-
making. They intended to optimize federated learning, to develop the DTEI model to
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reduce data transmission overhead and privacy leaks. To address the heterogeneity of
IIoT devices, they created the DTEI-assisted deep reinforcement learning approach for
selecting IIoT devices in federated learning, particularly for selecting IIoT devices with a
high utility rate. In addition, they presented a federated asynchronous learning approach
to handle the discrete impacts induced by heterogeneous IIoT devices. Compared to the
benchmark, the experimental results demonstrated that the suggested technique provides
faster convergence and higher training precision.

Tharewal et al. [58] presented a near-end strategy optimization technique for IIoT
intrusion detection, using a deep reinforcement learning algorithm. This technique merged
the observation capability of DL with the decision-making capability of reinforcement
learning to enable the efficient detection of various types of cyberattacks on the IIoT. When
combined with DL algorithms, the DRL-intrusion detection system identified intrusions
effectively. Numerous experiments on a publicly accessible data set of the IIoT proved that
the proposed intrusion detection system detected 99% of IIoT network attacks. In addition,
the rate of accuracy was 0.9%. Based on various models of DL, the intrusion detection
system’s accuracy, precision, recall rate, and other performance indicators were superior.

In order to address the issue of scalability in deep reinforcement learning algorithms in
the context of the transportation domain, Raza et al. [59] suggested a model. The proposed
model used a partition-based technique to decrease the complexity of the environment.
Their partition-based strategy allowed agents to remain within their working space; this
simplified the learning environment and decreased each agent’s observations. Accord-
ing to the suggested model, multiple agents in a dynamic environment were trained by
means of generative adversarial imitation learning, behavior cloning, and a proximal pol-
icy optimization method. They compared the preferred provider organization, the soft
actor-critic, and their own model in the context of reward accumulation. The simulation
findings demonstrated that their model excels in the symposium on applied computing
and preferred provider organization in terms of cumulative incentive accumulation, and
the training of many agents was significantly enhanced.

A deep dual-reinforcement learning approach that was based on actor and critic
models was suggested by Chang et al. [60]. Dual architectures prevent the network from
over-optimizing itself. The actor model continuously acquires the knowledge of recog-
nizing unknown samples through a greedy algorithm. The critic model then dynamically
modifies the policy to steer the actor model in the correct training direction. Three bearing
datasets were utilized to verify the efficacy of the suggested technique. According to the
findings, the recommended strategy enabled agents to identify faults quantitatively and
independently. Developing an experience storage unit solved the problem of insufficient
samples, preventing the proposed method from being evaluated by trial and error.

Abedin et al. [61] designed an elastic open radio access network (O-RAN) slicing
method for the IIoT. First, they formulated the O-RAN slicing problem for real-time indus-
trial monitoring and control. The goal was to lessen the cost of fresh information updates
from IIoT devices, working within the restrictions of device power consumption and O-
RAN slice isolation. Second, they proposed an intelligent O-RAN framework by means of
game theory and ML to reduce the complexity of the problem. In the O-RAN control layer,
they suggested a two-sided distributed matching game that captured the IIoT channel
characteristics and the IIoT service priorities to generate preference lists for IIoT devices and
small-cell base stations (SBS). They used an actor–critic model with a deep deterministic
policy gradient (DDPG), which was employed to address the resource allocation problem
for optimizing the network slice configuration policy under time-varying requests in the
O-RAN service management layer. Additionally, the suggested matching game within the
actor–critic model training process enforced long-term policy-based guidance for resource
allocation that reflects the trends in customer satisfaction across all IIoT devices and SBSs.
Lastly, the simulation findings demonstrated that the suggested method improves perfor-
mance gains for IIoT services by serving an average of 50% and 43.64% more IIoT devices
than the baseline methods.
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As the IIoT is a data-centric network, cognitive data processing is required to realize
the interconnection between machines. In order to improve the self-monitoring and self-
management capabilities of diverse devices, the intelligent development of the IIoT is
increasingly reliant on DL-based technologies. Nonetheless, the quantity and quality of
data, as well as parameter optimization, severely restrict the features of such methods. Deep
reinforcement learning, a breakthrough in AI, give inspiration and direction that combines
the benefits of DL and reinforcement learning to build an end-to-end defect diagnosis
system [60]. The results of the 5 reviewed articles are presented in Table 5. The findings
showed that improving accuracy and reducing error was one of the most important goals
of studies in this department.

Table 5. The important points of the reinforcement learning articles.

Ref/ Year Evaluation Keywords Title
Network/

Model/
Structure

Achievements

[57] 2022 Implemented

• IIoT
• Training
• Data models
• Real-time

systems
• Digital twins
• Collaborative

work
• Task analysis

• Optimizing
federated learning
with deep
reinforcement
learning for
DT-empowered IIoT

• IoT
• DTEI

architecture
• DL

• Optimizing
federated learning

• Faster convergence
• Higher training

accuracy

[58] 2022 Implemented

• Intrusion
detection
system

• IIoT
• Deep

reinforcement
learning

• Intrusion detection
system for IIoT,
based on deep
reinforcement
learning

• IoT
• DL

• High level of
accuracy

• Detecting 99 percent
of different types of
IIoT network
assaults

[59] 2022 Simulation

• Deep
reinforcement
learning

• Multi-agents
• Behavior

cloning
• Dynamic

environment
• Scalability

• Collaborative
multi-agents in
dynamic IIoT using
deep reinforcement
learning

• IoT
• Deep

reinforcement
learning

• High scalability
• Reducing

complexity

[60] 2022 Implemented

• Reinforcement
learning

• IIoT
• Fault diagnosis
• Feature

extraction
• Training
• DL
• Predictive

models

• Intelligent fault
quantitative
identification for
IIoT via a novel
deep dual
reinforcement
learning model,
accompanied by
insufficient samples

• IoT
• DL

• Realizing precise
quantitative fault
identification

• Reducing error

[61] 2022 Simulation

• IIoT
• Network slicing
• Quality of

service
• Resource

management
• Monitoring
• Energy

efficiency
• 5G mobile

communication

• Elastic O-RAN
slicing for industrial
monitoring and
control: a
distributed
matching game and
deep reinforcement
learning approach

• O-RAN
• IoT
• ML
• Actor-critic

model

• Low cost
• Optimizing the

network slice
configuration policy
under time-varying
slicing demand
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5. Discussion and Results

A comparative analysis of the management of IoT-based organizational and industrial
digitalization using ML methods has been provided in the previous sections. The applied
methods included supervised, unsupervised, semi-supervised, and reinforcement learning
approaches. Twenty research articles and five review articles were reviewed in this study,
and the results were presented.

The IoT attaches millions of computer devices to each other and has paved the way for
future technology in which industrial applications such as smart cities and homes would
function with minimal human interaction. The fusion of IoT with emerging technologies
such as 5G and blockchain impacts human lives. In order to achieve Industry 4.0, the fast
development of the IIoT is accelerating the digitalization of industrial production. An
increased reliance on the IoT necessitates attention being paid to its privacy and security
issues. Encryption, authentication, access control, and communication security are urgently
required to implement security. These requirements can be met most effectively through
the application of ML and DL, which facilitate the development of secure intelligent
systems [62]. Specifically, ML is the study area dedicated to the formal investigation of
learning systems. This highly interdisciplinary field takes and expands upon concepts
from statistics, computer science, engineering, cognitive science, optimization theory, and
numerous other scientific and mathematical disciplines [63]. Therefore, according to the
data, IoT providers wish to host ML in order to obtain greater benefits. In addition, as
technology advances, nearly all IIoT applications become more data-driven. Therefore,
more modern communication methods are required to conserve energy and efficiently
capture vast amounts of data [64]. The most important application areas in which ML and
IIoT can contribute are also presented in Figure 7.
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• Process Optimization

The use of factory sensors to monitor process optimization and plant conditions to
ensure the factory is running correctly. Besides this, minimizing errors sooner and thereby
improving yields and revenues is another area of rapid growth for IIoT [65].

• Quality control

Quality control is one area with significant potential in terms of ML benefits. Manufac-
turers can increase quality inspection at latency, speeds, and prices that are further than
the capability of human inspectors because of the usage of smart cameras and the relevant
AI-enabled software [66].

• Maintenance
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The effectiveness of manufacturing lines is significantly influenced by maintenance.
Efficient maintenance cuts downtime and can minimize energy use, particularly for equip-
ment that consumes a great deal of power, such as motors, which can waste much energy
when operating improperly. Due to the broad deployment of sensor technologies across
plant floors, IIoT provides predictive maintenance by increasing the knowledge of equip-
ment conditions [67]. Additionally, predictive maintenance may be used alone to reduce
operating costs and guarantee the vital infrastructure’s continuous and uninterrupted
functioning [68].

• Workforce training

Companies may promote the development of IIoT knowledge via upskilling their
personnel by means of training programs and certifications. Classes on the overall IoT
or on particular topics, including IoT security certifications, are available from several
institutions, businesses, and charitable groups. Workforce development benefits people’s
career advancement, productivity, and success while assisting firms in scaling, profiting,
and thriving in the long run [69].

• Supply chain

With capabilities to gather, exchange, analyze, and track goods as they move through
various businesses and even across international boundaries, the IIoT can greatly broaden
the scope of supply-chain monitoring approaches. IoT can potentially reduce counterfeiting,
theft, and other crimes by providing real-time information on the location and transit of
items [65].

• Human–robot collaboration

Smart manufacturing relies heavily on human–robot collaboration to meet stringent
standards for sustainability, human-centricity, and resilience. The advancement of human–
robot cooperation is currently focused primarily on a human- or robot-dominant approach,
in which human and robotic agents reactively carry out tasks by adhering to pre-established
instructions. This approach is a far from compelling fusion of robotic automation and hu-
man cognition. These rigid human–robot relationships are unsuitable for complicated pro-
duction processes and cannot reduce the human operators’ physical and mental strain [70].

• Infrastructure

Buildings and intelligent devices may improve the adaptability, dependability, ef-
ficiency, and resilience of the civil infrastructure. By enhancing safety, lowering costs,
and requiring less labor to maintain and run infrastructure services, these advancements
can provide significant economic benefits for industrial users of the intelligent infrastruc-
ture [65].

The rest of this section discusses the comparison of the obtained results. The sign (X)
indicates that the study has examined the relevant factor, while the sign (×) indicates that
the study has not investigated this relevant factor. Table 6 shows these comparisons.

The results of Table 6 are shown in Figure 8 as a percentage. Figure 8 shows the
selected articles’ findings, based on the researchers’ focus on important parameters. The
accuracy is 25%, the cost is 14%, privacy and overheads are 11%, latency, energy, reliability,
and error are 7%, and other parameters comprise less than 4% of all parameters. The cost
and accuracy attracted more attention, according to the results. There should be more
focus on security in the future. Moreover, reducing costs and improving accuracy can be
considered the main future goals of industrialization management.
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Table 6. The comparisons of the most important factors in the selected papers.

Accuracy Bandwidth
Corrective

Mainte-
nance

Performance
Resource
Consump-

tion

Computational
Overhead Reliability Runtime Privacy Cost

Collaborative
Communi-

cation
Trust Detecting

Anomalies
Lightweight

Method Energy Flexibility False
Alarms Error Scalability Complexity

Supervised learning

[38] X X × × × × × × × × × × × × × × × × × ×

[39] × × X X × × × × × × × × × × × × × × × ×

[40] X × × × X X X × × × × × × × × × × × × ×

[41] X × × × × × × X × × × × × × × × × × × ×

[42] × × × × × × × × X X X X × × × × × × × ×

Unsupervised learning

[45] × × × X × × × × × × × × × × × × × × × ×

[46] × × × X × × × × × × × × X × × × × × × ×

[44] X × × × × × × × × × × × × X × × × × × ×

[47] × × × × × × × X × × × × × × X × × × × ×

[48] × × × × × × X X × × × × × × × × × × × ×

Semi-supervised learning

[50] × × × X × × × × × × × × × × × × × × × ×

[51] X × × × × × × × × × × × × × × X × × × ×

[52] X × × × × × × × × × × × × × × × X × × ×

[53] X × × X × × × × × × × × × × × × × × × ×

[54] X × × × × X × × X X × × × × × × × × × ×

Reinforcement learning

[57] X × × × × × × × × × × × × × × × × × × ×

[58] X × × × × × × × × × × × × × × × × × × ×

[59] × × × × × × × × × × × × × × × × × × X X

[60] × × × × × × × × × × × × × × × × × X × ×

[61] × × × X × × × × × X × × × × × × × × × ×
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6. Challenges and Future Direction

This study on IoT-based organizational and industrial digitalization employing ML
techniques for intelligent data analysis and applications raises research questions in the
field. Consequently, in this section, we examine and outline the obstacles encountered, as
well as future research prospects and initiatives. The most important challenges related to
the research topic are presented in Figure 9. Subsequently, we will examine and explain
each one.
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• Cost

The high investment cost for organizations is one of the first difficulties when inte-
grating IIoT assets. This cost results from implementing IIoT architecture across the sector
and all linked devices, which entails maintenance expenses for recruiting employees and
monitoring all activities. In order to cut expenses, there is the potential to develop an
automated architecture utilizing ML algorithms [71].

• Security

Additionally, Industry 4.0 promises higher efficiency and automation and presents
new security flaws in critical industrial control systems through unsecured devices and
machinery. Industry 4.0-related large-scale complex industrial systems are the focus of
extensive research and development, which suggests that reliability and safety concerns
present significant hurdles. During online operations, system performance deterioration
will result in significant safety risks, in addition to financial losses [72]. Security has emerged
as a major issue for Industry 4.0 as a result of the advent of new cyber threats. Industry 4.0
IoT devices generate enormous amounts of data, but accessing labeled data is difficult since
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data labeling is expensive and time-consuming; this raises a number of problems for DL
techniques that need labeled data. Adopting fresh approaches is important to overcome
these difficulties. Networks must adopt a bigger role in stopping attacks before they
damage critical infrastructure since host-centric IT security solutions, including anti-virus
and software patching, have failed to protect IoT devices from being compromised [45]. It is
necessary to upgrade or improve the current preprocessing techniques or to suggest novel
data preparation strategies in order to effectively use learning algorithms in the related
application field.

The rapid growth of IoT platforms gives numerous crucial answers to the industrial
sector. Consequently, the IIoT landscape has moved from static manufacturing processes
to dynamic and sustainable manufacturing workflows because of the rapid adoption of
the IoT in industrial applications. Unlike the IoT, the IIoT has additional issues, such as a
harsh communication environment, changes in network-slice resource consumption, energy
consumption, and the need for real-time information updates from IIoT devices throughout
industrial production [61]. The increased integration of industrial systems with corporate
systems via IIoT networks, for instance, exposes the industrial domain to significant
cyber dangers. Conventional IT security is incapable of preventing assaults against IIoT
networks due to numerous proprietary layered protocols, restricted upgrade opportunities,
heterogeneous communication infrastructures, and a significant trust boundary. For critical
reaction-time requirements, current secure protocols, such as the secure distributed network
protocol, are restricted to weak hash algorithms [51]. Authentication remains the most
critical IoT security measure. To exploit the IoT’s diverse applications and services, users
must be verified. IoT services and applications typically revolve around data interchange
across numerous platforms [31]. Finally, a sustainable IIoT for fulfilling the processes of
businesses and industries without negatively impacting the environment, community, or
society can be investigated in the near future.

Through the IIoT, it is necessary to have security using the bottom-to-top approach,
which means that IIoT applications must adopt a safe booting process, firewalling, access
control rules, and device authentication, and must be able to perform security patches and
updates. Blockchain can be seen as a security and safety enabler in the IIoT. ML models also
have great potential to identify cyber threats and vulnerabilities in IIoT networks. Intrusion
detection systems can enhance the network’s security by detecting malicious activities.
Integrating AI with the IIoT can maintain trust between the different sources and network
participants. Once a blockchain-enabled system comes to fruition, IIoT users can monetize
their data and crowdsource data to the ML models for IoT services. Publicly available big
data repositories that are secured by blockchain technology can improve model training for
industrial automation.

• Availability

The absence of readily available and homogeneous data is one of the most significant
obstacles to the economically viable application of ML in production. To fully utilize the
data, proper data sources, infrastructure, knowledge, and procedures must be used in
data collection [73]. A network of interconnected industrial devices known as the IIoT
ecosystem exchanges and analyzes the gathered data to provide fresh perspectives on
industrial operations. Consequently, this significantly lowers operating costs, eliminates
waste, raises quality standards, and boosts the industrial systems’ total safety [68].

• Connectivity

To improve the production output, the IIoT must ensure that all industrial machines
and gadgets are operational and are linked to one another and to surveillance equipment.
As a result, inadequate or subpar connection presents severe issues for IIoT. There may be
issues in managing separate IIoT machine units when there is a power outage, an internet
outage, or other technical or physical issues [74].

• Data Quality
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Although delay-sensitive industrial applications have a long history, there are still
numerous obstacles, particularly in the age of IIoT with big data. Using independent
manufacturing inspections as an example, handling massive volumes of data in close to
real time is required, while tracing any problematic items along the production cycle to
enhance product quality. It is well known that surface integration inspection, which uses
machine vision and image processing methods, is frequently utilized to find surface flaws
for better product quality in manufacturing [75,76]. On the other hand, data collected
from IIoT are massive and are derived from multiple sources. On the one hand, massive
IIoT datasets bring time and structure complexity; more time-efficient and lightweight
future architectures should be designed to handle the voluminous input data and maintain
the generation performance. IIoT, when paired with a traditional Internet, enhances the
automation of the network by integrating intelligent devices. Most IoT devices are resource-
constrained, which creates problems with blockchain-based decentralized architectures.
Blockchains can be implemented to store structured and unstructured data over the network.
Therefore, they have enough potential to enable interoperability over IoT devices.

• Privacy

In general, ML applications demand a great deal of computing knowledge and re-
sources. IIoT data from manufacturing organizations are typically sent to a cloud system
or to a third party with ML capabilities. Decrypted data are required for ML applications
to operate effectively. As a result, other parties may be granted access rights to IIoT data
that inappropriately depicts the manufacturing process throughout the data processing.
IIoT data may have disguised essential elements, causing information leakage for busi-
nesses [77]. Due to these issues, companies cannot share their IIoT data with third parties.
Users’ worries about data privacy are raised by the access to these datasets in the central-
ized ML algorithms [78]. Hence, it is vital to offer frameworks that safeguard users’ privacy
in further investigations. Finally, large real-world datasets in IIoT applications are used to
generate IIoT data, which unavoidably raises many privacy concerns. Therefore, a privacy
protection mechanism should be an indispensable component of privacy preservation, to
prevent privacy leakage and maintain the performance of IIoT data generation.

• Flexibility

As there are several IIoT applications, service provisioning to the various IIoT appli-
cations according to their demands has been quite challenging. IIoT consumers typically
require on-the-move applications that are continuously optimized, personalized, value-
added, and autonomous. The best way to design an IIoT solution that expands and helps
the organization to integrate different applications is to utilize a flexible architecture that
will evolve in the future. The manufacturers or the designers of IoT devices and applications
must develop flexibility in their products. Industrial systems must also equip themselves
with scalable infrastructures that are ready for expansion. In the future, many devices will
be installed that will be mobile and constrained, so any IIoT solution needs to be adaptive
and scalable enough to accommodate many devices.

In addition to the above, the IIoT has expanded dramatically during the past few years.
While integrating industrial digitalization, automation, and intelligence exposed industries
to a multitude of cyber dangers, the complex and diverse IIoT environment presented a
new attack surface for network attackers [58]. Therefore, many IoT network difficulties
necessitate upgrading the conventional internet infrastructure [79]. In recent years, IoT
devices have been fascinating weapons in the arsenals of adversaries attempting to build a
large botnet army to launch the most dangerous attack on the Internet, a DDoS strike [80].
A DDoS assault prevents the victim’s services from being accessed by genuine Internet
users. To achieve this objective, the attacker bombards the target system with many trash
packets, causing its processing and storage capacities to become overloaded and eventually
resulting in a system crash. The botnet army is the most general approach when conducting
attacks on a large scale [81]. The resource limitations of smart items hinder the integration
of conventional security solutions, transforming IoT networks into the most enticing target
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for an attacker. Most smart things operate in unattended environments, so these gadgets
are ideal for constructing botnets [40].

Hundreds of sensor-actuator-enabled devices, including the IIoT, interact and commu-
nicate differently with the physical and human worlds due to the Industry 4.0 paradigm.
The diagnostics of such systems are essential, due to their complexity. Even though anomaly
detection is a valid strategy for preventing unscheduled maintenance and even complete
system failure, its application in the IIoT requires the design and implementation of moni-
toring, data collection, and analysis frameworks. Most existing anomaly detection systems
provide a fault diagnosis without taking uncertainty into account. In addition, the ab-
sence of ground truth data (a common issue in the industrial context) makes the strategy’s
implementation considerably more difficult [53].

7. Conclusions and Limitations

This work presents a detailed overview of IoT-based digitalization when utilizing ML
for industrialization. According to our objectives, we have reviewed how industrialization
might be used to solve a variety of real-world problems. Three research questions were
presented, and their answers are given below.

• RQ1: What are the results of an SLR in IIoT-Based digitalization using the ML methods?

Answer to RQ1: The results of an SLR concerning the research topic, according
to Figure 3 (which shows the number of articles published in different publications),
demonstrated that IEEE publications have the highest number of published articles among
other journals. According to Figure 5, which indicates the number of articles published each
year, we also found that research related to IIoT-based digitalization using ML methods is
increasing daily because the number of published articles has increased every year.

• RQ2: What well-liked algorithms are employed to manage organizational and IIoT-
based digitalization using ML methods?

Answer to RQ2: Based on the articles that were obtained in the SLR method and the
investigations that were conducted, the results showed that the most popular algorithms for
managing organizational and IIoT-based digitalization using ML methods are supervised
learning, unsupervised learning, semi-supervised learning, and reinforcement learning.

• RQ3: What are the next developments, unresolved problems, and difficulties in using
ML methods for organizational and IIoT-based digitalization?

Answer to RQ3: Based on our analysis of the obtained articles and the results in
Tables 2–5, the results have been collected in Figure 8. These showed that the most critical
challenges in organizational and IIoT-based digitalization using ML methods are security,
reproducibility, availability, data quality, governance, and privacy. Security is the most
critical challenge, presenting a subject on which many researchers have conducted a great
deal of research, and there are still many security-related problems. The investigation
revealed that the availability, data quality, and connectivity issues are expected to be
resolved within the next three years, and other issues, such as cost, within the next five
years. However, other issues, such as security and privacy, may take a little longer.

The results showed that security is the largest obstacle that the IIoT confronts because
even the tiniest threat to its architectural components might destroy the entire enterprise.
Organizations will not take the risk of using IIoT in their businesses unless a strict security
plan is created, due to the higher costs and maintenance needs of fixing security-related
IIoT concerns. Prospective security algorithms could assist in overcoming numerous IoT
security difficulties and open the path for their application, with new technologies such as
5G, blockchain, edge computing, fog computing, and their uses for constructing intelligent
environments. Thus, an ML-based solution’s eventual effectiveness depends mainly on
the data and the learning algorithms. If the data are unsuitable for learning, such as being
unrepresentative, of poor quality, or including irrelevant features, or if there are insufficient
data for training, then the ML models may become useless or deliver less accurate results. It



Sustainability 2023, 15, 5932 25 of 28

is essential to analyze the data and manage the various learning algorithms for an ML-based
solution and, ultimately, for the development of intelligent apps.

From a technical standpoint, we believe that this study on the management of IoT-
based organizational and industrial digitalization using ML methods opens up a promising
research direction and can be utilized as a reference for future research and applications
by academic professionals and industrial decision-makers. The deletion of non-English
articles is one of the restrictions of this article. Future academics can thoroughly study this
subject by also reviewing non-English papers.
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