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Abstract: With the swift pace of the development of artificial intelligence (AI) in diverse spheres,
the medical and healthcare fields are utilizing machine learning (ML) methodologies in numerous
inventive ways. ML techniques have outstripped formerly state-of-the-art techniques in medical
and healthcare practices, yielding faster and more precise outcomes. Healthcare practitioners are
increasingly drawn to this technology in their initiatives relating to the Internet of Behavior (IoB). This
area of research scrutinizes the rationales, approaches, and timing of human technology adoption,
encompassing the domains of the Internet of Things (IoT), behavioral science, and edge analytics. The
significance of ML in medical and healthcare applications based on the IoB stems from its ability to
analyze and interpret copious amounts of complex data instantly, providing innovative perspectives
that can enhance healthcare outcomes and boost the efficiency of IoB-based medical and healthcare
procedures and thus aid in diagnoses, treatment protocols, and clinical decision making. As a result
of the inadequacy of thorough inquiry into the employment of ML-based approaches in the context of
using IoB for healthcare applications, we conducted a study on this subject matter, introducing a novel
taxonomy that underscores the need to employ each ML method distinctively. With this objective
in mind, we have classified the cutting-edge ML solutions for IoB-based healthcare challenges into
five categories, which are convolutional neural networks (CNNs), recurrent neural networks (RNNs), deep
neural networks (DNNs), multilayer perceptions (MLPs), and hybrid methods. In order to delve deeper,
we conducted a systematic literature review (SLR) that examined critical factors, such as the primary
concept, benefits, drawbacks, simulation environment, and datasets. Subsequently, we highlighted
pioneering studies on ML methodologies for IoB-based medical issues. Moreover, several challenges
related to the implementation of ML in healthcare and medicine have been tackled, thereby gradually
fostering further research endeavors that can enhance IoB-based health and medical studies. Our
findings indicated that Tensorflow was the most commonly utilized simulation setting, accounting
for 24% of the proposed methodologies by researchers. Additionally, accuracy was deemed to be the
most crucial parameter in the majority of the examined papers.
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1. Introduction

The Internet of Behavior (IoB) applies devices to gather a huge amount of human
behavioral information and change it into precious insights in order to develop a user’s
experience by altering their behaviors, preferences, and concerns [1,2]. With the increasing
progress being made in efforts to use IoT devices to gather vast amounts of information,
applying such devices to follow behavioral data in the IoB procedure will make the process
simpler, quicker, and more effective [3,4]. The IoB attempts to adequately conceive data
and utilize the perception obtained to build new results, support recent results, remodel
the value chain, enhance benefits, or decrease costs [5,6]. So, the behavior of the user in
the IoB workflow will first be followed when they utilize connected devices. The data
produced by such devices will be gathered and evaluated by applying machine learning (ML)
algorithms and data analytics [7,8]. The evaluation stage will generate suitable data, which
should be appropriately understood from a behavioral science point of view [9,10]. So, the
knowledge attained will be employed to improve business techniques and affect the user’s
behavior, thus gaining a particular target [11,12]. It follows and explores user behavior
to identify and affect significant variables for the purpose of obtaining the objective of
the process [13,14]. The IoB can become a strong marketing facility for businesses all
around the world since it has the potential to provide them with in-detail personalized
breakdowns of the perception of their users [15,16]. In terms of personal healthcare,
the IoB can efficiently deliver customized services [17]. Also, the IoB can be used in
health applications to offer behavioral corrections via efforts to conceive of the diet of the
user, patterns of sleep, and levels of blood sugar [18]. Personalized healthcare can be a
pivotal differentiator in providing quality services [19]. The IoB has significant potential
to improve personal healthcare by enabling providers to quantify patient activity levels
and examine the efficiency of healthcare activities. Indeed, this technology was used to
monitor compliance with health protocols during the pandemic [20]. The IoB can also
be used to track human activity and location to reduce the risk of viral contamination
and identify unhealthy behaviors, allowing healthcare providers to intervene and prevent
health problems. Additionally, the IoB can support the development of smart apps and
devices that act as health advisors, providing users with real-time information on their
health status and potential risks [21]. So, in order to conduct daily performances consisting
of treatment arrangement and operations planning in healthcare, there is a requirement for
the IoB [22]. The IoB aids in specifying the essential effective facets of a patient’s behavior.
Additionally, the IoB helps buyers to achieve their service demands without spending time
directing different purchasing mechanisms for healthcare [23].

In addition, artificial intelligence (AI) is progressively enabling novelties, such as ex-
ploring the Internet via visual and audial detection, smart devices, and even driverless
cars [24,25]. Previously, the primary constraints on AI consisted in the insufficiency of data
available for training models, as well as the inadequacy of AI systems to manage data in
their conventional format [26,27]. Today, with the ubiquitous digitalization of data about
humans, algorithms of deep learning (DL) can progressively benefit from stockpiles of “big
data” to increase a learning model’s function and expand the complications and gains of AI
application [28,29]. Machine learning algorithms are a subset of artificial intelligence that
enable computers to learn from and adapt to data without explicit programming. They use
statistical techniques to identify patterns and make data-driven predictions or decisions,
refining their performance with experience [30]. On the other hand, artificial intelligence
refers to the broader concept of creating machines or systems that exhibit human-like intel-
ligence, including problem-solving, learning, reasoning, and decision-making capabilities.
Machine learning serves as a crucial component of artificial intelligence, providing the
tools and methodologies for systems to acquire knowledge and improve their performance,
thereby propelling the advancement of intelligent technologies across various domains
and applications. AI inventions are significantly ground-breaking in the area of healthcare
services [31]. The applications of IoB and AI approaches have overshadowed the revolution
in personal healthcare results for healthcare systems and humans. For example, numerous
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stockpiles of in-person health data are required for DL models [32]. Nowadays, personal
health data like notes from regular visits to physicians, self-monitoring of paces, heartbeats,
sleep, medical imaging, and DNA repositories are being quickly collected and used to train
DL algorithms in a rising array of AI healthcare applications [33,34]. In fact, in comparison
with profits from personal healthcare AI, much less regard has been paid to potential
unintentional or inadvertent results of these improvements for humans and society [35].

In this study, we identified a deficiency in the organization of a coherent and disci-
plined taxonomy for the topic “Personal Health Applications Using Machine Learning
Techniques in the Internet of Behaviors.” To address this issue, we designed a novel and
all-encompassing taxonomy that will provide readers with a coherent and easily compre-
hensible review paper related to this subject matter. Nonetheless, in the IoB–ML domain,
there is no in-depth study of the ML/DL application. To provide an in-detail investigation
of the novel systems presented by applying these technologies, the research is concentrated
on the achievements, diagnosis, and detection of medical issues related to coping with such
issues, forecasting death, and evaluating health equipment. The important contribution
of this study is to map the most attractive areas of research, taking into consideration the
current research into the various ML applications currently built for the diagnosis and
treatment of healthcare problems. We have explored novel applications of ML methods
within this subject and presented them in a well-defined structure to enhance readers’ com-
prehension of this topic. The research adds a novel taxonomy of ML solutions for IoB-based
healthcare, dividing these into five categories: convolutional neural networks (CNNs),
recurrent neural networks (RNNs), deep neural networks (DNNs), multilayer perceptions
(MLPs), and hybrid methods. Furthermore, we conducted a systematic literature review
to (SLR) assess critical factors such as the main concept, benefits, drawbacks, simulation
environment, and datasets, offering a structured review of the field. We discuss the use of
high-quality and diverse datasets, which is crucial for the design of accurate and robust
ML models. We considered incorporating a detailed discussion on data collection methods
and data preprocessing. We beneficially elaborated on the criteria used to selecting the
ML models in our research. Additionally, a thorough evaluation of the chosen models’
performance metrics, including comparisons with other state-of-the-art models, would
strengthen the validity of the findings. Given the sensitive nature of personal health data,
our study addressed ethical considerations related to data privacy, consent, and potential
biases introduced by the ML models. Laying out clear guidelines on the management of
these ethical aspects throughout the research enhanced the paper’s credibility. Discussing
potential challenges and limitations in deploying ML-based personal health applications in
real-world settings offered valuable insights to readers. Addressing scalability, security,
and usability issues have provided a more comprehensive understanding of the feasibility
and practicality of the proposed methodologies. Discussing case studies or real-world
use cases of ML technique implementation in IoB-based health applications has provided
tangible examples of the methodology’s effectiveness and impact.

By considering these potential improvements, we have enhanced our paper’s method-
ology section and contributed to advancing knowledge in the domain of personal health
applications using machine learning techniques in the Internet of Behaviors. A systematic
literature review (SLR) is employed in this study to explore, interpret, and integrate outcomes
from the same studies. Furthermore, we categorize IoB-based ML/DL techniques used in
healthcare into five main categories, namely convolutional neural networks (CNN), recurrent
neural networks (RNN), deep neural networks (DNN), multilayer perceptron networks (MLP),
and hybrid methods. We evaluated several criteria such as the benefits, drawbacks, main
idea, simulation environment, and dataset for each class and technique applied to ML
methods in healthcare. This paper provides data on the mechanisms and applications of
ML methods in health and its topic encompasses a broad domain of illnesses that occur
ubiquitously. In this paper, we looked into future work deeply, considering all the flows
required to be mapped in the future. The main contributions of this paper are briefly
listed below:
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• Providing a comprehensive study of the existent challenges relevant to ML–IoB meth-
ods in healthcare;

• Providing a systematic review of the present techniques for the IoB-based ML method
and other crucial actions;

• Describing significant methods in ML used to compose the IoB;
• Investigating each method that is referred to as an IoB-based ML method using

different parameters like advantages, disadvantages, simulation environments, main
idea, and dataset;

• Outlining pivotal zones that can develop the studied methods in the future.

This article is organized by the categorizations listed below. The next part addresses
the essential concepts and terminology of ML methods in healthcare. The relevant studies
review papers are mentioned in Section 3. The explored methods and tools for paper
selection are provided in Section 4. Section 5 describes the classifications of the selected
papers. Section 6 provides the outcomes and comparisons. Then, the open issues and
conclusion are provided in Sections 7 and 8.

2. Fundamental Principles and Corresponding Terminologies

This section envelopes the concepts and terms related to using ML in the IoB.

2.1. IoB Architecture, Definition, Usages

The IoB refers to behavioral analysis data collected from the IoT and other datasets,
and, afterward, efforts to make efficient utilization of them [36]. This information is
collected through exclusive online activities, household electrical devices, and wearable
technologies, which can give precious data about the intentions and behavior of users [37].
Tracking, collecting, integrating, and interpreting huge amounts of information provided
by personal behavior and different online activities, consisting of commercial transactions
and social media behaviors, is possible with the aid of both IoB and IoT methods [38].
Without any shadow of a doubt, data have been significant for businesses since the onset
of the Internet. Although, in 2022, Gartner named the IoB as one of the most cutting-
edge technological trends [39], the IoB still needs to allow everyone to gather and analyze
data [40]. Moreover, behavioral data also aids businesses to make more noticeable decisions
and develop their quality of service and chain of value feasibly [41]. The IoB process began
with the essentials of IoT in terms of data streaming and data sharing [42]. The concept
of the IoB involves a combination of technologies and disciplines, including behavioral
psychology, behavioral analysis, usage data, IoT, products & services, and user experience.
The IoB is a structure composed of several key components that work together to influence
and shape human behavior [43]. These components include behavioral psychology, which
provides insights into the factors that shape human behavior, such as motivation and
social influence; behavioral analysis, which uses data and analytics to understand human
behavior and develop personalized interventions; usage data, which are collected and
analyzed from various sources such as social media, mobile apps, and IoT devices to identify
patterns and trends; the IoT, which is the network of interconnected devices that collect and
exchange data and is used by the IoB to collect data about individuals’ behavior and provide
personalized interventions; products and services that are developed to influence human
behavior, such as mobile apps that encourage healthy habits and smart home systems that
optimize energy usage based on individual behavior; and user experience, which aims to
provide a seamless and intuitive user experience that encourages individuals to engage
with technology and adopt desirable behaviors, incorporating elements of gamification
to make behavioral change more engaging and enjoyable [44,45]. Figure 1 depicts the IoB
structure, which is associated with several factors.
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Figure 1. IoB structure including different components.

2.2. Various Features of IoB for the Healthcare Section

Figure 2 indicates the number of intelligent components of the IoB, exhibiting the
power of the healthcare section. As mirrored in Figure 1, this concept contains the accurate
stream health operations of data. These evolved with intelligent connection to process
patients’ information efficiently [46]. This flow is digital in its process and becomes faster,
and finally results in strengthened patients. Figure 3 demonstrates the procedure and
structure of the IoB for supporting and updating personal healthcare. Knowledge with
improved wisdom is an integral section of this procedure and the stream of the IoB back-
ground. Regarding advanced technology, the IoB applies data collected by the IoT [47].
First of all, the IoB is employed to evaluate support operations. The IoB brings practical
and comprehensible benefits. Cybercriminals can use behavioral data [48]. Consequently,
businesses are required to attract more notice and be more proactive in protecting their data
for several purposes [49]. The potential uses of these data include directing user experience
models, providing services and products, helping businesses to make conscious decisions,
and outfitting marketing methods [50]. Another component of the IoB is integrating and
analyzing data from different sources to gain better and more effective decisions [51].
Combining the IoB and IoT should be considered ground-breaking technology and will
become more functional in some areas [52]. Even though at an early phase, the potential
and advantages of IoT solutions, while combined with IoB technology, are vivid. It may
even produce an environment that specifies the behaviors and attitudes that manage the
digital world [53].
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2.3. IoB Utilization for Healthcare Practices

The IoB provides predictive information on plans and objectives related to addressing
pressing conditions in healthcare. The IoB turns into a tool for accurate prediction when
it has particular users [54]. This works differently from the other apps that look to follow
human motions, explore their locations, detect their gestures, and specify their vicinity
to one another [55]. However, integrating these methods can generate a very strong and
smart service at the same time [56]. The sophistication of the IoB is progressively rising and
altering, consisting in how devices are communicated, what calculations they can conduct,
and how information is hoarded in the cloud [57]. The transition to mobile devices has
changed how humans interact with each other. The IoB devices’ application data bring
precious details on users’ favored options, preferences, and performances [58]. In this way,
behavior alternation apps could be suggested [59]. Also, the IoB has several applications in
healthcare, including health monitoring, healthcare insurance, evaluating patients’ activi-
ties, mask identification, illness supervision, fitness monitoring, healthcare improvement,
examining physiology, evaluating health situations, and personalized medication and treat-
ment [45]. IoB technology can be used to build health-monitoring smartphone apps that
evaluate heart rates, food intake, sleep patterns, and blood sugar levels [60]. It can also be
utilized to evaluate patients’ activities and assess how healthcare activities work [61]. The
IoB can help healthcare insurance by analyzing data from IoT devices to provide a more
accurate estimate of insurance expenses. Computer vision businesses have also used the
IoB to identify mask-wearing during the pandemic [62]. IoB technology can aid in illness
supervision, car monitoring for insurance, fleet governance, and targeted purchasing offers.
Fitness tracker data are being widely applied to develop the healthcare sector. The IoB
can help physicians to offer better healthcare solutions to patients by using information
from wearables [63]. It can also assist in understanding people’s physiology and evaluating
health situations. IoB devices can aid in personalized medicine and healthcare, leading to
improved personalized treatment and medications [64].

3. Relevant Reviews on Personal Health Applications Utilizing Machine Learning
Techniques in the Internet of Behaviors

We reviewed the background, perspectives, and definitions in the previous section. In
this section, the initial goal is to review several current studies on personal healthcare ap-
plications utilizing ML/DL in the IoB. The main purpose of this section is to appropriately
emphasize the significant consequences of recent research compared with what methods
have been recently available. Regarding progress in AI technology, the application of AI
methods in the IoB is ever-increasing. On the other hand, IoB-related challenges have
roused the interest of academia. Additionally, the IoB is a hierarchical network manage-
ment framework that has been modeled to direct IoB availability towards the aim personal
healthcare. In this regard, Javaid and Haleem [65] studied the IoB and its requirements
for healthcare. They investigated the features and structures of working in the healthcare
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area. Moreover, Pradhan and Elhadad [66] examined the current state of clinical narrative
analysis, particularly efforts to recognize and normalize disorders. The authors evaluated
various disorder recognition and normalization techniques in clinical narratives and identi-
fied their strengths and limitations. Their paper concluded by discussing the challenges
that remain in this area of research and the need for the further development and evaluation
of more advanced techniques.

Besides, Bose and Srinivasan [67] provided an overview of the recent techniques for
named entity recognition (NER) and relationship extraction (RE) in a clinical text. Their paper
began by discussing the challenges associated with NER and RE in the clinical domain,
such as the presence of ambiguous and complex entities, different naming conventions,
and the need for domain-specific ontologies. The paper then surveyed recent approaches
for NER and RE, including rule-based, ML-based, and DL-based methods. Also, Konstan-
topoulos and Koumoulos [68] explored the use of digital innovation and ML strategies
in the manufacturing of nanomaterials. They discussed how the combination of these
technologies can lead to the development of more efficient and sustainable manufacturing
processes. They also highlighted the importance of considering green perspectives in
nanomaterial manufacturing, with a focus on reducing environmental impacts and pro-
moting sustainability. Finally, Vettoretti and Cappon [69] presented a review of the current
state-of-the-art techniques that employ AI and continuous glucose monitoring (CGM) sensors
in the management of diabetes. The authors discussed various AI-based techniques that
have been developed to improve diabetes management, including supervised learning,
unsupervised learning, reinforcement learning, and DL.

However, there is a need for a new review article on DL–IoB in applications for per-
sonal health as prior studies have only given a general overview of DL applications in many
domains. They have not completely examined the potential of DL to resolve the issues faced
in the sector. Furthermore, recent improvements in DL algorithms have opened up new
possibilities for enhancing the precision and effectiveness of personal health applications.
We aid to highlight the areas that require further research and offer direction for future
work in the field by offering a thorough assessment of the most recent advancements in DL
and its applications in personal health applications. Table 1 shows relevant review papers
studied concerning IoB-based ML methods for healthcare applications.

Table 1. Relevant work.

Authors Main Idea Advantage Disadvantage

Javaid and Haleem [65] Investigating IoB and its necessary for
personal healthcare.

Touch on the topic theoretically
in-detail.

Poor comparison between
studied papers.

Pradhan and Elhadad [66]

Proposing the consequences from the
2013 ShARe/CLE shared task on
disability entity detection and
normalization.

Organizing cutting-edge
evaluation of the clinical text. Existence of discontinuous spans.

Bose and Srinivasan [67]
Stressing the present condition of
clinical RE and NER and arguing the
present proposed NLP models.

Consisting of recent issues,
practices, and future directions in
data extraction from clinical text.

Poor schematic comparison
among studied papers.

Konstantopoulos and
Koumoulos [68]

Providing a summary of improvement
related to the raised effect in
nonmaterial and nanoinformatics
fields.

Enveloping recent issues towards
decentralized, data-driven,
unbiased decision-making.

Lack of access to a great deal
of data.

Vettoretti, Cappon [69]
Reviewing the methodologies for
applying CGM and AI sensors to
decision support in T1D management.

Studying the most state-of-the-art
methodologies and development
trends.

Lack of support for the adoption
of AI-based DSS applications in
T1D management.

Our work Reviewing IoB-based ML methods for
personal healthcare applications. In-detail evaluation of the topic. Lack of evaluation of non-English

resources.
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4. Methodology of Research

We conducted an assessment of the literature about the utilization of ML in personal
health applications within the IoB domain in the pervious section. In this section, we em-
ployed the SLR approach to gain a comprehensive understanding of the IoB field. The SLR
technique entails a thorough examination of all research conducted on a particular subject
matter. This segment culminates in an extensive analysis of the ML methodologies utilized
within the IoB sphere, with a further examination of the reliability of the research selection
methods used. The subsequent subsections provide additional information on the research
methodologies employed, encompassing the selection metrics and research inquiries.

4.1. Question Formalization

The primary aims of the study entail identifying, assessing, and distinguishing all
crucial documents in the field of ML applications for the IoB. To achieve these objectives,
an SLR can be employed to scrutinize the elements and attributes of the methodologies.
Additionally, the SLR facilitates the acquisition of profound insights into the critical diffi-
culties and obstacles facing this industry. The subsequent paragraph enumerates various
research queries.

RQ 1: How can ML techniques in the IoB areas be classified?

Section 5 includes this question’s answer.

RQ 2: What techniques do researchers employ to conduct their investigation?

Section 5.1, Section 5.2, Section 5.3, Section 5.4 and Section 5.5 answer this question.

RQ 3: What parameters drew the most distinguished in the papers? What are the most
trend ML applications used in the IoB?

Section 6 includes this question’s answer.

RQ 4: What are the untouched future directions in this area?

Section 7 puts forward this question’s answer.

4.2. Paper Selection Process

This research paper’s search and selection strategies are grouped into four phases.
Figure 4 explains these classifications. In the first phase, the keywords and phrases used
to explore the articles are demonstrated in Table 2. An electronic database propels the
finding of the articles. Also, chapters, journals, technical studies, conference papers, notes,
and Special Issues were found. The first phase had a consequence of 625 papers being
considered. The papers were analyzed using our standards. We selected papers in terms
of several criteria, which are indicated in Figure 5. Figure 6 displays the distribution of
publishers in the first step of choosing a paper.
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Table 2. Search keywords and terms.

S# Keywords and Search Criteria

S1 “ML” and “Healthcare”
S2 “ML” and “IoB”
S3 “DL” and “ML”
S4 “IoB-based system” and “Bioinformatics”
S5 “AI” and “Medical issues”
S6 “DL” and “Personal Healthcare”
S7 “AI” and “IoB”
S8 “IoB” and “Healthcare”
S9 “AI” and “Healthcare”

S10 “DNN” and “Medical sector”
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Figure 6. First phase of distributing papers by the publishers.

There were 410 recent articles left after initial exclusion, as the distribution of publish-
ers in this phase demonstrates in Figure 7. Also, most of the research publications were
published by IEEE. There were 250 papers left in the third phase, as indicated in Figure 8.
The abstracts and titles of the articles were studied. The papers’ discussion, methodology,
analysis, and conclusion were investigated to make sure that they were related to the study.
In the fourth step, 103 articles were chosen for the next review, as demonstrated in Figure 9.
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Lastly, 25 articles were selected to investigate other publications as they fit the metrics. The
following parts discuss ML–IoB methods and their properties in detail.
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5. Health and Medical Applications Utilizing DL/ML Techniques Based on the IoB

In this section, we delved into the implementation of ML techniques in the field of
the IoB for the monitoring of personal health. A total of 25 articles were included in this
review, all of which fulfilled our selection criteria. The identified approaches were then
categorized into five primary groups, namely CNNs, DNNs, RNNs, MLPs, and a variety of
hybrid methods. A proposed taxonomy of ML–IoB applications in the domain of personal
healthcare is illustrated in Figure 10.
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5.1. CNN Methods

CNN is one of the DL approaches that can be applied in all terrains of healthcare and
medicine and is one of the most practical techniques for investigators to use. This approach
is prevalently utilized for personal healthcare applications and relevant backgrounds. We
dwell deeply on five techniques in this section. The named entity recognition (NER) task is
a foundation for progressive text evaluation. By the same token, in [70], a low-cost NER
tool was proposed for use in biomedical text mining. The proposed tool, BINER, utilized
rule-based and ML-based methods to identify and extract biomedical named entities from
text. They evaluated the performance of BINER on three publicly available biomedical
datasets and compared it with that of other state-of-the-art NER tools. Results showed that
BINER performs competitively and with lower computational costs than other tools.

Besides, ref. [71] explored the emerging concept of the IoB and its implications for the
development of explainable AI (XAI) systems in the context of IoT. They proposed a framework
for designing IoB systems that take into account these challenges, as well as the need for effective
user engagement and feedback mechanisms. They provided a comprehensive overview of
the IoB and XAI systems and their potential for transforming the IoT landscape, while also
highlighting the importance of ethical considerations and user-centric design.

Hasan, Roy [35] proposed a method to improve clinical relation extraction using a
combination of traditional natural language processing (NLP) features and text embeddings.
The proposed method used a neural network-based approach that combines both traditional
NLP features, such as part-of-speech tags and dependency parsing, and text embeddings,
which are vector representations of words or phrases that capture semantic meaning. They
evaluated their method based on a publicly available dataset and achieved an improved
performance compared to previous methods that used only traditional NLP features.

Moreover, Zhang and Zhao [72] proposed a method for identifying named entities
in medical texts using a dilated CNN (DCNN). NER is a crucial task in NLP, especially in
the medical field, where accurately identifying entities like drugs, diseases, and medical
procedures is important. The proposed DCNN model used dilated convolutions to capture
long-range dependencies between words in the input text, which helped to improve the
model’s performance. They trained and tested the model on the MedMentions dataset,
which is a well-known benchmark dataset for medical NER tasks.

Also, Loh, Ooi [73] provided an eight-layer CNN for automated major depressive
disorder (MDD) recognition. Spectrogram images were achieved by applying STFT (short-
term Fourier transform) of electroencephalography EEG signals alongside the CNN model
and they have gained the highest function with 10-fold cross-validation and hold-out
validation. They described the development of a decision support system for detecting
major depression using EEG signals. The system was trained and tested using a dataset of
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EEG signals from patients diagnosed with major depression and healthy controls. Table 3
indicates methods using CNN for healthcare applications in the IoB.

Table 3. The methods, features, and properties of CNN-based healthcare techniques in IoB.

Authors Main Idea Advantages Disadvantages Method Security
Involved

Simulation
Environment Dataset

Asghari,
M., et al. [70]

Proposing a model
trained on low-tier
GPU computers.

• Fewer layers
needed

• Improved F1-
score

• Poor scalability
• Poor flexibility CNN No - LINNAEUS

JNLPBA

Elayan and
Aloqaily [71]

Offering a reliable
monitoring-
evaluating-
effecting behavior
system utilizing
IoB and XAI.

• Energy-
efficient

• Cost-efficient

• Lack of
distributed
version

• High
Complexity

• Low speed of
changing
behavior
process

CNN No Keras

An
individual
house-
hold’s
electric
power con-
sumption

Hasan and
Roy [27]

Investigating how
various DL models
and feature sets
could be applied in
connection
extraction from text
clinical.

•
Outperforming
two baselines
on the similar
dataset

•
Underperforming
contextual
embedding
learned by
BERT while
combined with
other
traditional NLP
features.

CNN No Keras 2010
i2b2/VA

Zhang and
Zhao [72]

Presenting a
medical entity
detection relying
on dilated CNN.

• Improve the
issue of
low-speed
training

• Poor scalability CNN No -

Hospital-
BJ
CCKS-
2017

Loh and
Ooi [73]

Introducing an
8-layer CNN-based
DL system for
automated MDD
recognition.

• Achieving
higher
function with
both hold-out
validation
and cross-
validation

• Utilizing only
64 subjects to
improve the
CAD model

CNN Yes Python EEG

5.2. RNN Methods

The RNN technique finds dramatically widespread practical use in personal healthcare
and IoB realms. As mentioned before, it is frequently used for forecasting and prediction
approaches. We investigated five various methods in this part. In this regard, Lerner and
Jouffroy [74] proposed a method for extracting medication information from clinical text
using RNN grammars (RNNGs). They described how previous methods for medication
information extraction have relied on manually crafted rules or statistical models. These
have limitations such as the need for extensive domain knowledge and the inability to cap-
ture complex syntactic structures. They trained their RNNG model on a dataset of clinical
notes from EHR and evaluated its performance against other state-of-the-art methods. The
proposed model outperformed seq-BiLSTM for detecting complicated connections, with,
on average, an 88.1% F-score. However, RNNG is interested in being weaker than baseline
BiLSTM in recognizing entities, with an average of 82.4% F-score.

In addition, Peng and Rios [75] presented a method for automatically extracting infor-
mation on chemical–protein interactions from the scientific literature using a combination
of ML techniques. The authors first compiled a dataset of abstracts from scientific articles
that mention both chemicals and proteins and manually annotated them to indicate the
type of interaction between the two. They then used this dataset to train and test two
different types of ML models: support vector machines (SVMs) and DL models. The SVMs
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were trained on a variety of different features extracted from the text, including lexical,
syntactic, and semantic features. On the other hand, the DL models were trained on raw-
word embeddings using a CNN architecture. Their approach showed promise in terms of
automatically extracting information on chemical–protein interactions from the scientific
literature and could be applied to other types of information extraction tasks.

Additionally, Jouffroy and Feldman [76] proposed a method for extracting medication
information from French clinical texts using a combination of expert knowledge and DL.
They developed a system called MedExt, which combined expert knowledge from a medical
terminologist and a pharmacist with DL techniques. The MedExt system consisted of two
main components: a rule-based component for identifying medication-related entities and
a DL component for classifying the identified entities. The authors trained their DL model
on a small, annotated dataset of French clinical texts and evaluated its performance on a
larger dataset of unannotated texts. The authors found that the MedExt system accurately
identified and classified medication-related entities into medication categories.

Moreover, Zhao and Cui [77] presented a method for learning brain networks using
deep RNNs that can capture temporal dependencies. They proposed a supervised learning
framework that uses RNNs to learn the functional connectivity patterns in the brain. The
method was applied to functional magnetic resonance imaging (fMRI) data to predict the
functional connectivity between brain regions. The authors used a dataset of 200 subjects
from the Human Connectome Project and compared their method with several other state-
of-the-art methods for learning brain networks. The results showed that the proposed
method performs better than the other techniques in terms of accuracy and robustness. The
authors also showed that the learned brain networks can be used to identify meaningful
connections between brain regions that are related to specific cognitive tasks.

Also, Frank and Iob [9] looked into how depression symptoms changed among at-risk
populations in the UK during the COVID-19 epidemic. They conducted a longitudinal
study using data from the UK Household Longitudinal Study. This included a sample
of vulnerable individuals such as those with pre-existing mental health conditions, low-
income individuals, and those with disabilities. The authors analyzed data from three
waves of the study, conducted between April and June 2020, and measured depressive
symptoms using the Center for Epidemiologic Studies Depression Scale (CES-D). They found
that depressive symptoms increased among vulnerable groups during the COVID-19
pandemic. They also identified different trajectories of depressive symptoms among
vulnerable groups, including a stable high-symptom trajectory and an increasing symptom
trajectory. Table 4 outlines methods that use RNN for healthcare applications in the IoB.

Table 4. The methods, features, and properties of RNN-based healthcare techniques in IoB.

Authors Main Idea Advantages Disadvantages Method Security
Involved

Simulation
Environment Dataset

Lerner and
Jouffroy [74]

Evaluating RNNG
model for healthcare
data extraction in
clinical texts.

• High
adapt-
ability

• High
accuracy

• Poor
scalability RNN Yes Python APmed

Peng and
Rios [75]

Defining submission
in the BioCreative VI
CHEMPROT task.

• High
accuracy

• Poor
scalability

• Poor
adaptability

RNN No -
2432
PubMed
abstracts

Jouffroy and
Feldman [76]

Improving a hybrid
system combining
contextual word
embedding and an
expert rule-based
system.

• High
F-score

• Poor
diversity

• Poor
scalability

RNN No Python

320 clinical
texts and
19,957
sentences
with
173,796
words
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Table 4. Cont.

Authors Main Idea Advantages Disadvantages Method Security
Involved

Simulation
Environment Dataset

Zhao and
Cui [77]

Proposing a hybrid
framework,
supervised brain
network training.

• High ro-
bustness

• High reli-
ability

• Poor
adaptability RNN No Tensorflow HCP tfMRI

Frank and
Iob [9]

Examining
trajectories of
depressive
symptoms over time.

• High
accuracy

• Poor
adaptability RNN No - 51,417

adults

5.3. DNN Methods

DNNs are a strong class of ML algorithms that are implemented by stacking layers
of neural networks along the width and depth of smaller models. DNNs have currently
indicated representative and distinctive learning abilities over a broad domain of appli-
cations. So, Yepes and MacKinlay [78] proposed a method for the supervised learning of
brain networks using deep RNNs. Brain networks are complex structures that represent
the connectivity between different regions of the brain. The authors aimed to develop a
method with which to accurately classify brain network states based on the connectivity
patterns between brain regions. The proposed method consisted of two parts: a feature
extraction stage and a classification stage. In the feature extraction stage, the authors used
a deep RNN method to learn the temporal dependencies of the brain network data. This
stage involved training the RNN on a set of input brain network data and using its hidden
states as features for subsequent classification. In the classification stage, a linear SVM is
used to classify brain network states based on the learned features. The authors evaluated
the proposed method on two datasets, namely, the Human Connectome Project (HCP) dataset
and the Autism Brain Imaging Data Exchange (ABIDE) dataset. The results showed that the
proposed method outperformed others in terms of classification accuracy. Furthermore, the
authors performed a feature analysis to show that the learned features were able to capture
important information about brain network connectivity.

Also, Jouffroy and Feldman [76] aimed to develop an algorithm for extracting medication-
related information from clinical texts in French using a hybrid DL approach. They trained
and tested their algorithm using a dataset of clinical texts in French containing medication
information. They evaluated the performance of their algorithm using standard metrics such
as precision, recall, and F1 score. The results showed that their algorithm accurately identified
medication-related information from clinical texts in French, with an F1 score of 0.942.

Cao and Qian [73] also put forward a bidirectional LSTM (Bi-LSTM) recurrent network
that could be applied in two regularizations to solve the short-note categorization issue.
To begin with, they adjusted the familiar attention technique to aim the network training,
utilizing the range of knowledge in the directory when a knowledge dictionary was not
accessible. Moreover, they proposed a multi-task system in order to train the range knowl-
edge dictionary to address the cases and classify the texts at the same time. The authors
applied their approach to a real-world interactive medical system and a broadly publicly
accessible ATIS dataset. According to the results, the proposed model could positively
obtain the note’s critical point and outperform several baselines.

In addition, Silvestri and Gargiulo [79] proposed a method for iteratively annotating
biomedical NER corpora using DNN and knowledge bases. NER is the task of identifying
and classifying named entities, such as genes, proteins, and diseases, in biomedical texts.
Their proposed method first used a pre-existing NER system to annotate a small portion
of the corpus automatically. Human annotators then reviewed the annotations, and any
errors were corrected. The corrected annotations were used to train a DNN to perform
NER on the remaining unannotated text. The neural network output was further reviewed
and corrected by human annotators, and the process was repeated until all the text was
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annotated. They also proposed using external knowledge bases, such as the Unified Medical
Language System (UMLS), to improve the accuracy of the annotations.

Additionally, Chalapathy and Borzeshi undertook research on this issue [80]. The
paper proposed a model for extracting clinical concepts from EHR using a bidirectional
LSTM model combined with a conditional random field (CRF) layer. The proposed model
outperformed existing methods on two benchmark datasets used for clinical concept
extraction. The authors also conducted experiments to individually show the effectiveness
of the bidirectional LSTM and CRF layers. They concluded that the proposed model
can accurately extract clinical concepts from EHRs, which can improve the efficiency of
clinical decision-making processes. Table 5 indicates methods using DNN for healthcare
applications in the IoB.

Table 5. The methods, features, and properties of DNN-based healthcare techniques in IoB.

Authors Main Idea Advantages Disadvantages Method Security
Involved

Simulation
Environment Dataset

Yepes and
MacKinlay [78]

Proposing a
method to operate
annotation of
medical things
applying a tracking
neural network.

• High F-score
• High

accuracy
• High recall

• Poor
design of
the
structure

DNN No PyTorch Micromed

Jouffroy and
Feldman [76]

Improving a
hybrid model
composing a
contextual and an
expert law-based
model.

• High
precision

• High Recall
• High F-score

• Poor
scalability

• Poor
diversity

DNN No Python 320 clinical
texts

Cao and
Qian [81]

Presenting a
BiLSTM recurrent
network to solve
the short-note
classification.

• High
accuracy

• Poor
flexibility DNN No - ATIS

COHCP

Silvestri and
Gargiulo [79]

Putting forward a
method that relies
on active training.

• Developed
response time

• Poor
flexibility DNN No - Word2vec

Chalapathy and
Borzeshi [80]

Discussing the
efficiency of the
contemporary
bidirectional
LSTM-CRF clinical
concept extraction.

• Capability to
create
end-to-end
detection
utilizing
general-
purpose
data

• Lack of
applying
unsuper-
vised word
embedding
trained
from
domain-
specific
resources

DNN No - 2010
i2b2/VA

5.4. MLP Methods

MLP is a connected multi-layer neural network. It has at least 3 layers consisting
of one hidden layer. An MLP is a common feedforward artificial neural network (ANN)
instance. Stylianou and Vlahavas [82] proposed a method for evidence-based medicine
and argument mining in medical literature using end-to-end transformers. Evidence-based
medicine is the practice of making clinical decisions based on the best available evidence,
and argument mining is the task of identifying and extracting arguments from texts. Their
method used a pre-trained transformer-based language model, BERT, as a feature extractor
for medical text. The extracted features were then fed into a neural network that was trained
on a task-specific dataset for evidence-based medicine or argument mining. They evaluated
their method on two publicly available datasets and achieved improved performances
compared to previous methods that used either rule-based or ML approaches. They also
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performed an ablation study to investigate the contribution of the transformer-based feature
extractor and found that it significantly improved the performance of the system.

Additionally, Vehí and Contreras [83] discussed the use of ML techniques to predict
and prevent hypoglycemic events in type-1 diabetic patients. They used data collected
from CGM devices and insulin pumps worn by patients to train and validate their ML
models. They used various ML algorithms, including decision trees, logistic regression,
and SVM, to predict the occurrence of hypoglycemic events in advance. The study also
proposed a method to prevent hypoglycemic events using an AI algorithm that adjusts
the insulin doses administered to the patient. The algorithm used real-time data from the
glucose-monitoring device to calculate the appropriate insulin dose required to maintain
glucose levels within the normal range and prevent hypoglycemia. The results of their
study demonstrated the effectiveness of the ML models in predicting hypoglycemic events
with high accuracy.

Also, Roberts [84] investigated the trade-off between corpus size and similarity in
word embeddings for clinical NLP. They evaluated the performance of word embeddings
trained on clinical text data of varying sizes and compared it to word embeddings trained
on non-clinical text data. They also investigated the effect of different similarity metrics on
the performance of word embeddings. The results showed that word embeddings trained
on clinical text data outperformed those trained on non-clinical text data. The authors also
found that increasing the size of the clinical text data improved the performance of the
word embeddings, but only up to a certain point, after which the performance plateaued.

Additionally, Yüksel [85] described the use of DL approaches to extract protein–
ligand interactions from the biomedical literature. They noted that identifying protein–
ligand interactions is crucial for drug discovery and development. However, this task is
challenging due to the vast amount of biomedical literature and the complexity of NLP. They
employed two DL approaches to overcome these challenges: a CNN and an LSTM network.
These models were trained on a dataset of annotated sentences that mention protein–ligand
interactions. The results showed that both models perform well in identifying protein–
ligand interactions from the biomedical literature, with the LSTM network achieving higher
levels of accuracy.

Moreover, Grivas and Alex [86] compared the performance of rule-based and neural
network-based information extraction systems for use in brain radiology reports. Informa-
tion extraction is the task of automatically identifying and extracting relevant information
from text. They evaluated the performance of two rule-based systems and one neural
network-based system on a dataset of brain radiology reports. They compared the systems’
performance on two information extraction tasks: identifying the presence of a stroke and
identifying the stroke type. The results showed that the neural network-based system
outperformed the rules-based systems on both tasks, achieving higher precision, recall,
and F1-score. They also performed an error analysis to investigate the reasons for the
performance differences between the systems. Table 6 indicates methods using MLP for
healthcare applications in the IoB.

Table 6. The methods, features, and properties of MLP-based healthcare techniques in IoB.

Authors Main Idea Advantages Disadvantages Method Security
Involved

Simulation
Environment Dataset

Stylianou and
Vlahavas [82]

Presenting an
end-to-end
transformer
pipeline to attain a
better function.

• Low latency
• High

availability

• Poor
scalability MLP No - EBM-NLP
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Table 6. Cont.

Authors Main Idea Advantages Disadvantages Method Security
Involved

Simulation
Environment Dataset

Vehí and
Contreras [83]

Proposing the
application of four
ML algorithms to
deal with the issue
of security in
diabetes aim.

• High
robustness

• High
flexibility

• Poor
adaptability MLP Yes MATLAB

Adaptive
synthetic
sampling

Roberts [84]

Introducing a series
of tests to analyze
the trade-off
between small-
representative and
large- corpora.

• High safety • Poor
scalability MLP No Tensorflow I2b2

Yüksel [85]
Analyzing the
influence of
linguistic features.

• High
accuracy

• High F-score

• Poor cost-
efficiency MLP No Tensorflow BindingCreative

Grivas and
Alex [86]

Comparing three
clinical data
extraction systems
to operate entity
detection.

• High Recall

• Limited size
• Poor

scalability
• Poor

availability

MLP No Python AIS

5.5. Hybrid Methods

One of the more complex approaches used in personal healthcare is the hybrid ap-
proach. This technique is the combination of two or more methods for coping with issues.
In these analyses, we determined the studied methods that were created by applying that
methodology. We found that these techniques are usually utilized in a diverse topic relevant
to our topic. In this section, we investigate five various techniques. Rabee [87] proposed
an efficient early breast cancer diagnosis approach. The non-ionizing method applied in
their study implemented antennas that diagnosed the tumor while operating under the
frequency domain of the IoB and Wi-Fi, which means the device cannot be applied at home.
This strategy utilized an exclusive feature extraction method under ultra-wideband (UWB)
microwave conditions and two different kinds of breast model to build patient datasets.
Their paper formulated acceptable information for a machine smart system applying the
UWB-implemented antenna. Many applicable supervised methods for ML, such as decision
trees, SVM, and closest-neighbor, were studied by applying this information. Applied SVM
delivered a great accuracy of conclusions, at 93%.

Also, Peng and Lu [88] proposed a DL approach for extracting protein–protein inter-
actions (PPIs) from the biomedical literature. PPIs are important for understanding the
biological mechanisms underlying diseases and drug targets. The authors developed a
CNN model that takes the text of biomedical articles as the input and outputs the probabil-
ity of a PPI between two proteins. Their model was trained on a dataset of PPIs extracted
from the BioGRID database and evaluated on two benchmark datasets. They also per-
formed an ablation study to investigate the contribution of different components of the
model to its performance. The findings had important implications for the development of
more accurate and efficient methods of extracting PPIs from large-scale biomedical data.

One critical phase in improving EEG-specific patient cohort retrieval systems is the an-
notation of a large corpus of EEG reports. The annotation of numerous types of EEG-specific
medical implications, alongside their modality and polarity, is problematic, particularly
when automatically conducted on big data. To address this issue, Iob and Pingault [89]
aimed to investigate the causal relationships between physical activity, sedentary behavior,
and mental health/substance use disorders using a method called Mendelian randomiza-
tion. Their study used data from large-scale genetic studies and EHR to identify genetic
variants associated with physical activity, sedentary behavior, and mental health/substance
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use disorders. They then used these variants to perform Mendelian randomization analyses
in order to determine whether physical activity and sedentary behavior causally influence
mental health and substance use conditions. The study’s results suggested that higher
levels of physical activity may have a protective effect against depression, anxiety, and
substance use disorders, while higher levels of sedentary behavior may increase the risk of
depression and anxiety.

Also, Gao and Thamilarasu [90] addressed the issue of security in connected medical
devices, which have become increasingly prevalent in healthcare environments. They
proposed the use of ML classifiers to enhance the security of these devices. They argued
that traditional security measures, such as firewalls and intrusion detection systems, are
not sufficient to protect against increasingly sophisticated attacks. Instead, they proposed
using ML algorithms to detect anomalous behavior and identify potential security threats.
Their paper presented a framework for building ML classifiers for security in connected
medical devices. Their framework included four stages: data collection, feature extraction,
classification, and evaluation. The authors evaluated their framework using a network
traffic dataset from a simulated medical environment.

Additionally, Phan and Dou [91] proposed a DL approach to predict human behavior
in health social networks, specifically targeting the prediction of depression risk in patients.
The proposed model was based on a social restricted Boltzmann machine (SRBM) that was
trained on various types of data, including social interactions, demographic information,
and electronic medical records. Their model incorporated an explanation mechanism
to provide reasons for its predictions, which can be useful for healthcare professionals
in understanding and interpreting the model’s output. The authors demonstrated the
efficiency of the proposed approach through experiments on a real-world dataset of de-
pression patients, achieving significant improvements over existing methods in terms of
prediction accuracy and interpretability. Table 7 indicates methods using hybrid methods
for healthcare applications in the IoB.

Table 7. The methods, features, and properties of hybrid-based healthcare techniques in IoB.

Authors Main Idea Advantages Disadvantages Method Security
Involved

Simulation
Environment Dataset

Rabee [87]
Proposing an
efficient early cancer
diagnosis method.

• High
accuracy

• Poor
flexibility SVM/DT/NN No - PCA datasets

Peng and
Lu [88]

Putting forward a
multichannel
dependency-based
CNN model.

• High F-1
score

• Poor
scalability CNN/DNN No Tensorflow

PPI corpora,
AIMed, and
BioInfer

Iob and
Pingault [89]

Presenting a new
active learning
annotation
framework.

• High
accuracy

• Poor
adaptability LSTM/SVM No Python

Temple
University
Hospital
dataset

Gao and
Thamilarasu
[90]

Examining the
viability of applying
ML to identify
security attacks.

• High
security

• Limited
feature set

SVM/Decision
tree/K-means No Castalia

1000, 4000,
and 7000
sample size

Phan and
Dou [91]

Introducing SRBM+

for human behavior
anticipation.

• High
accuracy

• High
stability

• Poor
comparison
between
discussed
methods

Decision
tree/nearest No - 2766 inbox

messages

6. Results and Comparisons

We looked in depth at DL/ML-based IoB-based health and medical applications
in the previous section. This section thoroughly reviews the findings and examines the
methodologies from many angles. Considering personal healthcare, applications that
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applying ML/DL in the IoB are storming ahead at a ground-breaking pace ahead in
medical and healthcare fiels. A detailed analysis revealed that most health ML applications
in the IoB focus on advanced datasets, combined learning tasks and annotation protocols.
However, there are several limitations to achieving the same level of function in healthcare
ML applications. One of the most critical limitations is the shortage of large datasets for
use in training. Additionally, standardized data collection is essential to ensuring that the
various types of data, which require larger and more diverse datasets to produce reliable
outcomes, have adequate access to them necessary resources. For detection, virtually all
proposed methods applied CNN or CNN-based techniques. The authors evaluated the
topic based on several attributes, such as accuracy, F-score, robustness, precision, recall,
adaptability, and flexibility. Sections 5.1–5.5 illustrate healthcare ML applications in the IoB.
According to the findings, most proposed methods are used to benchmark real-time data,
and various datasets are used in terms of numbers and categories. Most settled frameworks
consider parameters such as accuracy, robustness, flexibility, adaptability, scalability, F-
score, and precision, with accuracy being the main parameter for healthcare-based systems
and robustness being the least applied parameter. Data normalization was found to be the
main technique used to create images from numerous sources of similar quality and size.
However, as different datasets were used for examination, the computing time was not
demonstrated in many of the provided systems. The datasets employed in the research had
various features, such as the number of data, accessibility conditions, samples, image size,
and classes, with most not recognizing contributors and image sizes differing significantly.
The SVM algorithm is one of the most commonly used, with cross-validation rarely used in
most research. This may decrease the resiliency of the outcomes, as it is not clear how the
test data vary. It is worth mentioning that cross-validation is pivotal for evaluating entire
datasets. However, multiple studies use ML-based methodologies, and it is challenging to
establish clear, robust, and resilient models. Future tasks should focus on minimizing false-
positive and false-negative rates to enhance the dependability of methods for assessing
phenomena such as viral and bacterial pneumonia. The association of ML methods in
the IoB for developing personal health applications is a ground-breaking pace forward in
technological development.

As previously mentioned, CNN is a type of ML algorithm that can efficiently process
vast amounts of data, making it widely used in medical and healthcare applications. One
of the main advantages of CNN over other ML methods is its ability to extract features
without the need for human intervention or significant segmentation. This attribute enables
CNN to discover the intrinsic characteristics of the data being analyzed, which in turn
enhances the algorithm’s effectiveness. Moreover, CNN’s computational efficiency is
achieved through its use of specific convolution, parameter sharing, and pooling techniques.
These are particularly advantageous for use in image classification algorithms as they can
work with fewer features and understand abstract properties. However, when employing
CNN for model training, overfitting, class imbalance, and explosive gradients may pose
challenges that must be addressed. On the other hand, the RNN method, as elaborated
in the preceding section, presents a range of parameters that can provide more benefit to
high-precision analytical systems than CNN. RNN-based performances can enhance system
accuracy, although gradient-exploding problems and difficulty evaluating long sequences
can be significant drawbacks. In contrast, MLP exhibits a lower level of complexity when
updating weights, which is beneficial for the model’s overall performance. This approach’s
advantage lies in the fact that each weight update requires less computational power,
resulting in an O (1) complexity. Additionally, MLP can be more robust in terms of
handling randomness during weight initialization, although longer training times and
increased memory requirements may be necessary. Finally, implementing dropout in MLP
may be more challenging than in other models due to its sensitivity to various random
weight initializations.
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6.1. Analysis of Results

We studied five categories and 25 papers in the prior sections about healthcare ap-
plications of ML techniques in the IoB, as shown in Figure 11. Besides, Tensorflow is
the most frequently used programming language for the simulation of, implementation
of, or theoretical setting of the presented frameworks. This method is very practical for
researchers to utilize more and more in future work and has a broad range of applications.
According to Figure 12, Python is the first choice for proposed methods, with a 24 percent
rate of use. Keras, PyTorch, and MATLAB are the other most prevalent methods. Also,
Figure 13 indicates a geographical map of countries under study, with more investigation
concentrating on predicting, processing, and other applications in the US (6 papers), the UK
(4 papers), and China (3 papers). These countries contribute the greatest amount of research
on this issue. Also, Figure 14 shows the evaluated parameters in the studied papers.
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The concept of the IoB endeavors to accurately assess factual information and utilize
that perception to enhance and introduce innovative components from the perspective
of human psychology. It aims to tackle concerns regarding the evaluation of information
and utilize such data to generate and propose novel services, with each task resolved
on the basis of human psychology. This novel trend has the potential to influence the
development of quality infrastructure as many enterprises may augment their communica-
tion via these methods and thus elevate consumer demands. As illustrated in Figure 15,
the IoT can convert information into data, while the IoB can convert our knowledge into
genuine wisdom.

As previously mentioned, the CNN architecture is a type of ML algorithm that can
efficiently process vast amounts of data, making it widely used in medical and healthcare
applications. One of the main advantages of CNN over other ML methods is its ability to
extract features without the need for human intervention or significant segmentation. This
attribute enables CNN to discover the intrinsic characteristics of the data being analyzed,
which in turn enhances the algorithm’s effectiveness. Moreover, CNN’s computational
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efficiency is achieved through its use of specific convolution, parameter sharing, and
pooling techniques, which are particularly advantageous for image classification algorithms
as they can work with fewer features and understand abstract properties. However, when
employing CNN for model training, overfitting, class imbalance, and explosive gradients
may pose challenges that need to be addressed. On the other hand, the RNN method, as
elaborated in the preceding section, presents a broad range of parameters, which can prove
more beneficial for high-precision analytical systems than CNN. RNN-based performances
can enhance system accuracy, although gradient-exploding problems and a difficulty
evaluating long sequences can be significant drawbacks.
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In contrast, MLP exhibits a lower level of complexity when updating weights, which
is beneficial for the model’s overall performance. This approach’s advantage lies in the fact
that each weight update requires less computational power, resulting in an O (1) complexity.
Additionally, MLP can be more robust in terms of handling randomness during weight
initialization, although longer training times and increased memory requirements may be
necessary. Finally, implementing dropout in MLP may be more challenging than in other
models due to its sensitivity to various random weight initializations.

6.2. Prevalent Evaluation Criteria

One of the well-known evaluation criteria is the F-score. The mentioned keys are
applied to calculate the recall, F-score, and precision. It is worth mentioning that true
positive (TP) means sick people are truly recognized as sick. False positive (FP) also means
that healthy people are wrongly recognized as sick. Also, true negative (TN) means healthy
people are truly recognized as healthy. Furthermore, false negative (FN) means sick people
are wrongly recognized as healhty. Precision demonstrates the number of true results truly
recognized; meanwhile, recall indicates the entire entities recognized. These concepts are
calculated as follows [92]:

Precision =
STP

STP + SFP
∗ 100 (1)
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Recall =
STP

STP + SFN
∗ 100 (2)

F1-score =
2∗Recall ∗ P
Recall + P

∗ 100 (3)

Accuracy =
STN + STP

STP + STN + SFN + SFP
∗ 100 (4)

Furthermore, AI techniques are adept at deciphering paradigms from linear data. This
is pivotal in augmenting the precision of detection, which depends on evolving psychiatric
signs. Moreover, AI strategies may have an ascending role in gathering precise and sensitive
data from patients. One research discovered that individuals were more likely to disclose
vulnerable data to a computer system than to a human being. AI techniques are geared
towards the digital health movement, utilizing data beyond customary physician–patient
interactions. Daily and linear monitoring of sensors and social media allows the early
diagnosis of signs or the detection of their worsening and highlights beneficial versus
detrimental behaviors. Multimodal sensing encompasses smartphones, physiological
sensors, heart rate, wearable devices, and surrounding sensors, facilitating the harvesting
of real-world, extended data on signs, behaviors, thoughts, treatment responses, and
emotions. Platforms modeled to permit multimodal data collection, such as CrossCheck,
mindLAMP, and AWARE, aid in the continual remote monitoring and detection of objective
or subjective indicators of psychotic worsening. ML methods can extract new features from
inherently noisy signals generated by sensors. Fitbit data and smartphones can identify
behaviors such as social withdrawal.

Social media platforms have represented a novel form of social relations, mirroring the
daily performance of many people. Thus, they present a new, unobtrusive “lens” into linear
moods and behaviors, especially for youth and adolescents, who are the most frequent
internet users and face the most significant challenge in terms of the need for mental health
care. Analyzing social media consumption paradigms, language, and content generates
new perspectives into connections and relationships and creates novel opportunities for
seeking help. Web-based effects impact an individual’s understanding and approach
toward healthcare operations at personal and population levels. Mental illnesses may be
detectable on online platforms and the capacity of social media information to be used to
forecast identifications and recurrences has been validated, with accuracies comparable to
those of clinician assessment and screening tests.

However, sensor data still lack vivid applicability in clinical mental health adjustments
due to a lack of clinical credibility and implementation issues. Additionally, evaluations
of social media information necessitate AI-based inventions and joint infrastructures for
data dedication and collection. Furthermore, the significant security-related and ethical
considerations concerning social media information and public distrust of data utilization
for sensitive goals may hinder research and the building of the large-scale datasets required
for AI algorithms. Table 8 illustrates the parameters considered in the examined articles.
Most scholars consider accuracy as the most significant parameter and it occurs most
frequently amongst those considered in the papers studied. Furthermore, scalability,
adaptability, and F-score are other frequent parameters considered for evaluation in the
articles studied. However, as a limitation, most scholars focused on only one or two metrics
in their research, with the others overlooked.
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Table 8. Considered parameters in the examined articles.

Authors Accuracy Security Scalability Robustness Flexibility Adaptability F-score Recall Precision

C
N

N

Asghari and
Sierra-Sosa [70] • • 4 • 4 • 4 • •

Elayan and
Aloqaily [71] 4 • • • • • • • •

Hasan and Roy [27] 4 • • • • • • • •

Zhang and Zhao
[72] 4 • • • • • • • 4

Loh and Ooi [73] 4 • 4 • • • • • 4

R
N

N

Lerner and
Jouffroy [74] 4 • • • • 4 • • •

Peng and Rios [75] 4 • 4 • • • 4 • •

Jouffroy and
Feldman [76] • 4 4 4 • • • • •

Zhao and Cui [77] 4 • • • • • • • •

Frank and Iob [9] 4 • 4 • • 4 4 4 •

D
N

N

Yepes and
MacKinlay [78] • • • • • 4 4 4 4

Jouffroy and
Feldman [76] 4 4 • • • 4 • • •

Cao and Qian [81] 4 • 4 • • • • • •

Silvestria and
Gargiulo [79] 4 • • • 4 • • • •

Chalapathy and
Borzeshi [80] • 4 • • 4 • • • 4

M
LP

Stylianou and
Vlahavas [82] • • 4 4 4 • • • 4

Vehí and
Contreras [83] • 4 • • • 4 • • •

Roberts [84] 4 • 4 • • • 4 4 •

Yüksel [85] • • • • • • • 4 •

Grivas and Alex [86] 4 • 4 • • • • • •

H
yb

ri
d

Rabee [87] • • • • 4 • 4 • •

Peng and Lu [88] 4 • 4 • • • • • 4

Iob and
Pingault [89] 4 • • • • 4 • • •

Gao and
Thamilarasu [90] • 4 • • • • • • •

Phan and Dou [91] 4 • • • • 4 • • 4

4, it signifies that the referred parameters have indeed been thoroughly evaluated and discussed in the paper by
the authors. •, it indicates that the mentioned parameters have not been evaluated in the paper.

6.3. Healthcare Practices Using ML Methods

In this section, we dwell deeply on healthcare applications using ML methods. Al-
though ML has found use in numerous areas, we mention two healthcare applications that
directly take broad advantage of AI techniques.

6.3.1. Prognosis Applications

The utilization of AI techniques for longitudinal data can enhance the accuracy of
psychiatric patient prognoses. Research studies have utilized various forms of data such
as neuroimaging, genetics, speech, and EHR, to establish patterns of depression, surgical
outcomes, and suicidal tendencies. Furthermore, AI algorithms can utilize data-driven
methods to develop innovative clinical risk-forecast models that are not reliant on conven-
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tional theories of psychopathology. Nevertheless, the internal and external validity of AI
algorithms is critical for their clinical implementation. While cross-validation is a crucial
step for basic internal validation, these measures do not ensure the generalizability of the
outcomes. Transient and geographical validation techniques are more stringent methods
for ensuring clinical applicability.

6.3.2. Therapy Applications

AI technologies have the potential to facilitate psychiatric treatment across multiple
avenues. Firstly, AI can be employed to predict treatment responses, circumvent lengthy
psychotherapies and expensive brain stimulation treatments, and streamline inefficient
medication trials. Studies have forecasted responses to antidepressant medications using
clinical questionnaires and EEG signals, responses to electroconvulsive therapy (ECT) based
on brain structure, responses to brain stimulation based on MRI, and responses to cognitive
behavioral therapy (CBT) for anxiety based on brain fMRI. Such investigations can identify
objective populations for different treatments, though not all investigations yield positive
results. Secondly, AI methods can map and predict the severe impacts of therapies. One
study applied EHR data to forecast the improvement of renal insufficiency in patients
treated with lithium. Furthermore, AI methods can assist in developing novel theoretical
frameworks of illness pathophysiology. Another study examined advanced deviations of
neuroimaging abnormalities in bipolar patients, supporting the theory of bipolar disorder
as an advanced neuro illness. Additionally, identifying the timing of events and brain
regions that change during the transition from psychosis prodrome to schizophrenia could
aid in understanding risk and provide reliable markers for use during the prodromal stage.
These methods could identify opportunities for early intervention, although detecting the
most heavily weighted risk factors for transitioning to diseases is necessary. Moreover, ML
methods could assist in identifying gene expression patterns characteristic of diverse psychi-
atric disorders. Also, another study provided data on a system that can accurately predict
which patient will develop post-traumatic stress disorder (PTSD) based on pre-arrangement
blood transcriptome data, emphasizing immune-related gene dysregulation as a risk factor.
Lastly, AI could aid in the exploration of novel treatments directly. AI approaches could
help to predict the clinical behavior of drugs through simulation or data-driven techniques,
thus exploring new combinations with therapeutic potential.

6.4. Healthcare Subdomains Use AI Methods

Recently, automated medical image detection has disputably become the most prosper-
ous area of healthcare AI usage. Numerous healthcare specialties, consisting of radiology,
ophthalmology, dermatology, and pathology, depend on image-based detection. In the
following sections, we looked into current progress in the use of AI in each of these health-
care areas.

6.4.1. Radiology Applications

Diagnostic radiologists use a variety of healthcare imaging modalities. The most
broadly used to diagnose and identify illnesses were MRI, X-ray radiology, positron-
emission tomography, and computed tomography [93]. Radiologists use sets of images for
disease screening, identifying the disease’s cause, and monitoring patient progress. Images
often include a large amount of the data necessary to achieve an accurate diagnosis. Since
radiological diagnosis relies heavily on imaging for detection, it is closely associated with
DL methods such as [94]. Many radiology departments maintain a database of images in
an image archiving and communication system, which often provides numerous examples
with which to train neural networks. Computational methods for radiological diagnosis
have been proposed and implemented since the 1960s. With the latest ML techniques,
several AI-based radiology practices have achieved professional-level diagnostic accuracies
via methods such as diagnosing lung nodules using computed tomography images, detect-
ing pulmonary tuberculosis and other lung diseases with chest radiology, and performing
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breast mass detection using mammography scans [95]. These researchers used transfer
learning, in which well-trained DNNs are fine-tuned on a large number of biomedical
images, reducing the number of training examples necessary to train a neural network with
a large number of parameters [41]. Several clinical applications of AI are seeking regulatory
approval, such as the FDA-approved DL system for detecting cardiovascular diseases using
cardiac MRI images. With more validation studies and technology transfer efforts, the use
of computer-aided detection (CAD) and diagnostic systems that rely on images will increase
in clinical applications soon [96].

6.4.2. Dermatology Applications

Several different kinds of skin lesions may be detected with the use of an audit.
The visual features of common melanoma, for instance, set it apart from benign tumors.
Dermatologists created audit rules, such as the well-known ABCDE legislation, for the
diagnosis of skin melanoma [97]. Measures A (geometric asymmetry), B (abnormal borders),
C (color variety), D (diameter equal to or more than a certain size), and E (extension
of the lesion surface or growing lesion) are used in the method to detect pigmented
tumors [98]. Researchers have been working on automatic diagnostic systems that can
distinguish between malignant and benign tumors in images for quite some time [99].
When comparing algorithm predictions to dermoscopy pictures, the DL algorithms fared
better than the average dermatologist. Even though the DL model’s training phase might
be computationally intensive, the final diagnostic model is set up on a mobile device,
expanding access to medical-grade skin lesion detection [100].

6.4.3. Ophthalmology Applications

Non-invasive fundus photography is used to diagnose and monitor conditions such
as glaucoma, neoplasms, and diabetic retinopathy by photographing the macula, retina,
and optic disc using specialized cameras [101]. The use of fundus imaging is crucial in
determining the root causes of avoidable blindness. The American Diabetes Association (ADA)
advises annual screening for Diabetic Retinopathy (DR) in individuals with minimal or mild
DR and more frequent screening for people with advanced DR [102]. Section 5 reveals that,
similar to ophthalmologists, the ML model achieved ranges under the receiver performance
feature curve greater than 0.990 in two separate assessment datasets. Investigators also
discovered that DL can uncover unnoticed connections between retinal image paradigms
and demographic variables such as age, systolic blood pressure, smoking history, gender,
and the presence of severe cardiovascular disease [103].

6.4.4. Pathology Applications

Histopathological evaluation stands as the gold standard for detecting various types
of cancer. This method involves slicing a surgical specimen or biopsy into tissue slides and
staining them with pigments. Pathologists then interpret the slides under a microscope
using visual assessment. While differences among pathologists have been noted, the proce-
dures are not easily scalable [104]. Furthermore, certain quantitative image properties in
histopathology, which are not easily discernible to the human eye, can predict patient sur-
vival, highlighting the presence of untapped data in pathology slides. With the emergence
of deep CNN, AI can aid in diagnosing prostate cancer through biopsy specimens and
detecting breast cancer metastasis in lymph nodes [105]. For example, ML, in conjunction
with live-cell biomarkers, can reduce the risk stratification of breast and prostate cancer
patients. We predict that, by 2030, there will be a shortage of over 5,700 pathologists of the
same caliber, a problem that could be mitigated by automated systems that enable quick
and objective analysis of histopathology slides, thereby enhancing the quality of cancer
patient care [106].
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6.4.5. Interpretation of Genome Applications

Data in the terabyte range can be produced using high-throughput sequencing meth-
ods. Understanding inter-individual differences and facilitating precise treatment relies on
the correct clinical interpretation of such data. Unfortunately, in light of the rapidly develop-
ing field of human genome science, human curation makes it impossible to systematically
compare frequent cases with patients’ genomes and individual controls [107]. Working
more accurately than attempts with other CNN approaches like logistic regression and
SVM, DNNs can annotate harmful variations and diagnose the performance of non-coding
DNA. A neural network that was trained using an approach which transforms genomic
variant calling into picture categorization outperformed the popular genome analysis
toolkit. Cancer is a genetically complicated illness, and these computational approaches
can help to detect it [108].

6.4.6. ML Applications in Biomarker Exploration

The discovery of biomarkers requires researchers to find associations between various
traits and measures that were not previously known to exist. High-throughput measure-
ments of a plethora of proteins, genes, and epigenomic and genomic aberrations have been
made possible by omics technology [109]. Nevertheless, it is not feasible for researchers
to manually evaluate and analyze the massive amounts of data obtained via omics ap-
proaches [110]. When forecasting the phenotypes of diseases, ML methods may be used
to detect molecular paradigms linked to disease states and subtypes, to account for the
high-level interconnections between measurements, and to extract omics signatures. Can-
cer, Down’s syndrome risk, and infectious illness may all be predicted by analyzing DNA
methylation, gene expression, and protein profiles [111]. When compared to biomarker
panels picked by specialists or using standard statistical methods, those retrieved using ML
often perform far better. The Food and Drug Administration has validated the reliability of
certain panels from these for routine use in guiding treatment choice [112]. The creation of
a user interface for prosthetic inspections can be facilitated using non-omics biomarkers
such as brain signals. The use of successfully developed data-extracted biomarkers for trial
design and clinical testing is of great importance.

6.4.7. Clinical Result Anticipation and Patient Checking

There is great potential in using EHR to predict clinical outcomes and in discovering
biomarkers associated with clinical features [113]. Predictions of mortality, remission, and
length of hospital stay may be made via Bayesian networks using ED EHR data. Clinical
forecasters for the prognosis of patients undergoing organ transplantation can be identified
using data from health insurance declarations. Patient characteristics in healthcare notes
can be used to classify cancer patients with varying responses to chemotherapy [114].
Clinical predictors of patients’ outcomes have been established through these types of
studies, which may help patients and doctors to decide on the best course of therapy. A
clinician’s demeanor and speed of decision-making may be assessed in a matter of seconds,
making patient monitoring essential in ERs, ICUs, cardiology wards, and operating theatres.
These notes contain regular monitoring devices that generate massive quantities of data,
making them a perfect candidate for artificial intelligence-assisted alarm systems [115]. A
cardiac arrest prediction algorithm based on vital signs has been created. Cardiac arrest,
intensive care unit admission, and mortality can all be predicted based on laboratory
results, patient characteristics, and severe symptoms. In addition, an ML model that is
easy to understand might help anesthesiologists to anticipate cases of hypoxemia. This
demonstrates that DL algorithms can improve the use of raw patient monitoring data,
allowing for more precise clinical prediction and prompt decision-making, while avoiding
data overload and alert overload.
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6.4.8. Inferring Personal Health Conditions by Wearable Devices

Novel wearable devices can record various biomedical signals, including heart rate,
limb tremor, and voice, which can be beneficial for diagnosing illnesses and inferring health
conditions. Wearables can identify symptoms of infectious diseases and inflammatory re-
sponses by utilizing body temperature and heart rate information. Photoplethysmography
sensors can be integrated into wearables in order track cardiovascular diseases, pulmonary
illnesses, sleep apnea, and anemia. Wearables can also diagnose and quantify signs of
patients with Parkinson’s disease, such as tremors, gait difficulties, hand motion, speech
pattern, and posture. However, the precision of the information gathered through wear-
ables can vary, and personal monitoring devices present an opportunity to target behavioral
changes. Despite their potential benefits, one-third of all American users who have owned
wearable devices ceased using them after six months. Thus, more research is needed to
maximize the efficiency of wearables in promoting healthcare. Overall, the successful
application of DL in healthcare relies on the availability of large, labeled information, DL
techniques, and computational power to achieve expert-level detection precision. However,
applying DL methods to personal healthcare is not a straightforward process as it has the
potential to alter existing healthcare practices. The method uses behavioral data to facilitate
personalized patient care and digital healthcare within the I–fog–cloud network [116]. Also,
incorporating advanced deep learning vision-computing techniques within a cognitive
cloud framework, this research contributes to the intersection of AI, ML, and IoT in waste
management, promoting a healthier environment and sustainable practices [117].

6.5. Generative AI

A notable recent development in the field of artificial intelligence is generative AI.
Generative AI, specifically in the form of generative models, has emerged as a powerful
technology that holds promising potential for use in personal health applications. Genera-
tive models, such as GANs and VAEs, can learn and mimic the underlying data distribution,
enabling them to generate new and realistic data samples [118]. In the realm of healthcare,
generative AI can play a transformative role by augmenting the diversity and volume of
behavioral data within the Internet of Behaviors. These generative models can be leveraged
to create synthetic but realistic behavioral patterns, which could be used to enhance the
training of machine learning algorithms in personal health applications [119]. For instance,
they could be employed to augment the limited datasets or generate additional scenarios
for training and validation purposes. Furthermore, generative AI opens up new avenues
for creating personalized health interventions and treatment plans. By understanding indi-
vidual behavioral patterns, these models can be used to generate tailored recommendations
and interventions that align with users’ unique needs and preferences within the Internet
of Behaviors [120]. However, as with any emerging technology, there are challenges to be
addressed. Ethical considerations, such as ensuring the responsible and transparent use
of generated data, as well as potential biases introduced by the generative models, must
be carefully managed to avoid unintended consequences in personal health applications.
Incorporating an analysis of generative AI in this area would provide valuable insights
into the cutting-edge advancements in and possibilities for enhancing healthcare outcomes
through the synthesis and personalization of behavioral data. This exploration can guide
researchers and developers in harnessing the full potential of generative AI to create more
impactful and personalized health applications within the Internet of Behaviors [121].

6.6. An Analysis of UI–UX Design of Healthcare Products

In this area, analyzing the UI–UX (user interface–user experience) of healthcare prod-
ucts is a crucial aspect that warrants attention. The UI–UX design plays a pivotal role in
determining the overall usability, user satisfaction, and effectiveness of these applications,
especially when dealing with personal health data and behavioral insights. A comprehen-
sive UI–UX analysis would involve evaluating various aspects of the healthcare products,
such as:
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User-Friendliness: Assessing how intuitive and easy-to-navigate the user interface is
and ensuring that individuals can seamlessly interact with the application without
any confusion or steep learning curves.
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Data Visualization: Analyzing the visual representation of health-related data and
insights and ensuring that the presented information is clear, concise, and easily
interpretable for users, regardless of their technical expertise.
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Personalization: Evaluating the level of personalization and customization options
available to users, allowing them to tailor its application to their specific health goals
and preferences.
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Data Privacy and Security: Examining the UI–UX elements related to data privacy
and security, such as user consent mechanisms, information encryption, and clear
communication on how personal data is utilized and protected.
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Feedback and Engagement: Analyzing how the application provides feedback to
users on their behaviors and health progress, as well as evaluating the presence
of motivational features that promote user engagement and adherence to health
recommendations.
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Accessibility: Assessing the inclusivity of the UI–UX design and ensuring that the
application is accessible to users with different abilities, including those with visual
or motor impairments.
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 Data Privacy and Security: Examining the UI–UX elements related to data privacy 
and security, such as user consent mechanisms, information encryption, and clear 
communication on how personal data is utilized and protected. 

 Feedback and Engagement: Analyzing how the application provides feedback to us-
ers on their behaviors and health progress, as well as evaluating the presence of 

Error Handling and Recovery: Examining how the application handles errors and
providing users with clear guidance on rectifying mistakes and recovering from any
unexpected issues during usage.
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 User-Friendliness: Assessing how intuitive and easy-to-navigate the user interface is 

and ensuring that individuals can seamlessly interact with the application without 
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 Data Visualization: Analyzing the visual representation of health-related data and 
insights and ensuring that the presented information is clear, concise, and easily in-
terpretable for users, regardless of their technical expertise. 

 Personalization: Evaluating the level of personalization and customization options 
available to users, allowing them to tailor its application to their specific health goals 
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Integration with IoB Devices: Evaluating the seamless integration of IoT devices
within the UI–UX and ensuring that data from wearable devices and sensors are
accurately displayed and used to provide meaningful health insights.

The analysis of UI–UX in healthcare products can be conducted through a combination
of user testing, surveys, and heuristic evaluations, involving both healthcare professionals
and potential end-users. The findings from this analysis can guide iterative improvements
to the UI–UX design, leading to more user-centric and effective personal health appli-
cations that leverage machine learning techniques within the Internet of Behaviors. A
well-designed and user-friendly UI–UX can foster greater user engagement, adherence to
health interventions, and overall satisfaction with the application, ultimately enhancing
the positive impact on individuals’ health and well-being.

6.7. An Analysis of Digital Treatments

Analyzing digital treatments is a crucial aspect of this process that merits investigation.
Digital treatments refer to the implementation of technology-based interventions, such
as mobile apps, virtual reality, or online platforms, in order address health-related issues
and promote behavioral change. The analysis of digital treatments in this area involves
evaluating various aspects, including:
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 Adherence and Engagement: Evaluating the level of user adherence and engagement 
with digital treatments over time. Analyzing user behavior and interactions with the 
application can provide insights into the factors that contribute to sustained engage-
ment and those that may hinder user participation. 

 Usability and User Experience: Conducting a UX analysis of the digital treatments to 
determine how user-friendly and intuitive the applications are. This includes evalu-
ating the navigation, design elements, and overall user experience to ensure a posi-
tive and satisfying interaction. 
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ing potential concerns regarding data breaches and unauthorized access is essential 
for building user trust. 

Effectiveness: Assessing the effectiveness of digital treatments powered by machine
learning techniques in achieving their intended health outcomes. This involves
analyzing research studies, clinical trials, and real-world data to determine the impact
of these treatments on individuals’ health behaviors and well-being.
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mented in digital treatments to protect users’ personal health information. Address-
ing potential concerns regarding data breaches and unauthorized access is essential 
for building user trust. 

Personalization: Examining the level of personalization offered by digital treatments,
where machine learning algorithms can tailor interventions based on individual
preferences, health status, and behavioral patterns within the Internet of Behaviors.
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 Data Privacy and Security: Examining the data privacy and security measures imple-
mented in digital treatments to protect users’ personal health information. Address-
ing potential concerns regarding data breaches and unauthorized access is essential 
for building user trust. 

Adherence and Engagement: Evaluating the level of user adherence and engagement
with digital treatments over time. Analyzing user behavior and interactions with
the application can provide insights into the factors that contribute to sustained
engagement and those that may hinder user participation.
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Usability and User Experience: Conducting a UX analysis of the digital treatments
to determine how user-friendly and intuitive the applications are. This includes
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evaluating the navigation, design elements, and overall user experience to ensure a
positive and satisfying interaction.
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Integration with IoB Data: Investigating how digital treatments leverage data from
IoT devices within the Internet of Behaviors to provide personalized feedback and
interventions. Understanding the seamless integration of these data sources is crucial
for effective and contextually relevant treatment delivery.
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Long-term Effects and Sustainability: Analyzing the long-term effects of digital treat-
ments on users’ health behaviors and their potential to sustain positive changes over
extended periods. This involves exploring whether the effects persist beyond the
initial intervention phase and contribute to lasting improvements in health outcomes.
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Data Privacy and Security: Examining the data privacy and security measures imple-
mented in digital treatments to protect users’ personal health information. Addressing
potential concerns regarding data breaches and unauthorized access is essential for
building user trust.
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 Integration with IoB Data: Investigating how digital treatments leverage data from 
IoT devices within the Internet of Behaviors to provide personalized feedback and 
interventions. Understanding the seamless integration of these data sources is crucial 
for effective and contextually relevant treatment delivery. 

 Long-term Effects and Sustainability: Analyzing the long-term effects of digital treat-
ments on users’ health behaviors and their potential to sustain positive changes over 
extended periods. This involves exploring whether the effects persist beyond the in-
itial intervention phase and contribute to lasting improvements in health outcomes. 

 Data Privacy and Security: Examining the data privacy and security measures imple-
mented in digital treatments to protect users’ personal health information. Address-
ing potential concerns regarding data breaches and unauthorized access is essential 
for building user trust. 

Integration with Healthcare Systems: Investigating the potential integration of digital
treatments with existing healthcare systems to enable seamless communication and
coordination between patients, healthcare providers, and digital interventions.

The analysis of digital treatments in this context can provide valuable insights into
the efficacy, usability, and overall impact of machine learning-powered personal health
applications. Understanding the strengths and limitations of these digital treatments can
inform the development of more effective and user-centric interventions within the Internet
of Behaviors, ultimately contributing to improved health outcomes and the empowerment
of individuals to manage their health and well-being.

6.8. Medical Device Certification

In this subject, the topic of medical device certification, particularly concerning regu-
latory bodies like the U.S. Food and Drug Administration (FDA), becomes relevant and
crucial. When incorporating machine learning techniques in personal health applications,
especially those operating within the Internet of Behaviors, it is essential to consider the
necessary certifications and approvals to ensure the safety and efficacy of these medi-
cal devices [122]. The FDA plays a significant role in regulating medical devices in the
United States. Any personal health application that meets the definition of a medical
device and utilizes machine learning techniques would likely fall under the FDA’s purview.
Therefore, adherence to FDA regulations, including obtaining the appropriate certification
or clearance, becomes imperative before these applications can be legally marketed and
distributed for medical purposes. Medical device certification by the FDA involves a
rigorous evaluation process to assess the device’s safety and effectiveness, as well as its
compliance with relevant regulations. This evaluation considers the specific intended use,
indications, and potential risks associated with the device [123]. The FDA may require
the submission of clinical data, performance testing, and the validation of the machine
learning algorithms to ensure that the device meets the necessary standards. As personal
health applications continue to evolve and integrate machine learning techniques to harness
behavioral data from the Internet of Behaviors, the need for appropriate medical device
certification becomes increasingly critical. By adhering to the regulatory guidelines and
obtaining the necessary certifications, developers, and researchers can instill confidence in
users, healthcare professionals, and stakeholders about the reliability and safety of these AI-
powered healthcare solutions. So, addressing the importance of medical device certification
is crucial, particularly concerning regulatory bodies like the FDA. This ensures that these
applications are appropriately evaluated, comply with relevant standards, and provide
users with trustworthy and effective tools for managing their health and well-being [124].

7. Open Issues and Future Direction

In the previous section, we thoroughly examined the results. In this part, we look into
open concerns and important challenges in-depth.
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A. General issues

The application of ML in personal healthcare presents several unique challenges.
Supervised learning algorithms rely on the diagnostic labels used to train the system.
However, with the heterogeneous nature of mental illnesses, these labels may not be
specific enough to produce AI algorithms with high sensitivity and specificity. A possible
solution is to employ ML algorithms to expect specific symptoms or outcomes rather than
diagnoses. Additionally, the power of DNN can be leveraged to detect new biomarkers for
identifying particular illnesses without human supervision. However, a major hindrance
to applying ML algorithms is the need to maintain trade secrets, despite the requirement
for transparency and reproducibility. Big data are also inherently disorganized and require
significant preprocessing before they can be used. Furthermore, the outcomes of ML
algorithms must include information about the quality and potential biases of the data
used to train the system, a practice which is not currently being followed.

The primary benefit of AI tools is their ability to handle large amounts of data and aid
in clinical decision making. Although there are some instances of ML adoption in clinical
psychiatry practice and evidence of clinical or economic impact, there are still significant
challenges that healthcare systems face in implementing AI models. For example, a study
conducted at Yale University implemented AI-based support to develop and select antide-
pressant therapies. The healthcare system evaluated the implementation’s cost–benefit
relationship in terms of financial and clinical advantages. However, obstacles such as the
high upfront costs of creating specific IT infrastructure, doubts about its effectiveness, and
concerns about unintentional consequences persist. Furthermore, allowing more physicians
to treat inadequately reimbursed psychiatric illnesses may increase the difficulties for these
physicians and decrease their overall productivity, potentially affecting the hospital’s in-
come. Both patients and clinicians are also concerned about the eventual adoption of these
clinical facilities. Therefore, in order for AI-based clinical facilities to be integrated into
hospital-based clinical operations they must be fully integrated into the healthcare culture.
AI faces a significant challenge in personal health due to the limited understanding of the
principal biological procedures of psychiatric disorders. Therefore, AI systems should be
developed independently rather than relying solely on established foundations. However,
there is a statistical trade-off when deducing models based on data, where a complex sys-
tem may overfit and become inconsistent, while a simple model may underfit the data and
lose relevant structures. Suitable ML methods must optimize the statistical bias–variance
trade-off by determining the best spot for forecasting. While predictive systems assess the
accuracy of a created system in predicting future outcomes, descriptive illness systems
identify influences on perceivable variables. Despite the trade-off between precision and
explainability, explainable systems are necessary to ensure patient safety and build trust in
the system. Recent developments in AI include RNN-divergent systems that can handle
data inputs in different phases and perform self-assessment to determine which time points
and data inputs are most predictive of the result, determine the operational credentials of
outcomes, provide visualizing methods, and allow contribution policy mining. In cases
where the biological contributions are poorly understood, AI systems may be as transparent
as interpretable systems. However, future AI systems should aim to develop transparency
in order to support their clinical use. The supervision of AI technologies is essential for re-
ducing bias, especially for frequently evolving AI systems. Ungoverned AI may perpetuate
social inequality or indicate biases by producing different results for individuals without
any rational basis. Using non-representative or biased training data that mirrors human
biases may lead to the emergence of analytic bias in healthcare applications. Training ML
models on human preferences may propagate the harmful distribution of inequality.

Also, it is crucial to differentiate between explanatory and pragmatic methods. Prag-
matic methods using automated ML help to improve facilities that can lead to robust and
accurate predictions with clinical use. Such optimization processes are computationally
expensive and are limited by the interpretability of how the different workflows’ char-
acteristics are related to the predictions. Explanatory models aim to build connections
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between variables, providing insight into a system’s workings. We require ML facilities
that provide pragmatic assistance and are explainable. A more detailed understanding of
how to improve AI systems, such as DL, in order to better serve patients is necessary. The
term protected health information (PHI) is relevant to various data domains, including per-
sonally identifiable features such as clinical data, medical history, patient-provided health
information, and medical cost claims. Other PHI areas are built by evaluating information
that is not directly related to a health condition but which enables health conditions to
be inferred. This distinguishes it from consumer-provided health information. A broad
range of stakeholders, from healthcare contributors to retailers to IT companies, manage
this diverse PHI information.

Efficient management of health information is critical for many reasons, particularly
with the increasing digital stockpiles of digitized PHI. However, information interoper-
ability and standardization deficiency present significant obstacles to PHI information
sharing and data usage, including AI applications and analytics. Additionally, settings
aimed at restricting the leak of personally detectable health information have constrained
the stream and enhanced the research expense of accessing PHI information. Furthermore,
the ever-increasing popularity of health monitoring applications and tools has led to the
development of patient-generated health data (PGHD) that are not covered by health support
legislation. DL algorithms and the IoB construct a novel classification of predictive personal
health information about people and societal behaviors. A wide variety of metadata and
probability models can be applied to classify humans, anticipate their behavior, and pri-
oritize healthcare databases relying on these profiles without the consent or awareness of
profiled individuals. Ensuring the transparency of personal health data in ML algorithms
is another challenge. Despite attempts towards interpretable ML, AI, and explainable AI,
transparency is challenging not only for tracking which PHI data are applied but also for
contemplating the goals and results of data usage in healthcare.

B. Legal, economic, and social issues

The development of healthcare AI systems in the IoB will inevitably lead to a rise in
the popularity of individual healthcare apps and arrangements. Implementing ML in the
IoB, say experts in neural networks and AI, would drastically alter healthcare applications.
By reducing the potential for human mistakes and relieving the strain that typical clinical
activities may put on clinicians, ML has the potential to significantly improve healthcare
quality. Clinical standards may necessitate more frequent testing for high-risk patients.
Therefore, this may not necessarily lessen the clinician’s burden. If ML can be seamlessly
incorporated into routine healthcare procedures, it may free up physicians’ time for more
difficult work and face-to-face interaction with patients. Ophthalmologists can devote more
time to patient consultations and operations if they use AI to help them to understand
and prioritize fundus photos. Due to AI’s potential to replace many healthcare workers
in everyday duties, it may restructure the medical profession and modify the personal
healthcare reimbursement system. Despite this, there is currently less scientific proof of its
effects on clinical staff.

Integration with healthcare AI processes is essential if cutting-edge AI systems are
to realize their full potential. However, studies have revealed that there are obstacles to
using AI in individual healthcare. Alert weariness, greater physician effort, disruption of
interpersonal communication styles, and the emergence of unique dangers that demand a
higher degree of diagnostic attention are all recognized as potential unintended outcomes
of clinical data systems. For instance, radiologists may miss a detection if a mammography
CAD tool returns a false-negative result while interpreting mammography images with-
out CAD. It is challenging to determine the best clinical process that makes the most of
AI-assisted detection, even though many CAD models may be tweaked to strike the right
balance between specificity and sensitivity for every clinical application. The implemen-
tation and design requirements for integrating data systems into healthcare settings are
typically determined by healthcare AI providers’ and their patients’ lack of expertise.



Sustainability 2023, 15, 12406 33 of 41

From a legal standpoint, the deployment of healthcare AI systems requires acknowl-
edgment and approval. The FDA must establish premarket approval submissions for AI
systems with direct healthcare implications. Policymakers must define specific standards
for non-inferiority indication in 510K submissions, such as the quality and credibility of
the process and the representativeness and reliability of the data. ML-based models pose a
challenge to regulatory agencies as they can quickly evolve with user feedback and data
collection. It is unclear how updates should be evaluated, as a new model may perform bet-
ter overall but worse for certain patient subsets. The FDA has suggested a pre-certification
process for AI systems that train and evolve, focusing on the technology developer and the
certification of teams responsible for updating and improving AI systems. As healthcare-
related data become more common, consent is necessary for data sharing, especially when
sensitive data, such as a patient’s location, is involved. To address potential legal issues
and ensure the use of reliable AI in healthcare, a collaboration between AI investigators,
healthcare providers, hospital administrators, and firms is essential to prioritize critical
healthcare needs and reduce workflow disruption. Multi-disciplinary cooperation is crucial
for the development and deployment of healthcare AI applications.

C. Landscape

AI has significantly improved decision-making and diagnosis in various areas of
personal healthcare. However, the impact of this improvement on the overall effectiveness
of personal healthcare applications for illness diagnosis and treatment will depend on how
well AI applications integrate with a personal healthcare system that is facing significant
financial pressures while also adapting to rapid advancements in genomic and molecular
science. Healthcare providers will need to adjust to new roles as data interpreters, inte-
grators, and patient advocates, and the healthcare education system must provide them
with the appropriate tools and resources to do so effectively. Determining who will be
responsible for managing, verifying, or benefiting from the AI application is essential.
Balancing market forces and regulatory safeguards to ensure that patients benefit most
should be a top priority.

D. Unveiling the Need for Comprehensive Security

AI mimics human intelligence and can perform a wide range of tasks more quickly than
humans. However, it cannot make empathetic, impartial, and ethical decisions. Despite
AI’s potential for super-intelligence, it cannot reflect on itself or differentiate between
people, perspectives, values, and morals. Ensuring a secure connection is vital for any IoB
system. With the integration of computing, big data, and parallelization, cyber security
threats to IoB connections have become more critical. The security of edge layers and IoT
devices has been increasingly scrutinized, and research has been conducted on machine-to-
machine network protocols and CNN-based techniques to address privacy and security
issues. However, reliable device data can still be compromised. ML models have shown
promise in dealing with each file as a distinct instance point in such cases. The performance
of ML tools in IoB networks has been evaluated in several models and research studies.
However, many IoB security concerns lack perspective, having either limited security
integration or open-secure vulnerabilities. Addressing IoB security comprehensively is
crucial to addressing IoT security issues effectively.

According to Gartner, by 2025, more than half of people will interact with IoB networks
managed by private businesses or governments. IoB health apps will be widely used on
smartphones, allowing individuals to manage their diabetes through blood glucose and
activity tracking. Despite concerns about data privacy, IoB apps and systems using this
technology will continue to evolve. The popularity of social media platforms, e-commerce,
digital assistants, and other technologies that require personal data suggests that most
users will perceive providing behavioral information as acceptable. This allows the IoB
to remodel how businesses utilize technology to deal with influencing people. Besides,
some other people and technology options apply strong methods to improve IoB systems,
such as:
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cloud network [116]. Also, incorporating advanced deep learning vision-computing tech-
niques within a cognitive cloud framework, this research contributes to the intersection of 
AI, ML, and IoT in waste management, promoting a healthier environment and sustaina-
ble practices [117]. 

6.5. Generative AI  
A notable recent development in the field of artificial intelligence is generative AI. 

Generative AI, specifically in the form of generative models, has emerged as a powerful 
technology that holds promising potential for use in personal health applications. Gener-
ative models, such as GANs and VAEs, can learn and mimic the underlying data distribu-
tion, enabling them to generate new and realistic data samples [118]. In the realm of 
healthcare, generative AI can play a transformative role by augmenting the diversity and 
volume of behavioral data within the Internet of Behaviors. These generative models can 
be leveraged to create synthetic but realistic behavioral patterns, which could be used to 
enhance the training of machine learning algorithms in personal health applications [119]. 
For instance, they could be employed to augment the limited datasets or generate addi-
tional scenarios for training and validation purposes. Furthermore, generative AI opens 
up new avenues for creating personalized health interventions and treatment plans. By 
understanding individual behavioral patterns, these models can be used to generate tai-
lored recommendations and interventions that align with users’ unique needs and prefer-
ences within the Internet of Behaviors [120]. However, as with any emerging technology, 
there are challenges to be addressed. Ethical considerations, such as ensuring the respon-
sible and transparent use of generated data, as well as potential biases introduced by the 
generative models, must be carefully managed to avoid unintended consequences in per-
sonal health applications. Incorporating an analysis of generative AI in this area would 
provide valuable insights into the cutting-edge advancements in and possibilities for en-
hancing healthcare outcomes through the synthesis and personalization of behavioral 
data. This exploration can guide researchers and developers in harnessing the full poten-
tial of generative AI to create more impactful and personalized health applications within 
the Internet of Behaviors [121]. 

6.6. An Analysis of UI–UX Design of Healthcare Products 
In this area, analyzing the UI–UX (user interface–user experience) of healthcare prod-

ucts is a crucial aspect that warrants attention. The UI–UX design plays a pivotal role in 
determining the overall usability, user satisfaction, and effectiveness of these applications, 
especially when dealing with personal health data and behavioral insights. A comprehen-
sive UI–UX analysis would involve evaluating various aspects of the healthcare products, 
such as: 
 User-Friendliness: Assessing how intuitive and easy-to-navigate the user interface is 

and ensuring that individuals can seamlessly interact with the application without 
any confusion or steep learning curves. 

 Data Visualization: Analyzing the visual representation of health-related data and 
insights and ensuring that the presented information is clear, concise, and easily in-
terpretable for users, regardless of their technical expertise. 

 Personalization: Evaluating the level of personalization and customization options 
available to users, allowing them to tailor its application to their specific health goals 
and preferences. 

 Data Privacy and Security: Examining the UI–UX elements related to data privacy 
and security, such as user consent mechanisms, information encryption, and clear 
communication on how personal data is utilized and protected. 

 Feedback and Engagement: Analyzing how the application provides feedback to us-
ers on their behaviors and health progress, as well as evaluating the presence of 

Developing device monitoring: applying event management, Information sharing,
and intrusion detection systems (IDSs) can be beneficial. Also, profiling attackers and
placing security checks intelligently for ICS and IoB devices by utilizing cybersecurity
threat intelligence is possible.
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Enhancing security characteristics: features such as the ability to encrypts all stored
and transmitted data could be helpful. In addition, developed authentication protocols
can manage communication management.
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Monitoring ICS and IoB policies and guidelines: multiple cybersecurity has been
released by the National Institute of Standards and Technology (NIST).

E. Securing the IoB

Ensuring the security of IoB systems poses a formidable challenge for various reasons.
Notably, time-to-market considerations often take precedence over security as innovators
and manufacturers are compelled to generate novel products. Additionally, many busi-
nesses remain oblivious to the IT-related vulnerabilities accompanying IoB systems, instead
prioritizing the resources, convenience, and automation these systems offer. Interconnected
IoB systems can significantly compound the risks posed by distributed infrastructures
and national power production. Hence, it behooves enterprises to monitor individual IoB
systems and ensure the security of their IoB systems. To this end, robust access control
and user authentication measures can be leveraged to restrict IoB system access to only
authorized users.

F. The Future Domain of IoB in Medical and Personal Healthcare

In the foreseeable future, tracking mechanisms will be implemented to monitor the
performance of purchasing and sales floor personnel. The IoB will play a significant role in
enhancing the functionality of the industry. Its objective is to modify decision-making and
behavior trends by collecting data from various devices and deducing valuable insights.
The IoB is an advanced approach that combines behavioral science and analytics to propel
data processing to a new level. The behavioral data collected will be essential in aiding
businesses to model and develop techniques, particularly in marketing and sales. It can
assess customer data and apply it to promote products more efficiently, ultimately achieving
its ultimate objective of selling products. Wearable technology is where the IoB will prove
to be particularly beneficial. Companies, sports, and various activities already utilize
this technology extensively to collect and share data among a network of online-linked
devices. Due to these devices’ interconnected nature and ability to perform independent
calculations and store data in the cloud, the IoB will become even more complex. Businesses
can leverage this technology to implement cutting-edge strategies to marketing products
and services and influence the behavior of their staff and customers. The IoB’s ability to
optimize customer communication based on data gathered will prove useful to businesses.

G. Technical Issues in Advancing AI

Some technological hurdles must still be overcome before AI can revolutionize individ-
ual healthcare applications. Care should be made to collect data that are typical of the target
patients since ML-based algorithms rely on ready access to large amounts of high-quality
training data. For instance, a model trained on the data of a single hospital may fail to gener-
alize to data from other hospitals because of the presence of different types of noise and bias
in data from diverse healthcare ecosystems. It has been suggested that agreement detections
might improve the performance of the ML models trained on the data, even though the
diagnostic job involves an imperfect inter-expert compromise. Managing disparate datasets
effectively requires a sufficient amount of information curation. Additionally, getting the
gold standard for a patient’s clinical condition necessitates professionals to only examine
their clinical literature, which is expensive on a societal level. The predictability of these
models may be improved using sophisticated algorithms that can control the noise and
peculiarities of various datasets. Results from many superior ML models are difficult to
comprehend without assistance. Despite this, these models may improve in performance,
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although it is not simple to transfer intuitive conceptions displaying the outcomes of the
models, to discover the model’s weakness, or to extract further biological knowledge from
these computational “black boxes.” Picture classification models may now be visualized by
means such as convolutional filters, the relationship between each picture region, or the
utilization of saliency maps. For DNN work models trained on data other than pictures,
interpreting the model remains significantly more complex; this is a focus of ongoing
research efforts. Recent neural network progress has been concentrated on well-defined
tasks that do not need the integration of input across several modalities. DNN-based
approaches to broad detection and treatment planning are less developed. Despite the
success of neural network models and DL in areas such as image classification, sound
synthesis, translation, and speech recognition, clinical diagnostic and therapeutic practices
often need more context than the limited practices that DL has mastered. Algorithms for
the assessment of multi-modality clinical information are also lacking, and it is unclear
how to apply transfer learning methods to include insights gained from non-healthcare
datasets. This suggests that greater efforts should be made to annotate data and that more
data should be collected to enhance end-to-end AI clinical models. It is still difficult to
manage a computer environment for collecting, exchanging, and storing electronic health
records and other sensitive medical data. Secure data exchange through cloud services is
possible with the use of privacy-preserving methods. However, more interpretable apps
that match the requirements for clinical data representation are required to enable the
wide-scale use of such infrastructure. The integration of information is uneven and delayed
across medical applications and geographic areas. However, emerging clinical information
application programming interfaces are beginning to reveal differentiated shifts among
many HER suppliers, such as reusable and interchangeable healthcare applications. Several
AI healthcare applications were described, all of which used previously collected data for
inquiry and proof of concept. Clinical research that examines how healthcare AI systems
perform in actual healthcare facilities is needed in order to verify their application in the
IoB. Trials in theory will be able to better identify the viability of AI models in real-world
noisy and varied clinical environments, as well as guide the incorporation of healthcare AI
into contemporary clinical procedures.

H. Edge Computing for Personalized Healthcare

A promising future direction to organically combine IoT, existing deep learning model
algorithms, and healthcare fields in this matter is the development of edge computing solu-
tions. Edge computing involves processing data closer to the source, such as IoT devices,
rather than sending it to centralized cloud servers. We can achieve real-time data analysis
and decision-making by implementing edge computing in healthcare applications, enabling
timely interventions and personalized healthcare recommendations. In this future direction,
IoT devices, such as wearables and sensors, would continuously collect behavioral data
from individuals within the Internet of Behaviors. The data would then be processed and
pre-processed locally using lightweight deep learning algorithms deployed at the edge
nodes. These edge-based models could be trained on vast datasets from cloud-based deep
learning models to ensure high accuracy while minimizing computational requirements.
By leveraging edge computing, healthcare applications can even operate efficiently in
resource-constrained environments, enhance data privacy by reducing the need to transmit
sensitive data to external servers, and reduce network latency, leading to faster response
times. Moreover, this approach can foster patient empowerment as individuals gain more
control over their data and receive immediate feedback on their health-related behaviors.
Collaboration among IoT technology experts, deep learning researchers, and healthcare
professionals is essential to implement this future direction. Researchers should optimize
existing deep learning models for edge deployment, address security and privacy concerns,
and develop robust communication protocols between IoT devices and edge nodes. In-
tegrating domain-specific knowledge from the healthcare field will be critical to defining
meaningful behavioral patterns and creating personalized health interventions based on
edge-processed data. By pursuing this future direction, investigations can shed light on
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the transformative potential of edge computing in personal health applications that rely
on machine learning techniques in the Internet of Behaviors, opening up new avenues for
efficient, privacy-preserving, and patient-centric healthcare solutions.

8. Conclusions and Limitations

The field of the IoB is progressing rapidly and is being increasingly applied in various
domains, including businesses, healthcare, and industry. However, a crucial question
remains: how can the IoB be trained to achieve a high degree of automation? The answer
lies in the use of ML methods, which enable computers to perceive and act like humans.
This paper focuses on the importance of ML methods for the success of the IoB and its
various applications in healthcare, which are categorized based on an ML perspective. We
have tried our best to state the consistency and integrity of our paper, to keep the conclusion
on the correct track, and to make it as solid as possible. The study conducts an SLR of
IoB-based medical and healthcare applications that use ML methods. The review assesses
the advantages and drawbacks of various SLR methods and examines the properties often
underutilized in these studies, such as accuracy and security. Additionally, the study
examines the programming languages used in these methods, with Tensorflow being the
most commonly applied language. The study concludes that future ML improvements in
the IoB will be based on recently available and well-organized ML methods, leading to
a fully autonomous IoB environment with embedded smart abilities. However, despite
the potential benefits of the IoB, several challenges still need to be addressed, such as
individual businesses, healthcare provision, and technologies. The study also identifies
several limitations, including the unavailability of non-English papers and shortcomings
in the transparent illustration of applied algorithms. Finally, the study highlights the
deficiency of various different available papers published by significant publications.

Nevertheless, some constraints were encountered during our analysis, including the
unavailability of non-English papers, which limited our ability to utilize numerous investi-
gation initiatives. Additionally, some of the papers examined had significant limitations in
clearly explaining the algorithms used. Finally, another limitation we faced was a shortage
of different papers published by significant publications.
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