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a b s t r a c t

Exploration of geothermal resources involves analysis and management of a large number of un-
certainties, which makes investment and operations decisions challenging. Remote Sensing (RS), Ma-
chine Learning (ML) and Artificial Intelligence (AI) have potential in managing the challenges of
geothermal exploration. In this paper, we present a methodology that integrates RS, ML and AI to create
an initial assessment of geothermal potential, by resorting to known indicators of geothermal areas
namely mineral markers, surface temperature, faults and deformation. We demonstrated the imple-
mentation of the method in two sites (Brady and Desert Peak geothermal sites) that are close to each
other but have different characteristics (Brady having clear surface manifestations and Desert Peak being
a blind site). We processed various satellite images and geospatial data for mineral markers, temperature,
faults and deformation and then implemented ML methods to obtain pattern of surface manifestation of
geothermal sites. We developed an AI that uses patterns from surface manifestations to predict
geothermal potential of each pixel. We tested the Geothermal AI using independent data sets obtaining
accuracy of 92e95%; also tested the Geothermal AI trained on one site by executing it for the other site to
predict the geothermal/non-geothermal delineation, the Geothermal AI performed quite well in pre-
diction with 72e76% accuracy.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Motivated by climate change, and international agreements like
the Paris Agreement [1] and the United Nations Sustainable
Development Goal 7 (SDG7) [2], nations are moving towards
renewable energy. Despite the low environmental impact, reduced
carbon footprint, and the economic competitiveness of geothermal
energy, it has had limited investment. Geothermal energy consti-
tutes only 0.19% of electricity capacity installed in 2019, and 0.33%
of electricity generation in 2018 [1]. There are various critical
strategic factors limiting the adoption of geothermal energy. The
resource availability (for example, zone belonging to the ring of fire
[3]), political, legal and consumer understanding of technology [4],
investment risk, and the levelized cost of energy (LCOE) as
compared to local alternatives [5] are among the major factors.
LCOE methodology provides disaggregation of costs and assess-
ment of risks by weighting total costs over the life of the asset [6]
and shows the competitiveness of the geothermal energy with
other alternatives. However, as it is indicated by IRENA's Power
Generation Costs 2019 report [7], LCOE does not properly capture
the effects of risks in the economic analysis because of selection
bias, which emerges from consideration of costs of only completed
projects.

Most of the costs and associated risks in a geothermal project
come out during the initial stages of the projects. Over 80% of LCOE
is driven by capital costs [6], and exploration accounts for around
5% of the costs. However, these costs drive up to 54% of the total
cost of preparation and drilling. Managing those costs and risks
requires careful use of a phased exploration program [8] to maxi-
mize return on investment potential, especially at the earlier stages
of the project [9]. There are different approaches proposed for
managing the associated risks. Sanchez-Alfaro et al. uses a variable
Weighted Average Cost of Capital (WACC) that ranges between 9
and 15% to address the economic impact of this risk and mitigation
strategies by country (for example, subsidies and risk capital in
New Zealand) [4]. Van der Zwaan penalizes geothermal WACC by
2% over other renewables, indicating that this is an assumption and
an open area of research [10]. The risk is especially severe in
greenfield areas, where there is no basis for evaluation, and this has

mailto:jmoraga@mines.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.renene.2022.04.113&domain=pdf
www.sciencedirect.com/science/journal/09601481
http://www.elsevier.com/locate/renene
https://doi.org/10.1016/j.renene.2022.04.113
https://doi.org/10.1016/j.renene.2022.04.113
https://doi.org/10.1016/j.renene.2022.04.113


List of abbreviations

Abbreviation Meaning
AI Artificial Intelligence
AOI Area of Interest
CNN Convolutional Neural Network
DLM Deep Learning Model
LCOE Levelized cost of Energy
MADS Model Analysis and Decision Support
ML Machine Learning
NMF Non-negative matrix factorization
PSInSAR Persistent Scatterer Interferometric Synthetic

Aperture Radar
RS Remote Sensing
SAR Synthetic Aperture Radar
SOM Kohonen's Self Organizing Map
WACC Weighted Average Cost of Capital
WoE Weight of Evidence
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been mitigated by the efforts of governmental organizations (e.g.,
Iceland, New Zealand, USA, and Chile). Nevertheless, to expand the
adoption of geothermal energy requires effort to mitigate the un-
certainties associated with resource evaluation and exploration
(including options like government-backed risk insurance) [11].

Exploration of geothermal resources involves analysis and
management of a large number of uncertainties, which makes in-
vestment and operations decisions challenging. These un-
certainties can be grouped as geological, technological and
economic uncertainties. The geological uncertainty is inherent to
the nature of the problem. The geological model of the geothermal
site, which directly impacts the productions strategy is highly
dependent on the management of these uncertainties (Fig. 1). The
geological uncertainty stems from incomplete knowledge of sub-
surface characteristics of geothermal systems, namely geological
setting, geomechanical properties, fracture distribution and
permeability and spatiotemporal distribution of temperature.
Additionally, a considerable amount of uncertainty is introduced
through data acquisition and processing (objective uncertainty),
the interpretation (subjective uncertainty), via the data analysis,
modeling and interpretation [12]. Technological uncertainties
relate to the reservoir model, which is interlinked with geological
model and the production strategy (Fig. 1). The limitations in type
of data available (most of the data comes from surface, and sub-
surface data is limited), the inherent statistical nature of the anal-
ysis, data resolution and error introduced by measurements and
sensors and their interaction with the environment (e.g., clouds,
Fig. 1. Relationships between uncertainty and risk in resource evaluation and devel-
opment (adapted from Witter et al. [12]).
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noise, unavailability of day or night data, signal mixing, and data
correction) constitute the sources of technological uncertainties.
Economic uncertainties are interrelated with geological and tech-
nological uncertainties and impact the risk analyses, decision pro-
cess, field development and production strategy (Fig. 1). The main
sources of economic uncertainties are the inability to properly
forecast the economic risk, value and costs, due to technical and
geologic uncertainties, changes in energy technology, supply and
demand of energy in time, competition, cost of capital (e.g., what is
the associated technology or geological risk, as a percentage of
weighted average cost of capital).

Therefore, several models and approaches (e.g., geological,
geophysical, geochemistry and drilling technologies) are required
to be integrated to manage the cost and uncertainty in geothermal
projects. Remote sensing (RS) presents a unique opportunity to
streamline and reduce the cost at each stage of the development of
a geothermal project (preliminary survey and site selection,
exploration, test drilling, geothermal field development, power
plant design, commissioning and operation) [13]. For example, the
surface manifestations of geothermal sites can be analyzed through
remote sensing data, including surface deformation associated to
geothermal activity using SAR interferometry, gaseous emissions,
structural analysis, mineral mapping, temperature, heat flux mea-
surement, and geobotany. These remote sensing techniques can
play a role in exploration and reconnaissance, allowing for hydro-
geological modeling, initial geochemical characterization (by
mapping anomalous hydrothermal alterations), identification of
fumaroles and hot springs through infrared analysis and surface
topography, and others [12]. However, compiling all the informa-
tion obtained from surface manifestations to obtain thorough
knowledge about the occurrence of geothermal sites requires large
amount of expertise. Moreover, hidden relations in the data cannot
be obtained by replicating the information to other sites.

Artificial Intelligence (AI) is a promising area for managing the
challenges of geothermal exploration. Faulds et al. first introduced
play fairway analysis [14] for the regional evaluation of geothermal
potential, based on subsurface and surface data, and has incorpo-
rated machine learning (ML) to replicate the results of human
evaluation of play fairway [15]. There also exist a large amount of
research in remote sensing applications in geothermal exploration.
For example, Miyazaki used thermal infrared, airborne SAR, and
satellite data to map potential geothermal resources [16], Littlefield
and Calvin used a spectrometer to identify and to map geothermal
indicator minerals [17], and Calvin and Pace used a portable spec-
trometer in drill cores for the same purpose [18]. Fuzzy logic was
used by Sadeghi and Khalajmasoumi for regional evaluation of
geothermal potential [19]. A comprehensive review of remote
sensing applications for geothermal exploration is presented by
Van der Meer et al. [13].

Machine learning has been used extensively in the late stages of
geothermal exploration [20] (especially in geophysical [21,22] and
geochemical interpretation [23,24]) and production [25,26], but
research on early stages of exploration is limited. A review of uses of
ML in the geothermal production life cycle is given in Refs. [27,28].

For early exploration targeting, Vesselinov et al. applied Nega-
tive Matrix Factorization (NMF) and NMF coupled with a custom
semi-supervised k-means algorithm (NMFk) in large-scale datasets
[29] to identify the dominant features, optimize number of clusters
and identify hidden signals in New Mexico [30], Great Basin [31],
Hawaii [32], and Utah [33]. This research points to the most rele-
vant factors by area to consider in order to evaluate geothermal
potential in a region, and the need to apply these factors for
geothermal prospecting through machine learning approaches.

Faulds et al. [15], and Smith et al. [34], introduce machine
learning and play fairway analysis from petroleum exploration to
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characterize geothermal signatures regionally, use a permutation
supervised module to replicate previous work, and then incorpo-
rate Principal Component Analysis (PCA) and k-means (PCAk) to
demonstrate a pipeline of unsupervised feature selection and semi-
supervised clustering technique applied to the problem.

However, a comprehensive approach to the evaluation of
geothermal potential at a local level using remote sensing, ML and
AI is missing. Such an approach is extremely useful for reducing the
cost and managing the risks related to the geothermal projects.

In this paper, we present a methodology that integrates RS, ML
and AI to create an initial assessment of geothermal potential, by
resorting to known indicators of geothermal areas namely mineral
markers, surface temperature, faults and deformation. We
demonstrated the implementation of the method in two sites
(Brady and Desert Peak geothermal sites) that are close to each
other but have different characteristics. We processed various
satellite images and geospatial data for mineral markers, tem-
perature gradient, faults and deformation and then implemented
ML methods to obtain patterns of surface manifestations of
geothermal sites. We developed an AI that uses these patterns of
surface manifestations to predict the geothermal sites. Any AI
system for geothermal exploration necessitates labeling of large
number of data sets for the geothermal and non-geothermal areas
to train and test the system. However, labeling geothermal sites by
the use of expert knowledge is not practical as the process needs
involvement of a large number of experts, who have in-depth
knowledge on the sites. In order to tackle the problem of label-
ing we first developed an automatic labeling method using un-
supervised ML before developing the AI system called Geothermal
AI. Finally, we tested the Geothermal AI using independent data
sets obtained from each site. Moreover, we tested the Geothermal
AI trained on one site by executing it for the other site to predict
the delineation of the surface footprints of the considered sites.
Although both sites are different from each other in terms of
resource characteristics (Brady having clear surface manifesta-
tions and Desert Peak being a blind site), the Geothermal AI per-
formed quite well in prediction.
2. Methodology

The proposed methodology consists of five stages (Fig. 2). The
Fig. 2. Methodo
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first stage in the development of an AI system for geothermal
exploration is the selection of inputs that help delineate the area
with respect to geothermal potential (Fig. 2). For this purpose, we
selected two sites: the Brady and Desert Peak geothermal sites
and collected data for geothermal indicators for these sites. The
second stage of the methodology is the analysis of geothermal
indicators, which includes spatial and temporal analysis of
geothermal indicators using ML (Fig. 2). The analysis of indicators
using ML provides extraction of patterns in each geothermal in-
dicator data, which enhances learning process to be used in AI
system. The third stage is the automatic labeling, which uses
unsupervised ML algorithms to identify geothermal and non-
geothermal sites to be used in training the AI system (Fig. 2).
The fourth stage is the development of the AI system, called
Geothermal AI (Fig. 2). The Geothermal AI relies on a deep
learning algorithmwhich is tailored for the data characteristics of
the geothermal sites using spatial statistics related to the
considered sites. This stage also consists of training and testing
the Geothermal AI using the Brady site. The final stage of the
methodology is assessment of accuracy (Fig. 2), In this stage we
tested the Geothermal AI trained on one site by executing it for the
other site to predict the delineation of the surface footprints of the
considered sites.
2.1. Site selection

The Brady Hot Springs Geothermal area is located North East
from Fernley, NV, and is part of Nevada's Northwest Basin and
Range Geothermal Region. In this area, there are geothermal op-
erations in two sites, Brady (39.79�N, 119.02�W) and Desert Peak
(39.75�N, 118.95�W).

This area has been extensively studied and explored, and there
is a broad amount of data available through the Open Energy In-
formation (OpenEI) and its Geothermal Data Repository [35,36].
The location of Brady and Desert Peak is illustrated in Fig. 3 and we
collected data associated to these areas of interest (AOI) from
several sources (Table 1), which is explained in. the next section.

The data is further analyzed to extract meaningful information
that will constitute the basis for the input layers of the Geothermal
AI which uses a deep learning model (DLM).
logy steps.



Fig. 3. AOI for Brady and Desert Peak sites.
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2.2. Geothermal indicators analysis

In order to identify geothermal indicators to be used in the
Geothermal AI, we conducted an extensive literature survey.
Geothermal exploration is a multi-step process which goes from
137
regional to local analysis. The regional to local scale analyses are
required to determine overall potential and to finalize a resource
and reserve model for the geothermal system. The first step is a
desktop analysis where bibliographic research is done in the area of
interest, wheremaps and analyses from the region are acquired and



Table 1
Data sources for the considered geothermal indicators.

Indicator Data Data source Resolution Number of Pixels Time Span

Temperature Land surface temperature LANDSAT 30 m 2.5Eþ07 05/2018e10/2020
Fault density Fault map Nevada Geological Survey n/a
Mineral markers Hyperspectral images HyMap 3 m 2.1Eþ07 June 2003
Deformation Synthetic Aperture Radar (SAR) Sentinel-1 5 x 20 m 2.9Eþ08 12/2017e12/2019
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include topographical, geological, geophysical, geochemical, ther-
mal, hydrological, tectonic, seismic, gravitational, magnetic, land
rights, supply/demand and other data. This quantitative, qualitative
and interpreted data is used to assess the regional geothermal
potential of an area, and its initial feasibility from an economic,
logistical, regulatory, legal and technical standpoint [13,37e40].
Several of these factors can also be analyzed using remote sensing
and assessed statistically to identify potential [13,41,42], including
geochemical (e.g., hydrothermal mineral alterations) [42e45],
geological characteristics (e.g., faults, lithology and stratigraphy,
seismicity, volcanism) [13,46,47], geophysical manifestations and
anomalies (e.g., Bouguer anomalies, magnetic, hydrology and
aquifers, deformation) [48e51], and geothermal anomalies (e.g.,
thermal flux, hot springs, and fumaroles) [52,53]. Of these in-
dicators, we selected those that have satellite data openly available
with sufficient resolution for developing a low-cost Geothermal AI.
These include temperature (e.g., detection of fumaroles or thermal
anomalies) [14,54], mineral alterations [54,55], faults [38,56,57],
and deformation [58,59]. Table 1 lists the selected indicators and
associated data sources and characteristics.

The literature survey also shows successful use of RS, ML and AI
in geological and geophysical analyses. An overview of AI in
renewable energy to identify resources and improve technology,
environmental awareness and improvement of distribution sys-
tems and management is given by Refs. [60,61]. Clustering analysis
of multispectral and hyperspectral data [62,63], satellite image
segmentation [64], and time-series analysis [65e67] are the ex-
amples of ML and RS analyses.

As a result of this extensive literature survey, we identified ML
methods that reveal patterns for each geothermal indicator. A high-
level description of the MLmethods used for each indicator is given
below:

Temperature: It is known from the literature survey that
geothermal resources exhibit some characteristic surface temper-
ature patterns. To extract these patterns, we analyzed 25 LANDSAT
8's Level-2 Provisional Surface Temperature product images be-
tween 2018 and 2019 to determine persistently hot zones in the
selected sites. Several ML methods have been used in the literature
for time-series [68] and clustering analyses (e.g. self-organizing
maps (SOM) and k-means clustering) showing their potential for
spatial data. The k-means clustering algorithm is one of the most
well-known unsuprevised algorithms used for extracting spatial
patterns. The first step in k-means is to calculate the k centroids. In
the second step, the nearest centroid location for each data point is
found by using the distance metrics. We obtained persistently hot
zones for the selected sites using k-means clustering. After several
trials of k values, we extracted the pattern of persistently hot zones
in time with the k value of five. We used pixel voting to select the
most anomalous pixels by assigning values that represent the
number of instances a pixel was selected in the top two hottest
classes. Our analysis is dynamic and searches for anomalies in time.
The approach is to look at, at least, one full year of data and cluster
with k-means, isolating as anomalies the high temperature areas
(relative to each snapshot in time); because it looks at time-based
anomalies and relative temperatures, the approach is valid
regardless of climate, weather or seasonality, given that even
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though climate changes, there are persistent hot zones [69] unless
there is permanent impact due to changes in vegetation, cold water
accumulation, or the site is completely blind (for example, no hot
zones because of subsurface cold water reservoir) [70].

Faults: The pattern and intensity of faults presents characteristic
features for the geothermal resources. We obtained fault maps for
Brady [57] and Desert Peak [56], in shapefiles, where the faults are
indicated in terms of linear features. We converted fault lines into a
density map so that we can incorporate the influence area of the
faults in the Geothermal AI system.

Mineral Markers: Hydrothermally altered minerals are gener-
ated as a result of minerals exposure to water at high temperature.
These minerals surface by means of faults, hot springs and fuma-
roles, and their chemical characteristics become then a signature of
the probable underground system characteristics [42,43]. The
discharge of geothermal fluids on the surface can form mineral
deposits of siliceous sinters and travertine [71], borates [72], sul-
fates and chlorides [53], with calcite and quartz encompassing
minerals formed at temperatures from 100 to more than 300 �C
[40]. For the area of interest Kratt [54,55], and in the overall region
Littlefield & Calvin [17], have described the occurrence of Kaolinite,
Calcite (Tufa), Sinter deposits (Opal-A, Opal-CT, Chalcedony and
Quartz), Hematite, Epsomite, Gypsum and other relevant hydro-
thermally altered minerals. From this list, we selected minerals
from the region that indicate geothermal alteration, which are
present in the selected sites, and their spectral signatures are
available in the USGS Spectral Library [73]. These include Chal-
cedony, Opal-A, Opal-C, Kaolinite, Gypsum, Hematite and Epsomite.
Of those, Chalcedony, Opal, Kaolinite and Gypsum spectra were
used to perform Spectral Analysis and obtain maps indicating
presence of those minerals (Epsomite was not selected due to
sparsity of its presence). We used the hyperspectral satellite images
(Table 1) and adopted the target detector process in the ENVI
software package [74]. The eight algorithms available were used
[75] by first creating a Minimum Noise Fraction (MNF) transform
with co-variance, these are: Adaptive Coherence Estimator (ACE)
[76], which is derived from the Generalized Likelihood Ratio (GLR)
[77] approach, it does not require knowledge of all the endmem-
bers within a scene; Constrained Energy Minimization (CEM)
[78], CEM uses a finite impulse response (FIR) filter to pass through
the desired target while minimizing its output energy resulting
from backgrounds other than the desired targets; Matched
Filtering (MF) [79], finds the abundance of targets using a partial
unmixing algorithm, MF is a mean-centered version of CEM where
the data mean is subtracted from all pixel vectors; Orthogonal
Subspace Projection (OSP) [80], OSP first designs an orthogonal
subspace projector to eliminate the response of non-targets, then
applies MF tomatch the desired target from the data, it requires the
definition of more than one target spectra; Spectral Angle Mapper
(SAM) [81] matches image spectra to reference target spectra in n
dimensions. SAM compares the angle between the target spectrum
and each pixel vector in n-dimensional space, where smaller angles
represent closer matches to the reference spectrum; Mixture
Tuned Matched Filtering (MTMF) [82], MTMF uses the MNF
transform input file to perform MF, and it adds an infeasibility
image to the results (Pixels with a high infeasibility are likely to be
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MF false positives); Target-Constrained Interference-Minimized
Filter (TCIMF) [83], TCIMF detects the desired targets, eliminates
non-targets, and minimizes interfering effects in one operation,
TCIMF can potentially reduce the number of false positives over
CEM results; Mixture Tuned Target-Constrained Interference-
Minimized Filter (MTTCIMF) [84], this method combines the
Mixture Tuned technique and TCIMF target detector, creates an
infeasibility image and uses it to reduce the number of false posi-
tives that are sometimes found when using TCIMF alone, when
non-target spectra are specified, MTTCIMF can potentially reduce
the number of false positives over MTMF. We fused the resulting
mineral maps from each of the eight methods by voting [85] to
obtain a “Mineral Markers” map indicating the presence of one or
more of the alteration minerals in the area.

Deformation: Occurrence of deformation in the form of subsi-
dence and uplift for geothermal sites is highly investigated topic in
the literature. Cavur et al. [59] provide an overview of these studies
for the considered sites. These deformations are mainly due to the
pore pressure changes and thermal contraction. We used this in-
dicator to establish ground truth with respect to the location and
extent of the geothermal system being exploited both in Brady, and
the blind geothermal system in Desert Peak. As given in Table 1,
Sentinel-1 data was acquired for the period from December 2017 to
December 2019, and 59 high quality images were used as input for
Persistent Scatterer Interferometric Synthetic Aperture Radar
(PSInSAR) analysis using the SARPROZ application [86]. Using Self
Organizing Maps, the time series results from PSInSAR were clas-
sified based on their behavior in time, to ensure that there was no
bias introduced by the selection of the time period. The resulting
Fig. 4. Input layers for labeling algorithm: (
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clusters were reduced to three classes (Stable, Subsidence and
Uplift). Details of deformation analyses can be found in Ref. [59].
The Subsidence and Uplift layers were turned into two more inputs
for our labeling algorithm.

The results of the ML methods for each indicator constitute the
input data of the automatic labeling and the Geothermal AI system.
Fig. 4 (a) shows the resulting layers for Brady Hot Springs, while
Fig. 4 (b) shows the same layers for Desert Peak.
2.3. Automatic labeling

Labeling the geothermal system is a complex endeavor given the
uncertainty and the need for expert interpretation. An automatic
labeling with elimination of the expert input can be achieved by
using unsupervised, self-supervised or weakly-supervisedmethods
[87]. It is known that operating geothermal sites are subject to
deformation [59]. Nevertheless, solely using deformation as the
labeling systemmay create false negative labeling by omitting areas
that may not show subsidence but actually belong in the actively
exploited geothermal system. To eliminate this problem we used
five (temperature, faults, mineral markers, subsidence and uplift) of
the geothermal indicators to delineate the surface footprint of the
geothermal resource in the considered sites, For this purpose we
applied an unsupervised clustering algorithm, Kohonen's self-
organizing maps (SOM) [88]. In SOM we build 25 clusters based
on the five multi-variate data layers (temperature, faults, mineral
markers and deformation). We later grouped the resulting clusters
into two classes that represent “Geothermal” (a value of 1) and
“Non-geothermal” (a value of 0) as shown in Fig. 5.
a) Brady's hot springs; (b) Desert Peak.



Fig. 5. The result of automatic labeling algorithm for Brady and Desert Peak Sites.

Fig. 6. Correlograms of geothermal indicators (Mineral Markers, Temperature, Faults and Deformation) for Brady Hot Springs.
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Fig. 7. Correlograms of geothermal indicators for Desert Peak.

Fig. 8. (a) Inception module, (b) Geothermal AI module.
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2.4. The geothermal AI

Several studies used ML and heuristic methods to analyze
geothermal potential for large regions. The decision trees and deep
networks [15], Model Analysis and Decision Support (MADS) [30],
Weight of Evidence (WoE), Bayesian inspired models [89], fuzzy
logic and binary index overlay [19] are the ones used for regional
scales. Bayesian networks are also used for exploration of other
renewable energy sources [60,90], and it has also been used
extensively in geosciences in general (see Dramsch for a thorough
review of the last 70 years [91]). However, these models lack in
considering the spatial correlation structure of the data sets. To
develop an accountable Geothermal AI to analyze resource poten-
tial in local scale, spatial correlation structure of the data sets is
needed to be understood. This can be done through the use of
exploratory spatial data analyses mainly conducting autocorrela-
tion analyses. Coolbaugh et al. performed such analyses for
geothermal studies in the Great Basin [92], which is also applied in
Fig. 9. Ground truth and predic
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mineral exploration [93]. The deep learning models (DLM) require
building its architecture relevant to the data characteristics and
selecting appropriate spatial filtering [94], Incorporation of spatial
autocorrelation structure in developing the architecture of the
DLM, which are mainly based on convolutional neural networks
(CNN), has potential to improve the prediction potential. The use of
spatial correlation metrics, namely Moran's I, Geary's C [95], sem-
ivariograms or correlograms [96] provides insight into the identi-
fication of the kernel size for CNNs.

2.4.1. Analysis of autocorrelation
In order to investigate the autocorrelation for the geothermal

indicator data sets we adopted Moran's I measure. This measure
indicates the scale of autocorrelation for each indicator data set. We
used this scale in developing Geothermal AI architecture by using a
kernel that captures the autocorrelation structure of the data. Ex-
amples used of Moran's I can be found from Refs. [97,98]. We
computed Moran's I value for various scales (lag sizes) and plotted
tion for Brady Hot Springs.
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them as correlograms (Fig. 10) considering Deformation, Temper-
ature, Faults, and Mineral Marker layers. As it can be seen from
Fig. 10 each pixel has a positive correlation with a lag of up to 13
pixels around it.

As it can be seen from Fig. 6 and Fig. 7, all indicators present
positive autocorrelation, which becomes smaller based on distance.
By pixel 9, the deformation indicators (Uplift and subsidence) show
a steep drop, and in both sites the mineral markers indicator has an
Fig. 10. Ground truth and pre
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inflection point around pixel 13 or 14. Based on this analysis we can
infer that the autocorrelation is stronger up to pixel 13, and this will
be used as an input in the architecture design of the Geothermal AI.
2.4.2. Design of the geothermal AI architecture
The Geothermal AI adopts the CNN algorithm and smaller ker-

nels design of GoogleNet's Inception module [99] shown in Fig. 8
(a). We modified original architecture of GoogleNet's Inception
diction for Desert Peak.
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module (Fig. 11a) by incorporating additional kernels based on the
results of autocorrelation analyses. We implemented this new CNN
architecture using Python 3.7, with the Tensorflow-GPU module.
Fig. 11. Brady prediction using th
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The network of the Geothermal AI (Fig. 8 (b)) uses two parallel
blocks that are merged in the second concatenate layer. The first
block (in the left side of the diagram, Fig. 8 (b)) uses filters of
e Desert Peak-trained model.



Table 2
Performance of the Geothermal AI for the selected sites.

Non-Geothermal Geothermal

Model Accuracy Precision Recall Precision Recall Training Time
Brady 95.5% 95% 96% 96% 95% 5201700

Desert P. 92.3% 91% 94% 94% 91% 4901600

Table 3
Independent test performance of the Geothermal AI.

Model Applied to Accuracya Non-Geothermal Geothermal

Precision Recall Precision Recall

Brady Desert P. 72.4% 66% 97% 94% 46%
Desert P. Brady 76.3% 72% 79% 81% 74%

a When applying to a different site, all points in the tested site are used.
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different sizes to classify the inputs based on spatial information
(e.g., patterns, textures). The second block (in the right side of the
diagram, Fig. 8 (b)) uses the whole image, but discards spatial in-
formation by flattening it. The objective of this approach is to
ensure that not just the filters provide information, but also each
pixel from each layer. This ensures that no detailed information is
lost when doing the final classification using dense layers (bottom
of Fig. 8 b).

The network contains standard TensorFlow layers [100] that
perform different functions, in Fig. 8 each type of layer has a
different color to make it easier to identify their type:

Convolutional Layer (Conv): It implements 2D convolutions
using the kernel size defined in the layer description (e.g., Conv
13� 13would implement a convolution in the image using a kernel
of 13 by 13 nodes). Convolutions perform the task of filters in an
image, and the learning process changes the layer to obtain best fit
filters that match the relevant image textures.

Max Pooling (Max Pool): The Max Pooling layer performs a
voting mechanism based on the kernel size defined, where the
output of the kernel corresponds to the maximum value of the
input filtered by the kernel.

Concatenate: The concatenate layer merges the data into one
single output, it is used to reduce dimensionality of the input.

Average Pooling (Avg Pool): The Average Pooling layers execute
a kernel-based voting mechanism similar to Max Pool, except that
the output corresponds to the average value of all the inputs.

Flatten: The Flatten layers reduce dimensionality of the inputs
by turning any input matrix into a 1D vector of values. In this step,
the multidimensional input (3D and 2D) loses its spatial compo-
nents, but it can be rebuilt by resampling it into a matrix if required.

Dense: A Dense layer creates one-to-one connections between
all its nodes and each one of the inputs, this ensures all inputs are
used to calculate the output based on learned weights and bias.

Activation Function: In this last step, the inputs are turned into
one or more outputs based on a selected activation function. In our
case, we used SoftMax, which turns a continuous variable into a
label (“Geothermal” or “Non-geothermal”).

2.4.3. Training and testing
We first trained the developed architecture for Brady site. We

partitioned the overall pixels in the AOI (592,898 pixels) into
training (6.7%), validation (6.7%) and testing (20.2%) pixels. The
training data set is prepared using the tiles having 19 by 19 pixels.
We used the first layers as input, and the label layer as the expected
output.

Then we separately trained Desert Peak site by partitioning the
overall pixels in the AOI (2,533,789 pixels) into training (1.6%),
validation (1.6%) and testing (4.7%) pixels.

We trained the Geothermal AI using High Performance
Computing (HPC) resources of Colorado School of Mines, in a single
Penguin Computing Relion XO1114GTS GPU Node, with 192 GB
RAM and 4 NVIDIA Tesla V100-SXM2 (32 GB HBM2, 5120 CUDA,
640 Tensor). The Operating System used was CentOS 7, and the 10.1
CUDA Library. We conducted the for 100 epochs using augmenta-
tion of the data by rotating and mirroring the tiles. The accuracy
metrics of the Geothermal AI for each site is given in Table 2.

The prediction maps using the geothermal AI for Brady and
Desert Peak are given in Figs. 9 and 10.

As it can be seen from Fig. 9, the prediction map for Brady shows
that the prediction (pink), fits very well the labeled data (green).
The Geothermal AI tends to ignore the isolated points outside of the
geothermal plant's operations grounds. This may indicate that,
potentially, the salt and pepper error in labeling is being ignored
(isolated green patches in Fig. 9, and blue dots outside of the
magenta region in Fig. 10). For the prediction map of Desert Peak
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(Fig. 10), the prediction in blue overlaps almost all of the regions
labeled (magenta). Similar to the Brady case, the fact that the
Geothermal AI ignores patches outside of the core of the operation
indicates the robustness of the developed Geothermal AI.

2.5. Accuracy assessment

The results of the training and testing show that, for both
models, the accuracy is over 90%. Moreover, even for the blind site
(Desert Peak) the drop in accuracy is not large. In particular, the
non-geothermal recall results show that the accuracy in properly
classifying all non-geothermal points is 94%, but lower precision
indicates a larger number of false negatives. To test the ability of
each model to generalize, we applied the trained model of Brady to
Desert Peak (test site) and the trained model of the Desert Peak to
Brady (test site) without introducing and training data for the test
sites. The performance metrics for this independent testing is given
in Table 3.

Although there are significant differences in the geothermal
characteristics of both sites, especially being Desert Peak a blind
geothermal resource, the independent testing yields very good
prediction maps (Figs. 11 and 12).

3. Conclusions

Geothermal energy has not been adopted at the same pace of
other renewable energy technologies, due to geological, economic
and technological uncertainties that cause reduced investments. To
decrease the cost and risk of projects, methods for reducing un-
certainty in exploration of geothermal resources are needed. Recent
developments in RS, ML and AI provide opportunities for leveraging
the geothermal energy utilization. The existing research using
these methods mainly consider large regions and also does not
significantly exploit the integration of RS, ML and AI.

Our approach integrates RS, ML and AI for predicting the po-
tential geothermal sites, that can be used not only for exploration of
new sites but also expansion of existing sites. By partitioning and
augmenting the data, we used less than 7% of the original data to
train two models, namely Brady which has clear surface manifes-
tations (fumaroles, hot springs, mud pools) and Desert Peak which
is a blind site.

The Geothermal AI also makes use of analysis from spatial sta-
tistics to inform its architecture, which includes CNN kernels of
dimensions 1 � 1, 3 � 3, 5 � 5, 7 � 7, 9 � 9, 11 � 11, and 13 � 13 for
input images of 19� 19� 3 (3 channels of 19� 19 pixels each). This
architecture is based on the known image object recognition
Inception module, which is suited for image pattern analysis [99]



Fig. 12. Desert Peak prediction using Brady-trained model.
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and has been used with modifications for hyperspectral analysis
[101].

The results show that the Geothermal AI achieves an accuracy
level between 92 and 95%, with the lower accuracy belonging to the
blind site (Desert Peak). Moreover, when using the trained models
146
on the opposite sites the accuracy varies between 72 and 76%.
Furthermore, the Geothermal AI predicts a considerable area of
footprint that matches the main regions of each considered
geothermal site.

The Geothermal AI tends to cluster the data, and the prediction
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reduces some of the probable salt-and-pepper errors introduced by
the automated labeling. This also shows the robustness of the
proposed approach. The Geothermal AI produces conservative re-
sults, with precision of 94e96% for pixels labeled as geothermal for
the same site, and a precision between 81 and 94% when it is used
in a different site. These promising results demonstrate that even
with a low number of input layers (temperature, fault density, and
mineral markers), the Geothermal AI can be applicable to other
sites.

The model is geared towards the early stages of exploration and
it only finds the footprint of the geothermal resource and not its
potential. To find the total capacity of the geothermal source, a
subsurfacemodel is needed and the authors are adapting themodel
for subsurface prediction to predict/assess total capacity.

Future research should include adding more available RS data,
increasing the depth of the network, trying different or a refined
version of the labeling algorithm that makes use of self-training
data for brownfield sites, and incorporating subsurface data and
models when available.
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