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Abstract

The Internet of Things (IoT) is a communication paradigm and a collection of heterogeneous interconnected devices. It
produces large-scale distributed, and diverse data called big data. Big Data Management (BDM) in IoT is used for
knowledge discovery and intelligent decision-making and is one of the most significant research challenges today. There
are several mechanisms and technologies for BDM in IoT. This paper aims to study the important mechanisms in this area
systematically. This paper studies articles published between 2016 and August 2022. Initially, 751 articles were identi-
fied, but a paper selection process reduced the number of articles to 110 significant studies. Four categories to study BDM
mechanisms in IoT include BDM processes, BDM architectures/frameworks, quality attributes, and big data analytics
types. Also, this paper represents a detailed comparison of the mechanisms in each category. Finally, the development
challenges and open issues of BDM in IoT are discussed. As a result, predictive analysis and classification methods are
used in many articles. On the other hand, some quality attributes such as confidentiality, accessibility, and sustainability are
less considered. Also, none of the articles use key-value databases for data storage. This study can help researchers develop
more effective BDM in IoT methods in a complex environment.
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responsible for processing the data; and end-user devices
and user interfaces help to control and configure the system
[5]. The most important applications of IoT include envi-
ronmental monitoring, disaster management, smart homes/
buildings, smart farms, healthcare, smart cities, urban,
smart manufacturing, intelligent transport systems, smart
floods, financial risk management, supply chain manage-
ment, water management, enterprise culture, cultural her-
itage, smart surveillance, military tracking and
environment, digital forensics, underwater environments,
and understanding social phenomena [6-22]. The IoT
devices and sensors in the Wireless Sensor Networks
(WSN) generate large data. According to the international
data corporation1 forecast, the number of IoT devices will
be 41.6 billion and generate 79.4 zettabytes of data in 2025.
This massive structured, semi-structured, and unstructured
data, which is expanding rapidly with time, results in “Big
Data” [23]. “Big data” technologies are a new generation
of distributed architectures and technologies that provide
distributed data mining capabilities to inexpensively,
valuable, and effectively extract value from a huge dataset
with characteristics such as volume, velocity, variety,
variability, veracity, and value [24]. Big data provides both
opportunities and problems for organizations and enter-
prises. Big data can improve data precision, be used for
forecasting and decision-making, and give stakeholders
more in-depth analytical findings [2]. Traditional data
processing systems cannot collect, process, manage, and
interpret data effectively using conventional mechanisms.
Therefore, it requires a scalable architecture or framework
for effective capture, storage, management, and analysis
[25].

A major challenge in implementing IoT in real and
complex environments is analyzing heterogeneous data
volumes that contain a wide variety of knowledge content
[26]. Various platforms, tools, and technologies have been
developed for big data monitoring, collecting, ingesting,
storing, processing, analysis, and visualization [10, 27].
These platforms and tools are Apache Hadoop, MapRe-
duce, 1010data, Apache Storm, Cloudera, Cassandra, HP-
HAVEn, SAP-Hana, Hortonworks, MongoDB, Apache
Kafka, Apache Spark, Infobright, etc. Industries and
enterprises use Big Data Analytics (BDA) with IoT tech-
nologies to handle the timely analysis of information
streams and intelligent decision-making [28-30]. BDM in
the IoT involves different analytic types [31]. Marjani et al.
[29] discussed analytical types in real-time, offline, mem-
ory, business intelligence, and at massive levels. Singh and
Yassine [28] divided analytical types into preprocessing,
pattern mining, and classification. Gandomi and Haider
[32] divided big data processing into two major phases:

! https://www.idc.com/.
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data management and data analytics. Also, Ahmed et al.
[33] provided five aspects of big data: acquisition and
storage; programming model; benchmark process; analysis;
and application. Finally, ur Rehman et al. [34] divided
BDA into five main steps: data ingestion, cleaning, con-
formation, transformation, and shaping.

However, despite the importance of BDM in the IoT and
the rising challenges in this area, as far as we know, there is
not any complete and detailed systematic review in this
field. Hence, this paper tries to analyze the mechanisms of
BDM in the IoT. The main contributions of this paper are
as follows:

e Presenting a study of the existing methods for BDM in
the IoT.

e Dividing BDM methods in the IoT are divided into four
main categories: BDM processes, BDM architectures/
frameworks, quality attributes, and big data analytics
types.

e Dividing the BDM process in the IoT into six main
steps, including data collection, communication, data
ingestion, data storage, processing and analysis, and
post-processing.

e Dividing the BDM architecture/framework in the IoT
into two main subcategories: BDM architectures/frame-
works in IoT-based applications and BDM architec-
tures/frameworks in the IoT paradigms.

e Exploring the primary challenges, issues, and future
works for BDM in the IoT.

The following subsection discusses related work to show
the main differences between this review and similar
studies. Also, the abbreviations used in this paper are
presented in Table 1.

1.1 Related work and contributions of this
review

This section studies some reviews and survey articles that
work on BDM in the IoT to highlight the need for
reviewing them. In addition, this section describes the main
advantages and disadvantages of this article to distinguish
this one.

Ahmed et al. [27] analyzed several techniques for IoT-
based big data. This article categorizes the literature based
on parameters, including big data sources, system compo-
nents, big data enabling technologies, functional elements,
and analytics types. The authors also discussed connec-
tivity, storage, quality of services, real-time analytics, and
benchmarking as the critical requirements for big data
processing and analytics.

Constante Nicolalde et al. [35] overviewed the technical
tools used to process big data and discussed the relation-
ship between BDA and IoT. The big data challenges are


https://www.idc.com/

Wireless Networks (2023) 29:1085-1144

1087

Table 1 Paper abbreviations

Abbreviation Definition Abbreviation

Definition

ABC Artificial Bee Colony LST
ADASYN Adaptive Synthetic Sampling LSTM
Al Artificial Intelligence LTE
AMQP Advanced Message LWLR
Queuing Protocol
ANN Artificial Neural Network (ANN) MDL
BCN Bayesian Convolution Network ML
BDA Big Data Analytics MLP
BDM Big Data Management MQTT
CART Classification and Regression Tree MloT
CDMA Code-division multiple access NB
CDNN Convolutional Deep Neural Networks NFC
CEP Complex Event Processing NRDD-
DBSCAN
CFS Correlation Feature selection OCSTuM
CoAP Constrained Application Protocol 0SSO
DBSCAN Density-based spatial clustering PCA
DE Differential Encoding PPSO
DFS Distributed File Systems PSO
EBS Electronic Batchload Service QoE
EC2 Amazon Elastic Compute Cloud QoS
EDL Enhanced Deep Learning REPtree
EHO Elephant Herd Optimization RFID
EPL Event Processing Language (EPL) RNN
ETL Extract, Transform, and Load RPL
GA Genetic Algorithm SLR
GIS Geographical Information Systems SloT
GM Grey Prediction Model SSL
GPS Global Positioning Systems SVD
HDFS Hadoop Distributed File System SVM
HPC High Performance Computing (HPC) UCI
IoT Internet of Things WIT120
KNN K-nearest Neighbors Algorithms WSN

Least Slack Time algorithm
Long Short-Term Memory
Long Term Evolution

Locally Weighted Linear Regression

Minimum Description Length

Machine Learning (ML)

Multi-Layer Perceptron

Message Queuing Telemetry Transport

Multiple Internet of Things

Naive Bayes

Near-Field Communication

New Resilient Distributed Datasets Density-Based Spatial Clustering

One-Class Support Tucker Machine
Swallow Swarm Optimization
Principal Component Analysis
Parallel Particle Swarm Optimization
Particle Swarm Optimization

Quality of Experience

Quality of service

Reduced-Error Pruning Tree
Radio-Frequency Identification
Recurrent Neural Network

Routing Protocol for Low-Power and Lossy Networks
Systematic Literature Review

Social Internet of Things

Secure Sockets Layer

Singular Value Decomposition
Support Vector Machine

University of California, Irvine

Wise Information Technology of 120
Wireless Sensor Networks

divided into four general categories: data storage and
analysis; the discovery of knowledge and computational
complexities; information security; and scalability and data
visualization.

Talebkhah et al. [36] investigated the architecture,
challenges, and opportunities of big data systems in smart
cities. This article suggested a 4-layer architecture for
BDM in smart cities. The layers of this architecture are
data acquisition, data preprocessing, data storage, and data
analytics. This article also considered the opportunities and
challenges for smart cities, such as heterogeneity, design
and maintenance costs, failure management, throughout,
etc.

Bansal et al. [37] investigated state-of-the-art research
on [oT and BDM. This article proposed a taxonomy based
on BDM in the IoT applications, including smart transport,
smart cities, smart buildings, and smart living. BDM steps
are considered as data acquisition, communication, storage,
processing, and retrieval. Also, the related surveys on
BDM were divided into three general categories: surveys
on IoT BDA, domain-specific surveys on IoT big data, and
surveys on challenges in IoT big data. The authors classi-
fied the articles based on four major vendor services
(Google, Amazon, Microsoft, and IBM) to integrate IoT
and IoT big data with case studies. The big data manage-
ment challenges in the IoT are considered based on 13 V’s
challenges.
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Marjani et al. [29] investigated state-of-the-art research
efforts directed toward big IoT data analytics and proposed
a new architecture for big IoT data analytics. This article
discusses big IoT data analytic types under real-time, off-
line, memory-level, business intelligence, and massive
level analytics categories.

Simmhan and Perera [38] presented the analytics
requirements of IoT applications. They defined the rela-
tionship between data volume capacity and processing
latency of new big data platforms. This article divided
decision systems into visual analytics, alerts and warnings,
reactive systems, control and optimization, complex sys-
tems, knowledge-driven intelligent systems, and behavioral
and probabilistic systems.

Shoumy et al. [39] discussed frameworks and techniques
for multimodal big data analytics. They divided multi-
modal big data analytics techniques into four topics:
affective framework; multimodal framework; big data and
analytics framework; and fusion techniques. Furthermore,
Ge et al. [40] discussed the similarities and differences
among big data technologies used in IoT domains and
developed a conceptual framework. This article interpreted
big data research and application opportunities in eight IoT
domains (healthcare, energy, transportation, building
automation, smart cities, agriculture, industry, and mili-
tary) and discussed the advantages and disadvantages of
big data technologies. In addition, it examined four aspects
of big data processes: storage, cleaning/cleansing, analy-
sis/analytics, and visualization.

Siow et al. [41] considered the analytics infrastructure
from data generation, collection, integration, storage, and
computing. This article presented a comprehensive classi-
fication of analytical capabilities consisting of five cate-
gories: descriptive, diagnostic, discovery, predictive, and
prescriptive analytics. In addition, a 3-layered taxonomy of
data analytics was presented, including data, analytics, and
applications.

Fawzy et al. [42] investigated the techniques and tech-
nologies of IoT systems from BDA architectures and
software engineering perspectives. This article proposed a
taxonomy based on BDA systems in the IoT, including
smart environments, human, network, energy, and envi-
ronmental analytics. The BDA target, approach, technol-
ogy, challenges, software architecture and design, model-
driven engineering, separation of concerns, and system
validation and verification. The authors presented the IoT
data features as multidimensional, massive, timely,
heterogeneous, inconsistent, traded, valuable, and spatially
correlated. The proposed domain-independent BDA-based
IoT architecture has six layers. The layers of architecture
are data manager, system resources controller, system
recovery manager, BDA handler, software engineering
handler, and security manager.

@ Springer

Zhong et al. [43] investigated using BDA and data
mining techniques in the IoT. This article divided the
review articles into four categories: architecture and plat-
form, framework, applications, and security. The data
mining methods for BDA in the IoT were discussed in
these four categories. The challenges investigated in the
article are as follows: data volume, data diversity, speed,
data value, security, data visualization, knowledge extrac-
tion, and real-time analysis.

Hajjaji et al. [44] discussed applications, tools, tech-
nologies, architectures, current developments, challenges,
and opportunities in big data and IoT-based applications in
smart environments. This article divided the benefits of
combining the IoT and big data into six categories: multi-
source and heterogeneous data; connectivity; data storage;
data analysis; and cost-effectiveness.

Ahmadova et al. [45] discussed big data applications in
the IoT. They proposed a taxonomy of big data in the IoT
that includes healthcare, smart cities, security, big data
algorithms, industry, and general view. In the article, the
authors discussed big data technologies’ advantages and
disadvantages for IoT domains. Also, the evaluation factors
that are considered in the article are security, throughput,
cost, energy consumption, reliability, response time, and
availability.

Table 2 shows the summary contributions of related
survey articles. The publication year, methodology, dis-
cussion, and other disadvantages are shown for each article
in this table. Due to the existing weaknesses in the review
articles, this paper presents a systematic literature review
and a proper categorization of BDM mechanisms in the [oT
that addresses the shortcomings as follows:

1. This paper provides a complete research methodology
that includes research questions and the article selec-
tion process.

2. This paper discusses the newly proposed mechanisms
for BDM in the IoT between 2016 and August 2022.

3. This paper considers the architectures/frameworks of
IoT-based applications, including healthcare, smart
cities, smart homes/buildings, intelligent transport,
traffic control and energy, urban planning, and other
IoT applications (smart [oT systems, smart flood, smart
farms, disaster management, laundry, digital manufac-
turing, and smart factory).

4. This paper investigates the quality attributes and
categorizes the review articles based on the quality
attributes used and the reference model of standard
software quality attributes, i.e., ISO 25010.

5. This paper classifies the review articles based on BDA
types in the IoT and their tactics.

6. This paper considers the big data storage systems and
tools in the IoT based on relational databases, NoSQL
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5 % E \ Sect. 5 represents the conclusion and the paper’s
limitations.
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o= A A 2 Research methodology
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5 2 Systematic literature review (SLR) is a research method-
2= X X ology that examines data and findings of the researchers
relative to specified questions [46, 47]. It aims to find as
=1 . .
- much relevant research on the defined questions as possible
E § . and to use explicit methods to identify what can reliably be
mal|>» N said based on these studies [48, 49]. This section provides
an SLR to understand the BDM techniques in the IoT. The
© following subsection will explain the research questions
Z25.8 and the article selection process.
58| x x
8 2.1 Research questions
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= § This study focuses more explicitly on the articles related to
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E % BDM in the IoT, focusing on their advantages and disad-
2 g N N vantages, architectures, processing and analysis methods,
storage systems, evaluation metrics, and tools. To achieve
g the goals mentioned above, the following research ques-
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£ v Sz articles about BDM in IoT between 2016 and August 2022.
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= & & assessed?
§ . = Section 2.2 discusses the question.
E g = RQ4: What are the classifications of BDM methods in
Sls s = the ToT?
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This question aims to show the existing methods of
BDM in the IoT environment. Section 3 will discuss this
answer.

RQ5: What are the challenges and technical issues of
BDM in the IoT?

This question identifies the challenges for BDM in the
IoT and provides open issues for future research. Section 4
will discuss this answer.

2.2 Article selection process

In this study, the article’s search and selection process
consists of three stages. These stages are shown in Fig. 1.
In the first stage, the articles between 2016 and August
2022 were searched based on the keywords and terms
(presented in Table 3). These articles are the results of
searching popular electronic databases. These electronic
databases include Google Scholar, Elsevier, ACM, IEEE
Explore, Emerald Insight, MDPI, Springer Link, Taylor
and Francis, Wiley, JST, Dblp, DOAJ, and ProQuest. The
articles include journals, chapters, conference papers,
books, notes, technical reports, and special issues. 751
articles were found in Stage 1. In Stage 2, there are two
steps to select the final number of articles to review. First,
the articles are considered based on the inclusion criteria in
Fig. 2. There are 314 articles left at this stage. Next, the
review articles are removed; of the remaining 314 articles
in the previous stage, 85 (27.07%) were review articles.
Elsevier has the highest number of review articles (31.76%,
27 articles). EMERALD and Taylor and Francis have the
lowest number of reviewed articles (2.35%, one article).
The highest number of published review articles is in 2019
(24.71%), and the lowest is in 2022 (8.24%). The number
of remaining articles at this stage is 229. In Stage 3, the
title and abstract of the articles are reviewed. Also, to
ensure that the articles are relevant to the study, we
reviewed the methodology, evaluation, discussion, and
conclusion sections. The number of selected articles
retained at this stage is 110. Elsevier publishes most of the

"

 Automatic search
based on keywords

« Selection based on
inclusion criteria

Fig. 1 Articles search and selection process stage

* Delete survey
articles

N

selected articles (30.91%, 34 articles). The lowest number
is related to ACM (0.91%, one article). 2018 has the
highest number of published articles (26.36%, 29 articles).
The Future Generation Computer Systems journal pub-
lishes the highest number of articles (11.82%, 13 articles).

3 Big data management approaches
in the loT

This section presents four different categories for the
reviewed articles. These categories include the BDM pro-
cess in the IoT (Sect. 3.1), BDM architectures/frameworks
for IoT applications (Sect. 3.2), quality attributes (Sect.
3.3), and big data analytics types (Sect. 3.4). Each category
has subcategories that will be considered in its relevant
section. Figure 3 shows this taxonomy.

3.1 Big data management process in the loT

This section categorizes articles based on BDM process
mechanisms and presents a comprehensive framework for
BDM in the IoT. The comprehensive framework for BDM
in the IoT is shown in Fig. 4. The steps of BDM in IoT
include data collection, communication, data ingestion,
storage, processing and analysis, and post-processing.

3.1.1 Data collection

A variety of sources generates [oT data. There are different
mechanisms for IoT data collection, but there is still no
fully efficient and adaptive mechanism for IoT data col-
lection [50]. This paper divides IoT sources into sensors,
applications, devices, and other resources. Figure 5 shows
the classification of the sources based on these four
categories.

2 « Final selected articles
« Selection based on title,

abstract and full text
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Articles
published
between
2016 to

Articles
published in
reputable
journals.

Articles
published in
English.

Articles, which
are not in the form
of conference
papers, books,
chapters, notes,
technical reports,
special issues

Articles that

focus on the

BDM in the
ToT.

Articles
should not be
duplicates.

Articles that
are available
in full text

Fig. 2 Inclusion criteria in the articles selection process
3.1.2 Communication

The data sources are located on various networks, such as
IoT sensor networks, wired and wireless sensor networks,
fiber-optic sensor networks, and machine-to-machine
communications. Communication technologies are
required to process and analyze these data sources [51, 52].
There are several communication technologies and proto-
cols in the IoT. The communication protocols used in the
articles are IPV6, RPL, MQTT, CoAP, SSL, AMQP,
Websocket, 6LowPANIPV6, Alljoyn, TCP/IP, HTTP/IP.
Communication technologies are compared based on fre-
quency, data rate, range, power usage, cost, latency, etc.
There are several categories of these communication
technologies. This paper divides big data communication
technologies in the IoT based on distance criteria into three
categories: pan, local, and WAN. Table 4 shows the arti-
cles’ classification based on these three categories. Wi-Fi,
ZigBee, Bluetooth, and 4G LTE are of the utmost impor-
tance in communication technology, with a total number of
29, 19, 17, and 17 articles, respectively.

Table 3 Search keywords and terms

3.1.3 Data ingestion

Data ingestion is the process of importing and transporting
data in different formats from various sources (shown in
Fig. 4) to a storage medium, processing and analyzing
platform, and decision support engines [93, 94]. The
quality of the dataset used by ML-based prediction models
(classification) plays a vital role in BDM in the IoT. A
prediction model requires a lot of correctly labeled data for
correct construction, assessment, and accurate result gen-
eration [95]. Therefore, the data ingestion layer should
handle the enormous volume, high speed (velocity), vari-
ety, value, variable, and validated data for the processing
and analysis step. In different articles, this layer has mul-
tiple tasks. The data ingestion layer in [96] includes iden-
tification, filtration, validation, noise reduction, integration,
transformation, and compression. The data ingestion layer
in [97] provides data synchronization, data slicing, data
splitting, and data indexing. Also, the data ingestion layer
in [98] includes data stream acquisition, data stream
extraction, enrichment, integration, and data stream distri-
bution. Finally, the data ingestion layer in [99] includes
data cleaning, data integration, and data compression.
There are three categories of data ingestion technolo-
gies: real-time data ingestion, batch data ingestion, and
both. Real-time data ingestion is used for time-sensitive
data and real-time intelligent decision-making. Batch data
ingestion is used for data collection from sources at regular
intervals (daily reports and schedules) [100]. There are
many tools and platforms for data ingestion, such as
Apache Kafka, Apache NIFI, Apache Storm, Apache
Flume, Apache Sqoop, Apache Samza, Apache Minifi,
Confluent Platform, and Elastic Logstash. These tools can
be compared based on throughput, latency, scalability, and
security [98]. The data ingestion layer in this paper
includes data cleaning, data integration, data transforma-
tion/ discretization, and data reduction. Each of these steps
uses special tools, methods, and algorithms. Table 5 shows
the categorization of articles based on the tools that are

S# Search keywords and terms

S1 “IoT big data” or “Internet of things big data”

S2 “data management in IoT” or “data management in the Internet of things”
S3 “big IoT data mining” or “big Internet of things data mining”

S4 “data mining in [IoT” or “data mining in the Internet of things”

S5 “big data in IoT” or “big data in the Internet of things”

S6 “big data analytics in IoT” or “big data analytics in the Internet of things”
S7 “IoT data analyze” or “Internet of things data analyze”
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Data collection
Pan (Distance <=10m)
Local (Distance <=100m) | Communication
WAN (Distance >100m)

Data Cleaning

Data Integration

Data Ingestion

Data Reduction |
_Data Transmission
RDBMS
| Relational Databases

NewsQL

Column-Oriented

Document-Oriented Sub Topic

_ Healtheare
Smart Cities

Smart Home/Building

ToT-based Applicati Intelligent Transport

| Traffic Control and Energy

| Urban Planning

) [ Big Data minlheInT]

|__ Other IoT Applications

SloT
| IoT Paradigms [
MioT

Graph-Oriented ‘

Articles
| Data Storage 5[ Big Data Management Process in theloT Quality Attributes Used
Ta Y || Quality Attri -

Distributed File Systems |
Cloud/Edge/Fog/Mist Storage
Batch & Stream Processing
Query Processing ‘
Statistical and Numerical Analzsisi
Graph Processing ‘ Processing and Analysis |
Machine Learning |
Resource Management |
Infrastructure/Containers ‘
Evaluation and Selection

MVirumlizationashboard
| Post-processing |
Intelligent Decision |

Service and Application

Fig. 3 Taxonomy of the selected articles

used for data ingestion. Data ingestion tools have been
compared based on ingestion type, throughput, reliability,
latency, scalability, security, and fault tolerance. Platforms
in some articles use a combination of these tools, such as
the Horton data flow platform in [101], including Apache
NiFi/MiNiFi, Apache Kafka, Apache Storm, and Druid
tools. As you can see in Table 5, Apache Kafka is of utmost
importance to the data ingestion tool, with a total of 8
articles. Also, Table 6 shows the categorization of articles
based on the big data preprocessing stage in the IoT.

3.1.4 Data storage

This subsection categorizes articles based on storage
mechanisms. The articles use various methods and tools to
store big data. This study divides these mechanisms into
four categories: relational, NoSQL, Distributed File Sys-
tems (DFS), and cloud/edge/fog/mist storage. Each of these
categories has subcategories. One of the most critical big
data challenges is the categorization and scalability that
traditional relational databases such as MySQL, SQL Ser-
ver, and Postgres cannot overcome. Therefore, NoSQL
databases are used to store big data. NoSQL technologies
are divided into four categories: key-value, column-ori-
ented, document-oriented, and graph-oriented [102]. These
NoSQL technologies have many platforms to support their

|__1S0 25010

Descriptive

N ‘ N
| Diagnostic
| Big Data Analytics-Types in IoT

L Predictive

Prescriptive

operations. Key-value storage is the most straightforward
and highly flexible type of NoSQL database and stores all
the data as a pair of keys and values. A document-oriented
database stores data as a set of columns. In a relational
database, data is stored in rows and read row-by-row. A
graph database focuses on the relationships between data
elements, and each element is stored as a node. Tables 7
and 8 show the types of storage methods used in articles.
Table 7 shows the classification of articles based on rela-
tional databases, NoSQL databases, and DFS. As you can
see, any of the 110 selected articles do not use the key-
value databases. In relational databases, Hive, NoSQL
databases, Hbase, and distributed file systems, HDFS is
most commonly used. Table 7 compares these storage tools
and platforms based on in-memory database/storage or
disk-based, data type, scalability, security, availability,
flexibility, performance, fault-tolerant, easy to use, and
replication.

Table 8 shows the classification of articles based on
cloud/edge/fog/mist storage. Cloud computing provides
scalable computing, high data storage, processing power,
and ensures the quality of the applications. However, it has
main challenges such as latency, network overhead,
bandwidth, data privacy, lower real-time responsiveness,
location awareness, security, reliability, data availability,
and accessibility [103]. Network architectures came into
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«Fig. 4 Big data management framework in IoT

existence to overcome these challenges, such as fog, edge,
and mist computing, that move the data and computation
closer to the consumer and reduce some of the workloads
from the cloud [104].

Fog computing is a type of decentralized computing that
is between cloud storage and IoT devices. Fog computing
reduces service latency, bandwidth, energy consumption,
storage, and computing costs and improves the QoS [149].
The fog computing for the IoT model supports real-time
services, mobility, and geographic distribution [150].
Another alternative approach to cloud computing is edge
computing. Data storage and processing in edge computing

occur closer to the device or data source to improve data
locality, performance, and decision-making [151]. Edge
computing is less scalable than fog computing but provides
near real-time analytics and high-speed data access and
reduces data leakage during transmission [104, 152]. Mist
computing is an intermediate layer between fog/cloud and
edge computing. It can improve the fog/cloud challenges,
such as response time, location awareness, data privacy,
local decision-making, network overhead, latency, and
computing and storage costs. Mist nodes had low pro-
cessing power and storage [153]. In some articles, in
addition to using cloud/edge/fog/mist storage, HDFS and
NoSQL databases are used alongside these technologies.

-RFID -Social networks ~ -Cloud data  -Actuators

-Simulation model

Smartphones and watches, Monitoring devices (Video and surveillance cameras), Readers/Scanners,
Microphones, Digitalized vehicles, PC and devices, GPS systems, AP/BS, Wearable devices, Controlees,

Collection servers, Getaways, Raspberry pie, Arduino, etc.

-Programs

-Software -Business applications

-Databases -Files

-Web applications

Smart home/buildings sensors, Healthcare sensors, Manufacturing/Industrial sensors, Smart agriculture sensors, Smart
transportation/mobility sensors, Smart parking sensors, Smart parking sensors, Smart parking sensors, Surveillance
sensors, Smart parking sensors, Water and weather system sensors, Infrared sensors, etc.

Fig. 5 Big data sources categories in IoT

Table 4 Classification of articles based on communication technologies

Category Name Communication Technologies The Article’s Ref# #Articles
Pan (distance < = 10 m) Bluetooth [13, 52-67] 17
NFC [53]
RFIID [3, 53, 68-71] 6
Local (distance < = 100 m) ZigBee [51-53, 55, 56, 58, 59, 61-64, 71-78] 19
Wi-Fi [11, 30, 51, 52, 55-58, 60-63, 65-67, 71, 73-75, 79-88] 29
Ethernet [3, 51, 53, 65, 66, 74] 6
WAN (distance > 100 m) Cellular 2G GSM [52] 1
CDMA [3, 53] 2
NA [8] 1
2.5G GPRS [3, 53, 66] 3
3G 3GPP, etc [8, 51-53, 55, 58, 60, 61, 63, 66, 73-75, 79, 84, 89] 16
4G LTE [8, 51-53, 55, 60, 61, 63, 66, 73-75, 79, 85, 86, 90, 91] 17
WiMAX [51, 53, 66, 72, 74, 85] 6
NA [57, 65, 76, 84, 89] 5
5G [8, 53, 65, 72, 73, 75, 90] 7
LPWAN Narrowband-IoT [73, 75] 2
LoRaWAN [53, 56, 59, 92] 4
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g The goal is to overcome the disadvantages of these tech-
= 0 = nologies by using them together.
& S =
@ - S
“% 3 - =2 3.1.5 Processing and analysis
2 | =
© XS H SKeaS5S 8o n Big data processing and analysis in the IoT are techniques
= n = n AT AT ST . .
e il T T R or programming models for extracting knowledge from
g large amounts of data for supporting and providing intel-
%3 ligent decisions [154]. Efficient big data processing and
& analysis in IoT can help mitigate many challenges in event
E NN S YN NS N X management, action management, control and monitoring,
improved customer service, cost savings, improve business
£ - - - - relationships [155], etc. This paper divides the big data
= = . . . .
3 éb é‘) éﬂ éﬂ %" “ %’ é” <Zt \ processing and analysis step in IoT into a set of sub-steps:
batch and stream processing, query processing, statistical
%* and numerical analysis, graph processing, ML, resource
g management, and infrastructure/containers. Table 9 shows
g the articles’ classification and comparison of the tools
< based on criteria: throughput, reliability, availability,
g‘ f§o g - f§o latency, scalability, security, flexibility, ease of use, and
% i < = <, é < g E < 5 cost-effectiveness. Big data processing in the IoT is gen-
312 5= £ 9 EE S £ E erally done at both batch and stream levels. Many tools,
B 5 B platforms, and frameworks exist for batch and stream
> .3 S S processing. The tools used in the articles are Apache
§ 25 z sz 2 2 2 2 Hadoop, Apache Spark, Map Reduce, Apache Storm,
el el s IS IS B Apache Flink, Anaconda, Apache S4, Weka, streaming
2l 5 5 analytics manager, and CEP.
E|T e e oo T . As you can see in Table 9, Apache Hadoop, MapRe-
E E é“ %‘J %” <Zﬂ -_E" -_E“ § %" é“ duce, and Apache Spark are the most critical quality
attributes, with a total number of 45, 32, and 31 articles,
é =) =) respectively. Some of these tools include a set of libraries
%" i - = - = i s s 5 o and procedures for efficient processing and analysis. In the
= | & B2 S R 20 i i i i
g ElS g & =g 2 R ] E study, the hbr.arles and functions used by the artlcle§ are
= . Hadooppcap-lib, Hadoop-pcap-serde, Hadoop-pcap-input
4 S (Apache Hadoop), MLIib, GraphX, Spark Streaming,
i 2| N B XN DNIDNINDN Spark SQL, Spark Core (Apache Spark), Map, FlatMap,
2 = 5 Filter, Reduce, Shuffle (Map Reduce), Gelly, FlinkML,
Eﬂ ;g N XN x & N X XN X Table and SQL, FlinkCEP (Apache Flink), NumPy [132],
5 _ Keras [108], Pandas [59], and Scikit-Learn, Paho-MQTT
< . .
”SD - % Tg % E (Anaconda). Also, various algorithms and methods are
B | & g% g “ “a = used to process and analyze data, such as classification,
=] = = [T B T~ T < < < < < . . . . . .
° g flzz:z8:2:2:555%:5 clustering, regression, optimization algorithms, and SVM.
2. Most of these tools have these algorithms.
&l
2| g 3.1.6 Post-processing
5|~
R
o | = The post-processing step is another vital task in knowledge
o 12} L . . . . P
=R e g 3 discovery from big data in the [oT. This paper divides the
= Q . . . .
% z - . v oo s 2E post-processing step into evaluation and selection (data
] — N = = g8 . . . . ..
6‘ § % = 5 E é E = ff :t’z & governance), virtualization/dashboard, intelligent decision,
> A 0 - Q . . . . .
ol & %z o Eaa E § 5 - and service and application. The evaluation and selection
— = Q . .
2= fg § § § § § § = g 5 stage evaluates results obtained using test methods on
e a T TTT<d3d different types of datasets. There are various criteria for
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assessing the results. In this section, the articles are cate-
gorized based on the methods they used for the test. These
methods are divided into four categories, including test
methods, classification, clustering, and regression. Each of
them uses various criteria for evaluation. Table 10 shows
the articles’ classification based on these four categories.
The virtualization/dashboard stage uses tools, graphs,
tables [75], graphical user interface [59], and charts [92] to
display the results. Intelligent decisions can be made using
stochastic binary decisions [156], ML, pattern recognition,
soft computing, and decision models [51, 53, 74]. These
tools are Kibana, Plotly, Tableau, Microsoft Power BI,
Grafana, vSphere, NodelS, and Matplotlib
[59, 105, 106, 109, 110, 113, 140].

Tables 11 and 12 show the relevant datasets that the
articles used for investigating/numerically assessing tech-
niques for BDM in the [oT. These datasets are divided into
two categories: 1) categorized based on characteristics
including dataset name, repository, dataset characteristics,
attribute characteristics, number of instances/size, and
number of attributes 2) categorized based on characteristics
\ including dataset name, website address, and size. As you
can see, the UCI machine learning repository has been
repeatedly used in articles as a repository to access tech-
R IR T T T T T Y niques for BDM in the IoT.

106-108, 110, 112, 116, 118, 126, 128, 130, 143-145]

6, 7, 30, 51-53, 55, 57-59, 61-63, 66, 74, 80, 89, 92, 101,
[143]

[51, 52,55, 63, 72, 80, 89, 92, 101, 107, 116, 128, 141, 142]

[107]
54, 58, 83, 92, 108, 109, 111, 116, 125, 126, 134, 142]

[59, 84, 88, 105, 142]
105, 110, 113]

The article’s ref#

—_ e e o e e

Replication

Easy
to use

3.2 Big data management architectures/
frameworks in the loT

Fault-
tolerant

This subsection investigates and analyzes the articles that
(71 articles) presented the frameworks and architectures for
333 33NN D BDM techniques in the IoT. These articles are divided into
two categories: BDM architectures/frameworks in the IoT-
based applications (63 articles) and BDM architectures/
S 33 O33NSO Y N frameworks in the IoT paradigms (8 articles).

3.2.1 Big data management architectures/frameworks
in the loT applications

Availability Flexibility Performance

Features

v
v
v
v
v
v
v
v

The architectural models used in the selected articles are
layered, component-based, and cloud/fog-based architec-
ture. A layered architecture is organized hierarchically, and
each layer performs a service. The layered architecture
ensures the system is more adaptable to emerging tech-
nologies at each layer and improves the acquisition and
integration of data processes [167]. Component-based
architecture is a framework that decomposes the system
into reusable and logical components. The advantages of
component-based architecture are increased quality, relia-
bility, component reusability, and reduced time. Operations
and components related to processing or storage in cloud-
based or fog-based architectures are placed in the cloud or
fog. Most of the proposed architectures are layered, and the

Apache HBase
Apache Kudu
Apache Parquet
MongoDB
HDEFES (Database ¢/
file: HBase)
Google file
system

Apache
Cassandra

Elasticsearch
Neo4j
FlockDB

Name

Oriented
Oriented

Oriented
Graph

Type
Column-
Document—

Database

Table 7 (continued)
Distributed File Systems

Database/
Storage Type

NoSQL
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Table 8 Classification of articles based on the cloud/edge/fog/mist storage

1S

Cloudlet [81], Cloud Confederation

HDFS Ceph Cassandra MongoDB Hbase Hive Tools/Platforms

Cloud Fog Edge Mist

v

[11, 14, 60, 68, 78, 81, 82, 85, 87, 90, 129, 137, 140, 146, 147]

The Article’s Ref#

Springer

[146]

Nimbus

[54]

Azure [75], Amazon EC2 [71, 75]
Amazon EC2, Amazon s3, Google

[56, 71, 75, 86]

[141]

Cloud, IBM Cloud, AWS Cloud,

Amazon EMR

Openstack [59]

[7, 30, 59]

Openstack [112], Cloudlet [143]

Openstack

N

[62, 112, 118, 143, 144]

[73]

N

PR

R N G

[65, 121, 148]

(84]

[101]

most common types of BDM architectures in the IoT are
3-layer and 4-layer (22 and 20 articles). Also, most of the
proposed architectures are in IoT-based healthcare,
equivalent to 33.33%, followed by IoT-based smart
cities, which equals 22.22%. The selected articles in this
study used nine different OS for BDM in the IoT. Ubuntu
is the most important OS, with 18 articles. Articles used
programming languages to analyze and process big data
in the IoT. Java, Python, and MATLAB are the major
programming languages. In the following, these archi-
tectures and frameworks will be examined. For a better
presentation, we have divided these architectures and
frameworks into seven categories in terms of IoT
applications (healthcare, smart cities, smart home/build-
ing, intelligent transport, traffic control and energy,
urban planning, and other IoT applications (smart IoT
systems, smart flood, smart farms, disaster management,
laundry, digital manufacturing, and smart factory)). Then
we review the attributes of the architectures and frame-
works, including layers, the functions of the layers, the
operating system, the programming language, and the
advantages and disadvantages of each.

3.2.1.1 BDM architectural/framework for loT-based
healthcare Predicting health and disease and prevent-
ing deaths are essential in our modern world [168, 169].
Healthcare 10T (e.g., electronic and mobile health) uses
wireless body sensor networks for monitoring the
patients’ environmental, physiological, and behavioral
parameters [170]. Wearables and other IoT devices
within the healthcare industry generate a large amount of
data. The health data must be collected, stored, pro-
cessed, and analyzed for future intelligent decision-
making. BDA plays a vital role in minimizing compu-
tation time, predicting the future status of individuals,
providing reliable health services, prevention, healthy
living, population health, early detection, and optimal
management [133, 158, 171]. There are the BDM
mechanisms’ objectives and requirements for different
types of medical data [172]. Various research has pre-
sented many mechanisms for BDM in IoT-based
healthcare that have advantages and disadvantages.
Therefore, this subsection examines the articles (21
articles; 33.33%) that discussed the architectures or
frameworks of BDM in IoT-based healthcare.

Rathore et al. [58] proposed Hadoop-based intelligent
healthcare using a BDA approach. This system collected
the big data and directed them to a 3-unit smart building
for storing and processing. The units of this system are
big data collection, Hadoop processing, and analysis and
decision. This system used the 5-layer architecture for
parallel, real-time, and offline processing. The layers of
this architecture are the data collection, communication,
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processing, management, and service. The data collection
layer includes data sensing, acquisition, buffering, and
filtration. The big data are divided into small pieces in the
processing layer, processed in parallel using HDFS and
MapReduce, and stored. The management layer uses
medical expert systems for processing the results and rec-
ommending corresponding actions.

Chui et al. [126] proposed a 6-layer architecture for
patient behavior monitoring based on big data and IoT.
Message queue, Apache Hadoop, behavior analytics,
Mongo database, distributed stream processing, and expo-
ser are the layers of this architecture. This architecture uses
Hadoop for processing (descriptive, diagnostic, predictive,
and prescriptive analytics), MongoDB for storing, Spark/
Flink/Storm for stream processing, and Apache Kafka for
breaking up the data stream into several partitions. Also,
the authors have discussed the challenges of trust, security,
privacy, and interoperability in the healthcare research
field.

Ullah et al. [140] proposed a lightweight Semantic
Interoperability Model for Big-Data in IoT (SIMB-IoT).
The SIMB-IoT model has two main components: user
interface and semantic interoperability. The semantic
interoperability component is divided into three subcom-
ponents: semantic interoperability, cloud services, and big
data analytics. IoT data is collected and directed into an
intelligent health cloud for online storage and processing.
After processing, it sends suitable medicines to the
patient’s IoT devices. This article used the SPARQL query
to find hidden patterns.

Elhoseny et al. [173] presented a Parallel Particle
Swarm Optimization (PPSO) algorithm for IoT big data
analysis in cloud computing healthcare applications. This
article aims are: optimize virtual machine selection and
storage by using GA, PSO, and PPSO algorithms; real-time
processing; and reducing the execution time. This archi-
tecture has four components: stakeholders’ devices; tasks;
cloud broker; and network administrator. The cloud broker
sends and receives requests to the cloud. The network
administrator finds the optimal selection of virtual machi-
nes in the cloud for task scheduling.

Manogaran et al. [141] proposed a secured cloud-fog-
based architecture for storing and processing real-time data
for health care applications. This architecture has two sub-
architectures: meta fog-redirection and grouping and
choosing architectures. The meta fog-redirection architec-
ture has three phases: data collection, data transfer, and big
data storage. The data collection phase collected data from
sensors in fog computing. The data transfer phase used the
‘s3cmd utility’ method for transferring data to Amazon
S3.The big data storage phase used Apache Pig and Apache
HBase for storage. The grouping and choosing architecture
protects data and provides security services in fog and

[161, 163]

[166]

(9]
[114]
[117]

Ref#

1800 pieces

NA
NA
NA
NA

Size

https://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html
http://www.caida.org/data/active/ipv4routed24topologydataset.xml

http://epic.hust.edu.cn/download/Trade%20Dataset

https://scikit-learn.org/stable/datasets/

Website Address

[165]

futures exchange

Table 12 (continued)

SNAE2 (subject from YouTube)
Real-life paths in a smart city
Shanghai futures exchange and Dalian
Dataset loading utilities

Ipv4 routed/24 topology dataset

Dataset Name

@ Springer
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http://epic.hust.edu.cn/download/Trade%20Dataset
https://scikit-learn.org/stable/datasets/
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cloud environments. Also, this architecture used MapRe-
duce to predict.

Garcia-Magarifio et al. [156] is an agent-based simula-
tion framework for IoT BDA in smart beds. This frame-
work has two layers: the primary mechanism for simulating
sleepers’ postures and the information’s analyzer. The first
layer provides the simulation of the poses of sleeper
mechanisms. The second layer analysis collected data from
the first layer. The agent types in this framework are
sleeper agent, weight sensor agent, bed agent, observer
agent, analyzer agent, stochastic sleeper agent, bed sleeper
agent, restless sleeper agent, and healthy sleeper agent.
This framework helps researchers to test different sleeper
posture recognition algorithms, discusses other sleeper
behaviors, and performs online or offline detection
mechanisms.

Yacchirema et al. [59] proposed a 3-layer architecture
for sleep monitoring based on IoT and big data at the
network’s edge. The layers of this architecture are the IoT
layer, the fog layer, and the cloud layer. The IoT layer
collected and aggregated the big data and directed them to
the fog layer. The fog layer is responsible for connectivity
and interoperability between heterogeneous devices, pre-
processing the collected data, and sending notifications to
react in real-time. The big data is stored, processed, and
analyzed in the cloud layer for intelligent decision-making.
This layer has three modules: data management, big data
analyzer, and web application. This architecture used
HDFS for data storage and Spark for offline and real-time
processing.

BigReduce [137] is a cloud-based IoT framework for
big data reduction for health monitoring in smart cities that
focuses on reducing energy costs. This framework has two
schemes: real-time big data reduction and intelligent big
data decision-making. The big data reduction is made in
two phases: at the time of acquisition and before trans-
mission using an event-insensitive frequency content
process.

Ma et al. [33] proposed a 3-layer architecture for the [oT
big health system based on cloud-to-end fusion. The layers
of this architecture are the big health perception layer,
transport layer, and big health cloud service layer. In the
big health perception layer, data are collected and prepro-
cessed. The transport layer sends data to sensor nodes and
receives data from the perception layer using network
technologies. The big health cloud service layer has two
sub-layers: the cloud service support and the cloud service
application. The cloud service support sub-layer is
responsible for compressing, storing, processing, and ana-
lyzing the real-time data. The cloud service application
sub-layer is the interface between users and health net-
working. This sub-layer controls the sensor nodes and
visualizes the big data.

@ Springer

Rathore et al. [61] proposed the 5-layer architecture for
big data IoT analytics-based real-time medical emergency
response systems. The data collection layer is responsible
for data sensing, acquisition, buffering, filtration, and
processing. This layer collected and aggregated data using
a coordinator or relay node and transmitted them to a
polarization mode dispersion. The communication layer
provides device-to-device communication to various smart
devices. The processing layer divides big data into small
chunks. Each chunk is processed separately, aggregated,
and stored. This article used MapReduce, HDFS, and Spark
for data processing and analysis. The management layer is
responsible for managing all types of outcomes using a
medical expert system. The service layer is the interface
between end-users and health networking. This architecture
minimized the processing time and increased the
throughput.

El-Hasnony et al. [84] proposed a hybrid real-time
remote patient monitoring framework based on mist, fog,
and cloud computing. This article provided the 5-layer
architecture for near real-time data analysis. The layers are
the perception layer, the mist layer, the fog layer, the cloud
layer, and the service provider layer. The mist layer is
responsible for data filtering, data fusion, anomaly detec-
tion, and data transmission to the fog layer. The fog layer
has done local monitoring and analysis, data aggregation,
local storage, data pre-analysis, and data transmission to
the cloud layer. The cloud layer implemented several data
analytics techniques for intelligent decision-making and
storage. This article presented a case study comparing
traditional data mining techniques, including REPtree,
MLP, Naive Bayes (NB), and sequential minimal opti-
mization algorithms. The results showed that the REPtree
algorithm achieved better accuracy, and the NB achieved
the least time.

Harb et al. [106] proposed the 4-layer architecture for
real-time BDA for patient monitoring and decision-making
in healthcare applications. The layers of this platform are
real-time patient monitoring, real-time decision and data
storage, patient classification, and disease diagnosis, and
data retrieval and visualization. The first layer is respon-
sible for data ingestion using Kafka and Sqoop tools. The
second layer processes and stores data using Spark and
Hadoop HDFS. This layer preprocesses data and finds the
missing records using MissRec (a script for Spark). The
third layer is responsible for classification data using sta-
bility-based K-means, an adapted version of K-means
clustering, and disease diagnosis using a modified version
of the association rule mining algorithm. The last layer
retrieves and visualizes data to understand the patient’s
situation using Hive, SparkSQL, and Matplotlib.

Zhou et al. [62] proposed a data mining technology
based on the IoT. The layers of the proposed functional
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architecture are the data acquisition layer, data transmis-
sion layer, data storage layer, and cloud service center
layer. This article used the WIT120 system for data col-
lection, the adaptive k-means clustering method based on
the MapReduce framework for data preprocessing, HDFS
for storing, and the GM (1,1) grey model for users’ health
status prediction.

Hong-Tan et al. [90] proposed a real-time Ambient
Intelligence assisted Student Health Monitoring System
(AmIHMS). The data required by time ambient intelligence
environments are collected from the WSN and sent to the
cloud for handling. Their work developed a framework for
real-time effective alerting of student health information.
The AmIHMS architecture has three layers. The IoT layer
collects health data from medical devices and sensors and
saves it on one mobile computer or smartphone. The cloud
layer receives the data through internet platforms such as
4G, 5G, LTE, etc., and executes the mining algorithms to
extract relevant data for processing. The student health
monitoring layer performs four stages to provide infor-
mation and warnings about student health status. These
stages include data retrieval, preprocessing, normalization,
and classification/health status recognition.

Li [30] designed the fog-based Smart and Real-time
Healthcare Information Processing (SRHIP) system.
SRHIP architecture has three layers. IoT body sensor net-
work layer performs data collection (health, environment,
and locality), aggregation, compression, and encryption.
Fog processing and computation layer use Spark and
Hadoop ecosystem for information extraction, data nor-
malization, rule engine, data filtration, and data processing.
This layer performs the classification using the NB clas-
sifier. The cloud computation layer performs in-depth data
analysis, storage, and decision-making. SRHIP minimizes
the delay, transmission cost, and data size. This article uses
hierarchical symmetric key data encryption to increase
confidentiality.

The Improved Bayesian Convolution Network (IBCN)
was proposed for human activity recognition [87]. The
system architecture includes Wi-Fi and clouds onboard
applications. The combination of a variable autoencoder
with a standard deep net classifier is used to improve the
performance of IBCN. This article used the convolution
layers to extract the features and Enhanced Deep Learning
(EDL) for security issues. IBCN provided the ability to
download data via traditional radio frequency or low-
power back-distribution communication. According to the
experimental analysis, the proposed method allows the
network to be continuously improved as new training sets
are added and distinguishes between data-dependency and
model-dependency. This architecture has high accuracy,
versatility, flexibility, and reliability.

Sengupta and Bhunia [88] implemented a 3-layer IoT-
enabled e-health framework for secure real-time data
management using Cloudlet. The IoT layer uses IoT Hub
for communicating with IoT devices. The Cloudlet layer is
an intermediate layer between the IoT and cloud layers.
This layer performs in-depth healthcare data analytics and
processes. The cloud layer performs various analytics
applications and processes queries. This framework uses
SQLite for data storage in IoT Hub and Cassandra for
future storing of sensed data. The result demonstrated that
this framework has high efficiency, low data transmission
time, low communication energy, data-packet loss, and
query response time.

IBDAM [133] is an Intelligent BDA Model for efficient
cardiac disease prediction in the IoT using multi-level
fuzzy rules and valuable feature selection. This article used
the open-source UCI database. First, it performs prepro-
cessing on the UCI database, and the next step uses multi-
level fuzzy rule generation for feature selection. IBDAM
uses an optimized Recurrent Neural Network (RNN) to
train the features. Finally, the features are classified into
labeled classes according to the risk of evaluation by a
medical practitioner. The results of this article demonstrate
that this architecture has high performance and is quick and
accurate.

Ahmed et al. [158] proposed an IoT-based health
monitoring framework for pandemic disease analysis,
prediction, and detection, such as COVID-19, using BDA.
In this framework, the COVID-19 data set is collected from
different data sources. Four data analysis techniques are
performed on these data, including descriptive, diagnostic,
predictive, and prescriptive. The experts opine on the
results, and then users receive the results of these analyses
through the internet and cloud servers. This article uses a
neural network-based model for diagnosing and predicting
the pandemic. The results of this article indicated that the
accuracy, precision, F-score, and recall of the proposed
architecture are better than AdaBoost, k-Nearest Neighbors
(KNN), logistic regression, NB, and linear Support Vector
Machine (SVM).

Ahanger et al. [71] proposed an IoT-based healthcare
architecture for real-time COVID-19 data monitoring and
predicting based on fog and cloud computing. This archi-
tecture has four layers. The data collection layer collects
data from sensors and uses protocols to guarantee infor-
mation security. The information classification layer clas-
sifies the information into four classes: health data,
meteorological data, location data, and environmental data.
The COVID-19-mining and extraction layer is responsible
for splitting information into two groups using a fuzzy
C-means procedure in the fog layer. The COVID-19 pre-
diction and decision modeling layer use temporal RNN for
estimating the results of the COVID-19 measure and a self-
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organization map-based technique to increase the per-
ceived viability of the model. This article, in contrast to the
existing methods, has high classification efficiency, via-
bility, precision, and reliability.

Ogur et al. [109] proposed a real-time data analytics
architecture for smart healthcare in IoT. This architecture
has two domains. The software-defined networking-based
WSN and RFID technology are used in the vertical domain,
and data analytics tools, including Kafka, Spark, Mon-
goDB, and NodelS, are used in the horizontal domain. The
collected data from WSN using RFID transmit to the Kafka
platform using TCP sockets. The Kafka sends data to three
consumers: The Apache Spark analysis engine that ana-
lyzes data in real-time; the NodeJS web application that
visualizes patient data; and the MongoDB database that
stores data. This article uses logistic regression and Apache
spark MLIib for data classification. The result demon-
strated this architecture has high performance and accuracy
and is appropriate for a time-saving experimental
environment.

Table 13 shows the result of the analysis of the articles.
This table shows each article’s architecture or framework
name, OS name, programming language, advantages, and
disadvantages. As you can see, layered architecture is the
most important, with 14 articles.

3.2.1.2 BDM architectural/framework for loT-based smart
cities

According to the United Nations forecasting, about 67%
of the world population will live in urban areas by 2050,
resulting in environmental pollution, ecosystem destruc-
tion, energy shortage, emission reduction, and resource
limitation [36, 174, 175]. Smart cities are large-scale dis-
tributed systems that could be a solution to overcoming
these problems and improving intelligent services for res-
idents [112, 176]. Smart cities have many implemented
sensing devices that generate large amounts of data. These
data must be stored, processed, and analyzed to extract
valuable information [177]. BDM plays a significant role in
this context and facilitates better resource management and
decision-making [176]. Many research focused on BDM
mechanisms in IoT-based smart cities with different
objectives, including improving monitoring and commu-
nication, real-time controlling, and increased quality attri-
butes (such as reliability, throughput, energy conservation,
accuracy, scalability, delay, bandwidth usage, etc.).
Therefore, this subsection examines the articles (14 arti-
cles; 22.22%) that have discussed the architectures or
frameworks of BDM in IoT-based smart cities.

Jindal et al. [85] propose a tensor-based big data pro-
cessing technique for energy consumption in smart cities.
This article aims to reduce the dimensionality of data and
decrease the overall complexity. The proposed framework
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has two phases. The first phase is the 3-layer data gathering
and processing architecture. The layers of this architecture
are data acquisition, transmission, and processing. In the
second phase, the collected data was represented in tensor
form, and SVM was used to identify the loads to manage
the demand response services in smart cities. The technique
reduces data storage by 38%.

ESTemd [105] is a distributed stream processing mid-
dleware framework for real-time analysis using big data
techniques on Apache Kafka. The layers of this framework
are the data ingestion layer, the data broker layer (source),
the stream data processing engine and services, the data
broker layer (sink), and the event hub. The data broker
layer is responsible for data processing and transformation,
with the support of multiple transport protocols. The third
layer does stream processing and consists of the predictive
data analytics model and Kafka CEP operators. This
framework helps with performance improvement through
data  integration and  distributed applications’
interoperability.

CPSO [115] is a self-adaptive preprocessing approach
for big data stream classification. This approach handles
four mechanisms: sub-window processing; feature extrac-
tion; feature selection; and optimization of the window size
and feature picking. CPSO uses clustering-based PSO for
data stream mining; the sliding window technique for data
segmentation; statistical feature extraction for variable
partitioning; correlation feature selection, and information
gain for feature selection. The proposed approach improves
its accuracy.

Rani and Chauhdary [72] proposed a novel approach for
smart city applications based on BDA and a new protocol
for mobile IoT. They presented the 5-layer architecture
where the layers are: data source, technology, data man-
agement, application, and utility programs. The data source
layer collects, compresses, and filters data. The technology
layer is responsible for communication between sensor
nodes, edge nodes, and base station. The management layer
used MapReduce, SQL, and Hbase for analyzing, storing,
and processing. The utility program layer used WSN and
IoT protocols to work with the other layers. Also, this
article presented a new protocol that reduces energy con-
sumption, increases throughput, and reduces the delay and
transmission time.

SCDAP [107] is the 3-layer BDA architecture for smart
cities. The first layer is the platform that includes hardware
clusters, the operating system, communication protocols,
and other required computing nodes. The second layer is
security. The last layer is the data processing layer that
supports online and batch data processing. This layer has
ten components: data acquisition; data preprocessing;
online analytics; real-time analytics; batch data repository;
batch data analytics; model management; model
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Table 13 (continued)

Disadvantages

Architecture/framework OS name Programming  Advantages
language

model

Architecture/
framework
name

-Related work is mentioned weakly

-Reduces the number of features

Python

N/A

Layered- based

Safa and

-Fully evaluation has not been performed
-How the preprocessing processes are not mentioned

-High accuracy and routing performance

Pandian [133]

-Fully evaluation has not been performed

-High accuracy, recall, and precision

N/A

Layered-based, cloud- N/A

Ahmed et al.

-How the preprocessing processes are not mentioned

-Improves prediction accuracy

based

[158]

-How the preprocessing processes are not mentioned

-Real-time processing

MATLAB

Windows

Layered-based, cloud/fog-

Ahanger et al.

-High classification efficiency, viability, precision,

and Python

10

based

[71]

and reliability

-Improves prediction accuracy

-Low latency time and response delay

-Does not use cloud services

-Real-time processing

N/A

UBUNTU

Layered-based

Ogur et al.

-Fully evaluation has not been performed

-High accuracy and performance

[109]

-Low scheduling delay

aggregation; smart application; and user interface. This
architecture used Hadoop and Spark for data analysis. Also,
this article presented a taxonomy of literature reviews
based on six characteristics: focus, goal, organization,
perspective, audience, and coverage.

Chilipirea et al. [80] proposed a data flow-based archi-
tecture for big data processing in smart cities. The archi-
tecture has seven steps: data sources, data normalization;
data brokering; data storage; data analysis; data visualiza-
tion; and decision support systems. This article used
Extract, Transform, and Load (ETL) and Electronic
Batchload Service (EBS) for normalizing the real-time and
batch data. The data brokering step created the links
between the collected data and the relevant context. This
architecture used Hadoop for batch data processing and
Storm for real-time data processing.

Gohar et al. [92] proposed a four-layer architecture for
analyzing and storing data on the Internet of Small Things
(IoST). The layers of this architecture are the small things
layer, the infrastructure layer, the platform layer, and the
application layer. The first layer collected data by using the
LoRa gateway from LoRa devices. The infrastructure layer
provides connectivity to devices by using the Internet. The
platform layer is responsible for data preprocessing. For
processing, this layer employs Max—Min normalization, the
Kalman filter, the Round-Robin load balancing technique,
the Least Slack Time algorithm (LST), the divide-and-
conquer approach for aggregation, and NoSQL databases
for storage. In the last layer, data is visualized for decision-
making. This article implemented the architecture by using
Hadoop, Spark, and GraphX. In this article, throughput has
increased with the rise in data size.

Farmanbar and Rong [113] proposed an interactive
cloud-based dashboard for online data visualization and a
data analytics toolkit for smart city applications. The pro-
posed architecture has three layers: the data layer, appli-
cation and analysis layer, and presentation layer. The data
layer is the core of the architecture and contains data
acquisition units, data ingestion, data storage, and data
access. This architecture used Logstash for data ingesting,
Elasticsearch for storing, and Kibana for accessing and
real-time monitoring. This platform has been tested on five
datasets, including transportation data, electricity con-
sumption, cargo e-bikes, parking, vacancies, and energy.
The results showed this architecture is robust, scalable, and
improves communication between users and urban service
providers.

He et al. [116] proposed a big data architecture to
achieve high Quality of Experience (QoE) performance in
smart cities. This architecture has three plans: the data
storage plane, the data processing plane, and the data
application plane. This article used MongoDB and HDFS
for data storing and Spark and the deep-learning-based
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greedy algorithm for data processing. The simulation result
indicated that the proposed architecture’s accuracy, preci-
sion, and recall are better than SVM and KNN.

Khan et al. [128] proposed an SDN-based 3-tier archi-
tecture that includes data collection, data processing and
management, and an application layer for real-time big
data processing in smart cities with two intermediate levels
that work on SDN principles. This architecture uses Spark
and GraphX with Hadoop for offline and real-time data
analysis and processing. Also, this article proposed an
adaptive job scheduling mechanism for load balancing and
achieving high performance. The results showed that when
clusters and processing time increase, the proposed sys-
tem’s performance also increases.

IoTDeM [73] is the IoT big data-oriented multiple edge-
cloud architectures for MapReduce performance prediction
with varying cluster scales. This architecture consists of
three parts: multiple edge cloud redirectors, an edge cloud-
based big data platform, and a centralized cloud-based big
data platform. This architecture used historical job execu-
tion records and Locally Weighted Linear Regression
(LWLR) techniques for predicting jobs’ executing times
and Ceph for storing them. Because of Ceph, there was no
need to transfer data to the newly added slave node. This
article validated the accuracy of the proposed model by
using the TESTDFSIO and Sort benchmark applications in
a general implementation scenario based on Hadoop2 and
Ceph and achieved an average relative error of less than
10%.

Ahab [112] is a generic, scalable, fault-tolerant, and
cloud-based framework for online and offline big data
processing. This framework has four components: the user
API, repositories, messaging infrastructure, and stream
processing. The API directs the published data streams
from different sources. Ahab uses the component, stream,
policy, and action repositories for storing data streams,
management policies, and actions. Ahab uses distributed
messaging for handling data streams, minimizing unnec-
essary network traffic. Also, it allows the components to
choose an appropriate communication point freely. The
Ahab architecture has two layers: the streaming and service
layers. The streaming layer is implemented as a lambda
architecture. This layer has three sub-layers for data stream
processing: the batch layer, the speed layer, and the serving
layer. The HDFS and Apache Spark are used for data
storing and stream processing. The service layer is
responsible for analyzing, managing, and adapting
components.

Mobi-Het [81] is a mobility-aware optimal resource
allocation architecture for remote big data task execution in
mobile cloud computing. This article uses the SMOOTH
random mobility model to propound the free movement of
mobile devices and estimate their speed and direction.

@ Springer

Mobi-Het has three layers: mobile devices, cloudlets, and
the master cloud. The mobile devices component has a
decision-maker module that decides whether tasks should
be executed remotely or locally. The master cloud com-
ponent implements the resource allocation algorithm. This
article has a low execution time, high execution reliability,
and efficiency in timeliness.

Hossain et al. [132] proposed a knowledge-driven
framework that automatically selects the suitable data
mining and ML algorithms for a dynamic IoT smart city
dataset. The system architecture has four units: data
Knowledgeextraction, extactGoalKnowledge,
extractAlgoKnowledge, and matchKnowledge. The
framework’s inputs are three key factors: datasets, goals,
and data mining and ML algorithms. This article discussed
both supervised and unsupervised data mining. The results
show that this framework reduces computational time and
complexity and increases performance and flexibility while
dynamically choosing a high-accuracy solution.

Table 14 shows the result of the analysis of the articles.
This table shows the architecture or framework name, OS
name, programming language, advantages, and disadvan-
tages of each article. As you can see, layered architecture is
the most important, with 13 articles.

3.2.1.3 BDM architectural/framework for loT-based smart
home/ building

BDM mechanisms and IoT (architecture/ frameworks)
have a crucial role in smart home/building, including
processing data collected by the home sensors; analyzing,
classifying, monitoring, and managing energy consumption
and saving; intelligently identifying user behavior patterns
and home activities; and increasing safety and comfort at
home [76]. This subsection presents a review of the articles
(8 articles; 12.70%) that have discussed the architectures or
frameworks of BDM in the IoT-based smart home/
building.

Al-Ali et al. [68] proposed a smart home energy man-
agement architecture using IoT and BDA approaches. This
architecture is divided into two sub-architectures: hardware
architecture and software architecture. The hardware
architecture includes sensors and actuators, high-end
microcontrollers, and server blocks. The software archi-
tecture comprises the data acquisition module on the edge
device, a middleware module, and a client application
module. The first module monitors and collects data and
transmits them to the middleware module. The second
module uses several tools to provide different services,
including facilitating communication between edge devices
and middleware, data storage, data analysis, and sending
results to the requester. The third module develops the
front-end mobile user interface using a cross-platform
integrated development environment. This article is
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evaluated using a prototype. The results showed the pro-
posed architecture has high scalability, security, privacy,
throughput, and speed.

Silva et al. [55] proposed a real-time BDA embedded
architecture for the smart city with the RESTful web of
things. This article integrated the web and smart control
systems using a smart gateway system. The proposed
architecture consists of four levels: data creation and col-
lection; data processing and management; event and deci-
sion management; and application. The data processing and
management level utilized HDFS for primary data storing,
MapReduce for processing, Hbase to speed up the pro-
cessing, and HIVE for data querying and managing. The
event and decision management level classified two events
as service and resource events based on the processed
information. The application level remotely provides
access to the smart city services and has three sub-layers:
departmental layer, services layer, and sub-services layer.
This article has high performance and throughput, low
processing time, and minimizes energy consumption.

Khan et al. [57] proposed a scheduling algorithm, an [oT
BDA architecture, and a real-time platform for managing
sensors’ energy consumption. This architecture has four
steps: appliance discovery, sensor configuration and
deployment, event management and scheduling, and
information gathering and processing. Appliances are
identified and classified in the first step based on user
availability and usage time. The second step used Poisson
distribution for sensor distribution in an IoT environment.
In the third step, the appliance sleep-scheduling mechanism
is presented for job scheduling. In the last step, the col-
lected data from sensors were directed to Hadoop, Spark,
and GraphX for processing and analysis. This step used
HDEFS for data storage. This article minimized total exe-
cution time and energy consumption.

HEMS-IoT [76] is a 7-layer architecture based on big
data and ML for in-home energy management. The layers
of this architecture are the presentation layer, IoT services
layer, security layer, management layer, communication
layer, data layer, and device layer. The management layer
uses the J48 ML algorithm and the Weka API for energy
consumption reduction and user behavior pattern extrac-
tion. This layer also classifies the data and houses based on
energy consumption using the C4.5 algorithm. The IoT
services layer provides different REST-based web services.
The security layer guarantees data confidentiality. This
layer has two components, namely authorization and
authentication. This article uses RULEML and Apache
Mahout to generate energy-saving recommendations.

Yassine et al. [56] proposed a platform for IoT smart
homes based on fog and cloud computing. The components

of the proposed platform are smart home components, IoT
management and integration services, fog computing
nodes, and cloud systems. The smart home component is
divided into three tiers. The three tiers are: 1) the cyber-
physical tier is responsible for interacting with the outside
world through the second tier; 2) the connectivity tier is
responsible for communicating with the smart home; and
3) the context-aware tier consists of user-defined rules and
policies that create a privacy and security configuration.
The IoT management and integration services component
is in charge of providing interoperability, handling
requests, authentication, and service registration. The fog
computing nodes performed preprocessing, pattern mining,
event detection, behavioral and predictive analytics, and
visualization functions. The cloud system is responsible for
storing and performing historical data analytics.

Luo et al. [131] proposed a 4-layer ML-based energy
demand predictive model for smart building energy
demands. Firstly, the sensitization layer collected data and
transferred them to the storage layer. The storage layer
performed data cleaning and storing. The model’s smart
core is in the analytics support layer, where Artificial
Neural Network (ANN) and k-means clustering are used
for identifying features in weather profile patterns. The
service layer is an interface between the proposed model
and the smart building management system. The proposed
model improved accuracy and decreased mean absolute
percentage error.

Bashir et al. [110] proposed an Integrated Big Data
Management and Analytics IBDMA) framework for smart
buildings. The reference architecture and the metamodel
are two phases of this framework. The reference architec-
ture has eight layers: data monitoring, sourcing, ingestion,
storage, analysis, visualization, decision-making, and
action. People, processes, technology, information, and
facility are the components of the metamodel phase. The
core component of the metamodel is people (IoT policy-
makers, developers, and residents of intelligent buildings).
The process component includes data monitoring, sourcing,
ingesting, storage, decision-making, analytics, and
action/control. The technology component consists of the
tools and software packages to implement the IBDMA.
Some of these tools are Apache Flume for data ingesting;
HDEFS for data storing; Apache Spark for data analysis;
Microsoft Power BI for static data visualization; and
Elasticsearch and Kibana for near-real-time data visual-
ization. The information element manages disasters and
controls various facilities based on results obtained by
using the technology stack. The last element is the facility
that improves the comfort, safety, and living conditions for
the people of the building.

@ Springer
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Table 15 shows the result of the analysis of the articles.
This table shows each article’s architecture or framework
name, OS name, programming language, advantages, and
disadvantages. As you can see, layered architecture is the
most important, with five articles.

3.2.1.4 BDM architectural/framework for loT-based intelli-
gent transport

Safety, reliability, fault diagnosis, data transmission, and
early warning in the intelligent transport system are critical
for decision-making [178]. The intelligent transport system
uses digital technologies, sensor networks, ML, and BDA
mechanisms to overcome the challenges, including acci-
dent prevention, road safety, pollution reduction, auto-
mated driving, traffic control, intelligent navigation, and
parking systems [179]. This subsection presents a review of
the articles (2 articles; 3.17%) that have discussed the
architectures or frameworks of BDM in IoT-based intelli-
gent transport.

SMART TSS [129] is a BDA modular architecture for
intelligent transportation systems. This architecture has
four units: a big data acquisition and preprocessing unit, a
big data processing unit, a big data analytics unit, and a
data visualization unit. The big data processing unit stored
the offline data in the cloud system for future analysis. The
online data is sent to the extraction and filtration unit for
load balancing on NoSQL databases. The big data analytics
unit uses the map-reduce mechanism for analysis. This
article uses Hadoop, Spark, and GraphX for big data pro-
cessing and analysis. The throughput of the proposed sys-
tem increases with increasing data size and has low
accuracy and security.

Babar and Arif [89] proposed a real-time IoT big data
analytics architecture for the smart transportation system.
This architecture has three phases: big data organization
and management, big data processing and analysis, and big
data service management. The first phase performed data
preprocessing, including big data detection, logging, inte-
gration, reduction, transformation, and cleaning. This
phase used the divide-and-conquer technique for data
aggregation, the Min—-Max method for data transformation,
and the Kalman filter technique for data cleaning. The
second phase used Hadoop for big data processing, HDFS,
Hive, and Hbase for data storage, and Spark for data stream
analysis. This phase performed load balancing that caused
increased throughput, minimized processor use, and
reduced response time. The third phase is responsible for
intelligent decision-making and event management.

Table 16 shows the result of the analysis of the articles.
This table shows the architecture or framework name, OS
name, programming language, advantages, and disadvan-
tages of each article. As you can see, layered architecture is
the most important, with two articles.

@ Springer

3.2.1.5 BDM architectural/framework for loT-based traffic
control and energy

Two reviewed articles discussed the architectures or
frameworks of BDM in IoT-based traffic control and
energy and used the ML for this purpose. ML4IoT [108] is
a container-based ML framework for IoT data analytics
and coordinating ML workflows. This framework aims to
define and automate the execution of ML workflows. The
proposed framework uses several types of ML algorithms.
The MLA4IoT framework has two layers: ML4loT data
management and ML4IoT core. The ML4IoT core layer
trains and deploys ML models and consists of five com-
ponents: a workflow designer, a workflow orchestrator, a
workflow scheduler, container-based components, and a
distributed data processing engine. ML4IoT data manage-
ment is responsible for data ingesting and storing and has
three sub-components: a messaging system, a distributed
file system, and a NoSQL database. The results of this
article reveal that this framework has high elasticity,
scalability, robustness, and performance. Furthermore,
Chhabra et al. [111] proposed a scalable and flexible cyber-
forensics framework for IoT BDA analytics with high
precision and sensitivity. This framework consisted of four
modules: the data collector and information generator;
feature analytics and extraction; designing ML models; and
analyzing models on various efficiency matrices. This
article used Google’s programming model, MapReduce, as
the core for traffic translation, extraction, and analysis of
dynamic traffic features. Also, they presented a compara-
tive study of globally accepted ML models for peer-to-peer
malware analysis in mocked real-time.

Table 17 shows the result of the analysis of the articles.
This table shows the architecture or framework name, OS
name, programming language, advantages, and disadvan-
tages for each article. As you can see, the component-based
architecture is the most important, with two articles.

3.2.1.6 BDM architectural/framework for loT-based urban
planning

To improve the quality, plan, design, sustainability,
living standards, dynamic organization, mobility of urban
space and structure, and maintain the urban services, BDM
is responsible for offline and online aggregation, managing,
processing, and analyzing the large amounts of big data in
urbanization [180-182]. Rathore et al. [51] proposed the
4-layer IoT-based BDA architecture for smart city devel-
opment and urban planning. The first layer generated,
aggregated, registered, and filtrated data from various IoT
sources. Using communication technologies, the second
layer created communication between sensors and the relay
node. The third layer used HDFS, Hbase, Hive, and SQL
for storage; MapReduce for offline analysis; and Spark,
VoltDB, and Storm for real-time analysis. The last layer is
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responsible for showing the study results for intelligent and
fast decision-making. The results show that the architecture
provides efficient outcomes even on IoT big data sets.
Throughput has increased with the rise in data size, and the
processing time has decreased.

Silva et al. [63] proposed a reliable 3-layer BDA-em-
bedded architecture for urban planning. The layers of this
architecture are data aggregation, data management, and
service management. The purpose of this article is to
increase throughput and minimize processing time. The
real-time data management layer is the main layer and
performs data filtration, analysis, processing, and storing.
This layer used data filtration and min—max normalization
techniques to improve energy data. This architecture used
MapReduce for offline data processing, Spark for online
data processing, and Hbase for storing.

Table 18 shows the result of the analysis of the articles.
This table shows the architecture or framework name, OS
name, programming language, advantages, and disadvan-
tages for each article. As you can see, layered architecture
is the most important, with two articles.

3.2.1.7 BDM architectural/framework for other loT-based
applications This subsection presents a review of the
articles (14 articles) that have discussed the architectures or
frameworks of BDM in other IoT-based applications.
These IoT applications are smart IoT systems (4 articles),
smart flood (1 article), smart farms (2 articles), disaster
management (1 article), laundry (1 article), smart pipeline
(1 article), network traffic (1 article), digital manufacturing
(1 article), smart factory (2 articles).

Al-Osta et al. [121] proposed an event-driven and
semantic rules-based approach for IoT data processing. The
main levels of this system are sensor, edge, and cloud
levels. This article has two purposes: reducing the required
resources and the volume of data before transfer to the
cloud for storage. The collected data is first aggregated,
filtered, and classified at the gateway level. This causes a
saving in bandwidth and minimizes the network traffic.
This approach used semantic rules for data filtering. It also
employed a complex event processing module to analyze
input events and detect processing priority.

Wang et al. [148] proposed a 3-layer edge-based
architecture and a dynamic switching algorithm for IoT big
data analytics. The layers of this architecture are the cloud
layer, edge layer, and IoT layer. The edge layer performed
some functions, including identifying IoT applications,
classifying them, and sending classification results to the
cloud layer. The LibSVM method is used for IoT appli-
cation identification and classification based on system
status and requirements. Also, this article presented a new
algorithm, namely the dynamic switching algorithm, for
task offloading from cloud to edge based on the delay and

network conditions. This algorithm performed task
offloading based on classification results. The results
showed the proposed architecture reduced delay, process-
ing time, and energy consumption.

IODML-BDA [124] is a model for Intelligent Outlier
Detection in Apache Spark using ML-powered BDA for
mobile edge computing. This model performs four steps:
data preprocessing, outlier detection, feature selection, and
classification. This article employs an Adaptive Synthetic
Sampling (ADASYN)-based technique for outlier detec-
tion, the Oppositional Swallow Swarm Optimization
(OSSO) for feature selection, and a Long Short-Term
Memory (LSTM) model for classification. This model has
high performance and accuracy in BDA.

Kumar et al. [3] presented a novel 4-layer architecture
for IoT big data management in cloud computing networks
and a collaborative filtering recommender system. The
information layer collects data and transmits them to the
second layer. The transport layer uses GPRS/CDMA,
wireless RFID, or Ethernet channels for communication
and data uploading in the data mining layer. The data
mining layer utilizes the ML method for data analysis. The
application layer is responsible for data visualization based
on extracted information from the data mining layer. The
article also proposed a collaborative filtering algorithm to
improve the prediction accuracy based on the time-
weighted decay function and asymmetrical influence
degree. The result of this article demonstrated that this
architecture has high accuracy.

Sood et al. [75] proposed a 4-layer flood forecasting and
monitoring architecture based on IoT, High-Performance
Computing (HPC), and big data convergence. The IoT
layer is responsible for IoT device installation and data
collection. The fog computing layer reduces the latency of
application execution when predicting the real-time flood.
The data analysis layer received, stored, and analyzed the
collected data. This layer used Singular Value Decompo-
sition (SVD) for data reduction and a K-mean clustering
algorithm to estimate the flood situation and rating. Also,
Holt-Winter’s forecasting method is utilized to forecast the
flood. The last layer is the presentation layer, which gen-
erates information for decision-making. The results showed
the proposed architecture reduced latency, complexity,
completion time, and energy consumption.

Muangprathub et al. [79] proposed a WSN system for
agriculture data analysis based on the IoT for watering
crops. This system consists of three components. The
hardware component collected data and sent them to the
web application for real-time analysis. This component is
responsible for data preprocessing, data reduction by the
equal-width histograms technique, data modeling/discov-
ery by association rules mining technique, and solution
analysis. The web application manages real-time

@ Springer
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Disadvantages

Advantages

Programming
language

OS type

Architecture/framework

model

Table 18 Categories based on BDM architectural/framework for IoT-based urban planning

Architecture/framework

name
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-Offline and online data processing -No comparison is made

Layered-based UBUNTU N/A

Rathore, et al. [51]

-Avoiding the scalability option for

-More scalable and efficient than the existing

analyzing

systems

-Not mentioned in the relevant article

-Throughput has increased with the rise in data

size

-Not used ML techniques

-Offline and online data processing

Layered-based UBUNTU N/A

Silva, et al. [63]

-Applicability and reliability in the real world

-Reduce processing time for MapReduce and
Spark

information. The mobile application component controlled
crop watering remotely. The architecture of this system has
three layers: the environmental data acquisition layer, the
data, and communication layer, and the application layer.
This system can help to reduce costs and increase agri-
cultural productivity.

Al-Qurabat et al. [65] proposed a two-level system for
data traffic management in smart agriculture based on
compression and Minimum Description Length (MDL)
techniques. The first level is the sensor node level. This
level monitors the features of the environment using a
lightweight lossless compression algorithm based on Dif-
ferential Encoding (DE) and Huffman techniques. The
second level is the edge gateway level. This level is
responsible for processing, analyzing, filtering, storing, and
sending the data to the cloud, and minimizes the first level
dataset using MDL and hierarchical clustering. The results
demonstrated the suggested method has a high compression
ratio and accuracy and decreases data and energy
consumption.

Shah et al. [53] proposed the 5-layer architecture for IoT
BDA in a disaster-resilient smart city. The purpose of this
architecture is to store, mine, and process big data from IoT
devices. This architecture’s layers include data resource,
transmission, aggregation, analytics and management, and
application and support services. This architecture used
Apache Flume and Apache Sqoop for unstructured and
structured data collection; Hadoop and Spark for real-time
and offline data analysis; and HDFS for data storage. The
proposed implementation model comprises data harvesting,
data aggregation, data preprocessing, and a big data ana-
lytics and service platform. This article used a variety of
datasets for validation and evaluation based on processing
time and throughput.

Liu et al. [14] proposed a cloud laundry business model
based on the IoT and BDA. This model used big data
analytics, intelligent logistics management, and ML tech-
niques for big data analytics. This model minimized human
interference and increased system efficiency.

Tang et al. [7] proposed the 4-layer distributed fog
computing-based architecture for big data analysis in smart
cities. The layers of this architecture are the data center on
the cloud layer, intermediate computing nodes layer, edge
devices layer, and sensing networks on the critical infras-
tructure layer. This architecture reduces the communica-
tion bandwidth and data size. First, data was collected from
the fiber sensor network and transmitted to the edge com-
puting nodes layer. This layer performed two tasks: iden-
tifying potential threat patterns and feature extraction using
supervised and non-supervised ML algorithms. The inter-
mediate computing nodes layer used the hidden Markov
model for big data analysis and hazardous event detection.
The results showed the proposed architecture reduced the
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service response time and the number of service requests
submitted to the cloud.

Kotenko et al. [136] introduced a framework for security
monitoring mobile IoT based on big data processing and
ML. This framework consists of three layers: 1) extraction
and decomposition of a data set using the heuristic
approach; 2) compression of feature vectors using Principal
Component Analysis (PCA); and 3) learning and classifi-
cation using the SVM k-nearest neighbor’s method,
Gaussian NB, artificial neural network, and decision tree.
This framework has high performance and accuracy in the
detection of attacks.

Bi et al. [157] proposed a new enterprise architecture
that integrates IoT and BDA for managing the complexity
and stability of the digital manufacturing system. This
article used Shannon entropy to measure the complexity of
a system based on the number of events and the proba-
bilities of event occurrences. This architecture performs
three processes: data acquisition, management, and uti-
lization. The result of this article demonstrated that this
architecture decreases the system complexity and increases
flexibility, resilience, responsiveness, agility, and
adaptability.

Yu et al. [118] presented a BDA and IoT-based frame-
work for health state monitoring in a smart factory. This
framework consists of four phases. The data ingestion
phase is responsible for extracting different data types,
managing data collection, data security, data transforma-
tion using a secure file transfer protocol, and data storage
issues. The big data management phase uses optimized
HDFS for data storage on the cloud nodes and processing
using Apache Spark. The data preparation phase performs
sensor selection and noise detection processing to produce
high-quality data. This phase uses the high-variance feature
removal method for feature selection and a novel method
for noise detection. The predictive modeling phase has four
stages: PCA model training, streaming anomaly detection,
contribution analysis, and alarm sequence analysis.

Kahveci et al. [183] proposed a secure, interoperable,
resilient, scalable, and real-time end-to-end BDA platform
for IoT-based smart factories. The platform architecture
has five layers and several components that perform data
collection, data integration, data storing, data analytics, and
data visualization. The layers of architecture are the control
and sensing layer, the data collection layer, the data inte-
gration layer, the data storage and analytics layer, and the
data presentation layer. All kinds of sensing and control
activities are performed in the first layer. The data collec-
tion layer communicates with the first layer through a
multi-node client/server architecture. The data integration
layer uses the RESTful application program interface to
transfer data collected to the data storage layer. The data
storage layer uses InfluxDB for industrial metrics and

events. Using this architecture, production line perfor-
mance is improved, bottlenecks are identified, product
quality is improved, and production costs are reduced.

Table 19 shows the result of the analysis of the articles.
This table shows the architecture or framework name, OS
name, programming language, advantages, and disadvan-
tages for each article. As you can see, layered architecture
is the most important, with 14 articles.

3.2.2 BDM architectural/framework for loT paradigms

Another category presented in this article is BDM archi-
tectures and frameworks in two important IoT paradigms,
i.e., Social Internet of Things (SIoT) and Multiple Internet
of Things (MIoT). SIoT is the integration of the IoT with
social networking that leads to improved scalability in
information and service discovery, trustworthy relation-
ships, security, performance, and high network navigability
[91, 184]. The SIoT establishes relationships and interac-
tions between human-to-human, human-to-object, and
object-to-object social networks in which humans are
considered intellectual and relational objects [185, 186].
The types of relationships.

between smart, complex, and social objects in SIoT are
parental object relationships, co-location object relation-
ships, co-work object relationships, ownership object
relationships, social object relationships, stranger object
relationships, guest object relationships, sibling object
relationships, and service object relationships [187, 188].
A MIoT is a collection of connected things that are dif-
ferent kinds of relationships and objects.

In contrast to SIoT, the number of relationships in MIoT
is not predefined. Therefore, SIoT is a specific case of
MIoT where the number of possible relationship types is
limited [187]. The MIoT paradigm has advantages over the
IoT and SIoT. IoT can be divided into multiple networks of
interconnected smart objects through MIoT. The MIOT can
handle situations where the same objects behave differently
in different networks and allows objects from various
networks to communicate without being directly connected
[189]. Social objects in the SIoT and MIoT can perform
tasks, including physical condition detection, data collec-
tion, information exchange, big data processing and anal-
ysis, and visualization for decision-making, predicting
human behavior, and increasing efficiency and scalability.
Due to the heterogeneous nature of communication and
social networks, which generate high volume, multi-
source, dynamic, and sparse data from SIoT and MIoT
objects, the BDA is a vital issue in these paradigms. For
BDA in SIoT and MIoT, a large amount of memory, power
processing, and bandwidth are required to store, define,
process, predict, and assist humans for a limited time

@ Springer
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[64, 91]. Different researchers have examined BDA in
these paradigms in various ways.

Paul et al. [91] proposed a system called SmartBuddy
that performs the BDA for SloT-based smart city data to
define real-time human dynamics. This architecture has
three domains: the object domain, the SIoT server domain,
and the application domain. The object domain collects the
data and sends them to the SIoT server for balancing,
storing, querying, processing, defining, and predicting
human behavior. The application domain has four main
components: security, cloud server, results in storage
devices, and data server. This domain compilation is the
result of the SIoT server domain. This article uses
MapReduce programming for offline data analysis and
Apache Spark for real-time analysis. SmartBuddy has high
throughput and applicability.

HABC [52] is a Hadoop-based architecture for social
IoT big data feature selection and analysis. This architec-
ture has four layers: data collection, communication, fea-
ture selection and processing, and service. The data
collection layer collected, registered, and filtered data. The
communication layer provided end-to-end connectivity to
various devices and used the Kalman filter to remove noise.
The feature selection and processing layer used MapRe-
duce for data analysis and HDFS, HBSE, and HIVE for
manipulation and storing. The Artificial Bee Colony (ABC)
is used for feature selection. The results indicate that the
architecture increases throughput and accuracy and is more
scalable.

Lakshmanaprabu et al. [64] proposed a hierarchical
framework for feature extraction in SIoT big data using the
MapReduce framework and a supervised classifier model.
This framework has five steps: SIoT data collection, fil-
tering, database reduction, feature selection, and classifi-
cation. This article used the Gabor filter to reduce the noisy
data, Hadoop MapReduce for database reduction, Elephant
Herd Optimization (EHO) for feature selection, and a linear
kernel SVM-based classifier for data classification. The
result showed the proposed architecture has high maximum
accuracy, specificity, sensitivity, and throughput.

Socio-cyber network [66] is the 4-layer architecture that
integrates the social network with the technical network for
analyzing human behavior using big data. This architecture
uses the user’s geolocation information to make friendships
and graph theory to examine the trust index. The data
generation layer is responsible for data collection, aggre-
gating, registration, and filtration. The communication
layer provides end-to-end connectivity to various devices.
This layer creates a graph of data, and when new data are
added to the system, this graph is updated. The data storage
and processing layer perform the load balancing algorithm
and graph processing. This layer uses MapReduce for data
processing, the Spark GraphX tool for real-time analysis,

@ Springer

and HDFS for data storage. This article uses the Knowl-
edge Pyramid for knowledge extraction. The service layer
shows the result to users.

Shaji et al. [120] presented a 5-phase approach for big
data classification in SIoT. The phases of this approach are
the data acquisition phase, data filtering phase, reduction
phase, feature selection phase, and classification phase.
This article uses an adaptive Savitzky—Golay filter for fil-
tering and eliminating noisy data; the Hadoop MapReduce
framework for data reduction; a modified relief technique
for optimal feature selection; and a deep neural network-
based marine predator algorithm for classification. This
article has high accuracy, precision, specificity, sensitivity,
throughput, and low energy consumption.

Floris et al. [67] proposed a 4-layer architecture based
on SIoT to deploy a full-stack smart parking solution. The
layers of this architecture are the hardware layer, virtual-
ization layer, aggregation layer, and application layer. The
hardware layer collected data and consisted of a vehicle
detection board, Bluetooth beacon, data transmission
board, and concentrator. The SIoT paradigm is implements
in the virtualization layer using device virtualization. ML
algorithms are implemented in the aggregation layer for
data aggregation and data processing. The application layer
includes the management platform that supports the control
dashboard for smart parking management and the Android
App for the citizens.

Cauteruccio et al. [166] presented a framework for
anomaly detection and classification in MIoT scenarios.
This framework investigated two problems: the anomaly
effects analysis on the MIoT and the source of the anomaly
detection. The anomalies in MIoT are divided into three
categories: presence anomalies versus success anomalies,
hard anomalies versus soft anomalies, and contact
anomalies versus content anomalies.

Lo Giudice et al. [189] proposed a definition of a thing’s
profile and topic-guided virtual IoT. The profile of a thing
has two components: a content-based component (past
behavior) and a collaborative filtering component (princi-
pal characteristics of those things it has previously inter-
acted with the most). This article uses a supervised and
unsupervised approach to build topic-guided virtual IoTs in
a MIoT scenario. Table 20 shows the result of the analysis
of the articles. The architecture or framework name, the OS
name, programming language, advantages, and disadvan-
tages are shown for each article in this table. As you can
see, layered architecture is the most important, with five
articles.

3.3 Categories based on quality attributes

Systems have different attributes generally divided into
qualitative or functional attributes and non-qualitative or
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non-functional attributes. This section considers the quality
attributes of the selected articles. Quality attributes indicate
the system’s characteristics, operating conditions, and
constraints. There are different software quality models,
such as McCall [190], Bohem [191], ISO/IEC9126, and
FURPS [192]. As far as we know, no systematic article has
completely categorized articles based on qualitative char-
acteristics. Therefore, this paper categorized the selected
articles based on 18 qualitative attributes presented in
Table 21. In this table, the first column shows the names of
these 18 quality attributes. The reviewed articles used these
quality attributes to show the characteristics, quality attri-
bute analysis, and performance analysis of the proposed
approaches, architectures, and frameworks and comparison
with other works. Performance attributes have been ana-
lyzed in different articles based on different criteria. The
reviewed articles utilized 12 quality attributes for perfor-
mance attribute analysis. These quality attributes are load
balancing, energy conservation, network lifetime, pro-
cessing/execution time, response time, delay, CPU usage,
memory usage, bandwidth usage, throughput, latency, and
concurrency. In Table 21, | indicates the reduction of that
quality characteristic and 7 indicates the increase of that
quality characteristic. The second column in this
table shows the articles that have used these features. The
performance, efficiency, accuracy, and scalability attributes
are the most critical quality attributes, with 79, 62, 58, and
47 articles, respectively. From another point of view, the
reference model of standard software quality attributes, i.e.,
ISO 25010, has been used to classify articles based on
quality attributes. Table 22 shows the articles’ classifica-
tion according to this standard. In the following, some
quality attributes and their importance will be defined.

— Performance: Performance refers to the ability of BDM
techniques in the IoT to provide results and services
with high load balancing, energy conservation, through-
put, concurrency, low processing/execution time, delay,
CPU/memory/ bandwidth usage, and latency.

— Feasibility: Feasibility refers to the ability to perform
successfully or study the current mode of operation,
evaluate alternatives, and develop BDM techniques in
the IoT.

— Scalability: Scalability refers to the ability of BDM
techniques in the IoT to exploit increasing computing
resources effectively to maintain service quality when
the real data volumes increase. BDM techniques in IoT
must be scalable in performance and data storage. Some
methods and advanced systems are used to improve the
scalability of big data analysis, like parallel implemen-
tation, HPC systems, and clouds [193].

— Accuracy: Accuracy refers to the ability to describe
data and represent a real-world object or event correctly

@ Springer

[194]. In the reviewed articles, various definitions of
accuracy are provided, including clustering accuracy,
classification accuracy, the accuracy of features select-
ing/extracting, and the accuracy of the prediction
model. Each of these cases is evaluated in different
ways.

— Efficiency: Efficiency refers to BDM techniques in IoT
with minimum energy and response time and high
throughput, accuracy, and performance.

— Reliability: Reliability refers to the ability of BDM
techniques in the IoT to apply the specified functions
under specified conditions and within the expected
duration.

— Availability: The main goal of many researchers is the
availability of information and their analysis from
heterogeneous data sources. Availability is one of the
components of service trust and is part of reliability.

— Interoperability: Interoperability refers to the ability to
interconnect and communicate among smart objects,
heterogeneous I[oT devices, and different operating
systems. Low-cost device interoperability is a vital
issue in IoT [53, 54, 195].

— Flexibility: Flexibility refers to the capacity of BDM
techniques in the IoT to be adapted for different
environments and situations to face external changes
[196].

— Robustness: Robustness refers to a stable BDM system
in the IoT that can function despite erroneous, excep-
tional, or unexpected inputs and unexpected events.

3.4 Big data analytics types in loT

There are different types of analytics. This study uses
Gartner’s classification,” which includes four types of
analysis: descriptive analysis (“what happened?”), diag-
nostic analysis (“why did it happen?”), predictive analysis
(“What could happen?”), and prescriptive analysis (“What
should we do?”). In descriptive analytics, historical busi-
ness data is analyzed to describe what happened in the past.
Diagnostic analytics investigates and identifies the causes
of trends and why they occurred. The goal of predictive
analytics is to forecast the future using a variety of statis-
tical and ML techniques. Prescriptive analytics proposes
the best action to take to accomplish a business’s objective
using the data collected from descriptive and predictive
analytics for decision-making based on future situations
[197].

This paper investigates the applied methods for data
analysis and categorizes them based on the type of analysis
these methods provide. Organizations need statistics, Al,

2 http://www.gartner.com/it-glossary/predictive-analytics/.
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#Articles
46

[6,9,11,12,52,53,57-59, 61, 62, 64, 69, 73, 75-77, 79, 83-85, 101, 106, 108, 111, 115-117, 119, 121-123, 125, 127, 128, 130, 131, 135, 136, 139, 141, 156,

Article

Table 22 Classification of articles based on ISO 25010 software quality standard

Quality attributes
Functional

@ Springer

159-161, 163]
[6,7,9,11, 12, 14, 30, 51-59, 61, 63, 65-70, 72-77, 80-84, 86-89, 91, 92, 101, 105, 106, 108, 109, 111, 112, 115, 116, 120, 121, 124, 125, 128, 129, 131-133,

Suitability

75

Performance

135-137, 141-144, 146-148, 159-161, 163, 173, 189]

53, 54, 56, 59, 105, 107, 121, 140]

59, 69, 75, 108, 119, 144]

Efficiency

33

11, 53, 55, 58, 59, 62, 63, 68, 70, 72, 73, 75, 77, 81-84, 86, 87, 89, 90, 105, 106, 121, 128, 129, 134, 137, 141, 143, 144, 147, 156]

11, 14, 30, 54, 59, 68, 76, 82, 86, 88, 101, 107, 112, 126, 134, 136, 141, 143, 144, 148, 156]

68, 76, 112, 121, 126]
58, 78, 87, 89, 134]

21

—_ e e e e

Compatibility
Usability

Reliability
Security

Maintainability
Portability

deep learning, data mining, prediction mechanisms, etc.,
for BDA and to evaluate the data [198]. The articles used
ML algorithms to perform various analyses in the steps of
BDA. ML algorithm is an appropriate approach or tool for
BDA; decision-making; meaningful, precise, and valuable
information extraction; and detecting hidden patterns in big
datasets [199, 200]. Utilizing the ML algorithms in BDA
has advantages such as improving and optimizing BDM
processes; heterogeneous big data analysis; sustainability;
fault detection, prediction, and prevention; accurate and
reliable real-time processing; resource management and
reduction; and increased quality prediction, visual inspec-
tion, and productivity in IoT applications [83, 201]. These
algorithms are divided into four types: supervised, semi-
supervised, unsupervised, and reinforcement ML algo-
rithms [53, 202]. Table 23 shows the categorization of
articles based on BDA types. The most common tactics
that the selected articles use for BDM in the IoT include
classification (51 articles), simulation (38 articles), opti-
mization (30 articles), and clustering (25 articles).

The reason for using more classification algorithms is
that they help to categorize unstructured and high-volume
data. Therefore, BDM in the IoT is faster and more effi-
cient. Before classification begins, it must optimize the
classification algorithm’s inputs. Data reduction strategies
extract optimal and required data from a large amount of
data. These strategies include dimensionality reduction,
numerosity reduction, and data compression. Some
reviewed articles used Principal Components Analysis
(PCA) to standardize, reduce the data redundancy and
dimensionality, reduce the cost and processing time, and
maintain the original data [69, 114, 118, 135, 136]. Also,
the authors in [160] used the fuzzy C-means algorithm to
reduce the amount of data. Feature selection methods
improve classification accuracy and reduce the number of
features in BDA. The collected data from IoT applications
and monitoring systems are usually anomalous, and it is
difficult to distinguish between the original data and the
anomaly [201]. The anomaly and outlier data reduce the
accuracy of the classification and prediction models. For
instance, NRDD-DBSCAN [114], DBSCAN-based outlier
detection [83], GA, and One-Class Support Tucker
Machine (OCSTuM) [122, 124] are some of the high-ro-
bust, high-performance, and anti-noisy methods for
anomaly detection that are presented in reviewed articles.

SVM is the most common method based on classifica-
tion (10 articles) for BDM in the IoT in supervised clas-
sification. SVM is a non-parametric, memory-efficient,
error-reduction classification method that performs well in
theoretical analysis and real-world applications. It can
model non-linear, complex, and real-world problems in
high-dimensional feature space [2, 69, 203]. However,
SVM is difficult to interpret, has a high computational cost,
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and is not scalable [204]. In unsupervised classi-
fication, the k-means clustering algorithm is the
most common strategy (6 articles). The standard
k-mean clustering algorithm is a simple parti-
tioning method that works well for small and
structured datasets. It is sensitive to the number of
clusters, initial input, and noise data. The standard
k-means clustering must be modified to be used in
BDA. Some research focuses on the MapReduce/
Spark implementation of traditional k-means
clustering that improves the accuracy and reduces
the time complexity [205]. Also, articles used the
k-means clustering algorithm to predict floods
[75], security monitoring [136], energy manage-
ment and improve the prediction accuracy
[56, 131], the data access and resource utilization
[144] in IoT. Association rules are an unsuper-
vised learning approach used to discover inter-
esting and hidden relationships and correlations
between variables and objects in large databases
and for data modeling in IoT [79]. Association
rule mining uses various algorithms to identify
frequent item sets, such as the apriori algorithm,
FP growth algorithm, and maximal frequent
itemset algorithm [79, 106]. Neural networks
(NN) perform big data processing and analysis
efficiently. NN has self-learning ability and plays
a significant role in BDA in IoT. NN is used for
classification, big data mining, hidden pattern
recognition, correlation recognition in big data
raw, and decision-making in IoT applications.
There are several different kinds of neural net-
work algorithms, including LSTM [108], radial
basis functions network [69], Deep NN
[101, 162], convolutional NN [163], etc.

Deep learning is a modern machine learning
model that employs supervised or unsupervised
methods to learn and extract multiple-level, high-
level, and hierarchical features for big data clas-
sification tasks and pattern recognition [163, 206].
Deep learning is a BDA tool that can speed up big
data decision-making and feature extraction,
improve the extracted information QoE level,
resolve security issues, data dimensionality, and
unlabeled and un-categorized big data processing
in IoT applications [116, 207]. In the reviewed
articles, deep learning methods are used for
human activity recognition [87], flood detection
[130], smart cities [116], and feature learning on
big data in the IoT [163]. Optimization refers to
selecting the best solution from a set of alterna-
tives by minimizing or maximizing a specified
objective function [208]. Bio-inspired algorithms

#Articles

Parallel military dog based algorithm [145]

Ant Colony Algorithm [143]

Bloom filter based optimization [117]
GA [69, 86, 115, 122, 146, 173]

OSSO [124]
Optimized RNN [133]

Tactics Type

Taxonomy

Table 23 (continued)

Analytics
Types

@ Springer
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are stochastic search techniques used by many researchers
to solve optimization problems in BDM processes in the
IoT, including data ingestion, processing, analytics, and
virtualization [209]. The features of these algorithms are
good applicability, simplicity, robustness, flexibility, self-
organization, and the possibility of dealing with real-world
problems [210]. There are different types of categories for
these algorithms in various articles. For instance, in [211],
these algorithms are categorized into six categories: local
search-based and global search-based; single-solution
based and population-based; memory-based and memory-
less; greedy and iterative; parallel; and nature-inspired and
hybridized. In the reviewed articles, GA and NN are used
more for BDM in the IoT (6 articles). GA has been used for
feature extraction and selection, outlier detection,
scheduling, optimizing energy consumption, reducing
execution time and delay, and optimizing the predictive
model in IoT applications [69, 86, 115, 122, 146, 173].

4 Open issues and challenge

This section offers a variety of vital issues and challenges
that require future work. IoT faces many challenges and
open issues, including security, privacy, hardware,
heterogeneity, data analysis, and virtualization challenges.
IoT devices produce big data that must be monitored and
managed using particular data patterns. For efficient deci-
sion-making, BDA in the IoT is applied to large datasets to
reveal unseen patterns and correlations. So the key chal-
lenge in big data in the IoT is analyzing that data for
knowledge discovery and virtualization. Various types of
research have presented different categories for challenges
and open issues for BDM in the IoT. Romero et al. [212]
divided challenges into principal worries, security and
monitoring, technological development, standardization,
and privacy. Santana et al. [213] divided challenges into
privacy, data management, heterogeneity, energy man-
agement, communication, scalability, security, lack of
testbed, city models, and platform maintenance. Ahmed
et al. [27] divided challenges into four categories: diversity,
security, data provenance, data management, and data
governance and regulation. This study divides challenges
into BDM in the IoT and quality attributes challenges.

4.1 Big data management in the loT challenges

In many reviewed articles, IoT big data management
depends on centralized centers, including cloud-based
servers, and has technical limitations. These architectures
are platform-centric and have costly customized access
mechanisms. A centralized architecture can have a single
point of failure, which is very inefficient in terms of
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scalability and reliability. Also, in these architectures,
unauthorized access to the server might easily result in the
modification, leak, or manipulation of critical data [215]. In
some research, authors used blockchain technology to
overcome these problems [215, 216]. But this technology
has some challenges. For example, blockchain platforms
can consume [oT devices’ computational resources exten-
sively. During the review in Sect. 3.1, the process of BDM
in the IoT includes data collection, communication, data
ingestion, data storage, processing and analysis, and post-
processing, each of which faces a variety of challenges and
problems. This section examines the challenges involved in
each of these steps.

4.1.1 Data collection

Big data in the IoT is generated from different, distributed,
and multisource heterogeneous unsupervised domain
[217, 218]. Collecting this large amount of diverse data
faces challenges such as energy consumption, limited
battery life in sensors and other data collection devices,
different hardware and operating systems, multiple and
disparate resources, and combining them. It can be difficult
to obtain complete, accurate, and maintain quality data. IoT
and WSN encompass a large number of distributed mobile
nodes. Mobile nodes [219] must increase the amount of
data collected while minimizing the power consumption of
both the mobile node and IoT devices. Therefore, the main
challenge is mobile data collection management, deter-
mining and planning mobile sink trajectories for collecting
data from nodes. Most existing mobile data collection
approaches are static and only find a solution for a scenario
with fixed parameters [220]. These solutions do not con-
sider the change in the amount of data generated by the IoT
nodes or devices when an IoT device can move from one
situation to another. For future work, we propose using Al
techniques, including ML or deep learning, for intelligent
management of mobile data collection.

4.1.2 Communication

Transferring data from different sources to the data pro-
cessing and analysis stage is one of the steps in BDM in the
IoT. Communication protocols and technologies must
share data at high speeds and on time. The connectivity
challenges include interoperability, bandwidth, reducing
traffic, energy consumption, security, network, transport
protocols, delivery of services, network congestion, and
communication cost. Another connectivity challenge is
nodes accessing other nodes’ information under different
network topologies with different channel fading [221].
Concerning advances in mobile information infrastructure,
integration of the 6G technologies, mobile satellite
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communications, and Al can increase frequency band,
network speed, and network coverage and improve the
number of connections [222]. Different approaches are
proposed for data transmission optimizing and overcoming
these limitations, such as parsimonious/compressive sens-
ing [223, 224]. Compressive sensing technology is a theory
of acquiring and compressing signals that use the sparsity
behavior of natural signals at the sensing stage to minimize
power consummation and data dimensionality reduction
[225]. In compressive sensing technology, the collected
data from different sensors are first compressed and then
transmitted. Therefore, the complexity is transferred to the
receiver side from the sensors, which are usually resource-
constrained and self-powered [226]. For future work, we
propose combining compressive sensing with Al tech-
nologies to present a lightweight, real-time, and dynamic
compressive sensing method for overcoming the commu-
nication challenges in BDM in the IoT.

4.1.3 Data ingestion

Big data in the IoT have various features such as: enor-
mous, high-speed, heterogeneity of data formats, com-
plexity, different data resolutions, abnormal and incorrect,
ambiguity, unbalanced, massive redundancy, multidimen-
sional, granularity, continuously, inconsistencies, proba-
bilistic, sparse, sequential, dynamical, timeliness, non-
randomly distributed, and misplaced
[56, 63, 89, 117, 119, 125, 135, 137, 173, 227]. Each data
ingestion step discussed in Sect. 3.1.3 has challenges.
These issues are anomaly detection, missing data, outlier
detection, feature selection/extraction, dimensionality
reduction, redundancy, standardization, rule discovery,
computational cost, and normalization that different
mechanisms use for these challenges. Missing data could
lead to the loss of a large amount of valuable and reliable
information and bad decision-making. Many articles utilize
the delete, ignore, mean/median value, or constant global
methods for handling missing data. These dangerous
methods may yield biased and untrustworthy results [228].
Therefore, adding new techniques by considering more
efficiency, high accuracy, minimal computational com-
plexity, and less time consumption is interesting in the
future. For this purpose, we can use ML and nature-in-
spired optimization algorithms or a combination thereof.
The parallel technology has made data ingestion and pro-
cessing more efficient in recent years, and it saves space
and time by eliminating the need to decompress data [229].
Also, BDA types in the IoT are used in this stage, which is
discussed in Sect. 3.4. Each of these methods has chal-
lenges. For example, clustering has challenges such as real-
time clustering, local optima, determining the number of
clusters, updating the clustering centers, and determining

the initial clustering centers. ANN faces many issues,
including how to determine the number of layers, the
training, and test samples, the number of nodes, choosing
an operable objective function, and how to improve the
training speed of the network in a big data environment.
Various articles solve these problems using meta-heuristic
algorithms. However, these algorithms cannot handle big
IoT data sets within the specified time due to high com-
putation costs, limited memory, and processing units, and
premature convergence [145, 230]. For future work, we
propose using new optimization meta-heuristic algorithms
and Al methods based on these techniques by utilizing the
strengths of MapReduce and Apache Spark.

4.1.4 Data storage

Data storage is another major challenge in BDM in the IoT.
The big data storage mechanisms in the IoT were discussed
in Sect. 3.1.4. The challenges in this regard can be cate-
gorized as IoT-based big data storage systems in cloud
computing and complex environments such as industry 4.0
applications and data storage architecture. The main data
storage challenges are IoT data replication and consistency
management. Many researchers have proposed strategies
for determining the best location for copy storage in geo-
distributed storage systems based on cloud and fog com-
puting. But many of them, due to the geographical distance
between distributed storage systems, cannot handle the
problems of high data access latencies and replica syn-
chronization costs [231]. Also, data consistency manage-
ment strategies must manage the massive amounts of data
with different data consistency requirements and system
heterogeneity.

4.1.5 Processing and analysis

The big data processing and analysis in BDM in the IoT
has different challenges, including task scheduling, real-
time data analysis, developing the IoT data analysis
infrastructure, data management in the cloud-IoT envi-
ronments, and query optimization. The authors used data
mining and Al algorithms to overcome these challenges.
The challenges of using Al technologies for data analytics
in the IoT are to balance the computational costs (or
response time) and improve the accuracy of the prediction
and analysis results [232]. Also, many multi-objective
optimization problems have more than three objective
functions, which present challenges, including the diversity
and convergence speed of the algorithm [152]. However,
determining an algorithm to process a dynamic IoT dataset
based on some application-specific goals for better accu-
racy remains a challenge. Also, most current methods
cannot meet user demands for the fundamental features of
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cloud-IoT environments, including heterogeneity, dyna-
mism, reliability, flexibility, responsiveness, and elasticity.
For future work, we propose studies of various optimiza-
tion algorithms, including metaheuristic algorithms (many-
objective) and ML algorithms, and combined versions of
these algorithms for big data processing and analysis in the
IoT. Regarding the limitations of wireless nodes (low
power and computational) and cloud servers (high latency,
privacy, performance bottleneck, context unawareness,
etc.) for processing and analysis computing tasks, using
mobile edge or fog computing to overcome these problems
is helpful.

4.1.6 Post-processing

Providing insight from processed and analyzed data in the
IoT requires selecting appropriate visualization techniques.
Most of the reviewed methods use simulator tools such as
CloudSim [143, 173], TRNSYS [131], Cooja [82], and
Extend-Sim [8] for evaluation. Additional studies are
needed to evaluate the mentioned approaches in real-world
systems and datasets.

4.2 QoS management

QoS is one of the critical factors in BDM in the IoT and
needs research, management, and optimization (discussed
in Sect. 3.3). The reviewed articles used these parameters
and metrics for evaluation. No article considers these
parameters thoroughly for its proposed architecture.
Therefore, it is exciting to compare various architectures
by considering the different QoS parameters and quality
attributes in the future. Security, privacy, and trust are
critical issues in IoT BDA that most reviewed articles did
not address, and the proposed architectures or frameworks
did not involve the data perception layer. The security
frame generally consists of confidentiality, integrity,
authentication, non-repudiation, availability, and privacy
[233]. We concede that no comprehensive and highly
secure scheme or platform for all types of data collection,
analysis, and sharing meets all security requirements. The
other main challenges are integrating privacy protection
methods with data sharing platforms and selecting the best
privacy protection algorithms to use during data processing
[172]. Therefore, it is suggested for the future to utilize
cryptographic mechanisms in different layers of architec-
tures or frameworks, add a data perception layer, and
develop security protocols specifically for IoT devices
because of their heterogeneity and resource limitations.
The blockchain framework is widely used in IoT to
improve protection, trust, reputation, management, control,
and security. The blockchain framework provides decen-
tralized security, authentication rules, and privacy for IoT
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devices. However, there are major challenges, such as high
energy consumption, delay, and computational overhead,
because of the resource constraints in IoT devices. Many
types of research have been suggested as solutions to these
problems. For instance, Corradini et al. [234] proposed a
two-tier Blockchain framework for increasing the security
and autonomy of smart objects in the IoT by implementing
a trust-based protection mechanism. The tiers of this
framework are a point-to-point local tier and a community-
oriented global tier. Pincheira et al. [235] proposed a cost-
effective blockchain-based architecture for ensuring data
integrity, auditability, and traceability and increasing trust
and trustworthiness in IoT devices. This architecture has
four components: the cloud module, mobile app, connected
tool, and blockchain module. Tchagna Kouanou et al. [236]
proposed a 4-layer blockchain-based architecture to secure
data in the IoT to increase security, integrity, scalability,
flexibility, and throughput. The layers of this architecture
are tokens, smart contracts, blockchain, and peers. In future
research, we suggest using Al techniques and a lightweight
blockchain framework to increase protection, trust, repu-
tation, and security in the IoT.

Trust and reputation management are vital issues in the
SIoT and MIoT scenarios. In [237], the authors defined
trust and reputation in the MIoT as the trust of an instance
in another one of the same IoT; the trust of an object in
another one of the MIoT; the reputation of an instance in an
IoT; the reputation of an object in a MIoT; the reputation of
an IoT in a MIoT; the trust of an IoT in another IoT; and
the trust of an object in an IoT. Security in the SIoT aims to
differentiate between secure and malicious things and
increase the safety and protection of SIoT networks [185].
Investigating trust and reputation in SIoT and MIoT has
many benefits, such as identifying, isolating, managing
malicious objects, supporting collaboration, and identifying
and evaluating the objects’ QoS parameters. Also, the lack
of trust and reputation management in SIoT and MIoT
causes problems such as loss of accessibility, privacy, and
security [237]. To overcome these issues, we suggest uti-
lizing trust and reputation with AI methods to develop
detection techniques for anomalous and malicious behav-
iors of things in the MIoT and SIoT in future works.

5 Conclusion

This paper presented a systematic review of the BDM
mechanisms in the IoT. First, we discussed the advantages
and disadvantages of some systematic and review articles
about BDM in the IoT and then explained the purpose of
this paper. Then, the research methodology and details of
110 selected articles were presented. These articles were
divided into four main categories, including BDM
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processes, big BDM architectures/frameworks, quality
attributes, and data analytics types in [oT. Some of these
categories have been divided into some subcategories:
BDM process in IoT was divided into data collection,
communication, data ingestion, data storage, processing
and analysis, and post-processing; big data architectures/
frameworks in the IoT were divided into BDM architec-
tures/frameworks in the IoT-based applications and BDM
architectures/frameworks in the IoT paradigms; big data
analytics-types were divided into the descriptive, diag-
nostic, predictive, and prescriptive analysis; and big data
storage systems in the IoT were divided into relational
databases, NoSQL databases, DFS, and cloud/edge/fog/
mist storage. Also, the advantages and disadvantages of
each of the BDM mechanisms in the IoT were discussed.
The tools and platforms used for BDM in the IoT in the
articles were reviewed and compared based on criteria. The
most common type of analysis that articles use is predictive
analysis, with 57.27%, which uses ML algorithms. The
classification, optimization, and clustering algorithms are
the most widely used for big data analysis in the [oT. Some
articles present architectures mostly in IoT-based health-
care, with 33.33%, and IoT-based smart cities, with
22.22%. These architectures have two to eight layers, each
performing a set of functions. In the review of qualitative
characteristics, we observed that most articles evaluated
their evaluations based on criteria, including performance,
efficiency, accuracy, and scalability. Meanwhile, some
features are less used, including confidentiality, sustain-
ability, accessibility, portability, generality, and maintain-
ability. The NoSQL database and DFS are used more to
store data than other databases. The BDM process in the
IoT uses different algorithms and tools with various fea-
tures. Various programming languages and operating sys-
tems are used to evaluate and implement the proposed
mechanisms. The Java and python programming languages
and the UBUNTU operating system are used more.

This paper tries to review the BDM mechanisms in the
IoT. Specifically, it considers studies published in high-
quality international journals. The most recent works on
BDM mechanisms in the IoT have been compared and
analyzed in this paper. We hope that this study will be
helpful for the next generation of studies for developing
BDM mechanisms in real-complex environments.
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