
ORIGINAL PAPER

A comprehensive and systematic literature review on the big data
management techniques in the internet of things

Arezou Naghib1 • Nima Jafari Navimipour2,3 • Mehdi Hosseinzadeh4,5,6 • Arash Sharifi1

Accepted: 19 October 2022 / Published online: 15 November 2022
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
The Internet of Things (IoT) is a communication paradigm and a collection of heterogeneous interconnected devices. It

produces large-scale distributed, and diverse data called big data. Big Data Management (BDM) in IoT is used for

knowledge discovery and intelligent decision-making and is one of the most significant research challenges today. There

are several mechanisms and technologies for BDM in IoT. This paper aims to study the important mechanisms in this area

systematically. This paper studies articles published between 2016 and August 2022. Initially, 751 articles were identi-

fied, but a paper selection process reduced the number of articles to 110 significant studies. Four categories to study BDM

mechanisms in IoT include BDM processes, BDM architectures/frameworks, quality attributes, and big data analytics

types. Also, this paper represents a detailed comparison of the mechanisms in each category. Finally, the development

challenges and open issues of BDM in IoT are discussed. As a result, predictive analysis and classification methods are

used in many articles. On the other hand, some quality attributes such as confidentiality, accessibility, and sustainability are

less considered. Also, none of the articles use key-value databases for data storage. This study can help researchers develop

more effective BDM in IoT methods in a complex environment.
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1 Introduction

The Internet of Things (IoT) is an emerging information

technology model and a dynamic network that enables

interaction between self-configuring, smart, and intercon-

nected devices and humans [1]. The IoT’s ubiquitous data

collection devices (such as Radio-Frequency Identification

(RFID) tags, sensors, Global Positioning Systems (GPS),

Geographical Information Systems (GIS), drives, Near-

Field Communication (NFC), actuators, and mobile

phones) collect and share real-time, mobile, and environ-

mental data for automatic monitoring, identification, pro-

cessing, maintenance, and control in real-time [2–4]. The

IoT ecosystem has five main components generally: IoT

devices, including sensors and actuators that collect data

and perform actions on things; IoT connectivity, including

protocols and gateways, that is responsible for creating

communication in the IoT ecosystem between smart devi-

ces, gateways, and the cloud; an IoT cloud that is respon-

sible for data storage, processing, analysis, and decision-

making; IoT analytics and data management are
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responsible for processing the data; and end-user devices

and user interfaces help to control and configure the system

[5]. The most important applications of IoT include envi-

ronmental monitoring, disaster management, smart homes/

buildings, smart farms, healthcare, smart cities, urban,

smart manufacturing, intelligent transport systems, smart

floods, financial risk management, supply chain manage-

ment, water management, enterprise culture, cultural her-

itage, smart surveillance, military tracking and

environment, digital forensics, underwater environments,

and understanding social phenomena [6–22]. The IoT

devices and sensors in the Wireless Sensor Networks

(WSN) generate large data. According to the international

data corporation1 forecast, the number of IoT devices will

be 41.6 billion and generate 79.4 zettabytes of data in 2025.

This massive structured, semi-structured, and unstructured

data, which is expanding rapidly with time, results in ‘‘Big

Data’’ [23]. ‘‘Big data’’ technologies are a new generation

of distributed architectures and technologies that provide

distributed data mining capabilities to inexpensively,

valuable, and effectively extract value from a huge dataset

with characteristics such as volume, velocity, variety,

variability, veracity, and value [24]. Big data provides both

opportunities and problems for organizations and enter-

prises. Big data can improve data precision, be used for

forecasting and decision-making, and give stakeholders

more in-depth analytical findings [2]. Traditional data

processing systems cannot collect, process, manage, and

interpret data effectively using conventional mechanisms.

Therefore, it requires a scalable architecture or framework

for effective capture, storage, management, and analysis

[25].

A major challenge in implementing IoT in real and

complex environments is analyzing heterogeneous data

volumes that contain a wide variety of knowledge content

[26]. Various platforms, tools, and technologies have been

developed for big data monitoring, collecting, ingesting,

storing, processing, analysis, and visualization [10, 27].

These platforms and tools are Apache Hadoop, MapRe-

duce, 1010data, Apache Storm, Cloudera, Cassandra, HP-

HAVEn, SAP-Hana, Hortonworks, MongoDB, Apache

Kafka, Apache Spark, Infobright, etc. Industries and

enterprises use Big Data Analytics (BDA) with IoT tech-

nologies to handle the timely analysis of information

streams and intelligent decision-making [28–30]. BDM in

the IoT involves different analytic types [31]. Marjani et al.

[29] discussed analytical types in real-time, offline, mem-

ory, business intelligence, and at massive levels. Singh and

Yassine [28] divided analytical types into preprocessing,

pattern mining, and classification. Gandomi and Haider

[32] divided big data processing into two major phases:

data management and data analytics. Also, Ahmed et al.

[33] provided five aspects of big data: acquisition and

storage; programming model; benchmark process; analysis;

and application. Finally, ur Rehman et al. [34] divided

BDA into five main steps: data ingestion, cleaning, con-

formation, transformation, and shaping.

However, despite the importance of BDM in the IoT and

the rising challenges in this area, as far as we know, there is

not any complete and detailed systematic review in this

field. Hence, this paper tries to analyze the mechanisms of

BDM in the IoT. The main contributions of this paper are

as follows:

• Presenting a study of the existing methods for BDM in

the IoT.

• Dividing BDM methods in the IoT are divided into four

main categories: BDM processes, BDM architectures/

frameworks, quality attributes, and big data analytics

types.

• Dividing the BDM process in the IoT into six main

steps, including data collection, communication, data

ingestion, data storage, processing and analysis, and

post-processing.

• Dividing the BDM architecture/framework in the IoT

into two main subcategories: BDM architectures/frame-

works in IoT-based applications and BDM architec-

tures/frameworks in the IoT paradigms.

• Exploring the primary challenges, issues, and future

works for BDM in the IoT.

The following subsection discusses related work to show

the main differences between this review and similar

studies. Also, the abbreviations used in this paper are

presented in Table 1.

1.1 Related work and contributions of this
review

This section studies some reviews and survey articles that

work on BDM in the IoT to highlight the need for

reviewing them. In addition, this section describes the main

advantages and disadvantages of this article to distinguish

this one.

Ahmed et al. [27] analyzed several techniques for IoT-

based big data. This article categorizes the literature based

on parameters, including big data sources, system compo-

nents, big data enabling technologies, functional elements,

and analytics types. The authors also discussed connec-

tivity, storage, quality of services, real-time analytics, and

benchmarking as the critical requirements for big data

processing and analytics.

Constante Nicolalde et al. [35] overviewed the technical

tools used to process big data and discussed the relation-

ship between BDA and IoT. The big data challenges are1 https://www.idc.com/.

1086 Wireless Networks (2023) 29:1085–1144

123

https://www.idc.com/


divided into four general categories: data storage and

analysis; the discovery of knowledge and computational

complexities; information security; and scalability and data

visualization.

Talebkhah et al. [36] investigated the architecture,

challenges, and opportunities of big data systems in smart

cities. This article suggested a 4-layer architecture for

BDM in smart cities. The layers of this architecture are

data acquisition, data preprocessing, data storage, and data

analytics. This article also considered the opportunities and

challenges for smart cities, such as heterogeneity, design

and maintenance costs, failure management, throughout,

etc.

Bansal et al. [37] investigated state-of-the-art research

on IoT and BDM. This article proposed a taxonomy based

on BDM in the IoT applications, including smart transport,

smart cities, smart buildings, and smart living. BDM steps

are considered as data acquisition, communication, storage,

processing, and retrieval. Also, the related surveys on

BDM were divided into three general categories: surveys

on IoT BDA, domain-specific surveys on IoT big data, and

surveys on challenges in IoT big data. The authors classi-

fied the articles based on four major vendor services

(Google, Amazon, Microsoft, and IBM) to integrate IoT

and IoT big data with case studies. The big data manage-

ment challenges in the IoT are considered based on 13 V’s

challenges.

Table 1 Paper abbreviations

Abbreviation Definition Abbreviation Definition

ABC Artificial Bee Colony LST Least Slack Time algorithm

ADASYN Adaptive Synthetic Sampling LSTM Long Short-Term Memory

AI Artificial Intelligence LTE Long Term Evolution

AMQP Advanced Message

Queuing Protocol

LWLR Locally Weighted Linear Regression

ANN Artificial Neural Network (ANN) MDL Minimum Description Length

BCN Bayesian Convolution Network ML Machine Learning (ML)

BDA Big Data Analytics MLP Multi-Layer Perceptron

BDM Big Data Management MQTT Message Queuing Telemetry Transport

CART Classification and Regression Tree MIoT Multiple Internet of Things

CDMA Code-division multiple access NB Naive Bayes

CDNN Convolutional Deep Neural Networks NFC Near-Field Communication

CEP Complex Event Processing NRDD-

DBSCAN

New Resilient Distributed Datasets Density-Based Spatial Clustering

CFS Correlation Feature selection OCSTuM One-Class Support Tucker Machine

CoAP Constrained Application Protocol OSSO Swallow Swarm Optimization

DBSCAN Density-based spatial clustering PCA Principal Component Analysis

DE Differential Encoding PPSO Parallel Particle Swarm Optimization

DFS Distributed File Systems PSO Particle Swarm Optimization

EBS Electronic Batchload Service QoE Quality of Experience

EC2 Amazon Elastic Compute Cloud QoS Quality of service

EDL Enhanced Deep Learning REPtree Reduced-Error Pruning Tree

EHO Elephant Herd Optimization RFID Radio-Frequency Identification

EPL Event Processing Language (EPL) RNN Recurrent Neural Network

ETL Extract, Transform, and Load RPL Routing Protocol for Low-Power and Lossy Networks

GA Genetic Algorithm SLR Systematic Literature Review

GIS Geographical Information Systems SIoT Social Internet of Things

GM Grey Prediction Model SSL Secure Sockets Layer

GPS Global Positioning Systems SVD Singular Value Decomposition

HDFS Hadoop Distributed File System SVM Support Vector Machine

HPC High Performance Computing (HPC) UCI University of California, Irvine

IoT Internet of Things WIT120 Wise Information Technology of 120

KNN K-nearest Neighbors Algorithms WSN Wireless Sensor Networks
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Marjani et al. [29] investigated state-of-the-art research

efforts directed toward big IoT data analytics and proposed

a new architecture for big IoT data analytics. This article

discusses big IoT data analytic types under real-time, off-

line, memory-level, business intelligence, and massive

level analytics categories.

Simmhan and Perera [38] presented the analytics

requirements of IoT applications. They defined the rela-

tionship between data volume capacity and processing

latency of new big data platforms. This article divided

decision systems into visual analytics, alerts and warnings,

reactive systems, control and optimization, complex sys-

tems, knowledge-driven intelligent systems, and behavioral

and probabilistic systems.

Shoumy et al. [39] discussed frameworks and techniques

for multimodal big data analytics. They divided multi-

modal big data analytics techniques into four topics:

affective framework; multimodal framework; big data and

analytics framework; and fusion techniques. Furthermore,

Ge et al. [40] discussed the similarities and differences

among big data technologies used in IoT domains and

developed a conceptual framework. This article interpreted

big data research and application opportunities in eight IoT

domains (healthcare, energy, transportation, building

automation, smart cities, agriculture, industry, and mili-

tary) and discussed the advantages and disadvantages of

big data technologies. In addition, it examined four aspects

of big data processes: storage, cleaning/cleansing, analy-

sis/analytics, and visualization.

Siow et al. [41] considered the analytics infrastructure

from data generation, collection, integration, storage, and

computing. This article presented a comprehensive classi-

fication of analytical capabilities consisting of five cate-

gories: descriptive, diagnostic, discovery, predictive, and

prescriptive analytics. In addition, a 3-layered taxonomy of

data analytics was presented, including data, analytics, and

applications.

Fawzy et al. [42] investigated the techniques and tech-

nologies of IoT systems from BDA architectures and

software engineering perspectives. This article proposed a

taxonomy based on BDA systems in the IoT, including

smart environments, human, network, energy, and envi-

ronmental analytics. The BDA target, approach, technol-

ogy, challenges, software architecture and design, model-

driven engineering, separation of concerns, and system

validation and verification. The authors presented the IoT

data features as multidimensional, massive, timely,

heterogeneous, inconsistent, traded, valuable, and spatially

correlated. The proposed domain-independent BDA-based

IoT architecture has six layers. The layers of architecture

are data manager, system resources controller, system

recovery manager, BDA handler, software engineering

handler, and security manager.

Zhong et al. [43] investigated using BDA and data

mining techniques in the IoT. This article divided the

review articles into four categories: architecture and plat-

form, framework, applications, and security. The data

mining methods for BDA in the IoT were discussed in

these four categories. The challenges investigated in the

article are as follows: data volume, data diversity, speed,

data value, security, data visualization, knowledge extrac-

tion, and real-time analysis.

Hajjaji et al. [44] discussed applications, tools, tech-

nologies, architectures, current developments, challenges,

and opportunities in big data and IoT-based applications in

smart environments. This article divided the benefits of

combining the IoT and big data into six categories: multi-

source and heterogeneous data; connectivity; data storage;

data analysis; and cost-effectiveness.

Ahmadova et al. [45] discussed big data applications in

the IoT. They proposed a taxonomy of big data in the IoT

that includes healthcare, smart cities, security, big data

algorithms, industry, and general view. In the article, the

authors discussed big data technologies’ advantages and

disadvantages for IoT domains. Also, the evaluation factors

that are considered in the article are security, throughput,

cost, energy consumption, reliability, response time, and

availability.

Table 2 shows the summary contributions of related

survey articles. The publication year, methodology, dis-

cussion, and other disadvantages are shown for each article

in this table. Due to the existing weaknesses in the review

articles, this paper presents a systematic literature review

and a proper categorization of BDM mechanisms in the IoT

that addresses the shortcomings as follows:

1. This paper provides a complete research methodology

that includes research questions and the article selec-

tion process.

2. This paper discusses the newly proposed mechanisms

for BDM in the IoT between 2016 and August 2022.

3. This paper considers the architectures/frameworks of

IoT-based applications, including healthcare, smart

cities, smart homes/buildings, intelligent transport,

traffic control and energy, urban planning, and other

IoT applications (smart IoT systems, smart flood, smart

farms, disaster management, laundry, digital manufac-

turing, and smart factory).

4. This paper investigates the quality attributes and

categorizes the review articles based on the quality

attributes used and the reference model of standard

software quality attributes, i.e., ISO 25010.

5. This paper classifies the review articles based on BDA

types in the IoT and their tactics.

6. This paper considers the big data storage systems and

tools in the IoT based on relational databases, NoSQL

1088 Wireless Networks (2023) 29:1085–1144
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databases, distributed file systems, and cloud/edge/fog/

mist storage.

7. This paper discusses the BDM process in six steps:

data collection, communication, data ingestion, data

storage, processing and analysis, and post-processing,

and proposes the main tools in each step.

8. This paper presents open issues and challenges on

BDM in the IoT and divides challenges into two

categories: BDM in the IoT and quality attributes

challenges.

The rest of the paper is structured as follows: Sect. 2

explains the research methodology and the article selection

process. The categories of the BDM methods in the IoT and

their comparison are described in Sect. 3. Section 4 dis-

cusses the challenges and some open issues. Finally,

Sect. 5 represents the conclusion and the paper’s

limitations.

2 Research methodology

Systematic literature review (SLR) is a research method-

ology that examines data and findings of the researchers

relative to specified questions [46, 47]. It aims to find as

much relevant research on the defined questions as possible

and to use explicit methods to identify what can reliably be

said based on these studies [48, 49]. This section provides

an SLR to understand the BDM techniques in the IoT. The

following subsection will explain the research questions

and the article selection process.

2.1 Research questions

This study focuses more explicitly on the articles related to

BDM in the IoT, focusing on their advantages and disad-

vantages, architectures, processing and analysis methods,

storage systems, evaluation metrics, and tools. To achieve

the goals mentioned above, the following research ques-

tions are presented.

RQ1: What is BDM in IoT?

Section 1 answered this question.

RQ2: What is the importance of BDM in the IoT?

This question aims to show the number of published

articles about BDM in IoT between 2016 and August 2022.

Section 2 answers this question.

RQ3: How are the articles searched and chosen to be

assessed?

Section 2.2 discusses the question.

RQ4: What are the classifications of BDM methods in

the IoT?
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This question aims to show the existing methods of

BDM in the IoT environment. Section 3 will discuss this

answer.

RQ5: What are the challenges and technical issues of

BDM in the IoT?

This question identifies the challenges for BDM in the

IoT and provides open issues for future research. Section 4

will discuss this answer.

2.2 Article selection process

In this study, the article’s search and selection process

consists of three stages. These stages are shown in Fig. 1.

In the first stage, the articles between 2016 and August

2022 were searched based on the keywords and terms

(presented in Table 3). These articles are the results of

searching popular electronic databases. These electronic

databases include Google Scholar, Elsevier, ACM, IEEE

Explore, Emerald Insight, MDPI, Springer Link, Taylor

and Francis, Wiley, JST, Dblp, DOAJ, and ProQuest. The

articles include journals, chapters, conference papers,

books, notes, technical reports, and special issues. 751

articles were found in Stage 1. In Stage 2, there are two

steps to select the final number of articles to review. First,

the articles are considered based on the inclusion criteria in

Fig. 2. There are 314 articles left at this stage. Next, the

review articles are removed; of the remaining 314 articles

in the previous stage, 85 (27.07%) were review articles.

Elsevier has the highest number of review articles (31.76%,

27 articles). EMERALD and Taylor and Francis have the

lowest number of reviewed articles (2.35%, one article).

The highest number of published review articles is in 2019

(24.71%), and the lowest is in 2022 (8.24%). The number

of remaining articles at this stage is 229. In Stage 3, the

title and abstract of the articles are reviewed. Also, to

ensure that the articles are relevant to the study, we

reviewed the methodology, evaluation, discussion, and

conclusion sections. The number of selected articles

retained at this stage is 110. Elsevier publishes most of the

selected articles (30.91%, 34 articles). The lowest number

is related to ACM (0.91%, one article). 2018 has the

highest number of published articles (26.36%, 29 articles).

The Future Generation Computer Systems journal pub-

lishes the highest number of articles (11.82%, 13 articles).

3 Big data management approaches
in the IoT

This section presents four different categories for the

reviewed articles. These categories include the BDM pro-

cess in the IoT (Sect. 3.1), BDM architectures/frameworks

for IoT applications (Sect. 3.2), quality attributes (Sect.

3.3), and big data analytics types (Sect. 3.4). Each category

has subcategories that will be considered in its relevant

section. Figure 3 shows this taxonomy.

3.1 Big data management process in the IoT

This section categorizes articles based on BDM process

mechanisms and presents a comprehensive framework for

BDM in the IoT. The comprehensive framework for BDM

in the IoT is shown in Fig. 4. The steps of BDM in IoT

include data collection, communication, data ingestion,

storage, processing and analysis, and post-processing.

3.1.1 Data collection

A variety of sources generates IoT data. There are different

mechanisms for IoT data collection, but there is still no

fully efficient and adaptive mechanism for IoT data col-

lection [50]. This paper divides IoT sources into sensors,

applications, devices, and other resources. Figure 5 shows

the classification of the sources based on these four

categories.

• Automatic search 
based on keywords 

and terms751
Articles

• Selection based on 
inclusion criteria 

314
Articles • Delete survey 

articles
229

Articles

• Selection based on title, 
abstract and full text 

110
Articles • Final selected articles

110
Articles

Fig. 1 Articles search and selection process stage
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3.1.2 Communication

The data sources are located on various networks, such as

IoT sensor networks, wired and wireless sensor networks,

fiber-optic sensor networks, and machine-to-machine

communications. Communication technologies are

required to process and analyze these data sources [51, 52].

There are several communication technologies and proto-

cols in the IoT. The communication protocols used in the

articles are IPV6, RPL, MQTT, CoAP, SSL, AMQP,

Websocket, 6LowPANIPV6, Alljoyn, TCP/IP, HTTP/IP.

Communication technologies are compared based on fre-

quency, data rate, range, power usage, cost, latency, etc.

There are several categories of these communication

technologies. This paper divides big data communication

technologies in the IoT based on distance criteria into three

categories: pan, local, and WAN. Table 4 shows the arti-

cles’ classification based on these three categories. Wi-Fi,

ZigBee, Bluetooth, and 4G LTE are of the utmost impor-

tance in communication technology, with a total number of

29, 19, 17, and 17 articles, respectively.

3.1.3 Data ingestion

Data ingestion is the process of importing and transporting

data in different formats from various sources (shown in

Fig. 4) to a storage medium, processing and analyzing

platform, and decision support engines [93, 94]. The

quality of the dataset used by ML-based prediction models

(classification) plays a vital role in BDM in the IoT. A

prediction model requires a lot of correctly labeled data for

correct construction, assessment, and accurate result gen-

eration [95]. Therefore, the data ingestion layer should

handle the enormous volume, high speed (velocity), vari-

ety, value, variable, and validated data for the processing

and analysis step. In different articles, this layer has mul-

tiple tasks. The data ingestion layer in [96] includes iden-

tification, filtration, validation, noise reduction, integration,

transformation, and compression. The data ingestion layer

in [97] provides data synchronization, data slicing, data

splitting, and data indexing. Also, the data ingestion layer

in [98] includes data stream acquisition, data stream

extraction, enrichment, integration, and data stream distri-

bution. Finally, the data ingestion layer in [99] includes

data cleaning, data integration, and data compression.

There are three categories of data ingestion technolo-

gies: real-time data ingestion, batch data ingestion, and

both. Real-time data ingestion is used for time-sensitive

data and real-time intelligent decision-making. Batch data

ingestion is used for data collection from sources at regular

intervals (daily reports and schedules) [100]. There are

many tools and platforms for data ingestion, such as

Apache Kafka, Apache NIFI, Apache Storm, Apache

Flume, Apache Sqoop, Apache Samza, Apache Minifi,

Confluent Platform, and Elastic Logstash. These tools can

be compared based on throughput, latency, scalability, and

security [98]. The data ingestion layer in this paper

includes data cleaning, data integration, data transforma-

tion/ discretization, and data reduction. Each of these steps

uses special tools, methods, and algorithms. Table 5 shows

the categorization of articles based on the tools that are

Table 3 Search keywords and terms

S# Search keywords and terms

S1 ‘‘IoT big data’’ or ‘‘Internet of things big data’’

S2 ‘‘data management in IoT’’ or ‘‘data management in the Internet of things’’

S3 ‘‘big IoT data mining’’ or ‘‘big Internet of things data mining’’

S4 ‘‘data mining in IoT’’ or ‘‘data mining in the Internet of things’’

S5 ‘‘big data in IoT’’ or ‘‘big data in the Internet of things’’

S6 ‘‘big data analytics in IoT’’ or ‘‘big data analytics in the Internet of things’’

S7 ‘‘IoT data analyze’’ or ‘‘Internet of things data analyze’’

Articles, which 
are not in the form 

of conference 
papers, books, 
chapters, notes, 

technical reports, 
special issues

Articles 
published 
between 
2016 to 

August 2022.
Articles 

published in 
English.

Articles 
should not be 

duplicates.

Articles that 
are available 
in full text

Articles that 
focus on the 
BDM in the 

IoT.

Articles 
published in 

reputable 
journals.

Fig. 2 Inclusion criteria in the articles selection process
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used for data ingestion. Data ingestion tools have been

compared based on ingestion type, throughput, reliability,

latency, scalability, security, and fault tolerance. Platforms

in some articles use a combination of these tools, such as

the Horton data flow platform in [101], including Apache

NiFi/MiNiFi, Apache Kafka, Apache Storm, and Druid

tools. As you can see in Table 5, Apache Kafka is of utmost

importance to the data ingestion tool, with a total of 8

articles. Also, Table 6 shows the categorization of articles

based on the big data preprocessing stage in the IoT.

3.1.4 Data storage

This subsection categorizes articles based on storage

mechanisms. The articles use various methods and tools to

store big data. This study divides these mechanisms into

four categories: relational, NoSQL, Distributed File Sys-

tems (DFS), and cloud/edge/fog/mist storage. Each of these

categories has subcategories. One of the most critical big

data challenges is the categorization and scalability that

traditional relational databases such as MySQL, SQL Ser-

ver, and Postgres cannot overcome. Therefore, NoSQL

databases are used to store big data. NoSQL technologies

are divided into four categories: key-value, column-ori-

ented, document-oriented, and graph-oriented [102]. These

NoSQL technologies have many platforms to support their

operations. Key-value storage is the most straightforward

and highly flexible type of NoSQL database and stores all

the data as a pair of keys and values. A document-oriented

database stores data as a set of columns. In a relational

database, data is stored in rows and read row-by-row. A

graph database focuses on the relationships between data

elements, and each element is stored as a node. Tables 7

and 8 show the types of storage methods used in articles.

Table 7 shows the classification of articles based on rela-

tional databases, NoSQL databases, and DFS. As you can

see, any of the 110 selected articles do not use the key-

value databases. In relational databases, Hive, NoSQL

databases, Hbase, and distributed file systems, HDFS is

most commonly used. Table 7 compares these storage tools

and platforms based on in-memory database/storage or

disk-based, data type, scalability, security, availability,

flexibility, performance, fault-tolerant, easy to use, and

replication.

Table 8 shows the classification of articles based on

cloud/edge/fog/mist storage. Cloud computing provides

scalable computing, high data storage, processing power,

and ensures the quality of the applications. However, it has

main challenges such as latency, network overhead,

bandwidth, data privacy, lower real-time responsiveness,

location awareness, security, reliability, data availability,

and accessibility [103]. Network architectures came into

Fig. 3 Taxonomy of the selected articles
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existence to overcome these challenges, such as fog, edge,

and mist computing, that move the data and computation

closer to the consumer and reduce some of the workloads

from the cloud [104].

Fog computing is a type of decentralized computing that

is between cloud storage and IoT devices. Fog computing

reduces service latency, bandwidth, energy consumption,

storage, and computing costs and improves the QoS [149].

The fog computing for the IoT model supports real-time

services, mobility, and geographic distribution [150].

Another alternative approach to cloud computing is edge

computing. Data storage and processing in edge computing

occur closer to the device or data source to improve data

locality, performance, and decision-making [151]. Edge

computing is less scalable than fog computing but provides

near real-time analytics and high-speed data access and

reduces data leakage during transmission [104, 152]. Mist

computing is an intermediate layer between fog/cloud and

edge computing. It can improve the fog/cloud challenges,

such as response time, location awareness, data privacy,

local decision-making, network overhead, latency, and

computing and storage costs. Mist nodes had low pro-

cessing power and storage [153]. In some articles, in

addition to using cloud/edge/fog/mist storage, HDFS and

NoSQL databases are used alongside these technologies.

bFig. 4 Big data management framework in IoT

Table 4 Classification of articles based on communication technologies

Category Name Communication Technologies The Article’s Ref# #Articles

Pan (distance\ = 10 m) Bluetooth [13, 52–67] 17

NFC [53] 1

RFIID [3, 53, 68–71] 6

Local (distance\ = 100 m) ZigBee [51–53, 55, 56, 58, 59, 61–64, 71–78] 19

Wi-Fi [11, 30, 51, 52, 55–58, 60–63, 65–67, 71, 73–75, 79–88] 29

Ethernet [3, 51, 53, 65, 66, 74] 6

WAN (distance[ 100 m) Cellular 2G GSM [52] 1

CDMA [3, 53] 2

NA [8] 1

2.5G GPRS [3, 53, 66] 3

3G 3GPP, etc [8, 51–53, 55, 58, 60, 61, 63, 66, 73–75, 79, 84, 89] 16

4G LTE [8, 51–53, 55, 60, 61, 63, 66, 73–75, 79, 85, 86, 90, 91] 17

WiMAX [51, 53, 66, 72, 74, 85] 6

NA [57, 65, 76, 84, 89] 5

5G [8, 53, 65, 72, 73, 75, 90] 7

LPWAN Narrowband-IoT [73, 75] 2

LoRaWAN [53, 56, 59, 92] 4

Smart home/buildings sensors, Healthcare sensors, Manufacturing/Industrial sensors, Smart agriculture sensors, Smart 
transportation/mobility sensors, Smart parking sensors, Smart parking sensors, Smart parking sensors, Surveillance 

sensors, Smart parking sensors, Water and weather system sensors, Infrared sensors, etc.

-Programs          -Software       -Business applications -Web applications       
-Databases          -Files

-RFID            -Social networks       -Cloud data       -Actuators
-Simulation model

Smartphones and watches, Monitoring devices (Video and surveillance cameras), Readers/Scanners, 
Microphones, Digitalized vehicles, PC and devices, GPS systems, AP/BS, Wearable devices, Controlees, 

Collection servers, Getaways, Raspberry pie, Arduino, etc.

Fig. 5 Big data sources categories in IoT
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The goal is to overcome the disadvantages of these tech-

nologies by using them together.

3.1.5 Processing and analysis

Big data processing and analysis in the IoT are techniques

or programming models for extracting knowledge from

large amounts of data for supporting and providing intel-

ligent decisions [154]. Efficient big data processing and

analysis in IoT can help mitigate many challenges in event

management, action management, control and monitoring,

improved customer service, cost savings, improve business

relationships [155], etc. This paper divides the big data

processing and analysis step in IoT into a set of sub-steps:

batch and stream processing, query processing, statistical

and numerical analysis, graph processing, ML, resource

management, and infrastructure/containers. Table 9 shows

the articles’ classification and comparison of the tools

based on criteria: throughput, reliability, availability,

latency, scalability, security, flexibility, ease of use, and

cost-effectiveness. Big data processing in the IoT is gen-

erally done at both batch and stream levels. Many tools,

platforms, and frameworks exist for batch and stream

processing. The tools used in the articles are Apache

Hadoop, Apache Spark, Map Reduce, Apache Storm,

Apache Flink, Anaconda, Apache S4, Weka, streaming

analytics manager, and CEP.

As you can see in Table 9, Apache Hadoop, MapRe-

duce, and Apache Spark are the most critical quality

attributes, with a total number of 45, 32, and 31 articles,

respectively. Some of these tools include a set of libraries

and procedures for efficient processing and analysis. In the

study, the libraries and functions used by the articles are

Hadooppcap-lib, Hadoop-pcap-serde, Hadoop-pcap-input

(Apache Hadoop), MLlib, GraphX, Spark Streaming,

Spark SQL, Spark Core (Apache Spark), Map, FlatMap,

Filter, Reduce, Shuffle (Map Reduce), Gelly, FlinkML,

Table and SQL, FlinkCEP (Apache Flink), NumPy [132],

Keras [108], Pandas [59], and Scikit-Learn, Paho-MQTT

(Anaconda). Also, various algorithms and methods are

used to process and analyze data, such as classification,

clustering, regression, optimization algorithms, and SVM.

Most of these tools have these algorithms.

3.1.6 Post-processing

The post-processing step is another vital task in knowledge

discovery from big data in the IoT. This paper divides the

post-processing step into evaluation and selection (data

governance), virtualization/dashboard, intelligent decision,

and service and application. The evaluation and selection

stage evaluates results obtained using test methods on

different types of datasets. There are various criteria forTa
bl
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assessing the results. In this section, the articles are cate-

gorized based on the methods they used for the test. These

methods are divided into four categories, including test

methods, classification, clustering, and regression. Each of

them uses various criteria for evaluation. Table 10 shows

the articles’ classification based on these four categories.

The virtualization/dashboard stage uses tools, graphs,

tables [75], graphical user interface [59], and charts [92] to

display the results. Intelligent decisions can be made using

stochastic binary decisions [156], ML, pattern recognition,

soft computing, and decision models [51, 53, 74]. These

tools are Kibana, Plotly, Tableau, Microsoft Power BI,

Grafana, vSphere, NodeJS, and Matplotlib

[59, 105, 106, 109, 110, 113, 140].

Tables 11 and 12 show the relevant datasets that the

articles used for investigating/numerically assessing tech-

niques for BDM in the IoT. These datasets are divided into

two categories: 1) categorized based on characteristics

including dataset name, repository, dataset characteristics,

attribute characteristics, number of instances/size, and

number of attributes 2) categorized based on characteristics

including dataset name, website address, and size. As you

can see, the UCI machine learning repository has been

repeatedly used in articles as a repository to access tech-

niques for BDM in the IoT.

3.2 Big data management architectures/
frameworks in the IoT

This subsection investigates and analyzes the articles that

(71 articles) presented the frameworks and architectures for

BDM techniques in the IoT. These articles are divided into

two categories: BDM architectures/frameworks in the IoT-

based applications (63 articles) and BDM architectures/

frameworks in the IoT paradigms (8 articles).

3.2.1 Big data management architectures/frameworks
in the IoT applications

The architectural models used in the selected articles are

layered, component-based, and cloud/fog-based architec-

ture. A layered architecture is organized hierarchically, and

each layer performs a service. The layered architecture

ensures the system is more adaptable to emerging tech-

nologies at each layer and improves the acquisition and

integration of data processes [167]. Component-based

architecture is a framework that decomposes the system

into reusable and logical components. The advantages of

component-based architecture are increased quality, relia-

bility, component reusability, and reduced time. Operations

and components related to processing or storage in cloud-

based or fog-based architectures are placed in the cloud or

fog. Most of the proposed architectures are layered, and theTa
bl
e
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most common types of BDM architectures in the IoT are

3-layer and 4-layer (22 and 20 articles). Also, most of the

proposed architectures are in IoT-based healthcare,

equivalent to 33.33%, followed by IoT-based smart

cities, which equals 22.22%. The selected articles in this

study used nine different OS for BDM in the IoT. Ubuntu

is the most important OS, with 18 articles. Articles used

programming languages to analyze and process big data

in the IoT. Java, Python, and MATLAB are the major

programming languages. In the following, these archi-

tectures and frameworks will be examined. For a better

presentation, we have divided these architectures and

frameworks into seven categories in terms of IoT

applications (healthcare, smart cities, smart home/build-

ing, intelligent transport, traffic control and energy,

urban planning, and other IoT applications (smart IoT

systems, smart flood, smart farms, disaster management,

laundry, digital manufacturing, and smart factory)). Then

we review the attributes of the architectures and frame-

works, including layers, the functions of the layers, the

operating system, the programming language, and the

advantages and disadvantages of each.

3.2.1.1 BDM architectural/framework for IoT-based
healthcare Predicting health and disease and prevent-

ing deaths are essential in our modern world [168, 169].

Healthcare IoT (e.g., electronic and mobile health) uses

wireless body sensor networks for monitoring the

patients’ environmental, physiological, and behavioral

parameters [170]. Wearables and other IoT devices

within the healthcare industry generate a large amount of

data. The health data must be collected, stored, pro-

cessed, and analyzed for future intelligent decision-

making. BDA plays a vital role in minimizing compu-

tation time, predicting the future status of individuals,

providing reliable health services, prevention, healthy

living, population health, early detection, and optimal

management [133, 158, 171]. There are the BDM

mechanisms’ objectives and requirements for different

types of medical data [172]. Various research has pre-

sented many mechanisms for BDM in IoT-based

healthcare that have advantages and disadvantages.

Therefore, this subsection examines the articles (21

articles; 33.33%) that discussed the architectures or

frameworks of BDM in IoT-based healthcare.

Rathore et al. [58] proposed Hadoop-based intelligent

healthcare using a BDA approach. This system collected

the big data and directed them to a 3-unit smart building

for storing and processing. The units of this system are

big data collection, Hadoop processing, and analysis and

decision. This system used the 5-layer architecture for

parallel, real-time, and offline processing. The layers of

this architecture are the data collection, communication,Ta
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processing, management, and service. The data collection

layer includes data sensing, acquisition, buffering, and

filtration. The big data are divided into small pieces in the

processing layer, processed in parallel using HDFS and

MapReduce, and stored. The management layer uses

medical expert systems for processing the results and rec-

ommending corresponding actions.

Chui et al. [126] proposed a 6-layer architecture for

patient behavior monitoring based on big data and IoT.

Message queue, Apache Hadoop, behavior analytics,

Mongo database, distributed stream processing, and expo-

ser are the layers of this architecture. This architecture uses

Hadoop for processing (descriptive, diagnostic, predictive,

and prescriptive analytics), MongoDB for storing, Spark/

Flink/Storm for stream processing, and Apache Kafka for

breaking up the data stream into several partitions. Also,

the authors have discussed the challenges of trust, security,

privacy, and interoperability in the healthcare research

field.

Ullah et al. [140] proposed a lightweight Semantic

Interoperability Model for Big-Data in IoT (SIMB-IoT).

The SIMB-IoT model has two main components: user

interface and semantic interoperability. The semantic

interoperability component is divided into three subcom-

ponents: semantic interoperability, cloud services, and big

data analytics. IoT data is collected and directed into an

intelligent health cloud for online storage and processing.

After processing, it sends suitable medicines to the

patient’s IoT devices. This article used the SPARQL query

to find hidden patterns.

Elhoseny et al. [173] presented a Parallel Particle

Swarm Optimization (PPSO) algorithm for IoT big data

analysis in cloud computing healthcare applications. This

article aims are: optimize virtual machine selection and

storage by using GA, PSO, and PPSO algorithms; real-time

processing; and reducing the execution time. This archi-

tecture has four components: stakeholders’ devices; tasks;

cloud broker; and network administrator. The cloud broker

sends and receives requests to the cloud. The network

administrator finds the optimal selection of virtual machi-

nes in the cloud for task scheduling.

Manogaran et al. [141] proposed a secured cloud-fog-

based architecture for storing and processing real-time data

for health care applications. This architecture has two sub-

architectures: meta fog-redirection and grouping and

choosing architectures. The meta fog-redirection architec-

ture has three phases: data collection, data transfer, and big

data storage. The data collection phase collected data from

sensors in fog computing. The data transfer phase used the

‘s3cmd utility’ method for transferring data to Amazon

S3.The big data storage phase used Apache Pig and Apache

HBase for storage. The grouping and choosing architecture

protects data and provides security services in fog andTa
bl
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cloud environments. Also, this architecture used MapRe-

duce to predict.

Garcı́a-Magariño et al. [156] is an agent-based simula-

tion framework for IoT BDA in smart beds. This frame-

work has two layers: the primary mechanism for simulating

sleepers’ postures and the information’s analyzer. The first

layer provides the simulation of the poses of sleeper

mechanisms. The second layer analysis collected data from

the first layer. The agent types in this framework are

sleeper agent, weight sensor agent, bed agent, observer

agent, analyzer agent, stochastic sleeper agent, bed sleeper

agent, restless sleeper agent, and healthy sleeper agent.

This framework helps researchers to test different sleeper

posture recognition algorithms, discusses other sleeper

behaviors, and performs online or offline detection

mechanisms.

Yacchirema et al. [59] proposed a 3-layer architecture

for sleep monitoring based on IoT and big data at the

network’s edge. The layers of this architecture are the IoT

layer, the fog layer, and the cloud layer. The IoT layer

collected and aggregated the big data and directed them to

the fog layer. The fog layer is responsible for connectivity

and interoperability between heterogeneous devices, pre-

processing the collected data, and sending notifications to

react in real-time. The big data is stored, processed, and

analyzed in the cloud layer for intelligent decision-making.

This layer has three modules: data management, big data

analyzer, and web application. This architecture used

HDFS for data storage and Spark for offline and real-time

processing.

BigReduce [137] is a cloud-based IoT framework for

big data reduction for health monitoring in smart cities that

focuses on reducing energy costs. This framework has two

schemes: real-time big data reduction and intelligent big

data decision-making. The big data reduction is made in

two phases: at the time of acquisition and before trans-

mission using an event-insensitive frequency content

process.

Ma et al. [33] proposed a 3-layer architecture for the IoT

big health system based on cloud-to-end fusion. The layers

of this architecture are the big health perception layer,

transport layer, and big health cloud service layer. In the

big health perception layer, data are collected and prepro-

cessed. The transport layer sends data to sensor nodes and

receives data from the perception layer using network

technologies. The big health cloud service layer has two

sub-layers: the cloud service support and the cloud service

application. The cloud service support sub-layer is

responsible for compressing, storing, processing, and ana-

lyzing the real-time data. The cloud service application

sub-layer is the interface between users and health net-

working. This sub-layer controls the sensor nodes and

visualizes the big data.

Rathore et al. [61] proposed the 5-layer architecture for

big data IoT analytics-based real-time medical emergency

response systems. The data collection layer is responsible

for data sensing, acquisition, buffering, filtration, and

processing. This layer collected and aggregated data using

a coordinator or relay node and transmitted them to a

polarization mode dispersion. The communication layer

provides device-to-device communication to various smart

devices. The processing layer divides big data into small

chunks. Each chunk is processed separately, aggregated,

and stored. This article used MapReduce, HDFS, and Spark

for data processing and analysis. The management layer is

responsible for managing all types of outcomes using a

medical expert system. The service layer is the interface

between end-users and health networking. This architecture

minimized the processing time and increased the

throughput.

El-Hasnony et al. [84] proposed a hybrid real-time

remote patient monitoring framework based on mist, fog,

and cloud computing. This article provided the 5-layer

architecture for near real-time data analysis. The layers are

the perception layer, the mist layer, the fog layer, the cloud

layer, and the service provider layer. The mist layer is

responsible for data filtering, data fusion, anomaly detec-

tion, and data transmission to the fog layer. The fog layer

has done local monitoring and analysis, data aggregation,

local storage, data pre-analysis, and data transmission to

the cloud layer. The cloud layer implemented several data

analytics techniques for intelligent decision-making and

storage. This article presented a case study comparing

traditional data mining techniques, including REPtree,

MLP, Naive Bayes (NB), and sequential minimal opti-

mization algorithms. The results showed that the REPtree

algorithm achieved better accuracy, and the NB achieved

the least time.

Harb et al. [106] proposed the 4-layer architecture for

real-time BDA for patient monitoring and decision-making

in healthcare applications. The layers of this platform are

real-time patient monitoring, real-time decision and data

storage, patient classification, and disease diagnosis, and

data retrieval and visualization. The first layer is respon-

sible for data ingestion using Kafka and Sqoop tools. The

second layer processes and stores data using Spark and

Hadoop HDFS. This layer preprocesses data and finds the

missing records using MissRec (a script for Spark). The

third layer is responsible for classification data using sta-

bility-based K-means, an adapted version of K-means

clustering, and disease diagnosis using a modified version

of the association rule mining algorithm. The last layer

retrieves and visualizes data to understand the patient’s

situation using Hive, SparkSQL, and Matplotlib.

Zhou et al. [62] proposed a data mining technology

based on the IoT. The layers of the proposed functional
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architecture are the data acquisition layer, data transmis-

sion layer, data storage layer, and cloud service center

layer. This article used the WIT120 system for data col-

lection, the adaptive k-means clustering method based on

the MapReduce framework for data preprocessing, HDFS

for storing, and the GM (1,1) grey model for users’ health

status prediction.

Hong-Tan et al. [90] proposed a real-time Ambient

Intelligence assisted Student Health Monitoring System

(AmIHMS). The data required by time ambient intelligence

environments are collected from the WSN and sent to the

cloud for handling. Their work developed a framework for

real-time effective alerting of student health information.

The AmIHMS architecture has three layers. The IoT layer

collects health data from medical devices and sensors and

saves it on one mobile computer or smartphone. The cloud

layer receives the data through internet platforms such as

4G, 5G, LTE, etc., and executes the mining algorithms to

extract relevant data for processing. The student health

monitoring layer performs four stages to provide infor-

mation and warnings about student health status. These

stages include data retrieval, preprocessing, normalization,

and classification/health status recognition.

Li [30] designed the fog-based Smart and Real-time

Healthcare Information Processing (SRHIP) system.

SRHIP architecture has three layers. IoT body sensor net-

work layer performs data collection (health, environment,

and locality), aggregation, compression, and encryption.

Fog processing and computation layer use Spark and

Hadoop ecosystem for information extraction, data nor-

malization, rule engine, data filtration, and data processing.

This layer performs the classification using the NB clas-

sifier. The cloud computation layer performs in-depth data

analysis, storage, and decision-making. SRHIP minimizes

the delay, transmission cost, and data size. This article uses

hierarchical symmetric key data encryption to increase

confidentiality.

The Improved Bayesian Convolution Network (IBCN)

was proposed for human activity recognition [87]. The

system architecture includes Wi-Fi and clouds onboard

applications. The combination of a variable autoencoder

with a standard deep net classifier is used to improve the

performance of IBCN. This article used the convolution

layers to extract the features and Enhanced Deep Learning

(EDL) for security issues. IBCN provided the ability to

download data via traditional radio frequency or low-

power back-distribution communication. According to the

experimental analysis, the proposed method allows the

network to be continuously improved as new training sets

are added and distinguishes between data-dependency and

model-dependency. This architecture has high accuracy,

versatility, flexibility, and reliability.

Sengupta and Bhunia [88] implemented a 3-layer IoT-

enabled e-health framework for secure real-time data

management using Cloudlet. The IoT layer uses IoT Hub

for communicating with IoT devices. The Cloudlet layer is

an intermediate layer between the IoT and cloud layers.

This layer performs in-depth healthcare data analytics and

processes. The cloud layer performs various analytics

applications and processes queries. This framework uses

SQLite for data storage in IoT Hub and Cassandra for

future storing of sensed data. The result demonstrated that

this framework has high efficiency, low data transmission

time, low communication energy, data-packet loss, and

query response time.

IBDAM [133] is an Intelligent BDA Model for efficient

cardiac disease prediction in the IoT using multi-level

fuzzy rules and valuable feature selection. This article used

the open-source UCI database. First, it performs prepro-

cessing on the UCI database, and the next step uses multi-

level fuzzy rule generation for feature selection. IBDAM

uses an optimized Recurrent Neural Network (RNN) to

train the features. Finally, the features are classified into

labeled classes according to the risk of evaluation by a

medical practitioner. The results of this article demonstrate

that this architecture has high performance and is quick and

accurate.

Ahmed et al. [158] proposed an IoT-based health

monitoring framework for pandemic disease analysis,

prediction, and detection, such as COVID-19, using BDA.

In this framework, the COVID-19 data set is collected from

different data sources. Four data analysis techniques are

performed on these data, including descriptive, diagnostic,

predictive, and prescriptive. The experts opine on the

results, and then users receive the results of these analyses

through the internet and cloud servers. This article uses a

neural network-based model for diagnosing and predicting

the pandemic. The results of this article indicated that the

accuracy, precision, F-score, and recall of the proposed

architecture are better than AdaBoost, k-Nearest Neighbors

(KNN), logistic regression, NB, and linear Support Vector

Machine (SVM).

Ahanger et al. [71] proposed an IoT-based healthcare

architecture for real-time COVID-19 data monitoring and

predicting based on fog and cloud computing. This archi-

tecture has four layers. The data collection layer collects

data from sensors and uses protocols to guarantee infor-

mation security. The information classification layer clas-

sifies the information into four classes: health data,

meteorological data, location data, and environmental data.

The COVID-19-mining and extraction layer is responsible

for splitting information into two groups using a fuzzy

C-means procedure in the fog layer. The COVID-19 pre-

diction and decision modeling layer use temporal RNN for

estimating the results of the COVID-19 measure and a self-
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organization map-based technique to increase the per-

ceived viability of the model. This article, in contrast to the

existing methods, has high classification efficiency, via-

bility, precision, and reliability.

Oğur et al. [109] proposed a real-time data analytics

architecture for smart healthcare in IoT. This architecture

has two domains. The software-defined networking-based

WSN and RFID technology are used in the vertical domain,

and data analytics tools, including Kafka, Spark, Mon-

goDB, and NodeJS, are used in the horizontal domain. The

collected data from WSN using RFID transmit to the Kafka

platform using TCP sockets. The Kafka sends data to three

consumers: The Apache Spark analysis engine that ana-

lyzes data in real-time; the NodeJS web application that

visualizes patient data; and the MongoDB database that

stores data. This article uses logistic regression and Apache

spark MLlib for data classification. The result demon-

strated this architecture has high performance and accuracy

and is appropriate for a time-saving experimental

environment.

Table 13 shows the result of the analysis of the articles.

This table shows each article’s architecture or framework

name, OS name, programming language, advantages, and

disadvantages. As you can see, layered architecture is the

most important, with 14 articles.

3.2.1.2 BDM architectural/framework for IoT-based smart
cities

According to the United Nations forecasting, about 67%

of the world population will live in urban areas by 2050,

resulting in environmental pollution, ecosystem destruc-

tion, energy shortage, emission reduction, and resource

limitation [36, 174, 175]. Smart cities are large-scale dis-

tributed systems that could be a solution to overcoming

these problems and improving intelligent services for res-

idents [112, 176]. Smart cities have many implemented

sensing devices that generate large amounts of data. These

data must be stored, processed, and analyzed to extract

valuable information [177]. BDM plays a significant role in

this context and facilitates better resource management and

decision-making [176]. Many research focused on BDM

mechanisms in IoT-based smart cities with different

objectives, including improving monitoring and commu-

nication, real-time controlling, and increased quality attri-

butes (such as reliability, throughput, energy conservation,

accuracy, scalability, delay, bandwidth usage, etc.).

Therefore, this subsection examines the articles (14 arti-

cles; 22.22%) that have discussed the architectures or

frameworks of BDM in IoT-based smart cities.

Jindal et al. [85] propose a tensor-based big data pro-

cessing technique for energy consumption in smart cities.

This article aims to reduce the dimensionality of data and

decrease the overall complexity. The proposed framework

has two phases. The first phase is the 3-layer data gathering

and processing architecture. The layers of this architecture

are data acquisition, transmission, and processing. In the

second phase, the collected data was represented in tensor

form, and SVM was used to identify the loads to manage

the demand response services in smart cities. The technique

reduces data storage by 38%.

ESTemd [105] is a distributed stream processing mid-

dleware framework for real-time analysis using big data

techniques on Apache Kafka. The layers of this framework

are the data ingestion layer, the data broker layer (source),

the stream data processing engine and services, the data

broker layer (sink), and the event hub. The data broker

layer is responsible for data processing and transformation,

with the support of multiple transport protocols. The third

layer does stream processing and consists of the predictive

data analytics model and Kafka CEP operators. This

framework helps with performance improvement through

data integration and distributed applications’

interoperability.

CPSO [115] is a self-adaptive preprocessing approach

for big data stream classification. This approach handles

four mechanisms: sub-window processing; feature extrac-

tion; feature selection; and optimization of the window size

and feature picking. CPSO uses clustering-based PSO for

data stream mining; the sliding window technique for data

segmentation; statistical feature extraction for variable

partitioning; correlation feature selection, and information

gain for feature selection. The proposed approach improves

its accuracy.

Rani and Chauhdary [72] proposed a novel approach for

smart city applications based on BDA and a new protocol

for mobile IoT. They presented the 5-layer architecture

where the layers are: data source, technology, data man-

agement, application, and utility programs. The data source

layer collects, compresses, and filters data. The technology

layer is responsible for communication between sensor

nodes, edge nodes, and base station. The management layer

used MapReduce, SQL, and Hbase for analyzing, storing,

and processing. The utility program layer used WSN and

IoT protocols to work with the other layers. Also, this

article presented a new protocol that reduces energy con-

sumption, increases throughput, and reduces the delay and

transmission time.

SCDAP [107] is the 3-layer BDA architecture for smart

cities. The first layer is the platform that includes hardware

clusters, the operating system, communication protocols,

and other required computing nodes. The second layer is

security. The last layer is the data processing layer that

supports online and batch data processing. This layer has

ten components: data acquisition; data preprocessing;

online analytics; real-time analytics; batch data repository;

batch data analytics; model management; model

1110 Wireless Networks (2023) 29:1085–1144
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aggregation; smart application; and user interface. This

architecture used Hadoop and Spark for data analysis. Also,

this article presented a taxonomy of literature reviews

based on six characteristics: focus, goal, organization,

perspective, audience, and coverage.

Chilipirea et al. [80] proposed a data flow-based archi-

tecture for big data processing in smart cities. The archi-

tecture has seven steps: data sources, data normalization;

data brokering; data storage; data analysis; data visualiza-

tion; and decision support systems. This article used

Extract, Transform, and Load (ETL) and Electronic

Batchload Service (EBS) for normalizing the real-time and

batch data. The data brokering step created the links

between the collected data and the relevant context. This

architecture used Hadoop for batch data processing and

Storm for real-time data processing.

Gohar et al. [92] proposed a four-layer architecture for

analyzing and storing data on the Internet of Small Things

(IoST). The layers of this architecture are the small things

layer, the infrastructure layer, the platform layer, and the

application layer. The first layer collected data by using the

LoRa gateway from LoRa devices. The infrastructure layer

provides connectivity to devices by using the Internet. The

platform layer is responsible for data preprocessing. For

processing, this layer employs Max–Min normalization, the

Kalman filter, the Round-Robin load balancing technique,

the Least Slack Time algorithm (LST), the divide-and-

conquer approach for aggregation, and NoSQL databases

for storage. In the last layer, data is visualized for decision-

making. This article implemented the architecture by using

Hadoop, Spark, and GraphX. In this article, throughput has

increased with the rise in data size.

Farmanbar and Rong [113] proposed an interactive

cloud-based dashboard for online data visualization and a

data analytics toolkit for smart city applications. The pro-

posed architecture has three layers: the data layer, appli-

cation and analysis layer, and presentation layer. The data

layer is the core of the architecture and contains data

acquisition units, data ingestion, data storage, and data

access. This architecture used Logstash for data ingesting,

Elasticsearch for storing, and Kibana for accessing and

real-time monitoring. This platform has been tested on five

datasets, including transportation data, electricity con-

sumption, cargo e-bikes, parking, vacancies, and energy.

The results showed this architecture is robust, scalable, and

improves communication between users and urban service

providers.

He et al. [116] proposed a big data architecture to

achieve high Quality of Experience (QoE) performance in

smart cities. This architecture has three plans: the data

storage plane, the data processing plane, and the data

application plane. This article used MongoDB and HDFS

for data storing and Spark and the deep-learning-basedTa
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greedy algorithm for data processing. The simulation result

indicated that the proposed architecture’s accuracy, preci-

sion, and recall are better than SVM and KNN.

Khan et al. [128] proposed an SDN-based 3-tier archi-

tecture that includes data collection, data processing and

management, and an application layer for real-time big

data processing in smart cities with two intermediate levels

that work on SDN principles. This architecture uses Spark

and GraphX with Hadoop for offline and real-time data

analysis and processing. Also, this article proposed an

adaptive job scheduling mechanism for load balancing and

achieving high performance. The results showed that when

clusters and processing time increase, the proposed sys-

tem’s performance also increases.

IoTDeM [73] is the IoT big data-oriented multiple edge-

cloud architectures for MapReduce performance prediction

with varying cluster scales. This architecture consists of

three parts: multiple edge cloud redirectors, an edge cloud-

based big data platform, and a centralized cloud-based big

data platform. This architecture used historical job execu-

tion records and Locally Weighted Linear Regression

(LWLR) techniques for predicting jobs’ executing times

and Ceph for storing them. Because of Ceph, there was no

need to transfer data to the newly added slave node. This

article validated the accuracy of the proposed model by

using the TESTDFSIO and Sort benchmark applications in

a general implementation scenario based on Hadoop2 and

Ceph and achieved an average relative error of less than

10%.

Ahab [112] is a generic, scalable, fault-tolerant, and

cloud-based framework for online and offline big data

processing. This framework has four components: the user

API, repositories, messaging infrastructure, and stream

processing. The API directs the published data streams

from different sources. Ahab uses the component, stream,

policy, and action repositories for storing data streams,

management policies, and actions. Ahab uses distributed

messaging for handling data streams, minimizing unnec-

essary network traffic. Also, it allows the components to

choose an appropriate communication point freely. The

Ahab architecture has two layers: the streaming and service

layers. The streaming layer is implemented as a lambda

architecture. This layer has three sub-layers for data stream

processing: the batch layer, the speed layer, and the serving

layer. The HDFS and Apache Spark are used for data

storing and stream processing. The service layer is

responsible for analyzing, managing, and adapting

components.

Mobi-Het [81] is a mobility-aware optimal resource

allocation architecture for remote big data task execution in

mobile cloud computing. This article uses the SMOOTH

random mobility model to propound the free movement of

mobile devices and estimate their speed and direction.

Mobi-Het has three layers: mobile devices, cloudlets, and

the master cloud. The mobile devices component has a

decision-maker module that decides whether tasks should

be executed remotely or locally. The master cloud com-

ponent implements the resource allocation algorithm. This

article has a low execution time, high execution reliability,

and efficiency in timeliness.

Hossain et al. [132] proposed a knowledge-driven

framework that automatically selects the suitable data

mining and ML algorithms for a dynamic IoT smart city

dataset. The system architecture has four units: data

Knowledgeextraction, extactGoalKnowledge,

extractAlgoKnowledge, and matchKnowledge. The

framework’s inputs are three key factors: datasets, goals,

and data mining and ML algorithms. This article discussed

both supervised and unsupervised data mining. The results

show that this framework reduces computational time and

complexity and increases performance and flexibility while

dynamically choosing a high-accuracy solution.

Table 14 shows the result of the analysis of the articles.

This table shows the architecture or framework name, OS

name, programming language, advantages, and disadvan-

tages of each article. As you can see, layered architecture is

the most important, with 13 articles.

3.2.1.3 BDM architectural/framework for IoT-based smart
home/ building

BDM mechanisms and IoT (architecture/ frameworks)

have a crucial role in smart home/building, including

processing data collected by the home sensors; analyzing,

classifying, monitoring, and managing energy consumption

and saving; intelligently identifying user behavior patterns

and home activities; and increasing safety and comfort at

home [76]. This subsection presents a review of the articles

(8 articles; 12.70%) that have discussed the architectures or

frameworks of BDM in the IoT-based smart home/

building.

Al-Ali et al. [68] proposed a smart home energy man-

agement architecture using IoT and BDA approaches. This

architecture is divided into two sub-architectures: hardware

architecture and software architecture. The hardware

architecture includes sensors and actuators, high-end

microcontrollers, and server blocks. The software archi-

tecture comprises the data acquisition module on the edge

device, a middleware module, and a client application

module. The first module monitors and collects data and

transmits them to the middleware module. The second

module uses several tools to provide different services,

including facilitating communication between edge devices

and middleware, data storage, data analysis, and sending

results to the requester. The third module develops the

front-end mobile user interface using a cross-platform

integrated development environment. This article is
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evaluated using a prototype. The results showed the pro-

posed architecture has high scalability, security, privacy,

throughput, and speed.

Silva et al. [55] proposed a real-time BDA embedded

architecture for the smart city with the RESTful web of

things. This article integrated the web and smart control

systems using a smart gateway system. The proposed

architecture consists of four levels: data creation and col-

lection; data processing and management; event and deci-

sion management; and application. The data processing and

management level utilized HDFS for primary data storing,

MapReduce for processing, Hbase to speed up the pro-

cessing, and HIVE for data querying and managing. The

event and decision management level classified two events

as service and resource events based on the processed

information. The application level remotely provides

access to the smart city services and has three sub-layers:

departmental layer, services layer, and sub-services layer.

This article has high performance and throughput, low

processing time, and minimizes energy consumption.

Khan et al. [57] proposed a scheduling algorithm, an IoT

BDA architecture, and a real-time platform for managing

sensors’ energy consumption. This architecture has four

steps: appliance discovery, sensor configuration and

deployment, event management and scheduling, and

information gathering and processing. Appliances are

identified and classified in the first step based on user

availability and usage time. The second step used Poisson

distribution for sensor distribution in an IoT environment.

In the third step, the appliance sleep-scheduling mechanism

is presented for job scheduling. In the last step, the col-

lected data from sensors were directed to Hadoop, Spark,

and GraphX for processing and analysis. This step used

HDFS for data storage. This article minimized total exe-

cution time and energy consumption.

HEMS-IoT [76] is a 7-layer architecture based on big

data and ML for in-home energy management. The layers

of this architecture are the presentation layer, IoT services

layer, security layer, management layer, communication

layer, data layer, and device layer. The management layer

uses the J48 ML algorithm and the Weka API for energy

consumption reduction and user behavior pattern extrac-

tion. This layer also classifies the data and houses based on

energy consumption using the C4.5 algorithm. The IoT

services layer provides different REST-based web services.

The security layer guarantees data confidentiality. This

layer has two components, namely authorization and

authentication. This article uses RULEML and Apache

Mahout to generate energy-saving recommendations.

Yassine et al. [56] proposed a platform for IoT smart

homes based on fog and cloud computing. The components

of the proposed platform are smart home components, IoT

management and integration services, fog computing

nodes, and cloud systems. The smart home component is

divided into three tiers. The three tiers are: 1) the cyber-

physical tier is responsible for interacting with the outside

world through the second tier; 2) the connectivity tier is

responsible for communicating with the smart home; and

3) the context-aware tier consists of user-defined rules and

policies that create a privacy and security configuration.

The IoT management and integration services component

is in charge of providing interoperability, handling

requests, authentication, and service registration. The fog

computing nodes performed preprocessing, pattern mining,

event detection, behavioral and predictive analytics, and

visualization functions. The cloud system is responsible for

storing and performing historical data analytics.

Luo et al. [131] proposed a 4-layer ML-based energy

demand predictive model for smart building energy

demands. Firstly, the sensitization layer collected data and

transferred them to the storage layer. The storage layer

performed data cleaning and storing. The model’s smart

core is in the analytics support layer, where Artificial

Neural Network (ANN) and k-means clustering are used

for identifying features in weather profile patterns. The

service layer is an interface between the proposed model

and the smart building management system. The proposed

model improved accuracy and decreased mean absolute

percentage error.

Bashir et al. [110] proposed an Integrated Big Data

Management and Analytics (IBDMA) framework for smart

buildings. The reference architecture and the metamodel

are two phases of this framework. The reference architec-

ture has eight layers: data monitoring, sourcing, ingestion,

storage, analysis, visualization, decision-making, and

action. People, processes, technology, information, and

facility are the components of the metamodel phase. The

core component of the metamodel is people (IoT policy-

makers, developers, and residents of intelligent buildings).

The process component includes data monitoring, sourcing,

ingesting, storage, decision-making, analytics, and

action/control. The technology component consists of the

tools and software packages to implement the IBDMA.

Some of these tools are Apache Flume for data ingesting;

HDFS for data storing; Apache Spark for data analysis;

Microsoft Power BI for static data visualization; and

Elasticsearch and Kibana for near-real-time data visual-

ization. The information element manages disasters and

controls various facilities based on results obtained by

using the technology stack. The last element is the facility

that improves the comfort, safety, and living conditions for

the people of the building.
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Table 15 shows the result of the analysis of the articles.

This table shows each article’s architecture or framework

name, OS name, programming language, advantages, and

disadvantages. As you can see, layered architecture is the

most important, with five articles.

3.2.1.4 BDM architectural/framework for IoT-based intelli-
gent transport

Safety, reliability, fault diagnosis, data transmission, and

early warning in the intelligent transport system are critical

for decision-making [178]. The intelligent transport system

uses digital technologies, sensor networks, ML, and BDA

mechanisms to overcome the challenges, including acci-

dent prevention, road safety, pollution reduction, auto-

mated driving, traffic control, intelligent navigation, and

parking systems [179]. This subsection presents a review of

the articles (2 articles; 3.17%) that have discussed the

architectures or frameworks of BDM in IoT-based intelli-

gent transport.

SMART TSS [129] is a BDA modular architecture for

intelligent transportation systems. This architecture has

four units: a big data acquisition and preprocessing unit, a

big data processing unit, a big data analytics unit, and a

data visualization unit. The big data processing unit stored

the offline data in the cloud system for future analysis. The

online data is sent to the extraction and filtration unit for

load balancing on NoSQL databases. The big data analytics

unit uses the map-reduce mechanism for analysis. This

article uses Hadoop, Spark, and GraphX for big data pro-

cessing and analysis. The throughput of the proposed sys-

tem increases with increasing data size and has low

accuracy and security.

Babar and Arif [89] proposed a real-time IoT big data

analytics architecture for the smart transportation system.

This architecture has three phases: big data organization

and management, big data processing and analysis, and big

data service management. The first phase performed data

preprocessing, including big data detection, logging, inte-

gration, reduction, transformation, and cleaning. This

phase used the divide-and-conquer technique for data

aggregation, the Min–Max method for data transformation,

and the Kalman filter technique for data cleaning. The

second phase used Hadoop for big data processing, HDFS,

Hive, and Hbase for data storage, and Spark for data stream

analysis. This phase performed load balancing that caused

increased throughput, minimized processor use, and

reduced response time. The third phase is responsible for

intelligent decision-making and event management.

Table 16 shows the result of the analysis of the articles.

This table shows the architecture or framework name, OS

name, programming language, advantages, and disadvan-

tages of each article. As you can see, layered architecture is

the most important, with two articles.

3.2.1.5 BDM architectural/framework for IoT-based traffic
control and energy

Two reviewed articles discussed the architectures or

frameworks of BDM in IoT-based traffic control and

energy and used the ML for this purpose. ML4IoT [108] is

a container-based ML framework for IoT data analytics

and coordinating ML workflows. This framework aims to

define and automate the execution of ML workflows. The

proposed framework uses several types of ML algorithms.

The ML4IoT framework has two layers: ML4IoT data

management and ML4IoT core. The ML4IoT core layer

trains and deploys ML models and consists of five com-

ponents: a workflow designer, a workflow orchestrator, a

workflow scheduler, container-based components, and a

distributed data processing engine. ML4IoT data manage-

ment is responsible for data ingesting and storing and has

three sub-components: a messaging system, a distributed

file system, and a NoSQL database. The results of this

article reveal that this framework has high elasticity,

scalability, robustness, and performance. Furthermore,

Chhabra et al. [111] proposed a scalable and flexible cyber-

forensics framework for IoT BDA analytics with high

precision and sensitivity. This framework consisted of four

modules: the data collector and information generator;

feature analytics and extraction; designing ML models; and

analyzing models on various efficiency matrices. This

article used Google’s programming model, MapReduce, as

the core for traffic translation, extraction, and analysis of

dynamic traffic features. Also, they presented a compara-

tive study of globally accepted ML models for peer-to-peer

malware analysis in mocked real-time.

Table 17 shows the result of the analysis of the articles.

This table shows the architecture or framework name, OS

name, programming language, advantages, and disadvan-

tages for each article. As you can see, the component-based

architecture is the most important, with two articles.

3.2.1.6 BDM architectural/framework for IoT-based urban
planning

To improve the quality, plan, design, sustainability,

living standards, dynamic organization, mobility of urban

space and structure, and maintain the urban services, BDM

is responsible for offline and online aggregation, managing,

processing, and analyzing the large amounts of big data in

urbanization [180–182]. Rathore et al. [51] proposed the

4-layer IoT-based BDA architecture for smart city devel-

opment and urban planning. The first layer generated,

aggregated, registered, and filtrated data from various IoT

sources. Using communication technologies, the second

layer created communication between sensors and the relay

node. The third layer used HDFS, Hbase, Hive, and SQL

for storage; MapReduce for offline analysis; and Spark,

VoltDB, and Storm for real-time analysis. The last layer is
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responsible for showing the study results for intelligent and

fast decision-making. The results show that the architecture

provides efficient outcomes even on IoT big data sets.

Throughput has increased with the rise in data size, and the

processing time has decreased.

Silva et al. [63] proposed a reliable 3-layer BDA-em-

bedded architecture for urban planning. The layers of this

architecture are data aggregation, data management, and

service management. The purpose of this article is to

increase throughput and minimize processing time. The

real-time data management layer is the main layer and

performs data filtration, analysis, processing, and storing.

This layer used data filtration and min–max normalization

techniques to improve energy data. This architecture used

MapReduce for offline data processing, Spark for online

data processing, and Hbase for storing.

Table 18 shows the result of the analysis of the articles.

This table shows the architecture or framework name, OS

name, programming language, advantages, and disadvan-

tages for each article. As you can see, layered architecture

is the most important, with two articles.

3.2.1.7 BDM architectural/framework for other IoT-based
applications This subsection presents a review of the

articles (14 articles) that have discussed the architectures or

frameworks of BDM in other IoT-based applications.

These IoT applications are smart IoT systems (4 articles),

smart flood (1 article), smart farms (2 articles), disaster

management (1 article), laundry (1 article), smart pipeline

(1 article), network traffic (1 article), digital manufacturing

(1 article), smart factory (2 articles).

Al-Osta et al. [121] proposed an event-driven and

semantic rules-based approach for IoT data processing. The

main levels of this system are sensor, edge, and cloud

levels. This article has two purposes: reducing the required

resources and the volume of data before transfer to the

cloud for storage. The collected data is first aggregated,

filtered, and classified at the gateway level. This causes a

saving in bandwidth and minimizes the network traffic.

This approach used semantic rules for data filtering. It also

employed a complex event processing module to analyze

input events and detect processing priority.

Wang et al. [148] proposed a 3-layer edge-based

architecture and a dynamic switching algorithm for IoT big

data analytics. The layers of this architecture are the cloud

layer, edge layer, and IoT layer. The edge layer performed

some functions, including identifying IoT applications,

classifying them, and sending classification results to the

cloud layer. The LibSVM method is used for IoT appli-

cation identification and classification based on system

status and requirements. Also, this article presented a new

algorithm, namely the dynamic switching algorithm, for

task offloading from cloud to edge based on the delay and

network conditions. This algorithm performed task

offloading based on classification results. The results

showed the proposed architecture reduced delay, process-

ing time, and energy consumption.

IODML-BDA [124] is a model for Intelligent Outlier

Detection in Apache Spark using ML-powered BDA for

mobile edge computing. This model performs four steps:

data preprocessing, outlier detection, feature selection, and

classification. This article employs an Adaptive Synthetic

Sampling (ADASYN)-based technique for outlier detec-

tion, the Oppositional Swallow Swarm Optimization

(OSSO) for feature selection, and a Long Short-Term

Memory (LSTM) model for classification. This model has

high performance and accuracy in BDA.

Kumar et al. [3] presented a novel 4-layer architecture

for IoT big data management in cloud computing networks

and a collaborative filtering recommender system. The

information layer collects data and transmits them to the

second layer. The transport layer uses GPRS/CDMA,

wireless RFID, or Ethernet channels for communication

and data uploading in the data mining layer. The data

mining layer utilizes the ML method for data analysis. The

application layer is responsible for data visualization based

on extracted information from the data mining layer. The

article also proposed a collaborative filtering algorithm to

improve the prediction accuracy based on the time-

weighted decay function and asymmetrical influence

degree. The result of this article demonstrated that this

architecture has high accuracy.

Sood et al. [75] proposed a 4-layer flood forecasting and

monitoring architecture based on IoT, High-Performance

Computing (HPC), and big data convergence. The IoT

layer is responsible for IoT device installation and data

collection. The fog computing layer reduces the latency of

application execution when predicting the real-time flood.

The data analysis layer received, stored, and analyzed the

collected data. This layer used Singular Value Decompo-

sition (SVD) for data reduction and a K-mean clustering

algorithm to estimate the flood situation and rating. Also,

Holt-Winter’s forecasting method is utilized to forecast the

flood. The last layer is the presentation layer, which gen-

erates information for decision-making. The results showed

the proposed architecture reduced latency, complexity,

completion time, and energy consumption.

Muangprathub et al. [79] proposed a WSN system for

agriculture data analysis based on the IoT for watering

crops. This system consists of three components. The

hardware component collected data and sent them to the

web application for real-time analysis. This component is

responsible for data preprocessing, data reduction by the

equal-width histograms technique, data modeling/discov-

ery by association rules mining technique, and solution

analysis. The web application manages real-time
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information. The mobile application component controlled

crop watering remotely. The architecture of this system has

three layers: the environmental data acquisition layer, the

data, and communication layer, and the application layer.

This system can help to reduce costs and increase agri-

cultural productivity.

Al-Qurabat et al. [65] proposed a two-level system for

data traffic management in smart agriculture based on

compression and Minimum Description Length (MDL)

techniques. The first level is the sensor node level. This

level monitors the features of the environment using a

lightweight lossless compression algorithm based on Dif-

ferential Encoding (DE) and Huffman techniques. The

second level is the edge gateway level. This level is

responsible for processing, analyzing, filtering, storing, and

sending the data to the cloud, and minimizes the first level

dataset using MDL and hierarchical clustering. The results

demonstrated the suggested method has a high compression

ratio and accuracy and decreases data and energy

consumption.

Shah et al. [53] proposed the 5-layer architecture for IoT

BDA in a disaster-resilient smart city. The purpose of this

architecture is to store, mine, and process big data from IoT

devices. This architecture’s layers include data resource,

transmission, aggregation, analytics and management, and

application and support services. This architecture used

Apache Flume and Apache Sqoop for unstructured and

structured data collection; Hadoop and Spark for real-time

and offline data analysis; and HDFS for data storage. The

proposed implementation model comprises data harvesting,

data aggregation, data preprocessing, and a big data ana-

lytics and service platform. This article used a variety of

datasets for validation and evaluation based on processing

time and throughput.

Liu et al. [14] proposed a cloud laundry business model

based on the IoT and BDA. This model used big data

analytics, intelligent logistics management, and ML tech-

niques for big data analytics. This model minimized human

interference and increased system efficiency.

Tang et al. [7] proposed the 4-layer distributed fog

computing-based architecture for big data analysis in smart

cities. The layers of this architecture are the data center on

the cloud layer, intermediate computing nodes layer, edge

devices layer, and sensing networks on the critical infras-

tructure layer. This architecture reduces the communica-

tion bandwidth and data size. First, data was collected from

the fiber sensor network and transmitted to the edge com-

puting nodes layer. This layer performed two tasks: iden-

tifying potential threat patterns and feature extraction using

supervised and non-supervised ML algorithms. The inter-

mediate computing nodes layer used the hidden Markov

model for big data analysis and hazardous event detection.

The results showed the proposed architecture reduced theTa
bl
e
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service response time and the number of service requests

submitted to the cloud.

Kotenko et al. [136] introduced a framework for security

monitoring mobile IoT based on big data processing and

ML. This framework consists of three layers: 1) extraction

and decomposition of a data set using the heuristic

approach; 2) compression of feature vectors using Principal

Component Analysis (PCA); and 3) learning and classifi-

cation using the SVM k-nearest neighbor’s method,

Gaussian NB, artificial neural network, and decision tree.

This framework has high performance and accuracy in the

detection of attacks.

Bi et al. [157] proposed a new enterprise architecture

that integrates IoT and BDA for managing the complexity

and stability of the digital manufacturing system. This

article used Shannon entropy to measure the complexity of

a system based on the number of events and the proba-

bilities of event occurrences. This architecture performs

three processes: data acquisition, management, and uti-

lization. The result of this article demonstrated that this

architecture decreases the system complexity and increases

flexibility, resilience, responsiveness, agility, and

adaptability.

Yu et al. [118] presented a BDA and IoT-based frame-

work for health state monitoring in a smart factory. This

framework consists of four phases. The data ingestion

phase is responsible for extracting different data types,

managing data collection, data security, data transforma-

tion using a secure file transfer protocol, and data storage

issues. The big data management phase uses optimized

HDFS for data storage on the cloud nodes and processing

using Apache Spark. The data preparation phase performs

sensor selection and noise detection processing to produce

high-quality data. This phase uses the high-variance feature

removal method for feature selection and a novel method

for noise detection. The predictive modeling phase has four

stages: PCA model training, streaming anomaly detection,

contribution analysis, and alarm sequence analysis.

Kahveci et al. [183] proposed a secure, interoperable,

resilient, scalable, and real-time end-to-end BDA platform

for IoT-based smart factories. The platform architecture

has five layers and several components that perform data

collection, data integration, data storing, data analytics, and

data visualization. The layers of architecture are the control

and sensing layer, the data collection layer, the data inte-

gration layer, the data storage and analytics layer, and the

data presentation layer. All kinds of sensing and control

activities are performed in the first layer. The data collec-

tion layer communicates with the first layer through a

multi-node client/server architecture. The data integration

layer uses the RESTful application program interface to

transfer data collected to the data storage layer. The data

storage layer uses InfluxDB for industrial metrics and

events. Using this architecture, production line perfor-

mance is improved, bottlenecks are identified, product

quality is improved, and production costs are reduced.

Table 19 shows the result of the analysis of the articles.

This table shows the architecture or framework name, OS

name, programming language, advantages, and disadvan-

tages for each article. As you can see, layered architecture

is the most important, with 14 articles.

3.2.2 BDM architectural/framework for IoT paradigms

Another category presented in this article is BDM archi-

tectures and frameworks in two important IoT paradigms,

i.e., Social Internet of Things (SIoT) and Multiple Internet

of Things (MIoT). SIoT is the integration of the IoT with

social networking that leads to improved scalability in

information and service discovery, trustworthy relation-

ships, security, performance, and high network navigability

[91, 184]. The SIoT establishes relationships and interac-

tions between human-to-human, human-to-object, and

object-to-object social networks in which humans are

considered intellectual and relational objects [185, 186].

The types of relationships.

between smart, complex, and social objects in SIoT are

parental object relationships, co-location object relation-

ships, co-work object relationships, ownership object

relationships, social object relationships, stranger object

relationships, guest object relationships, sibling object

relationships, and service object relationships [187, 188].

A MIoT is a collection of connected things that are dif-

ferent kinds of relationships and objects.

In contrast to SIoT, the number of relationships in MIoT

is not predefined. Therefore, SIoT is a specific case of

MIoT where the number of possible relationship types is

limited [187]. The MIoT paradigm has advantages over the

IoT and SIoT. IoT can be divided into multiple networks of

interconnected smart objects through MIoT. The MIOT can

handle situations where the same objects behave differently

in different networks and allows objects from various

networks to communicate without being directly connected

[189]. Social objects in the SIoT and MIoT can perform

tasks, including physical condition detection, data collec-

tion, information exchange, big data processing and anal-

ysis, and visualization for decision-making, predicting

human behavior, and increasing efficiency and scalability.

Due to the heterogeneous nature of communication and

social networks, which generate high volume, multi-

source, dynamic, and sparse data from SIoT and MIoT

objects, the BDA is a vital issue in these paradigms. For

BDA in SIoT and MIoT, a large amount of memory, power

processing, and bandwidth are required to store, define,

process, predict, and assist humans for a limited time
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es
re

q
u

ir
ed

fo
r

d
at

a

p
ro

ce
ss

in
g

-R
ed

u
ce

s
th

e
am

o
u

n
t

o
f

d
at

a
to

b
e

tr
an

sf
er

re
d

to
th

e
cl

o
u

d

-R
ea

l-
ti

m
e

d
at

a
p

ro
ce

ss
in

g

-N
o

co
m

p
ar

is
o

n
is

m
ad

e

-N
o

t
co

n
si

d
er

ed
m

o
re

co
m

p
re

ss
io

n
p

ar
am

et
er

s

W
an

g
,

et
al

.
[1

4
8
]

L
ay

er
ed

-b
as

ed
,

C
lo

u
d

-b
as

ed

N
/A

M
A

T
L

A
B

-D
ec

re
as

in
g

th
e

av
er

ag
e

d
el

ay
,

p
ro

ce
ss

in
g

ti
m

e,
an

d
en

er
g

y
co

n
su

m
p

ti
o

n

-L
o

w
-c

o
m

p
le

x
it

y

-N
o

co
m

p
ar

is
o

n
is

m
ad

e

-T
h

e
d

at
as

et
is

n
o

t
sp

ec
ifi

ed

IO
D

M
L

-B
D

A

M
an

so
u

r,
et

al
.

[1
2

4
]

L
ay

er
ed

-b
as

ed
N

/A
N

/A
-H

ig
h

ac
cu

ra
cy

-R
ed

u
ce

s
en

er
g

y
an

d
m

em
o

ry
co

n
su

m
p

ti
o

n

-F
u

ll
y

ev
al

u
at

io
n

h
as

n
o

t
b

ee
n

p
er

fo
rm

ed

-N
o

t
u

se
d

M
L

te
ch

n
iq

u
es

K
u

m
ar

,
et

al
.

[3
]

L
ay

er
ed

-b
as

ed
,

C
lo

u
d

-b
as

ed

N
/A

M
A

T
L

A
B

-H
ig

h
ac

cu
ra

cy

-D
ec

re
as

es
lo

ss
ra

te
an

d
re

ca
ll

ra
te

-F
u

ll
y

ev
al

u
at

io
n

h
as

n
o

t
b

ee
n

p
er

fo
rm

ed

-T
h

e
M

L
al

g
o

ri
th

m
u

se
d

is
n

o
t

k
n

o
w

n

S
m

ar
t

fl
o

o
d

S
o

o
d

,
et

al
.

[7
5
]

L
ay

er
ed

-b
as

ed
A

n
d

ro
id

&

W
in

d
o

w
s

Ja
v

a
&

M
A

T
L

A
B

-R
ed

u
ce

s
la

te
n

cy
,

co
m

p
le

x
it

y
,

an
d

co
m

p
le

ti
o

n
ti

m
e

-R
ed

u
ce

s
en

er
g

y
co

n
su

m
p

ti
o

n

-E
ffi

ci
en

tl
y

fo
r

id
en

ti
fy

in
g

ap
p

ro
p

ri
at

e

lo
ca

ti
o

n
s

to
in

st
al

l
Io

T
d

ev
ic

es

-R
ea

l-
ti

m
e

p
re

d
ic

ti
o

n

-I
n

cr
ea

se
s

th
e

ef
fi

ci
en

cy
o

f
S

V
D

-N
o

co
m

p
ar

is
o

n
is

m
ad

e

-C
ri

te
ri

a
su

ch
as

th
ro

u
g

h
p

u
t,

p
re

ci
si

o
n

,
se

n
si

ti
v

it
y

,

sp
ec

ifi
ci

ty
,

et
c.

,
h

av
e

n
o

t
b

ee
n

ev
al

u
at

ed

S
m

ar
t

fa
rm

s
M

u
an

g
p

ra
th

u
b

,

et
al

.
[7

9
]

L
ay

er
ed

-b
as

ed
,

co
m

p
o

n
en

t–

b
as

ed
,

N
/A

N
/A

-M
o

n
it

o
ri

n
g

an
d

d
ec

is
io

n
-m

ak
in

g
ar

e

im
p

ro
v

ed

-R
ea

l-
ti

m
e

d
at

a
p

ro
ce

ss
in

g

-I
n

cr
ea

se
s

p
ro

d
u

ct
iv

it
y

m
ea

n
s

-C
ar

ri
ed

o
u

t
in

a
m

ix
ed

cr
o

p
en

v
ir

o
n

m
en

t

-B
o

th
au

to
m

at
ic

an
d

m
an

u
al

fu
n

ct
io

n
al

co
n

tr
o

ls
to

th
e

u
se

r

-N
o

co
m

p
ar

is
o

n
is

m
ad

e

-F
u

ll
y

ev
al

u
at

io
n

h
as

n
o

t
b

ee
n

p
er

fo
rm

ed

-N
o

t
u

se
d

M
L

te
ch

n
iq

u
es

-G
en

er
at

es
h

u
g

e
v

o
lu

m
e

o
f

d
at

a

A
l-

Q
u

ra
b

at
,

et
al

.

[6
5
]

L
ay

er
ed

-b
as

ed
,

C
lo

u
d

-b
as

ed

N
/A

N
/A

-R
ed

u
ce

s
th

e
am

o
u

n
t

o
f

d
at

a

-R
ed

u
ce

s
en

er
g

y
co

n
su

m
p

ti
o

n

-H
ig

h
co

m
p

re
ss

io
n

ra
ti

o
an

d
ac

cu
ra

cy

-D
ec

re
as

es
al

g
o

ri
th

m
co

m
p

le
x

it
y

-D
o

es
n

o
t

re
ac

h
th

e
th

eo
re

ti
ca

l
m

ax
im

u
m

-N
o

t
ap

p
ly

in
g

M
L

te
ch

n
iq

u
es

D
is

as
te

r

m
an

ag
em

en
t

S
h

ah
,

et
al

.
[5

3
]

L
ay

er
ed

-b
as

ed
U

B
U

N
T

U
Ja

v
a

-R
ea

l-
ti

m
e

an
d

o
ffl

in
e

an
al

y
si

s
an

d

p
ro

ce
ss

in
g

-W
o

rk
w

it
h

d
if

fe
re

n
t

d
at

a
so

u
rc

es

-D
if

fe
re

n
t

d
at

a
so

u
rc

es
ar

e
n

o
t

co
n

si
d

er
ed
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Ta
bl
e
19

(c
o

n
ti

n
u

ed
)

D
o

m
ai

n
A

rc
h

it
ec

tu
re

/

fr
am

ew
o

rk
n

am
e

A
rc

h
it

ec
tu

re
/

fr
am

ew
o

rk
m

o
d

el

O
S

ty
p

e
P

ro
g

ra
m

m
in

g

la
n

g
u

ag
e

A
d

v
an

ta
g

es
D

is
ad

v
an

ta
g

es

L
au

n
d

ry
L

iu
,

et
al

.
[1

4
]

L
ay

er
ed

-b
as

ed
,

C
lo

u
d

-b
as

ed

N
/A

P
y

th
o

n
-O

ffl
in

e
an

d
re

al
-t

im
e

an
al

y
si

s,
sc

h
ed

u
li

n
g

,

an
d

p
ro

ce
ss

in
g

-P
re

v
en

t
h

u
m

an
er

ro
rs

an
d

in
cr

ea
se

th
e

sy
st

em
ef

fi
ci

en
cy

-T
h

e
to

ta
l

co
st

is
lo

w
er

th
an

th
e

tr
ad

it
io

n
al

m
o

d
el

s

-I
m

p
ro

v
in

g
th

e
tr

an
sp

ar
en

cy
an

d
q

u
al

it
y

o
f

la
u

n
d

ry

-N
o

co
m

p
ar

is
o

n
is

m
ad

e

-F
u

ll
y

ev
al

u
at

io
n

h
as

n
o

t
b

ee
n

p
er

fo
rm

ed

-D
o

es
n

o
t

u
se

m
o

re
co

m
p

u
ta

ti
o

n
al

ly
ef

fi
ci

en
t

A
rt

ifi
ci

al
In

te
ll

ig
en

ce
(A

I)
al

g
o

ri
th

m
s

S
m

ar
t

p
ip

el
in

e
T

an
g

,
et

al
.

[7
]

L
ay

er
ed

-b
as

ed
,

C
lo

u
d

/f
o

g
-b

as
ed

N
/A

N
/A

-S
u

p
p

o
rt

m
u

lt
i-

le
v

el
d

at
a

as
so

ci
at

io
n

-S
u

it
ab

le
fo

r
la

rg
e-

sc
al

e
an

d
co

m
p

u
ti

n
g

-

in
te

n
si

v
e

sy
st

em
s

-D
at

a
an

d
co

n
tr

o
l

fl
o

w

-R
ed

u
ce

s
th

e
tr

an
sm

is
si

o
n

b
an

d
w

id
th

,

p
o

w
er

co
n

su
m

p
ti

o
n

,
an

d
ti

m
e

to
se

rv
ic

e

-N
o

co
m

p
ar

is
o

n
is

m
ad

e

-N
o

t
m

en
ti

o
n

ed
to

d
is

tr
ib

u
te

d
p

ro
ce

ss
in

g

fr
am

ew
o

rk
fo

r
fo

g

-N
o

t
m

en
ti

o
n

ed
d

ev
ic

es
u

se
d

as
fo

g

-T
h

e
d

at
as

et
is

n
o

t
sp

ec
ifi

ed

N
et

w
o

rk
tr

af
fi

c
K

o
te

n
k

o
,

et
al

.

[1
3

6
]

L
ay

er
ed

-b
as

ed
N

/A
N

/A
-H

ig
h

p
er

fo
rm

an
ce

an
d

ac
cu

ra
cy

-R
ed

u
ce

s
th

e
ti

m
e

co
st

s
fo

r
tr

ai
n

in
g

-N
o

co
m

p
ar

is
o

n
is

m
ad

e

-R
ea

l-
ti

m
e

p
ro

ce
ss

in
g

h
as

n
o

t
b

ee
n

re
v

ie
w

ed

-N
o

t
u

si
n

g
sp

ec
ia

l
so

ft
w

ar
e

su
ch

as
H

ad
o

o
p

an
d

S
p

ar
k

D
ig

it
al

m
an

u
fa

ct
u

ri
n

g

B
i,

et
al

.
[1

5
7
]

L
ay

er
ed

-b
as

ed
N

/A
N

/A
-R

ed
u

ce
s

th
e

sy
st

em
co

m
p

le
x

it
y

-H
ig

h
fl

ex
ib

il
it

y
,

re
si

li
en

ce
,

re
sp

o
n

si
v

en
es

s,

ag
il

it
y

,
an

d
ad

ap
ta

b
il

it
y

-I
n

d
ep

en
d

en
t

to
p

ro
d

u
ct

s,
se

ct
o

rs
,

o
r

re
g

io
n

s

-N
o

co
m

p
ar

is
o

n
is

m
ad

e

-F
u

ll
y

ev
al

u
at

io
n

h
as

n
o

t
b

ee
n

p
er

fo
rm

ed

S
m

ar
t

fa
ct

o
ry

Y
u

,
et

al
.

[1
1

8
]

L
ay

er
ed

-b
as

ed
N

/A
N

/A
-T

h
is

fr
am

ew
o

rk
is

g
en

er
ic

-C
o

n
si

d
er

s
d

at
a

q
u

al
it

y
is

su
es

-R
ea

l-
ti

m
e

an
d

b
at

ch
an

al
y

si
s

an
d

p
ro

ce
ss

in
g

-N
o

co
m

p
ar

is
o

n
is

m
ad

e

-F
u

ll
y

ev
al

u
at

io
n

h
as

n
o

t
b

ee
n

p
er

fo
rm

ed

K
ah

v
ec

i,
et

al
.

[1
8

3
]

L
ay

er
ed

-b
as

ed
,

co
m

p
o

n
en

t-

b
as

ed

N
/A

N
/A

-S
ca

la
b

le
,

se
cu

re
,

re
si

li
en

t,
in

te
ro

p
er

ab
le

,

an
d

h
ig

h
p

er
fo

rm
an

ce

-R
ed

u
ce

s
p

ro
d

u
ct

io
n

co
st

-B
at

ch
an

d
re

al
-t

im
e

d
at

a
an

al
y

si
s

-N
o

co
m

p
ar

is
o

n
is

m
ad

e

-F
u

ll
y

ev
al

u
at

io
n

h
as

n
o

t
b

ee
n

p
er

fo
rm

ed

-D
ep

lo
y

s
o

n
ly

o
n

o
n

-p
re

m
is

es
cl

u
st

er
s
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[64, 91]. Different researchers have examined BDA in

these paradigms in various ways.

Paul et al. [91] proposed a system called SmartBuddy

that performs the BDA for SIoT-based smart city data to

define real-time human dynamics. This architecture has

three domains: the object domain, the SIoT server domain,

and the application domain. The object domain collects the

data and sends them to the SIoT server for balancing,

storing, querying, processing, defining, and predicting

human behavior. The application domain has four main

components: security, cloud server, results in storage

devices, and data server. This domain compilation is the

result of the SIoT server domain. This article uses

MapReduce programming for offline data analysis and

Apache Spark for real-time analysis. SmartBuddy has high

throughput and applicability.

HABC [52] is a Hadoop-based architecture for social

IoT big data feature selection and analysis. This architec-

ture has four layers: data collection, communication, fea-

ture selection and processing, and service. The data

collection layer collected, registered, and filtered data. The

communication layer provided end-to-end connectivity to

various devices and used the Kalman filter to remove noise.

The feature selection and processing layer used MapRe-

duce for data analysis and HDFS, HBSE, and HIVE for

manipulation and storing. The Artificial Bee Colony (ABC)

is used for feature selection. The results indicate that the

architecture increases throughput and accuracy and is more

scalable.

Lakshmanaprabu et al. [64] proposed a hierarchical

framework for feature extraction in SIoT big data using the

MapReduce framework and a supervised classifier model.

This framework has five steps: SIoT data collection, fil-

tering, database reduction, feature selection, and classifi-

cation. This article used the Gabor filter to reduce the noisy

data, Hadoop MapReduce for database reduction, Elephant

Herd Optimization (EHO) for feature selection, and a linear

kernel SVM-based classifier for data classification. The

result showed the proposed architecture has high maximum

accuracy, specificity, sensitivity, and throughput.

Socio-cyber network [66] is the 4-layer architecture that

integrates the social network with the technical network for

analyzing human behavior using big data. This architecture

uses the user’s geolocation information to make friendships

and graph theory to examine the trust index. The data

generation layer is responsible for data collection, aggre-

gating, registration, and filtration. The communication

layer provides end-to-end connectivity to various devices.

This layer creates a graph of data, and when new data are

added to the system, this graph is updated. The data storage

and processing layer perform the load balancing algorithm

and graph processing. This layer uses MapReduce for data

processing, the Spark GraphX tool for real-time analysis,

and HDFS for data storage. This article uses the Knowl-

edge Pyramid for knowledge extraction. The service layer

shows the result to users.

Shaji et al. [120] presented a 5-phase approach for big

data classification in SIoT. The phases of this approach are

the data acquisition phase, data filtering phase, reduction

phase, feature selection phase, and classification phase.

This article uses an adaptive Savitzky–Golay filter for fil-

tering and eliminating noisy data; the Hadoop MapReduce

framework for data reduction; a modified relief technique

for optimal feature selection; and a deep neural network-

based marine predator algorithm for classification. This

article has high accuracy, precision, specificity, sensitivity,

throughput, and low energy consumption.

Floris et al. [67] proposed a 4-layer architecture based

on SIoT to deploy a full-stack smart parking solution. The

layers of this architecture are the hardware layer, virtual-

ization layer, aggregation layer, and application layer. The

hardware layer collected data and consisted of a vehicle

detection board, Bluetooth beacon, data transmission

board, and concentrator. The SIoT paradigm is implements

in the virtualization layer using device virtualization. ML

algorithms are implemented in the aggregation layer for

data aggregation and data processing. The application layer

includes the management platform that supports the control

dashboard for smart parking management and the Android

App for the citizens.

Cauteruccio et al. [166] presented a framework for

anomaly detection and classification in MIoT scenarios.

This framework investigated two problems: the anomaly

effects analysis on the MIoT and the source of the anomaly

detection. The anomalies in MIoT are divided into three

categories: presence anomalies versus success anomalies,

hard anomalies versus soft anomalies, and contact

anomalies versus content anomalies.

Lo Giudice et al. [189] proposed a definition of a thing’s

profile and topic-guided virtual IoT. The profile of a thing

has two components: a content-based component (past

behavior) and a collaborative filtering component (princi-

pal characteristics of those things it has previously inter-

acted with the most). This article uses a supervised and

unsupervised approach to build topic-guided virtual IoTs in

a MIoT scenario. Table 20 shows the result of the analysis

of the articles. The architecture or framework name, the OS

name, programming language, advantages, and disadvan-

tages are shown for each article in this table. As you can

see, layered architecture is the most important, with five

articles.

3.3 Categories based on quality attributes

Systems have different attributes generally divided into

qualitative or functional attributes and non-qualitative or
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o
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o

n
B

D
M
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o
rk
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p
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m
s

A
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h
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/

fr
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p
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n
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e

A
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h
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am
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ra
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]
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er
ed

-b
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U

B
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N
T

U
N
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h
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h
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u
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b
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p
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p
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o

u
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se
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o
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u

se
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M
L

te
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iq

u
es

H
A

B
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2
]

L
ay

er
ed

-b
as

ed
U

B
U

N
T

U
Ja

v
a
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ffl

in
e

an
d

o
n

li
n

e
d

at
a

p
ro
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ss
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g

-#
se

le
ct

ed
fe

at
u

re
d

ec
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non-functional attributes. This section considers the quality

attributes of the selected articles. Quality attributes indicate

the system’s characteristics, operating conditions, and

constraints. There are different software quality models,

such as McCall [190], Bohem [191], ISO/IEC9126, and

FURPS [192]. As far as we know, no systematic article has

completely categorized articles based on qualitative char-

acteristics. Therefore, this paper categorized the selected

articles based on 18 qualitative attributes presented in

Table 21. In this table, the first column shows the names of

these 18 quality attributes. The reviewed articles used these

quality attributes to show the characteristics, quality attri-

bute analysis, and performance analysis of the proposed

approaches, architectures, and frameworks and comparison

with other works. Performance attributes have been ana-

lyzed in different articles based on different criteria. The

reviewed articles utilized 12 quality attributes for perfor-

mance attribute analysis. These quality attributes are load

balancing, energy conservation, network lifetime, pro-

cessing/execution time, response time, delay, CPU usage,

memory usage, bandwidth usage, throughput, latency, and

concurrency. In Table 21, ; indicates the reduction of that

quality characteristic and : indicates the increase of that

quality characteristic. The second column in this

table shows the articles that have used these features. The

performance, efficiency, accuracy, and scalability attributes

are the most critical quality attributes, with 79, 62, 58, and

47 articles, respectively. From another point of view, the

reference model of standard software quality attributes, i.e.,

ISO 25010, has been used to classify articles based on

quality attributes. Table 22 shows the articles’ classifica-

tion according to this standard. In the following, some

quality attributes and their importance will be defined.

– Performance: Performance refers to the ability of BDM

techniques in the IoT to provide results and services

with high load balancing, energy conservation, through-

put, concurrency, low processing/execution time, delay,

CPU/memory/ bandwidth usage, and latency.

– Feasibility: Feasibility refers to the ability to perform

successfully or study the current mode of operation,

evaluate alternatives, and develop BDM techniques in

the IoT.

– Scalability: Scalability refers to the ability of BDM

techniques in the IoT to exploit increasing computing

resources effectively to maintain service quality when

the real data volumes increase. BDM techniques in IoT

must be scalable in performance and data storage. Some

methods and advanced systems are used to improve the

scalability of big data analysis, like parallel implemen-

tation, HPC systems, and clouds [193].

– Accuracy: Accuracy refers to the ability to describe

data and represent a real-world object or event correctly

[194]. In the reviewed articles, various definitions of

accuracy are provided, including clustering accuracy,

classification accuracy, the accuracy of features select-

ing/extracting, and the accuracy of the prediction

model. Each of these cases is evaluated in different

ways.

– Efficiency: Efficiency refers to BDM techniques in IoT

with minimum energy and response time and high

throughput, accuracy, and performance.

– Reliability: Reliability refers to the ability of BDM

techniques in the IoT to apply the specified functions

under specified conditions and within the expected

duration.

– Availability: The main goal of many researchers is the

availability of information and their analysis from

heterogeneous data sources. Availability is one of the

components of service trust and is part of reliability.

– Interoperability: Interoperability refers to the ability to

interconnect and communicate among smart objects,

heterogeneous IoT devices, and different operating

systems. Low-cost device interoperability is a vital

issue in IoT [53, 54, 195].

– Flexibility: Flexibility refers to the capacity of BDM

techniques in the IoT to be adapted for different

environments and situations to face external changes

[196].

– Robustness: Robustness refers to a stable BDM system

in the IoT that can function despite erroneous, excep-

tional, or unexpected inputs and unexpected events.

3.4 Big data analytics types in IoT

There are different types of analytics. This study uses

Gartner’s classification,2 which includes four types of

analysis: descriptive analysis (‘‘what happened?’’), diag-

nostic analysis (‘‘why did it happen?’’), predictive analysis

(‘‘What could happen?’’), and prescriptive analysis (‘‘What

should we do?’’). In descriptive analytics, historical busi-

ness data is analyzed to describe what happened in the past.

Diagnostic analytics investigates and identifies the causes

of trends and why they occurred. The goal of predictive

analytics is to forecast the future using a variety of statis-

tical and ML techniques. Prescriptive analytics proposes

the best action to take to accomplish a business’s objective

using the data collected from descriptive and predictive

analytics for decision-making based on future situations

[197].

This paper investigates the applied methods for data

analysis and categorizes them based on the type of analysis

these methods provide. Organizations need statistics, AI,

2 http://www.gartner.com/it-glossary/predictive-analytics/.
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deep learning, data mining, prediction mechanisms, etc.,

for BDA and to evaluate the data [198]. The articles used

ML algorithms to perform various analyses in the steps of

BDA. ML algorithm is an appropriate approach or tool for

BDA; decision-making; meaningful, precise, and valuable

information extraction; and detecting hidden patterns in big

datasets [199, 200]. Utilizing the ML algorithms in BDA

has advantages such as improving and optimizing BDM

processes; heterogeneous big data analysis; sustainability;

fault detection, prediction, and prevention; accurate and

reliable real-time processing; resource management and

reduction; and increased quality prediction, visual inspec-

tion, and productivity in IoT applications [83, 201]. These

algorithms are divided into four types: supervised, semi-

supervised, unsupervised, and reinforcement ML algo-

rithms [53, 202]. Table 23 shows the categorization of

articles based on BDA types. The most common tactics

that the selected articles use for BDM in the IoT include

classification (51 articles), simulation (38 articles), opti-

mization (30 articles), and clustering (25 articles).

The reason for using more classification algorithms is

that they help to categorize unstructured and high-volume

data. Therefore, BDM in the IoT is faster and more effi-

cient. Before classification begins, it must optimize the

classification algorithm’s inputs. Data reduction strategies

extract optimal and required data from a large amount of

data. These strategies include dimensionality reduction,

numerosity reduction, and data compression. Some

reviewed articles used Principal Components Analysis

(PCA) to standardize, reduce the data redundancy and

dimensionality, reduce the cost and processing time, and

maintain the original data [69, 114, 118, 135, 136]. Also,

the authors in [160] used the fuzzy C-means algorithm to

reduce the amount of data. Feature selection methods

improve classification accuracy and reduce the number of

features in BDA. The collected data from IoT applications

and monitoring systems are usually anomalous, and it is

difficult to distinguish between the original data and the

anomaly [201]. The anomaly and outlier data reduce the

accuracy of the classification and prediction models. For

instance, NRDD-DBSCAN [114], DBSCAN-based outlier

detection [83], GA, and One-Class Support Tucker

Machine (OCSTuM) [122, 124] are some of the high-ro-

bust, high-performance, and anti-noisy methods for

anomaly detection that are presented in reviewed articles.

SVM is the most common method based on classifica-

tion (10 articles) for BDM in the IoT in supervised clas-

sification. SVM is a non-parametric, memory-efficient,

error-reduction classification method that performs well in

theoretical analysis and real-world applications. It can

model non-linear, complex, and real-world problems in

high-dimensional feature space [2, 69, 203]. However,

SVM is difficult to interpret, has a high computational cost,Ta
bl
e
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and is not scalable [204]. In unsupervised classi-

fication, the k-means clustering algorithm is the

most common strategy (6 articles). The standard

k-mean clustering algorithm is a simple parti-

tioning method that works well for small and

structured datasets. It is sensitive to the number of

clusters, initial input, and noise data. The standard

k-means clustering must be modified to be used in

BDA. Some research focuses on the MapReduce/

Spark implementation of traditional k-means

clustering that improves the accuracy and reduces

the time complexity [205]. Also, articles used the

k-means clustering algorithm to predict floods

[75], security monitoring [136], energy manage-

ment and improve the prediction accuracy

[56, 131], the data access and resource utilization

[144] in IoT. Association rules are an unsuper-

vised learning approach used to discover inter-

esting and hidden relationships and correlations

between variables and objects in large databases

and for data modeling in IoT [79]. Association

rule mining uses various algorithms to identify

frequent item sets, such as the apriori algorithm,

FP growth algorithm, and maximal frequent

itemset algorithm [79, 106]. Neural networks

(NN) perform big data processing and analysis

efficiently. NN has self-learning ability and plays

a significant role in BDA in IoT. NN is used for

classification, big data mining, hidden pattern

recognition, correlation recognition in big data

raw, and decision-making in IoT applications.

There are several different kinds of neural net-

work algorithms, including LSTM [108], radial

basis functions network [69], Deep NN

[101, 162], convolutional NN [163], etc.

Deep learning is a modern machine learning

model that employs supervised or unsupervised

methods to learn and extract multiple-level, high-

level, and hierarchical features for big data clas-

sification tasks and pattern recognition [163, 206].

Deep learning is a BDA tool that can speed up big

data decision-making and feature extraction,

improve the extracted information QoE level,

resolve security issues, data dimensionality, and

unlabeled and un-categorized big data processing

in IoT applications [116, 207]. In the reviewed

articles, deep learning methods are used for

human activity recognition [87], flood detection

[130], smart cities [116], and feature learning on

big data in the IoT [163]. Optimization refers to

selecting the best solution from a set of alterna-

tives by minimizing or maximizing a specified

objective function [208]. Bio-inspired algorithmsTa
bl
e
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are stochastic search techniques used by many researchers

to solve optimization problems in BDM processes in the

IoT, including data ingestion, processing, analytics, and

virtualization [209]. The features of these algorithms are

good applicability, simplicity, robustness, flexibility, self-

organization, and the possibility of dealing with real-world

problems [210]. There are different types of categories for

these algorithms in various articles. For instance, in [211],

these algorithms are categorized into six categories: local

search-based and global search-based; single-solution

based and population-based; memory-based and memory-

less; greedy and iterative; parallel; and nature-inspired and

hybridized. In the reviewed articles, GA and NN are used

more for BDM in the IoT (6 articles). GA has been used for

feature extraction and selection, outlier detection,

scheduling, optimizing energy consumption, reducing

execution time and delay, and optimizing the predictive

model in IoT applications [69, 86, 115, 122, 146, 173].

4 Open issues and challenge

This section offers a variety of vital issues and challenges

that require future work. IoT faces many challenges and

open issues, including security, privacy, hardware,

heterogeneity, data analysis, and virtualization challenges.

IoT devices produce big data that must be monitored and

managed using particular data patterns. For efficient deci-

sion-making, BDA in the IoT is applied to large datasets to

reveal unseen patterns and correlations. So the key chal-

lenge in big data in the IoT is analyzing that data for

knowledge discovery and virtualization. Various types of

research have presented different categories for challenges

and open issues for BDM in the IoT. Romero et al. [212]

divided challenges into principal worries, security and

monitoring, technological development, standardization,

and privacy. Santana et al. [213] divided challenges into

privacy, data management, heterogeneity, energy man-

agement, communication, scalability, security, lack of

testbed, city models, and platform maintenance. Ahmed

et al. [27] divided challenges into four categories: diversity,

security, data provenance, data management, and data

governance and regulation. This study divides challenges

into BDM in the IoT and quality attributes challenges.

4.1 Big data management in the IoT challenges

In many reviewed articles, IoT big data management

depends on centralized centers, including cloud-based

servers, and has technical limitations. These architectures

are platform-centric and have costly customized access

mechanisms. A centralized architecture can have a single

point of failure, which is very inefficient in terms of

scalability and reliability. Also, in these architectures,

unauthorized access to the server might easily result in the

modification, leak, or manipulation of critical data [215]. In

some research, authors used blockchain technology to

overcome these problems [215, 216]. But this technology

has some challenges. For example, blockchain platforms

can consume IoT devices’ computational resources exten-

sively. During the review in Sect. 3.1, the process of BDM

in the IoT includes data collection, communication, data

ingestion, data storage, processing and analysis, and post-

processing, each of which faces a variety of challenges and

problems. This section examines the challenges involved in

each of these steps.

4.1.1 Data collection

Big data in the IoT is generated from different, distributed,

and multisource heterogeneous unsupervised domain

[217, 218]. Collecting this large amount of diverse data

faces challenges such as energy consumption, limited

battery life in sensors and other data collection devices,

different hardware and operating systems, multiple and

disparate resources, and combining them. It can be difficult

to obtain complete, accurate, and maintain quality data. IoT

and WSN encompass a large number of distributed mobile

nodes. Mobile nodes [219] must increase the amount of

data collected while minimizing the power consumption of

both the mobile node and IoT devices. Therefore, the main

challenge is mobile data collection management, deter-

mining and planning mobile sink trajectories for collecting

data from nodes. Most existing mobile data collection

approaches are static and only find a solution for a scenario

with fixed parameters [220]. These solutions do not con-

sider the change in the amount of data generated by the IoT

nodes or devices when an IoT device can move from one

situation to another. For future work, we propose using AI

techniques, including ML or deep learning, for intelligent

management of mobile data collection.

4.1.2 Communication

Transferring data from different sources to the data pro-

cessing and analysis stage is one of the steps in BDM in the

IoT. Communication protocols and technologies must

share data at high speeds and on time. The connectivity

challenges include interoperability, bandwidth, reducing

traffic, energy consumption, security, network, transport

protocols, delivery of services, network congestion, and

communication cost. Another connectivity challenge is

nodes accessing other nodes’ information under different

network topologies with different channel fading [221].

Concerning advances in mobile information infrastructure,

integration of the 6G technologies, mobile satellite
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communications, and AI can increase frequency band,

network speed, and network coverage and improve the

number of connections [222]. Different approaches are

proposed for data transmission optimizing and overcoming

these limitations, such as parsimonious/compressive sens-

ing [223, 224]. Compressive sensing technology is a theory

of acquiring and compressing signals that use the sparsity

behavior of natural signals at the sensing stage to minimize

power consummation and data dimensionality reduction

[225]. In compressive sensing technology, the collected

data from different sensors are first compressed and then

transmitted. Therefore, the complexity is transferred to the

receiver side from the sensors, which are usually resource-

constrained and self-powered [226]. For future work, we

propose combining compressive sensing with AI tech-

nologies to present a lightweight, real-time, and dynamic

compressive sensing method for overcoming the commu-

nication challenges in BDM in the IoT.

4.1.3 Data ingestion

Big data in the IoT have various features such as: enor-

mous, high-speed, heterogeneity of data formats, com-

plexity, different data resolutions, abnormal and incorrect,

ambiguity, unbalanced, massive redundancy, multidimen-

sional, granularity, continuously, inconsistencies, proba-

bilistic, sparse, sequential, dynamical, timeliness, non-

randomly distributed, and misplaced

[56, 63, 89, 117, 119, 125, 135, 137, 173, 227]. Each data

ingestion step discussed in Sect. 3.1.3 has challenges.

These issues are anomaly detection, missing data, outlier

detection, feature selection/extraction, dimensionality

reduction, redundancy, standardization, rule discovery,

computational cost, and normalization that different

mechanisms use for these challenges. Missing data could

lead to the loss of a large amount of valuable and reliable

information and bad decision-making. Many articles utilize

the delete, ignore, mean/median value, or constant global

methods for handling missing data. These dangerous

methods may yield biased and untrustworthy results [228].

Therefore, adding new techniques by considering more

efficiency, high accuracy, minimal computational com-

plexity, and less time consumption is interesting in the

future. For this purpose, we can use ML and nature-in-

spired optimization algorithms or a combination thereof.

The parallel technology has made data ingestion and pro-

cessing more efficient in recent years, and it saves space

and time by eliminating the need to decompress data [229].

Also, BDA types in the IoT are used in this stage, which is

discussed in Sect. 3.4. Each of these methods has chal-

lenges. For example, clustering has challenges such as real-

time clustering, local optima, determining the number of

clusters, updating the clustering centers, and determining

the initial clustering centers. ANN faces many issues,

including how to determine the number of layers, the

training, and test samples, the number of nodes, choosing

an operable objective function, and how to improve the

training speed of the network in a big data environment.

Various articles solve these problems using meta-heuristic

algorithms. However, these algorithms cannot handle big

IoT data sets within the specified time due to high com-

putation costs, limited memory, and processing units, and

premature convergence [145, 230]. For future work, we

propose using new optimization meta-heuristic algorithms

and AI methods based on these techniques by utilizing the

strengths of MapReduce and Apache Spark.

4.1.4 Data storage

Data storage is another major challenge in BDM in the IoT.

The big data storage mechanisms in the IoT were discussed

in Sect. 3.1.4. The challenges in this regard can be cate-

gorized as IoT-based big data storage systems in cloud

computing and complex environments such as industry 4.0

applications and data storage architecture. The main data

storage challenges are IoT data replication and consistency

management. Many researchers have proposed strategies

for determining the best location for copy storage in geo-

distributed storage systems based on cloud and fog com-

puting. But many of them, due to the geographical distance

between distributed storage systems, cannot handle the

problems of high data access latencies and replica syn-

chronization costs [231]. Also, data consistency manage-

ment strategies must manage the massive amounts of data

with different data consistency requirements and system

heterogeneity.

4.1.5 Processing and analysis

The big data processing and analysis in BDM in the IoT

has different challenges, including task scheduling, real-

time data analysis, developing the IoT data analysis

infrastructure, data management in the cloud-IoT envi-

ronments, and query optimization. The authors used data

mining and AI algorithms to overcome these challenges.

The challenges of using AI technologies for data analytics

in the IoT are to balance the computational costs (or

response time) and improve the accuracy of the prediction

and analysis results [232]. Also, many multi-objective

optimization problems have more than three objective

functions, which present challenges, including the diversity

and convergence speed of the algorithm [152]. However,

determining an algorithm to process a dynamic IoT dataset

based on some application-specific goals for better accu-

racy remains a challenge. Also, most current methods

cannot meet user demands for the fundamental features of
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cloud-IoT environments, including heterogeneity, dyna-

mism, reliability, flexibility, responsiveness, and elasticity.

For future work, we propose studies of various optimiza-

tion algorithms, including metaheuristic algorithms (many-

objective) and ML algorithms, and combined versions of

these algorithms for big data processing and analysis in the

IoT. Regarding the limitations of wireless nodes (low

power and computational) and cloud servers (high latency,

privacy, performance bottleneck, context unawareness,

etc.) for processing and analysis computing tasks, using

mobile edge or fog computing to overcome these problems

is helpful.

4.1.6 Post-processing

Providing insight from processed and analyzed data in the

IoT requires selecting appropriate visualization techniques.

Most of the reviewed methods use simulator tools such as

CloudSim [143, 173], TRNSYS [131], Cooja [82], and

Extend-Sim [8] for evaluation. Additional studies are

needed to evaluate the mentioned approaches in real-world

systems and datasets.

4.2 QoS management

QoS is one of the critical factors in BDM in the IoT and

needs research, management, and optimization (discussed

in Sect. 3.3). The reviewed articles used these parameters

and metrics for evaluation. No article considers these

parameters thoroughly for its proposed architecture.

Therefore, it is exciting to compare various architectures

by considering the different QoS parameters and quality

attributes in the future. Security, privacy, and trust are

critical issues in IoT BDA that most reviewed articles did

not address, and the proposed architectures or frameworks

did not involve the data perception layer. The security

frame generally consists of confidentiality, integrity,

authentication, non-repudiation, availability, and privacy

[233]. We concede that no comprehensive and highly

secure scheme or platform for all types of data collection,

analysis, and sharing meets all security requirements. The

other main challenges are integrating privacy protection

methods with data sharing platforms and selecting the best

privacy protection algorithms to use during data processing

[172]. Therefore, it is suggested for the future to utilize

cryptographic mechanisms in different layers of architec-

tures or frameworks, add a data perception layer, and

develop security protocols specifically for IoT devices

because of their heterogeneity and resource limitations.

The blockchain framework is widely used in IoT to

improve protection, trust, reputation, management, control,

and security. The blockchain framework provides decen-

tralized security, authentication rules, and privacy for IoT

devices. However, there are major challenges, such as high

energy consumption, delay, and computational overhead,

because of the resource constraints in IoT devices. Many

types of research have been suggested as solutions to these

problems. For instance, Corradini et al. [234] proposed a

two-tier Blockchain framework for increasing the security

and autonomy of smart objects in the IoT by implementing

a trust-based protection mechanism. The tiers of this

framework are a point-to-point local tier and a community-

oriented global tier. Pincheira et al. [235] proposed a cost-

effective blockchain-based architecture for ensuring data

integrity, auditability, and traceability and increasing trust

and trustworthiness in IoT devices. This architecture has

four components: the cloud module, mobile app, connected

tool, and blockchain module. Tchagna Kouanou et al. [236]

proposed a 4-layer blockchain-based architecture to secure

data in the IoT to increase security, integrity, scalability,

flexibility, and throughput. The layers of this architecture

are tokens, smart contracts, blockchain, and peers. In future

research, we suggest using AI techniques and a lightweight

blockchain framework to increase protection, trust, repu-

tation, and security in the IoT.

Trust and reputation management are vital issues in the

SIoT and MIoT scenarios. In [237], the authors defined

trust and reputation in the MIoT as the trust of an instance

in another one of the same IoT; the trust of an object in

another one of the MIoT; the reputation of an instance in an

IoT; the reputation of an object in a MIoT; the reputation of

an IoT in a MIoT; the trust of an IoT in another IoT; and

the trust of an object in an IoT. Security in the SIoT aims to

differentiate between secure and malicious things and

increase the safety and protection of SIoT networks [185].

Investigating trust and reputation in SIoT and MIoT has

many benefits, such as identifying, isolating, managing

malicious objects, supporting collaboration, and identifying

and evaluating the objects’ QoS parameters. Also, the lack

of trust and reputation management in SIoT and MIoT

causes problems such as loss of accessibility, privacy, and

security [237]. To overcome these issues, we suggest uti-

lizing trust and reputation with AI methods to develop

detection techniques for anomalous and malicious behav-

iors of things in the MIoT and SIoT in future works.

5 Conclusion

This paper presented a systematic review of the BDM

mechanisms in the IoT. First, we discussed the advantages

and disadvantages of some systematic and review articles

about BDM in the IoT and then explained the purpose of

this paper. Then, the research methodology and details of

110 selected articles were presented. These articles were

divided into four main categories, including BDM
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processes, big BDM architectures/frameworks, quality

attributes, and data analytics types in IoT. Some of these

categories have been divided into some subcategories:

BDM process in IoT was divided into data collection,

communication, data ingestion, data storage, processing

and analysis, and post-processing; big data architectures/

frameworks in the IoT were divided into BDM architec-

tures/frameworks in the IoT-based applications and BDM

architectures/frameworks in the IoT paradigms; big data

analytics-types were divided into the descriptive, diag-

nostic, predictive, and prescriptive analysis; and big data

storage systems in the IoT were divided into relational

databases, NoSQL databases, DFS, and cloud/edge/fog/

mist storage. Also, the advantages and disadvantages of

each of the BDM mechanisms in the IoT were discussed.

The tools and platforms used for BDM in the IoT in the

articles were reviewed and compared based on criteria. The

most common type of analysis that articles use is predictive

analysis, with 57.27%, which uses ML algorithms. The

classification, optimization, and clustering algorithms are

the most widely used for big data analysis in the IoT. Some

articles present architectures mostly in IoT-based health-

care, with 33.33%, and IoT-based smart cities, with

22.22%. These architectures have two to eight layers, each

performing a set of functions. In the review of qualitative

characteristics, we observed that most articles evaluated

their evaluations based on criteria, including performance,

efficiency, accuracy, and scalability. Meanwhile, some

features are less used, including confidentiality, sustain-

ability, accessibility, portability, generality, and maintain-

ability. The NoSQL database and DFS are used more to

store data than other databases. The BDM process in the

IoT uses different algorithms and tools with various fea-

tures. Various programming languages and operating sys-

tems are used to evaluate and implement the proposed

mechanisms. The Java and python programming languages

and the UBUNTU operating system are used more.

This paper tries to review the BDM mechanisms in the

IoT. Specifically, it considers studies published in high-

quality international journals. The most recent works on

BDM mechanisms in the IoT have been compared and

analyzed in this paper. We hope that this study will be

helpful for the next generation of studies for developing

BDM mechanisms in real-complex environments.
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108. Alves, J. M., Honório, L. M., & Capretz, M. A. (2019). ML4IoT:

A framework to orchestrate machine learning workflows on

internet of things data. IEEE Access, 7, 152953–152967.
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