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Abstract

Motivation: Network prediction as applied to protein–protein interaction (PPI) networks has

received considerable attention within the last decade. Because of the limitations of experimental

techniques for interaction detection and network construction, several computational methods for

PPI network reconstruction and growth have been suggested. Such methods usually limit the

scope of study to a single network, employing data based on genomic context, structure, domain,

sequence information or existing network topology. Incorporating multiple species network data

for network reconstruction and growth entails the design of novel models encompassing both net-

work reconstruction and network alignment, since the goal of network alignment is to provide func-

tionally orthologous proteins from multiple networks and such orthology information can be used

in guiding interolog transfers. However, such an approach raises the classical chicken or egg prob-

lem; alignment methods assume error-free networks, whereas network prediction via orthology

works affectively if the functionally orthologous proteins are determined with high precision. Thus

to resolve this intertwinement, we propose a framework to handle both problems simultaneously,

that of SImultaneous Prediction and Alignment of Networks (SiPAN).

Results: We present an algorithm that solves the SiPAN problem in accordance with its simultan-

eous nature. Bearing the same name as the defined problem itself, the SiPAN algorithm employs

state-of-the-art alignment and topology-based interaction confidence construction algorithms,

which are used as benchmark methods for comparison purposes as well. To demonstrate the ef-

fectiveness of the proposed network reconstruction via SiPAN, we consider two scenarios; one that

preserves the network sizes and the other where the network sizes are increased. Through exten-

sive tests on real-world biological data, we show that the network qualities of SiPAN reconstruc-

tions are as good as those of original networks and in some cases SiPAN networks are even better,

especially for the former scenario. An alternative state-of-the-art network reconstruction algorithm

random walk with resistance produces networks considerably worse than the original networks

and those reproduced via SiPAN in both cases.

Availability and implementation: Freely available at http://webprs.khas.edu.tr/�cesim/SiPAN.tar.gz.
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1 Introduction

In protein–protein interaction (PPI) networks, nodes represent the

proteins and the edges correspond to interactions between pairs of

proteins. The PPI networks are quite central in understanding cell

regulatory mechanisms, extracting protein functions and in disease

diagnosis. Several high-throughput techniques gave rise to extrac-

tion of large-scale PPI networks for many organisms (Finley and

Brent, 1994). However, experimental prediction of PPI networks is

usually time-consuming and expensive. Thus, many approaches

based on a wide range of computational techniques have been sug-

gested for the problem of PPI network prediction (Aebersold and

Mann, 2003; Goh and Cohen, 2002; Marcotte et al., 1999).

Existing computational methods vary depending on the type of in-

formation they employ for predictions. These include methods based

on genomic context, structure, domain or sequence information; see

Skrabanek et al. (2008); Xia et al. (2010) for useful reviews. A cru-

cial problem with the predicted networks is that the extracted set of

interactions may provide erroneous results in terms of false positives

and false negatives. Therefore, several methods have been developed

for network reconstructions that are based solely on network top-

ology (Cannistraci et al., 2013; Lei and Ruan, 2013). Such methods

usually rely on making new interaction predictions or identifying

spurious interactions by examining node neighborhoods of a given

network.

Parallel to the growth in produced experimental data several

problem formulations and computational methods have been de-

veloped for the comparative analysis of genome-wide PPI networks

as well. In particular, biological network alignment problem has

been of particular interest. In general terms, given two or more PPI

networks from different species, the network alignment problem is

to align the nodes of the networks or subnetworks within them.

Functional orthology is an important application that serves as the

main motivation to study the alignment problems as part of a com-

parative analysis of PPI networks; a successful alignment could

provide a basis for deciding the proteins that have similar functions

across species. Such information may further be used in predicting

functions of proteins with unknown functions or in verifying those

with known functions (Singh et al., 2008), in detecting common

orthologous pathways between species (Kelley et al., 2003) or in re-

constructing the evolutionary dynamics of various species (Kuchaiev

and Pržulj, 2011). Network alignment algorithms incorporate the

interaction data and the evolutionary relationships represented pos-

sibly in the form of sequence data. Based on the assumption that the

interactions among functionally orthologous proteins should be con-

served across species, such an incorporation is usually achieved by

aligning proteins so that both the sequence similarities of aligned

proteins and the number of conserved interactions are large

(Chindelevitch et al., 2010; Kuchaiev and Pržulj, 2011; Memišević

and Pržulj, 2012; Singh et al., 2008).

The problems of network prediction and network alignment are

intertwined. The alignment methods make use of the predicted inter-

action networks to produce output alignments with large interaction

conservation and sequence similarities. On the other hand, orthol-

ogy detection maybe used in network prediction/reconstruction

(Izarzugaza et al., 2008; Lee et al., 2008; Pache and Aloy, 2014).

However, such an intertwinement creates a so-called chicken or egg

problem; the alignment methods produce the orthologies based on

the assumption that the interaction networks are correct and the

interaction prediction detected from network alignments assume the

proteins or the functional complexes are aligned correctly. This

intertwinement is especially evident with the topology-based

network prediction/reconstruction methods, which usually rely on a

definition of ‘similarity’ between node pairs. The similarity might be

a measure of direct neighborhood similarity, such as sharing many

common neighbors, or some indirect neighborhood similarity, usu-

ally described in some form of a graph-theoretical distance between

nodes. Likewise, one of the objectives of many alignment methods is

to provide alignments where the neighborhoods of aligned nodes are

also similar in the sense that nodes in the neighborhoods are also

aligned, so as to provide large interaction conservation.

Thus, rather than considering the two problems independently,

we propose a new problem formulation encompassing both compo-

nents simultaneously, that of simultaneous prediction and alignment

of networks (SiPAN). To the best of our knowledge, this is the first

study providing a model for capturing the simultaneous nature of

the problems of network reconstruction and alignment. Employing

data from relevant databases, we design two experimental settings;

one where the network densities are preserved and one where net-

work densities are increased. We show that the network qualities of

SiPAN reconstructions are as good as those of original networks,

and in some cases, SiPAN networks are even better, especially for

the former scenario. An alternative state-of-the-art topology-based

network reconstruction algorithm random walk with resistance

(RWS) produces networks considerably worse than the original net-

works and those reproduced via SiPAN in both cases under most of

the quality metrics.

2 Methods

Let G1 G1(V1, E1) and G2 G2(V2, E2) be two undirected graphs cor-

responding to the pair of input PPI networks belonging to two spe-

cies. Here V1, V2 denote the node sets, whereas E1, E2 denote the

edge sets of the graphs. Below we describe the general framework

for the SiPANs and the SiPAN algorithm employed within this

framework.

2.1 General framework
The general framework is described in pseudo-code in Algorithm 1.

We start with initial input interaction networks G1, G2. The algo-

rithm first constructs an alignment A of G1, G2. Then it iteratively

computes the interaction confidence matrices T1, T2 and employing

A;T1;T2 updates the networks G1, G2 and the alignment A via

SiPAN. Here, the alignment A is a set of one-to-one mappings

ðu;u0Þ, such that u 2 V1; u
0 2 V2. For ease of description, we assume

AðuÞ ¼ u0 or Aðu0Þ ¼ u both denote the same mapping. The general

framework is depicted on a toy example in Figure 1. After iteration

i ¼ 1, the networks G1, G2 are reconstructed according to the

SiPAN algorithm. Changing the networks gives rise to a new align-

ment and new interaction confidence scores through which the next

Algorithm 1. Simultaneous Prediction and Alignment Frame

work

1: Input: G1ðV1;E1Þ;G2ðV2;E2Þ;BLðV1;V2Þ; k
2: Output: Updated G1, G2, Alignment A

3: A ¼ AlignmentðG1;G2;BLðV1;V2ÞÞ
4: for iteration i ¼ 1 to k do

5: T1 ¼ Interaction Confidence MatrixðG1Þ
6: T2 ¼ Interaction Confidence MatrixðG2Þ
7: � G1;G2;A �¼ SiPANðG1;G2;A;T1;T2;BLðV1;V2ÞÞ
8: end for
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iteration of the SiPAN network reconstruction is guided and so on

and so forth.

We employ the SPINAL algorithm to produce the alignment A of

G1, G2 (Aladağ and Erten, 2013). This choice for the alignment

component is due to SPINAL’s scalability and the quality of its out-

put alignments. A recent survey of global network aligners indicates

that SPINAL is among the top performers as far as biological signifi-

cance of the output alignments are concerned (Clark and Kalita,

2014). The algorithm employs G1, G2 and the BLAST bit scores of

every pair of nodes, one from V1 the other from V2, denoted with

BLðV1;V2Þ, to produce an alignment. It consists of two phases; a

coarse-grained alignment score estimations phase and a fine-grained

conflict resolution and improvement phase. Both phases make use of

the construction of neighborhood bipartite graphs and a set of con-

tributors as a common primitive. Employing these concepts within

iterative local improvement heuristics constitute the backbone of the

algorithm. In terms of scalability, it runs much faster and provides

more accurate results than most of the alternative state-of-the-art

methods when tested on real-world biological data (Aladağ and

Erten, 2013; Clark and Kalita, 2014). With respect to the network

prediction component within the general SiPAN framework, we

make use of the RWS algorithm of Lei and Ruan (2013). It is one of

the several topology-based network prediction/correction algorithms

(Fang et al., 2013; Fouss et al., 2007; Kuchaiev et al., 2009; Tong

et al., 2006). It is reported that RWS provides network corrections

with higher functional relevance than the rest of the heuristics as far

as biological significance measures using multiple information sour-

ces, including gene ontology annotations, gene expression data, pro-

tein complexes, list of essential genes and conservation between

species are concerned (Lei and Ruan, 2013). Given an input PPI net-

work, all topology-based network correction algorithms produce an

interaction confidence matrix or the so-called topological similarity

matrix as output. T1 in Algorithm 1 is a jV1j � jV1j matrix of real

values as extracted from RWS, where entry (u, v) denotes the confi-

dence assigned to the interaction between u, v. T2 is defined simi-

larly on V2 of G2.

2.2 Algorithm SiPAN
The main novelty of the proposed approach lies in how SiPAN up-

dates the networks based on the current network topologies, the

provided alignment of the networks and the interaction confidence

score matrices. The core SiPAN algorithm is described in pseudo-

code in Algorithm 2 and 3. An overall depiction of the important

steps of the algorithm can be found in Figure 2.

2.2.1 Significant non-conservations

Given a pair of mappings ðu;u0Þ; ðv; v0Þ 2 A, we say that the pair in-

duces a non-conservation, if ðu; vÞ 2 E1; ðu0; v0Þ 62 E2 or

ðu; vÞ 62 E1; ðu0; v0Þ 2 E2. To resolve a non-conservation of the first

type, we can either delete the edge from E1 or insert the missing

edge into E2. The non-conservation of the second type can be

resolved analogously. The general objective of the algorithm is to re-

solve all significant non-conservations arising from alignment A,

taking into account the interaction confidence score matrices of the

networks.

We start by constructing candidate sets, C1, C2. Every set

includes pairs of nodes from the same network that lead to a

non-conservation with respect to the current alignment A.

More specifically, for x; y ¼ 1; 2 and x; y ¼ 2; 1 we define Cx

as the union of fðu; vÞjðu; vÞ 62 Ex ^ ðAðuÞ;AðvÞÞ 2 Eyg and

fðu; vÞjðu; vÞ 2 Ex ^ ðAðuÞ;AðvÞÞ 62 Eyg. The former set in the union

corresponds to the possible insertions of interactions into Gx,

whereas the latter corresponds to the deletions of interactions from

Gx. The candidate set of a network represents the set of operations

that resolves all non-conservations of the alignment assuming no

changes in the other network. However, since usually both networks

may contain false positives/negatives, committing all updates on a

single network may lead to erroneous network corrections. Thus,

the main difficulty is to consider both networks simultaneously to

extract an overall set of appropriate updates. Informally, the goal is

Fig. 1. A depiction of the general SiPAN framework on a toy example

Algorithm 2. SiPAN

1: Input: G1ðV1;E1Þ;G2ðV2;E2Þ;A;T1;T2;BLðV1;V2Þ
2: Output: Updated � G1;G2;A �

3: for x¼1, 2 do

4: Construct candidate set Cx

5: Sort Cx with respect to scores in Tx

6: end for

7: Compute breakpoints p1, p2

8: Resolve IndelsðC1;C2; p1;p2Þ
9: // Update networks and the alignment

10: for x¼1, 2 do

11: Commit the best bx � jDpx
x j deletions in Dpx

x

12: Commit the best bx � jIpx
x j insertions in Ipx

x

13: end for

14: A ¼ AlignmentðG1;G2;BLðV1;V2ÞÞ

Algorithm 3. Resolve_Indels

1: Input: C1;C2; p1; p2

2: Output: Updated � C1;C2;p1; p2 �

3: Construct priority queue Q of all indels

4: while Q not empty do

5: Remove � ðu; vÞ; ðu0; v0Þ � from Q

6: if � ðu; vÞ; ðu0; v0Þ � not an indel then

7: continue

8: end if

9: if wðu; vÞ < wðu0; v0Þ then

10: Remove ðu0; v0Þ from C2

11: Recompute p2; I
p2

2 ;D
p2

2

12: else

13: Remove (u, v) from C1

14: Recompute p1; I
p1

1 ;D
p1

1

15: end if

16: Insert new indels, if any, to Q

17: end while
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to select a subset of operations from each candidate set C1, C2, such

that the selected insertions have higher interaction confidences

measured by RWS than those of the selected deletions.

To this end, we first sort the candidate lists in ascending order

with respect to the interaction confidence values; see Figure 2a. For

each sorted candidate list, we find a breakpoint index that separates

the set of possible insertions/deletions on each network such that all

final deletions will have indices smaller than or equal to the break-

point index, whereas all insertions will have indices larger than the

breakpoint. For an index i, let Di
x represent the list of deletions with

indices smaller than or equal to i and Ii
x represent the list of inser-

tions with indices larger than i. Since for a given network of inter-

actions the ratio of false negatives to false positives is not necessarily

one, we determine the breakpoints p1, p2 based on user defined par-

ameters a1; a2. For x¼1, 2 let px be the index, such that

ax � jDpx
x j ¼ jIpx

x j. A non-conservation ðu; vÞ 2 E1; ðu0; v0Þ 62 E2 or

ðu; vÞ 62 E1; ðu0; v0Þ 2 E2 is significant if ðu; vÞ 2 Dp1

1 [ Ip1

1 or

ðu0; v0Þ 2 Dp2

2 [ Ip2

2 . In other words, the breakpoints determine the

borders between undesired insertions/deletions in the candidate sets;

the insertions below the index (those with interaction confidence

values less than that recorded at breakpoint) and the deletions above

the index (those with interaction confidence values larger than that

recorded at breakpoint) are not significant and shall never be com-

mitted; see Figure 2b for a depiction of breakpoint selection and the

construction of the sets Dpx
x ; I

px
x .

2.2.2 Resolving indels

We note that simply committing all the insertions or deletions

defined by the breakpoints may not resolve all significant non-

conservations. For the mappings ðu;u0Þ; ðv; v0Þ 2 A, and the non-

conserved edge ðu; vÞ 2 E1; ðu0; v0Þ 62 E2, if ðu; vÞ 2 Dp1

1 and ðu0; v0Þ
2 Ip2

2 then deleting (u, v) from E1 and inserting ðu0; v0Þ into E2 simply

reverses the direction of non-conservation which still exists.

Similarly, if ðu; vÞ 2 Ip1

1 and ðu0; v0Þ 2 Dp2

2 , then committing both

operations still retains the non-conservation. We call all such tuples

of node pairs � ðu; vÞ; ðu0; v0Þ � indels. The goal is to resolve each indel

by selecting the insertion or the deletion operation defined by it.

While resolving the indels, a factor that affects the overall quality

of all the resolutions is the order with which the indels are pro-

cessed. This is due to the fact that as the indels are resolved, the

breakpoints may change which further may eliminate some of the

existing indels or introduce new indels. The indels with higher

priority should be resolved so that they are not eliminated by future

indel resolutions. To this aim, we construct a priority queue Q that

includes all current indels. Let in denote the index of (u, v) in the

sorted candidate list C1 and let in0 denote the index of ðu0; v0Þ in the

sorted candidate list C2. An indel � ðu; vÞ; ðu0; v0Þ � has a weight of

wðu; vÞ �wðu0; v0Þ, where wðu; vÞ ¼ inþ1
jC1 j and wðu0; v0Þ ¼ jC2 j�in0

jC2 j if

ðu; vÞ 2 Dp1

1 and ðu0; v0Þ 2 Ip2

2 , whereas wðu; vÞ ¼ jC1 j�in
jC1 j and wðu0; v0Þ

¼ in0þ1
jC2 j if ðu; vÞ 2 Ip1

1 and ðu0; v0Þ 2 Dp2

2 ; see Figure 2c. With this def-

inition, the weight of a pair representing a deletion is proportional

to its interaction confidence score, whereas that of a pair represent-

ing an insertion is inverse proportional. Intuitively, a small indel

weight corresponds to the deletion of an interaction with small con-

fidence score and the insertion of a missing interaction with large

confidence score and thus corresponds to an indel with higher

priority.

We iteratively remove the indel with the smallest weight from Q

and process it by updating necessary data structures until Q is

empty. With the provided weight definitions, no matter what the op-

eration is, be it insertion or deletion, the smaller the weight, the

higher the confidence we have in committing it. Thus, processing an

indel first involves selecting the operation with larger weight and

removing it from its candidate list, Cx; the selected operation shall

not be committed. This will change the breakpoint px. We recom-

pute px and Dpx
x ; Ipx

x using the formula ax � jDpx
x j ¼ jIpx

x j. Changing

Dpx
x ; I

px
x may cause the removal of an indel; see Figure 2d. Therefore,

at the beginning of each iteration, we actually first make sure that

the indel under consideration still satisfies the properties of an indel

Fig. 2. A depiction of the important steps and concepts involved in SiPAN. (a) Input graphs G1, G2 and their current alignment. The aligned pairs of nodes are shown

in ellipses. (b) Candidate lists C1, C2. The indices of the candidate lists are in increasing order from top to bottom. The pair of nodes corresponding to each operation

is written next to each entry. The minus signs in the candidate lists indicate the deletion operations, whereas the plus signs indicate the insertions. The insertions/de-

letions in C1, C2 are sorted with respect to their interaction confidence scores. Edges ðb; cÞ 2 E1 and ðb0; c 0Þ 2 E2 are conserved, thus they do not have a corresponding

entry in the candidate lists. (c) The breakpoints p1, p2 when a1 ¼ a2 ¼ 1. In this setting jDp1

1 j ¼ jI
p1

1 j ¼ 3 and jDp2

2 j ¼ jI
p2

2 j ¼ 4. The shaded squares above p1, p2 indicate

the operations in Dp1

1 ;Dp2

2 , the shaded squares below p1, p2 indicate those in Ip1

1 ; Ip2

2 , respectively. The non-conservations are shown with line segments between C1,

C2. All non-conservations are significant, except the one depicted with the dashed line segment. (d) Indels among all the non-conservations are depicted with line seg-

ments. The thicknesses of the segments indicate the priorities of the indels. The indel shown with the thickest segment has a weight of 2
12� 3

12 ¼ 1
2, which provides the

highest priority, and should be resolved first. (e) For the processed indel the weight of the deletion operation is smaller than that of the insertion; 1
6 versus 1

4. Thus, the

insertion is removed from C2 and p2 is shifted up which further removes an existing indel, the one shown with the dashed line segment. (f) The only remaining indel

of d is resolved by removing the deletion operation since the weight of the insertion is smaller. The breakpoint p1 is shifted down. This creates a new indel shown

with the line segment. (g) The new indel of e is resolved by removing the deletion operation since the weight of the insertion is smaller. The breakpoint p1 is shifted

down. No further indels are left. The non-conservations shown with the dashed line segments are not significant. With b1 ¼ 1; b2 ¼ 2
3, we commit all the check-

marked operations in C1, C2 attached with significant non-conservations depicted with solid segments; two deletions, two insertions in G1 and two deletions and two

insertions in G2. The deletion and insertion operations in C2 with cross marks next to them are not committed. (h) New G1 and G2
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at line 6 of Algorithm 3. This is achieved by checking whether ðu; vÞ
2 Dp1

1 [ Ip1

1 and ðu0; v0Þ 2 Dp2

2 [ Ip2

2 . In addition to possible indel re-

movals, the changes in Dpx
x ; I

px
x may also create new indels not al-

ready in Q which are simply inserted into Q; see Figure 2e. It should

be noted that throughout the whole process of indel resolution, indi-

ces of all the operations remain unchanged.

2.2.3 Updating the networks and the alignment

Once all the indels are resolved, all the remaining operations in

Dpx
x ; I

px
x , for x¼1, 2, can be committed simultaneously to resolve all

significant non-conservations. Note that resulting insertions and de-

letions with indices close to the breakpoints px may have very close

interaction confidence scores, which may be considered high as far

as deletions are concerned and may be considered low with respect

to insertions. Thus, rather than blindly committing all operations,

we introduce user-defined parameters bx, for x¼1, 2. The commit-

ted deletions are the best bx � jDpx
x j of all the deletions in Dpx

x , that

is those with the smallest bx � jDpx
x j indices, and the committed in-

sertions are those with the largest bx � jIpx
x j indices among all inser-

tions in Ipx
x ; see Figure 2f. This finalizes the network prediction

component of SiPAN. We then align the updated networks and the

new alignment becomes input to the next iteration of SiPAN.

3 Discussion of results

The SiPAN algorithm has been implemented in Cþþ using the

LEDA library (Mehlhorn and Naher, 1999). The source code, exe-

cutables, useful scripts for evaluations and all the input data are

freely available as part of the Supplementary Material.

We present an evaluation of the SiPAN framework applied on

the PPI networks of four extensively studied species: Caenorhabditis

elegans, Drosophila melanogaster, Homo sapiens and

Saccharomyces cerevisiae. As input data, SiPAN requires a pair of

these PPI networks and the pairwise sequence similarity scores of

involved proteins. All these data are retrieved from the IsoBase data-

base (Park et al., 2011), which is employed in the performance

evaluations of many of the PPI network alignment algorithms

including IsoRank (Singh et al., 2008), IsoRankN (Liao et al.,

2009), SMETANA (Sahraeian and Yoon, 2013), and BEAMS

(Alkan and Erten, 2014). The C.elegans network has 19 756 pro-

teins and 4884 interactions, the D.melanogaster network has

14 098 proteins and 25 054 interactions, the H.sapiens network has

22 369 proteins and 55 168 interactions, the S.cerevisiae network

has 6659 proteins and 82 932 interactions and in total, there are

62 882 proteins and 168 038 interactions. Pairwise sequence simi-

larity scores correspond to the BLAST Bit values of the protein se-

quences retrieved from Ensembl (Hubbard et al., 2009).

Since the general SiPAN framework aims at simultaneously re-

constructing the given pair of PPI networks and at the same time

aligning them, we provide performance evaluation results with

respect to both problems. The discussion of results regarding the

latter are presented in the Supplementary Document due to space

restrictions. The benchmark method for network reconstructions is

RWS (Lei and Ruan, 2013), whereas for network alignments, we

employ SPINAL (Aladağ and Erten, 2013). In addition to being

state-of-the-art methods for the corresponding problems of network

reconstruction and alignment, this choice of the benchmark methods

also allows us to examine the overall improvement brought forth by

the general SiPAN framework as the proposed algorithm makes use

of both methods. For all the computational experiments, the param-

eter k of Algorithm 1 is set to 5, that is the general SiPAN

framework is iterated five times. The parameters b1; b2 are both set

to 0.5, i.e. 50% of the proposed insertion/deletion operations are

committed at each iteration of SiPAN.

3.1 Evaluation metrics
The criteria for performance evaluations are based on two data-

bases: the Gene Ontology (GO) database (Ashburner et al., 2000)

and the STRING database (Franceschini et al., 2013). The GO data-

base annotates proteins from several species with appropriate GO

categories organized as a directed acyclic graph (DAG) (Ashburner

et al., 2000). To standardize the GO annotations of proteins, similar

to the evaluation methods of (Aladağ and Erten, 2013; Liao et al.,

2009; Singh et al., 2008), we restrict the protein annotations to level

5 of the GO DAG by ignoring the higher-level annotations and

replacing the deeper-level category annotations with their ancestors

at the restricted level. Note that considering other levels of the GO

DAG, we obtain almost the same results as those of level 5. All

evaluations restricted to levels 4 and 6 of the GO DAG are provided

in the Supplementary Document. A ‘pair’ is annotated if both of its

proteins are annotated by some GO categories. Note that a pair rep-

resents a pair of interacting proteins, in the case of network recon-

struction evaluations and a pair of aligned proteins from the aligned

PPI networks, in the case of network alignment evaluations. Only

the annotated pairs are considered for the GO-based evaluations.

An annotated pair is considered consistent if both of its proteins

share at least one common standard GO annotation.

As part of the GO-based evaluations, we employ five metrics.

Sensitivity represents the number of consistent pairs, whereas speci-

ficity denotes the ratio of number of consistent pairs to the number

of annotated pairs. We employ three additional metrics to measure

how the GO terms are distributed over the defined pairs. We define

the GO distribution sensitivity as the number of proteins deemed

consistent due to an average standard GO term and GO distribution

specificity normalizes it with the number of annotations a GO term

provides. More specifically, for a given GO category i, let GOi de-

note the set of pairs containing proteins both of which are annotated

with i and let Pi denote the set of all proteins annotated with i. The

GO distribution sensitivity is defined as

P
8i2�jGOi j

n , where n denotes

the number of standard GO terms. The GO distribution specificity

is defined as

P
8i2�jGOi j=jPi j

n . Finally, for an annotated pair x, let

GOintðxÞ and GOuniðxÞ indicate, respectively, the intersection set of

GO annotations of proteins in x and the union set of GO annota-

tions of all the proteins in x. The GO consistency score, GOC, is

defined as the sum of jGOintj=jGOunij over all annotated pairs.

Regarding the evaluations based on the STRING database, we

make use of the metrics neighborhood, fusion, coexpression, experi-

mental, database, textmining as defined in von Mering et al. (2005).

Given a PPI, the STRING database provides for each metric a confi-

dence score for the interaction. For a PPI network, for each metric,

we compute an average of the scores over all interactions. Note that

the STRING-based assessments apply only to the network recon-

struction evaluations and not to the evaluations of network

alignment.

Apart from the biological performance evaluations employing

GO and STRING databases, one final evaluation metric we employ

is the edge coverage, a performance metric especially employed in

network alignment studies. Given a specific alignment of G1, G2,

the edge coverage on G1 measures the ratio of conserved edges in

the alignment to the number of edges in G1. Employing a fixed

alignment algorithm, comparing the edge coverage values of the
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reconstructed networks provides insight regarding the degrees of

evolutionary conservation of the reconstructions. The SiPAN recon-

structed networks provide quite large edge coverage values when

compared with both original and the RWS-reconstructed networks;

see Supplementary Document for further details.

3.2 Network reconstruction quality
We provide two types of evaluations, one where the network sizes

are preserved and the other where the network sizes are increased.

The latter is especially important as the PPI networks have large

false-negative rates, usually larger than the corresponding

Fig. 3. Bar charts of reconstructed network qualities assuming increased network sizes
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false-positive rates (Huang et al., 2007). The evaluations presented

here are restricted to comparing the networks with respect to

defined metrics. The networks are comprised of the original net-

works and those produced by RWS and SiPAN. However, when

considering the reconstruction algorithms yet another useful evalu-

ation consists of comparing the set of insertions to the set of dele-

tions of a specific reconstruction with respect to the performance

metrics. We implemented such evaluations on RWS and SiPAN re-

constructions. All such evaluations are presented in the

Supplementary Document. Additionally, as SiPAN framework de-

pends on iterative reconstructions, analyzing the change in the num-

ber of modifications committed iteration after iteration provides an

intuition regarding the convergence characteristics of the algorithm.

Details regarding these evaluations can also be found in the

Supplementary Document.

3.2.1 Preserving network sizes

Because of to space restrictions, we only present a brief summary of

results regarding this scenario here. Evaluation plots and a detailed

discussion of further results can be found in the Supplementary

Document. To preserve the network sizes, the parameters a1; a2 are

set to 1 for the SiPAN algorithm. Out of 52 evaluation instances in

total, in 10 of them, the scores of RWS are the best, in 13 of them

the original network scores are the best and in 28 of them SiPAN

results are the best. The scores of SiPAN and those of the original

are equal in 1 instance. We note that for the case of preserving net-

work sizes, a proposed reconstructed network can be considered

successful if its evaluation results are somewhat similar to those of

the original network. When comparing the results of RWS networks

against those of the original networks, the scores of RWS are higher

in 17 instances, whereas the original network scores are better in 35

instances. On the other hand, SiPAN networks provide better

scores than the originals for most of the instances; for 15 instances,

the original scores are better than those of SiPAN’s, for 34 instances,

those of SiPAN networks are better than those of the originals and

for 4 instances, the scores are tied. Notably, the sensitivity and the

specificity results provided by the RWS networks are worse than

both those of the original and of the SiPAN networks for all the

species.

3.2.2 Increasing network sizes

Because of the large false-negative rates of PPI networks, the main

objective in network reconstruction is to increase network densities

while preserving network qualities. Figure 3 provides evaluation re-

sults when the number of interactions is increased. For SiPAN, such

an increase is achieved through the a parameter. Note that, intui-

tively, the a parameter for a network represents the ratio of false

negatives to the false positives and should thus be set accordingly by

the user. We employed a values inversely proportional to network

densities; for a network GxðVx;ExÞ under evaluation, the

corresponding a parameter is set to jVx j2
jEx j�250. On the other hand,

RWS, rather than producing a reconstructed network explicitly, pro-

vides an interaction confidence matrix where entry (u, v) denotes the

confidence of the interaction between u, v as computed by the algo-

rithm. A new network of size d is then reconstructed by introducing

an edge for each of the top scoring d pairs in the matrix. In the bar

chart of Figure 3, for a subset of bars marked with X on the

x-coordinate, the leftmost bar (white) indicates the score of the ori-

ginal network X. The rest consist of three pairs of bars. For each

pair, the right bar indicates the score of X after applying SiPAN on

X paired with Y, where Y is C.elegans, D.melanogaster, H.sapiens

and S.cerevisiae going from left to right over the pairs, assuming

X 6¼ Y. The left bar of the pair represents the score of applying RWS

on X, with the constraint that the reconstructed network contains as

many edges as the output of SiPAN reconstruction of X. Going from

left to right, the sizes of the reconstructed C.elegans networks are

6530, 7405 and 11 247, those of the D.melanogaster networks are

25 644, 29 155 and 30 866, those of the H.sapiens networks are

60 151, 75 361 and 114 900 and finally, those of the S.cerevisiae

networks are 85 652, 91 277 and 97 520. For a given network X, al-

though the same a parameter is employed, the size of the recon-

structed network X grows more as the paired network Y gets denser.

This is a feature of SiPAN; as Y becomes denser more edges in X are

non-conserved, which further increases the number of edges eligible

for non-conservation resolution. Intuitively, this corresponds to

transferring more information from Y to X, as the information con-

tent of Y increases.

For the C.elegans network, the reconstructed network qualities

of SiPAN are better than those of RWS for almost all measures. The

measures GO distribution sensitivity and GO Distribution specifi-

city are the exceptions. In fact, for all the species instances, RWS

achieves better scores than SiPAN for these two measures. However,

it should be noted that, unlike the rest of the GO-based measures,

these two measures do not directly provide a correctness measure

for the reconstructed network itself. They rather provide evaluations

from the opposite direction; assuming the reconstructed networks

are correct, they can be considered as metrics for evaluating how

well defined the employed set of GO categories are. Nevertheless, to

be consistent with the previous network alignment studies, we pro-

vide the two scores as indirect measures of network reconstruction

quality. In the C.elegans network, SiPAN provides better sensitivity

and specificity than RWS and the GO consistency scores of both al-

gorithms are close, although in two instances those of RWS are

slightly better. Regarding the STRING-based evaluations SiPAN

provides better scores than RWS for almost all metrics. This is espe-

cially evident for the combined score as computed by STRING.

Similar arguments hold for the D.melanogaster as well; SiPAN net-

works have better quality in terms of the GO-based evaluation

scores of sensitivity, specificity and GO consistency. The STRING-

based evaluation results are again better for the SiPAN networks in

almost all cases. For the H.sapiens network, the superiority of

SiPAN over RWS is not as evident as the other species. The specifi-

city results of SiPAN are better than those of RWS in all three in-

stances, whereas for sensitivity, RWS is better than SiPAN in two

out of three. The GO consistency results of RWS are also better in

each case. With respect to the STRING-based evaluations, the scores

of SiPAN are better in almost half of the metrics, whereas those of

RWS are better in the other half. Nevertheless, the scores of SiPAN

reconstructions provide higher scores than those of RWS for the

combined score metric for all three instances. The superiority of

SiPAN over RWS is at its best when the reconstruction is applied on

the S.cerevisiae network. SiPAN networks provide considerably

larger scores than those of RWS for almost all the metrics under all

three instances. It is important to note that SiPAN networks contain

more interactions than the corresponding original networks, in

some cases almost three times denser networks are reconstructed.

Nevertheless, even if we only consider the metrics employing nor-

malizations with respect to the network sizes, such as specificity and

all the STRING-based metrics, the scores of SiPAN networks are

close to those of the original networks. This further emphasizes the

success of SiPAN in achieving the main reconstruction objective,

that is that of growing the network with as little loss in network

quality as possible.
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4 Conclusion

We proposed a problem formulation that considers the network

reconstruction and the network alignment problems simultaneously.

We then provided an algorithm, SiPAN, that solves the problems in

accordance with their simultaneous nature. Through extensive

evaluations, we showed that the SiPAN algorithm outperforms the

state-of-the-art algorithms, RWS and SPINAL, each proposed re-

spectively to solve the problems of network reconstruction and net-

work alignment independently. It should be noted that SiPAN

algorithm employs two separate algorithms: a topology-based net-

work reconstruction algorithm, RWS, and a network alignment

algorithm, SPINAL. However, as SiPAN can be considered as a gen-

eral framework to solve these two problems simultaneously, it is

possible to replace RWS with an alternative topology-based network

reconstruction algorithm (as long as it provides a scoring matrix

representing confidences assigned to interactions as output) and

SPINAL with an alternative global one-to-one network alignment

algorithm. Employing pairs of alternative algorithms for each com-

ponent within the general SiPAN framework and determining the

best performing pair is part of future work. Employment of alterna-

tive reconstruction and alignment methods might indirectly affect

yet another important issue, that of desirable parameter selection.

Our experiments indicate that the SiPAN framework performs best

when the algorithm is iterated many times and very small changes

on the networks are committed at each iteration. This corresponds

to choosing a large value for k and small values for b1; b2.

Currently, the number of iterations is set to 5, b1;b2 to 0.5. Even

with these settings, each execution requires a considerable amount

of time, up to several days. The major bottleneck in the algorithm is

the reconstruction component, that is the RWS algorithm. Thus, em-

ploying an alternative reconstruction algorithm or reimplementing

the RWS algorithm with the running time performance issue in

mind might allow the SiPAN algorithm provide even higher quality

network reconstructions.
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