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Nuclear state densities of odd-mass heavy nuclei in the shell model Monte Carlo approach
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The shell model Monte Carlo (SMMC) approach enables the microscopic calculation of nuclear state densities
in model spaces that are many orders of magnitude larger than those that can be treated by conventional
diagonalization techniques. However, it has been difficult to calculate accurate state densities of odd-mass heavy
nuclei as a function of excitation energy. This is because of a sign problem that arises from the projection
on an odd number of particles at low temperatures, making it difficult to calculate accurate ground-state
energies of odd-mass nuclei in direct Monte Carlo calculations. Here we extract the ground-state energy from a
one-parameter fit of the SMMC thermal energy to the thermal energy that is determined from experimental data.
This enables us to calculate the state densities of the odd-even isotopes 149–155Sm and 143–149Nd as a function
of excitation energy. We find close agreement with state densities extracted from experimental data. Our results
demonstrate that the state densities of the odd-mass samarium and neodymium isotopes can be consistently
reproduced using the same family of Hamiltonians that describe the neighboring even-mass isotopes within the
configuration-interaction shell model approach.
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I. INTRODUCTION

Reliable microscopic calculation of nuclear state densities
of heavy nuclei is a challenging task because it often
requires the inclusion of correlations beyond the mean-field
approximation. Correlation effects can be taken into account
in the context of the configuration-interaction (CI) shell model
approach, but the size of the required model space in heavy
nuclei is prohibitively large for direct diagonalization of the
CI shell model Hamiltonian. This limitation can be overcome
in part by using the shell model Monte Carlo (SMMC) method
[1–5]. The SMMC method enables the calculation of statistical
nuclear properties, and in particular of level densities, in very
large model spaces [6–10].

Fermionic Monte Carlo methods are often hampered by the
so-called sign problem, which leads to large statistical errors
in the calculated values of observables at low temperatures
[1,2,11,12]. Statistical and collective properties of nuclei can
be reliably calculated by employing a class of interactions
that have a good Monte Carlo sign in the grand-canonical
formulation [6,13]. In SMMC we use the canonical ensemble
of fixed numbers of protons and neutrons. The projection on an
even number of particles keeps the good sign of the interaction,
allowing accurate calculations for even-even nuclei. However,
the projection on an odd number of particles leads to a
new sign problem, making it difficult to calculate thermal
observables at low temperatures for odd-even and odd-odd
nuclei. In particular, the ground-state energy of the odd-particle
system cannot be accurately determined from direct SMMC
calculations. A method that circumvents this odd-particle sign
problem and enables the calculation of the ground-state energy
of the odd-particle system from the imaginary-time Green’s
functions of the even-particle system was recently introduced
in Ref. [14], and applied successfully to medium-mass nuclei.
However, the application of this method to heavy nuclei is
computationally intensive and requires additional develop-

ment. Here we describe a practical method that allows us
to determine the ground-state energy using a single-parameter
fit to experimental data. We use this method to calculate the
SMMC state density of odd-even rare-earth isotopes 149–155Sm
and 143–149Nd with the same family of Hamiltonians we used
to calculate the state densities of the neighboring even-mass
isotopes [15,16]. We find close agreement with the state
densities that are extracted from experimental data.

II. CHOICE OF MODEL SPACE AND INTERACTION

In rare-earth nuclei we use the model space of Refs. [15,16]
spanned by the single-particle orbitals 0g7/2, 1d5/2, 1d3/2,
2s1/2, 0h11/2, and 1f7/2 for protons, and 0h11/2, 0h9/2, 1f7/2,
1f5/2, 2p3/2, 2p1/2, 0i13/2, and 1g9/2 for neutrons. We have
chosen these orbitals by the requirement that their occupation
probabilities in well-deformed nuclei be between 0.9 and
0.1. The effect of other orbitals is accounted for by the
renormalization of the interaction. The bare single-particle
energies in the shell model Hamiltonian are determined
so as to reproduce the Woods-Saxon single-particle
energies in the spherical Hartree-Fock approximation. The
effective interaction consists of monopole pairing and
multipole-multipole interaction terms [15]

−
∑

ν=p,n

gνP
†
ν Pν −

∑
λ

χλ : (Oλ;p + Oλ;n) · (Oλ;p + Oλ;n):,

(1)
where the pair creation operator P †

ν and the multipole operator
Oλ;ν are given by

P †
ν =

∑
nljm

(−)j+m+la
†
αjm;νa

†
αj−m;ν , (2a)

Oλ;ν = 1√
2λ + 1

∑
ab

〈ja||dVWS

dr
Yλ||jb〉[a†

αja ;ν × ãαjb ;ν](λ)

(2b)
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with ãjm = (−)j+maj−m. In Eq. (1), : : denotes normal
ordering and VWS represents the Woods-Saxon potential.
The pairing strengths is expressed as gν = γ ḡν , where γ
is a renormalization factor and ḡp = 10.9/Z, ḡn = 10.9/N
are parametrized to reproduce the experimental odd-even
mass differences for nearby spherical nuclei in the number-
projected BCS approximation [15]. The quadrupole, octupole,
and hexadecupole interaction terms have strengths given by
χλ = kλχ for λ = 2,3,4 respectively. The parameter χ is
determined self-consistently [13] and kλ are renormalization
factors accounting for core polarization effects. We use the
parametrization of Ref. [16] for γ and k2:

γ = 0.72 − 0.5

(N − 90)2 + 5.3
, (3a)

k2 = 2.15 + 0.0025(N − 87)2, (3b)

while the other parameters are fixed at k3 = 1 and k4 = 1.

III. GROUND-STATE ENERGY

Because of the odd particle-number sign problem, the ther-
mal energy E(β) of the odd-even samarium and neodymium
isotopes can in practice be calculated only up to β = 1/T ∼
4–5 MeV−1. In contrast, SMMC calculations in neighboring
even-even samarium and neodymium nuclei, for which there
is no sign problem, were carried out up to β = 20 MeV−1

[16]. Systematic errors introduced by the discretization of
β [2] are corrected by calculating E(β) for the two time
slices of �β = 1/32 MeV−1 and �β = 1/64 MeV−1 and
then performing a linear extrapolation to �β = 0. For β � 3
MeV−1, the dependence of E(β) on �β is weaker and an
average value is taken instead. The calculations for β > 2
MeV−1 were carried out using a stabilization method of the
one-body canonical propagator for each configuration of the
auxiliary fields [15].

Since our calculations of the thermal energy E(β) for the
odd-even rare-earth nuclei are limited to β ∼ 4 − 5 MeV−1,
we cannot obtain a reliable estimate of the ground-state
energy E0 in direct SMMC calculations. The Green’s function
method of Ref. [14] was used successfully in medium-mass
nuclei to circumvent the odd particle-number sign problem
and extract accurate ground-state energies. However, this
method becomes computationally intensive in heavy nuclei.
Here we extract E0 by performing a one-parameter fit of the
SMMC thermal excitation energy Ex(T ) = E(T ) − E0 to the
experimental thermal energy. The latter is calculated using
the thermodynamical relation Ex(β) = −d ln Z(β)/dβ, where
Z is the experimental partition function in which the energy is
measured relative to the ground state (see below).

We demonstrate our method for 147Nd. Figure 1 shows the
thermal excitation energy (left panel) and the partition function
(right panel) as a function of temperature T . The SMMC
results (open circles) are shown down to T = 0.25 MeV,
below which the statistical errors become too large because
of the odd particle-number sign problem. We calculated the
experimental partition function (right panel, dashed line) from
Z(T ) = ∑

i(2Ji + 1)e−Ex,i /T where Ex,i denote the excitation
energies of the experimentally known energy levels. Because
of the incompleteness of the level counting data above a
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FIG. 1. Thermal excitation energy Ex (left panel) and partition
function Z (right panel) versus temperature T for 147Nd. The
SMMC results (open circles) are compared with the results deduced
directly from experimentally known levels (dashed lines), and from
Eq. (4) (solid lines). The ground-state energy E0 is obtained by a
one-parameter fit of the SMMC thermal energy to the experimentally
determined thermal energy as a function of temperature (solid line in
the left panel).

certain excitation energy, the experimental partition function
and the corresponding average experimental thermal energy
(left panel, dashed line) are realistic only for temperatures
below T ∼ 0.15 MeV. A realistic estimate of the experimental
thermal energy at higher temperatures is obtained by calculat-
ing an empirical partition function

Z(T ) =
N∑
i

(2Ji + 1)e−Ex,i/T +
∫ ∞

EN

dEx ρ(Ex)e−Ex/T .

(4)

In Eq. (4) the discrete sum is carried out over a suitably chosen
complete set of N experimental levels up to an excitation
energy EN , and the contribution of higher-lying levels is
included effectively through the integral over an empirical
state density ρ(Ex) with a Boltzmann weight. Here we use the
the backshifted Bethe formula (BBF) [17] for the empirical
state density

ρBBF(Ex) =
√

π

12
a−1/4(Ex − �)−5/4e2

√
a(Ex−�) , (5)

where a is the single-particle level density parameter and � is
the backshift parameter. For these parameters we use the values
in Ref. [18] determined from level counting data (at low exci-
tation energies) and the s-wave neutron resonance data (at the
neutron resonance threshold) for the given nucleus of interest.
The solid lines in Fig. 1 are calculated using Eq. (4) for the em-
pirical partition function. The number of the low-lying states
N (determining EN ) are chosen such that the solid and dashed
curves for the experimental partition function merge smoothly
at sufficiently low temperatures. The values of a, � and N are
tabulated in Table I for the odd-mass 143–149Nd and 149–155Sm
isotopes. We determine the ground-state energy E0 by a single-
parameter fit of the SMMC thermal excitation energy (open
circles) to the experimentally determined thermal excitation
energy (the solid curve in the left panel of Fig. 1). The fit
determines E0 up to a statistical error of ∼0.02–0.03 MeV.

We emphasize that only a single additive parameter E0

is adjusted to fit the empirical thermal excitation energy.
Nevertheless, we find close agreement of both the SMMC
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TABLE I. The values of a and � in the BBF [see Eq. (5)] as
determined from the level counting data at low excitation energies
and the neutron resonance data [18], the number N of a complete
set of experimentally known levels, and its corresponding energy EN

used in Eq. (4) for the odd-mass 143–149Nd and 149–155Sm isotopes.

Nucleus a (MeV−1) � (MeV) N EN (MeV)

143Nd 15.951 0.759 3 1.228
145Nd 16.792 0.135 4 0.658
147Nd 18.276 0.058 4 0.190
149Nd 18.552 −0.644 3 0.138
149Sm 19.086 −0.196 8 0.558
151Sm 18.999 −0.771 8 0.168
153Sm 17.848 −1.053 7 0.098
155Sm 17.067 −0.834 7 0.221

partition function and thermal energy with their corresponding
experimental values over a range of temperatures. This is
an evidence that our SMMC results are consistent with the
experimental data.

To validate our method, we apply it to estimate the
ground-state energy of an even-even nucleus, for which the
ground-state energy can be determined from large-β SMMC
calculations. We expect to find similar results for E0 in cases
when the SMMC state density is in good agreement with the
experimental density. As an example, we apply the method
for 150Sm using only the SMMC results for T > 0.25 MeV
(comparable to the temperatures for which the SMMC thermal
energy can be calculated for neighboring odd-mass nuclei
with not too large statistical errors). We find a ground-state
energy of E0 = −255.680 ± 0.021 MeV in comparison with
the value of E0 = −255.772 ± 0.019 MeV obtained by
averaging the large-β values of the SMMC thermal energy.
This difference of 0.092 MeV in the two values of E0 does
not lead to a significant change in the SMMC density. Similar
calculations in 144Nd give a difference of 0.130 MeV in the
values of E0. For 148Sm and 148Nd we find smaller differences
of 0.02 and 0.03 MeV, respectively.

In Fig. 2 we compare the SMMC results (open and solid
circles) for the thermal excitation energy Ex(T ) = E(T ) − E0
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FIG. 2. The SMMC thermal excitation energy (circles) for 150Sm
with E0 determined by the method used for the odd-mass nuclei (see
text) is compared with the experimental results (solid and dashed
lines as in Fig. 1). The solid circles are large-β SMMC results that
are not used in the determination of E0.

of 150Sm (using the value of E0 determined by the method we
use for the odd nuclei) with the experimental thermal excitation
energy (solid line). The solid circles are SMMC results for
temperatures T < 0.25 MeV, which are not used in the fit to
determine E0. We observe that the SMMC results at these
lower temperatures are somewhat below but still quite close to
the experimental curve.

The choice of the empirical level density in Eq. (4) is not
restricted to the BBF. We can also use the composite formula
[19], which combines a constant temperature formula at low
excitation energies with a BBF at higher excitations. The
parameters of the constant temperature formula are determined
from level counting data at low excitation energies, and the pa-
rameters of the BBF are then determined by requiring the conti-
nuity of the density and its first derivative at a certain matching
energy. This matching energy is determined by minimizing the
χ2 deviation of the composite level density from the neutron
resonance data. For the nuclei that have a matching energy
solution that minimizes the above χ2, we find that the use of
either the BBF or the composite formula lead to similar results
for E0. In 143Nd the ground-state energy E0 = −191.607 ±
0.021 MeV, determined using the BBF, differs from its value
of E0 = 191.614 ± 0.021 MeV obtained in the composite
formula approach by only ∼0.007 MeV. In 145Nd we find a
larger difference of 0.154 MeV in the values of E0, but the dif-
ferences between the corresponding SMMC state densities are
not significant. Similar calculations in 149Sm give a difference
of only 0.017 MeV in the corresponding values of E0.

IV. STATE DENSITIES

The average state density is determined in the saddle-point
approximation to the integral that expresses the state density
as an inverse Laplace transform of the partition function. This
average density is given by

ρ(E) ≈ 1√
2πT 2C

eS(E), (6)
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FIG. 3. (Color online) State densities of odd-mass 143−149Nd iso-
topes versus excitation energy Ex . The SMMC densities (open circles)
are compared with experimental results. The histograms at low
excitation energies are from level counting data, the triangle is the
neutron resonance data and the dashed line is the BBF state density
[Eq. (5)] that is determined from the experimental data.

034329-3
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FIG. 4. (Color online) State densities of odd-mass 149–155Sm iso-
topes versus excitation energy Ex . Symbols and lines as in Fig. 3.

where S(E) is the entropy and C is the heat capacity in the
canonical ensemble. In SMMC we first calculate the thermal
energy as an observable E(β) = 〈H 〉 and then integrate
the thermodynamic relation −d ln Z/dβ = E(β) to find the
partition function Z(β). The entropy and the heat capacity are
calculated from

S(E) = ln Z + βE, C = −β2dE/dβ (7)

and substituted into Eq. (6) to yield the state density.
The SMMC state densities for the odd-mass neodymium

and samarium isotopes are shown by open circles in Figs. 3
and 4, respectively. We compare these SMMC densities with
the level counting data (histograms) and with the neutron
resonance data (triangles). We also show the empirical BBF
state densities (dashed lines). For the neodymium nuclei
(Fig. 3), we find excellent agreement of the SMMC results
(open circles) with the experimental state densities (both level
counting and neutron resonance data) and the BBF state
densities (dashed lines). For the samarium nuclei (Fig. 4),
a similarly good agreement is observed for 149Sm and 151Sm.
We also find overall good agreement for 153Sm and 155Sm,

although we observe some discrepancies between the SMMC
and the experimental state densities at the neutron resonance
energy. Since the neutron resonance data point is used to
determine the parameters of the BBF state densities, similar
discrepancies are observed between the SMMC and the BBF
state densities for 153Sm and 155Sm.

V. CONCLUSION

We have carried out SMMC calculations for the odd-mass
rare-earth isotopes 149–155Sm and 143–149Nd. The sign problem
that originates in the projection on an odd number of particles
makes it difficult to calculate directly the ground-state energy.
We circumvent this problem in practice by carrying out a
one-parameter fit of the SMMC thermal excitation energy
to the experimental thermal excitation energy as determined
from level counting data at low excitation energies and the
neutron resonance data at the neutron separation energy. We
then calculate the SMMC state densities of the odd-even
samarium and neodymium isotopes as a function of excitation
energy and find them to be in good agreement with state
densities extracted from available experimental data. Thus,
the state densities of the odd-mass samarium and neodymium
isotopes are consistently reproduced using the same family
of configuration-interaction shell model Hamiltonians that
reproduced the state densities of the neighboring even-mass
isotopes.
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