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a b s t r a c t

In this paper, a modification to Dantzig–Wolfe (DW) decomposition algorithm for variational inequality
(VI) problems is considered to alleviate the computational burden and to facilitate model management
and maintenance. As proposals from DW subproblems are accumulated in the DW master problem, the
solution time and memory requirements are increasing for the master problem. Approximation of the
DW master problem solution significantly reduces the computational effort required to find the
equilibrium. The approximate DW algorithm is applied to a time of use pricing model with realistic
network constraints for the Ontario electricity market and to a two-region energy model for Canada.
In addition to empirical analysis, theoretical results for the convergence of the approximate DW
algorithm are presented.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Decomposition methods sometimes allow large-scale and com-
plex problems to be solved in a distributed and parallel fashion
that helps to overcome computational difficulties. They can reduce
the memory requirements and/or increase the speed of calcula-
tions. Alternatively they can lead to a drastic simplification of the
model development procedure and ease the model management
and maintenance [27,29]. Generally, the scope of the complex
models (e.g., related to public policy making) expands as addres-
sing one question reveals other related questions. Therefore
analyses of such models require continuous re-evaluation of the
issues. Decomposition of these models allows different analysts or
teams of experts to manage, analyze, re-evaluate and repeatedly
run sub-models. Expected run time and errors in modeling can be
reduced by using decomposition methods [27].

There are several decomposition algorithms (e.g., Dantzig–
Wolfe, Benders, Lagrangian) for solving and analyzing large-scale
equilibrium problems. Certain models may have a structure that
some of the constraints or variables prevent the separability of the
problem into subproblems. If these constraints/variables are
removed, the resulting subproblems are frequently considerably
easier to solve. These constraints/variables are usually referred to
ll rights reserved.
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as “complicating” (and sometimes referred to as “common” or
“linking”) constraints/variables [8]. In Dantzig–Wolfe (DW) and
Benders decomposition, instead of solving the original problem
with complicating constraints or variables, two problems are
solved iteratively, a master problem and a subproblem, i.e., original
problem without complicating constraints or variables. The solu-
tion to the original model is obtained by exchanging price and
quantity information among the subproblem(s) and the master
problem in an iterative manner. The size of the master problem
grows as new solutions (e.g., columns in DW decomposition) from
subproblems are passed to master problem and hence, the require-
ments (e.g., computational time and memory) to solve the master
problem increase at each iteration of the decomposition algorithm.

This paper presents modifications to the DW decomposition of
variational inequality (VI) problems that allow for the approxima-
tion of the master problem to reduce the computational effort
required to solve large-scale equilibrium problems and to facilitate
the model management and maintenance.

DW decomposition of VI problems has been introduced by
Fuller and Chung [16] and Chung et al. [7]. Approximation of the
subproblems in DW decomposition of VI problems (single-valued)
for decomposition purposes has been presented by Chung and
Fuller [6] under useful assumptions. The DW decomposition of VI
problems and the approximation of the subproblems have been
also studied by Luna et al. [24]. They consider DW decomposition
in a more general setting, i.e., for set-valued and maximal mono-
tone VI mappings (in addition to the single-valued, continuous
mappings considered by Fuller and Chung [16, Chung et al., [7] and
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Chung and Fuller [6]) as well as various kinds of subproblem
approximations that were not considered by Chung and Fuller [6].
Furthermore, Luna et al. [24] consider some algorithmic enhance-
ments, including inexact solution of the approximate subproblem,
and the cheap generation of additional proposals by a projection
method.

Related to DW decomposition of VI problems, Fuller and Chung
[15] also apply Benders decomposition to VI problems and provide
convergence results and proofs for a useful class of VI problems.
Their algorithm is mainly based on DW decomposition of VI
problems and they apply a DW decomposition procedure to a dual
of the given VI. By converting the dual forms of DW master and
subproblems to their primal forms, they derive the Benders master
and subproblems. Gabriel and Fuller [17] apply Benders decom-
position to solve a two-stage stochastic complementarity problem
(or VI) for an electricity market equilibrium model. Egging [12] also
employs Benders decomposition algorithm for large-scale, stochas-
tic multi-period mixed complementarity problems (MCP) for
various multi-stage natural gas market models accounting for
market power exertion by traders. Because of the primal-dual
relations of the DW and Benders’ master problems, the approx-
imation for the DW master problem presented in this paper can
also be applied to Benders decomposition of VI problems.

In this paper, we firstly introduce the DW decomposition
algorithm for VI problems and the approximations for the solution
of the master problem in DW decomposition. Convergence analysis
is also presented. Numerical investigations are performed on two
models in energy markets. These models are a single-period
(month) time-of-use (TOU) pricing electricity market equilibrium
model with linearized DC network constraints from Çelebi [4] and
a realistic two-region energy equilibrium model for Canada from
Fuller and Chung [16].
2. Background

VI problems were first developed in the context of studying a
class of partial differential equations that arise in the field of
mechanics and defined on infinite dimensional spaces [31]. In
contrast, finite dimensional VI problems have been studied for
computation of economic and game theoretic equilibria. In general,
a finite dimensional VI problem is defined as follows:

VIðG;KÞ : find a vector xn∈KDRn; such that :

GðxnÞT ðx−xnÞ≥0 ∀ x∈K ð1Þ
where G is a given continuous function from K to Rn, superscript T
denotes the transpose, and K is a nonempty, closed and convex set.
Standard conditions for existence and uniqueness of solutions to VI
(G,K) are provided in Harker and Pang [21], Nagurney [31] or
Patriksson [34].

Many mathematical problems (e.g., system of equations, con-
strained and unconstrained optimization problems, complemen-
tarity problems, game theory and saddle point problems, fixed
point problems, traffic assignment and network equilibrium
problems) can be formulated as VI problems [31,21,2,34]. Unlike
an optimization problem which has an objective function, a VI
problem has a vector-valued function G, and it is equivalent to an
optimization problem only if this vector-valued function is the
gradient of an objective function. A necessary and sufficient
condition for a differentiable G to satisfy the above condition is
that the Jacobian matrix ∇G is symmetric or in other words, that G
is integrable, i.e., it can be integrated to define an objective
function [31]. Unfortunately, this condition does not hold in many
practical problems. In this paper, we consider problems which are
non-integrable (asymmetric). See Takayama and Judge [36] and
Samuelson [35] for further details on “integrability” conditions.
There are different techniques or algorithms to solve such VI
equilibrium models, e.g., by solving a sequence of integrable
optimization problems, as in the Project Independence Evaluation
System (PIES) algorithm [1], the decoupling algorithm [37], and
more general algorithms for VI problems [31]. Alternatively, a VI
problem can be converted to an equivalent complementarity
problem and solved by Newton methods that solve a sequence of
linear complementarity problems [26,25,11,14].

PIES, which was originally developed for energy modeling for US
Department of Energy in the 1970s, captures many key features of
large-scale equilibrium models. The PIES algorithm approximates the
non-integrable equilibrium problem by a sequence of integrable
problems which can be converted into equivalent optimization pro-
blems. Each iteration solves a linear programming (LP) problem after a
proper step function approximation is made on an integrable approx-
imation of the demand function [23]. This algorithm has the char-
acteristics of the nonlinear Jacobi method for solving a system of
nonlinear equations. Ahn and Hogan [1] give sufficient conditions
under which the PIES algorithm converges. But, as Murphy and
Mudrageda [29] point out, although PIES never met these conditions,
because of demand function approximations, it usually does not fail to
converge.

In our approximations for the solution of the DW master
problem, we have also employed the PIES algorithm (as well as
another symmetric mapping) to approximate the original mapping
in the master problem (see Section 4 for details).
3. Decomposition algorithm and the approximation of the
master problem for VI problems

In this section, we summarize the main results of Fuller and
Chung [16], using a slightly different notation and following their
presentation closely. Then, we present the algorithm with an
approximation of the master problem in DW decomposition and
its underlying theory of convergence.

3.1. Dantzig–Wolfe decomposition method for VI problems

We consider a VI problemwith a feasible set defined by two sets of
constraints. We distinguish one of these constraint sets as complicating
constraints, e.g., when they are relaxed a VI subproblem is formed (and
it may or may not be decomposable, but it is easier to solve or
manage). Convex combinations of solutions of the subproblem,
together with the complicating constraints, form the feasible set of
the master problem. We first define the feasible set for the original VI
as follows. All vectors are considered to be column vectors and
superscript T denotes the transpose of a vector or matrix. The feasible
set is

K ¼ fx∈RnjgðxÞ≥0; hðxÞ≥0g
where g is a mapping from Rn to Rm such that gi is concave and
continuously differentiable for all i¼1,…,m, and h is a mapping from Rn

to Rl such that hi is concave and continuously differentiable for all i¼1,
…,l. Concavity of g and h ensure convexity of K. The constraints h(x) ≥0
represent the complicating constraints. The vector function G maps Rn

to Rn. The original VI is defined as follows:

VIðG;KÞ : find xn∈K such that GðxnÞT ðx−xnÞ≥0 ∀ x∈K ð2Þ
We assume throughout this paper that (2) has at least one

solution.
The feasible set for the subproblem is defined by relaxing the

complicating constraints in K and it is represented as:
K ¼ fx∈RnjgðxÞ≥0g. The subproblem at iteration k is defined with
ωk−1 (the dual variable vector corresponding to the complicating
constraints from the previous master problem solved at iteration
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k−1) and ∇hðxk−1M Þ (the matrix of gradients of h evaluated at the master
problem solution xk−1M ). The subproblem VI is defined as follows:

Sub� VIkðG−∇hðxk−1M ÞTωk−1; KÞ: find xkS∈K such that

ðGðxkSÞ−∇hðxk−1M ÞTωk−1ÞT ðx−xkSÞ≥0 ∀ x∈K ð3Þ
The feasible set for the master problem at iteration k is restricted to

all convex combinations of the k solutions (or ‘proposals’) that have
been calculated by the first k solutions of the subproblem. An
additional restriction is that the complicating constraints need to be
satisfied. We use the notation Xk ¼ ½x1S ; x2S ;…; xkS� to represent matrices
whose columns are the k proposals collected from the subproblem at
each iteration. Theweights on the proposals in the convex combination
are contained in the vector λ∈Rk. The feasible set for the master
problem is defined as: Λk ¼ fλ∈RkjhðXkλÞ≥0; ekTλ¼ 1; λ≥0g, where
ek∈Rk is a vector whose k entries are all one. Since any convex
combination Xkλ of solutions from the subproblem satisfies the
constraint set g(x)≥0, there is no need to explicitly mention this set
of constraints in the feasible set of the master problem. For brevity, we
sometimes use the notation xkM to denote the solution of the master
problem, λk, in terms of the original x variables: xkM ¼ Xkλ: Note that
xkM∈KDK (i.e., the feasible region of the subproblem contains the
original problem's feasible region, since it is a relaxed version of the
original problem's feasible region, without complicating constraints).
Finally, the master problem at iteration k is defined as

Master� VIkðHk;ΛkÞ : find λk∈Λk such that HkðλkÞT ðλ−λkÞ≥0 ∀ λ∈Λk ð4Þ
where the mapping Hk from Rk to Rk is defined by Hk(λk)T¼G(Xkλ)TXk.

As an alternative notation, the feasible set for the master
problem is also denoted by Kk

Kk ¼ fx∈RkjhðxÞ≥0; x∈convðXkÞg ð5Þ
where conv(Xk)1 stands for the convex hull of the points repre-
sented by Xk. Hence the master problem is more compactly defined
as

Master� VIkðG;KkÞ : find xn∈K such that GðxnÞT ðx−xnÞ≥0 ∀ x∈Kk ð6Þ
The relationship among the feasible sets can be summarized as

K1DK2D…DKkDKkþ1D…DKDK:

The DW algorithm uses the following information exchange
between master problem and subproblem. The subproblem for k¼1,
i.e., Sub-VI1 is solved with a starting guess of the value of the mapping
adjustment, such as ∇hðx0MÞTω0 ¼ 0, to obtain the proposals to be
transferred to the matrix Xk of the master problem, thus enlarging the
set Λk (or Kk). Then Master-VI1 is solved2 to estimate a new dual vector
ω1 and x1M . Later iterations begin with a subproblem and end with a
master problem. After each subproblem is solved, a scalar quantity
called the convergence gap (CGk) is calculated from the solutions of
subproblem Sub-VIk+1 and master problem Master-VIk

CGk ¼ ðGðxkMÞ−∇hðxkMÞTωkÞT ðxkþ1
S −xkMÞ ð7Þ

The algorithm terminates when a predetermined convergence
tolerance, ε40, is reached, i.e., |CGk|oε. The standard DW algo-
rithm for VIs is as follows [16]:

3.1.1. Standard DW algorithm

Step 0: Set k¼0. Choose ∇hðx0MÞTω0 and ε40.

Step 1: Increment k←kþ 1: Solve Sub� VIkðG−∇hðxk−1M ÞTωk−1;KÞ
and place the solution xkS in the matrix Xk ¼ ½Xk−1; xkS�.
1 conv (Xk)¼{x∈Rn|x¼Xk, for some λ∈ Rk such that ekT λ¼1, λ≥0}.
2 Unless x1s is feasible with respect to hðxÞ≥0, Master� VI1 ðK1; GÞ will be

infeasible. Later, we discuss the use of artificial variables in the master problem,
which avoids this difficulty.
If k¼1 then go to Step 2; else
If CGk−1≥−ε, then STOP; else
go to Step 2.

Step 2: Solve Master-VIk(Hk,Λk). Record ∇hðxkMÞTωk. Go to Step 1.

Fuller and Chung [16] have provided useful convergence results
under the following assumptions.

3.1.2. Assumptions for standard DW algorithm
1.
sub
Sec
dem
acti

Fðy
K is bounded, and fωkg∞k ¼ 1 is contained in a bounded set.

2.
 Each component of h(x) and g(x) is concave and continuously

differentiable.

3.
 G is continuous.

4.
 The subproblem and master problem are feasible at each iteration. !

5. Either G is strictly monotone,3 or G¼

−pðdÞ
∇cðzÞ where x¼ d

z

� �
,

−p(d) has the same dimension as d and is strictly monotone, and
c(z) is a convex function.4

Under these assumptions, Fuller and Chung [16] prove several
results, including: if CGk≥0, then xkM solves VI(G,K); before convergence,

CGko0, and limk-∞ CGk ¼ 0. Furthermore, if in Assumption 5, “strictly
monotone” is replaced by “strongly monotone,5 ” then limk-∞jxkþ1

S −

xkM j ¼ 0 (if G is strongly monotone), or limk-∞jdkþ1
S −dkM j ¼ 0 (if −p is

strongly monotone). We have provided the theorems of Fuller and
Chung [16] in Appendix A and the proofs can be found in Fuller and
Chung [16] or Chung and Fuller [6].

The boundedness of K in Assumption 1 can be achieved by
imposing bounds on x variables in the subproblems. For Assumption
4, infeasibility of the master problem can be avoided by introducing
artificial variables in the complicating constraints with high cost
coefficients, i.e., hiðxÞ þ ai≥0 ∀ i with ai≥0 [7]; this also imposes
bounds on each ωk, satisfying the second requirement of Assumption
1. However, determining the value of these high cost coefficients (i.e.,
‘big-M’ values) for artificial variables may cause some problems. If they
are too small, positive artificial variables may be observed in the
solution, and if they are too large, numerical problems due to poor
scaling may arise. In practice, the modeler's insight is important in
determining the ‘big-M’ values, using the fact that they are bounds on
the dual variables of the complicating constraints [6].

3.2. Approximate solution of the master problem

In this subsection we modify the standard DW algorithm by allow-
ing the master problem to be solved approximately. First, we define the
approximation method and its properties in a general setting.

At each iteration k, the master problem mapping G(x) is
approximated by ~G

kðxÞ, and we solve a modified master problem
denoted by Master� VIkð ~Hk

;ΛkÞ, where ~H
kðλkÞT ¼ ~G

kðXkλÞTXk. We
assume that the accuracy of the approximate mapping ~G

k
can be

controlled by the modeler to ensure that j ~GkðxkMÞ−GðxkMÞj-0 as k-
∞. For example, the second set of numerical results in Section 4 are
based on the same equilibrium model used by Fuller and Chung [16],
who applied standard DW decomposition, with the PIES algorithm
4 The distinction between subvectors d and z, with corresponding mapping
vectors −pðdÞ and ∇cðzÞ, is found in many models, including the two models of
tion 4. For example, in the first model of Section 4, pðdÞ is a vector of inverse
and functions, with cross-commodity dependence, and c(z) is the cost of supply
vities z to meet the demands d.
5 F is strongly monotone on K if there exists α40 such that jx−yj≤ ½FðxÞ−
Þ�T ðx−yÞ; ∀x; y∈K :
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solving the master problem very accurately at each iteration; in Section
4, we solve the master problem less accurately at each iteration. The
PIES algorithm, at each DW iteration in Fuller and Chung [16], solves a
sequence of approximate equilibrium problems, with the approximate
mapping getting closer to the exact mapping G at each step in the
sequence. In Section 4, we take just one PIES step at each DW iteration,
but if it were necessary to have a more accurate approximate mapping,
two or more PIES steps could be taken. The first set of numerical
results in Section 4, using a large-scale electricity market equilibrium
model, employs two different algorithms based on two approximations
~G
k
at each DW iteration, but again, the accuracy of the mapping can be

controlled by taking more steps, when necessary, in a sequence of
approximate problems.

To gain some computational advantage, ~G
kðxÞ is chosen so that

the approximate master problem VI is easy to solve. For example,
in Section 4, in both sets of results, the approximate master
problem is a nonlinear programming (NLP) problem, which can
be efficiently solved with less computational effort by an NLP
solver; the approximate mapping ~G

kðxÞ is the gradient of the
objective function of the last NLP in the sequence.

In Chung and Fuller [6], and in Luna et al. [24], the subproblem
mapping is approximated, while the master problem mapping is the
exact G(x). In contrast, here the master problem mapping is approxi-
mated, but the subproblem mapping employs the exact G(x).

It is required that the approximate ~G
kðxÞ should be continuous.

The master problem with the approximate mapping is as follows:

Master� VIkð ~Hk
;ΛkÞ: find λk∈Λk

such that ~H
kðλkÞT ðλ−λkÞ≥0 ∀ λ∈Λk,

or equivalently,

Master� VIk ð ~Gk
;KkÞ: find xn∈Kk

such that ~G
kðxnÞT ðx−xnÞ≥0 ∀ x∈Kk ð8Þ

The algorithm begins by solving the subproblem for k¼1, then
choosing an initial approximation ~G

1ðxÞ and solving Master�
VI1ð ~H1

;Λ1Þ (normally with artificial variables ensuring feasibility of
the complicating constraints, as for the standard DW algorithm). Later
iterations begin with a subproblem and end with a master problem.
The convergence gap, CGk, is calculated, using the exact mapping G. The
detailed statement of the algorithm follows. Note that there are many
ways to ensure that j ~GkðxkMÞ−GðxkMÞj-0 as k-∞; for concreteness, we
present one such method, which is to require that ~G

k
be chosen such

that j ~GkðxkMÞ−GðxkMÞjo αj ~Gk−1ðxk−1M Þ−Gðxk−1M Þj, for some α∈(0,1).
The approximate algorithm combines two convergent processes

—the Dantzig–Wolfe procedure of using subproblem proposals to
approximate the master problem's feasible region, and a steadily
improving approximation of the master problem's mapping G.
The stopping condition therefore has two parts, as detailed in the
following statement of the algorithm.

3.2.1. Approximate DW algorithm

Step 0: Set k¼0. Choose ∇hðx0MÞTω0, ε40 and α∈(0,1). Set X0 to

the null matrix and ~CG
0 ¼ −∞.

Step 1: Increment k←kþ 1: Solve Sub-VIk with ∇hðxk−1M ÞTωk−1

from the previous master problem (or Step 0) and place the

solution xkS in the matrix Xk ¼ ½Xk−1; xkS�.
If k¼1 then go to Step 2; else

If CGk−1≥−ε, and ð ~Gk−1ðxk−1M Þ−Gðxk−1M ÞÞT ðxkS−xk−1M Þoε then
STOP; else go to Step 2.

Step 2: Choose ~G
k
and calculate xkM such that xkM solves Master�

VIkð ~Hk
;ΛkÞ and (for k41)
j ~GkðxkMÞ−GðxkMÞjoαj ~Gk−1ðxk−1M Þ−Gðxk−1M Þj. Record ∇hðxkMÞTωk. Go to
Step 1.

The convergence theory for the approximate algorithm (see
Appendix A) requires the following assumptions about ~G

k
, as well

as the five assumptions required for the standard DW algorithm.

3.2.2. Extra assumptions for approximate DW algorithm
6.
 ~G
k
is continuous.
7.
 ~G
k
is chosen such that the solution xkM to Master� VIkð ~Hk

;ΛkÞ
satisfies limk-∞j ~G

kðxkMÞ−GðxkMÞj ¼ 0.

Under Assumptions 1–7, most of the 10 theorems and proofs in
Fuller and Chung [16] hold for this approximation. There are three
exceptions: Theorems 3, 5 and 8, which rely on the exact mapping
G being used in the master problem. Below, we provide New
Theorems 3, 5 and 8, with proofs. For the reader's convenience,
Appendix A contains statements of all the original theorems from
Fuller and Chung [16], where proofs may be found.

New Theorem 3. λk solves Master� VIkð ~Hk
;ΛkÞ iff there exists

λk∈Rk
þ, ω

k∈Rl
þ and ψk∈R such that all the following conditions are

satisfied:

XkT ~G
kðXkλkÞ−XkT∇hðXkλkÞTωk þ ekψk≥0 ð9Þ

hðXkλkÞ≥0 ð10Þ

ekTλk ¼ 1 ð11Þ

λkT ðXkT ~G
kðXkλkÞ−XkT∇hðXkλkÞTωk þ ekψkÞ ¼ 0 ð12Þ

ωkThðXkλkÞ ¼ 0 ð13Þ

Proof. This is a standard result for VI problems; see, e.g., Harker
and Pang [21].

New Theorem 5. If CGk þ ð ~GkðxkMÞ−GðxkMÞÞT ðxkþ1
S −xkMÞo0, then

conv(Xk)⊂conv(Xk+1) (strict inclusion).

Proof. We prove the converse. Suppose that conv(Xk)¼conv(Xk+1),

i.e. that xkþ1
S ∈conv(Xk). Then there is a vector λ∈Rk such that

xkþ1
S ¼ Xkλ with ekTλ¼ 1. In the conditions of New Theorem 3,

(12) may be written as xkTM ð ~GkðxkMÞ−∇hðxkMÞTωk Þ þ ψk ¼ 0, which
may be used to substitute for ψk in the first k inequalities, (9), of

the conditions in New Theorem 3: XkT ð ~GkðxkMÞ− ∇hðxkMÞTωk Þ−
ekTxkTM ð ~GkðxkMÞ−∇hðxkMÞTωk Þ≥0. Multiply each of these k inequalities
by the corresponding element of λ, and sum the results, to produce:

ð ~GkðxkMÞ−∇hðxkMÞTωk ÞT ðxkþ1
S −xkMÞ≥0. Finally, add and subtract

ð ~GkðxkMÞ−GðxkMÞÞT ðxkþ1
S −xkMÞ on the left of this inequality to produce

CGk þ ð ~GkðxkMÞ−GðxkMÞÞT ðxkþ1
S −xkMÞ≥0.

New Theorem 8. Assume that (a) ~G
k
is continuous, (b) any infinite

subsequence of fðxkM ;ωk; xkþ1
S Þg∞k ¼ 1has at least one limit point, and

(c) limk-∞j ~G
kðxkMÞ−GðxkMÞj ¼ 0. Either CGk≥0 at a finite iteration

number k, or CGko0 for all iterations k. In the latter case,

limk-∞CG
k ¼ 0.

Proof. Suppose that CGk ¼ ðGðxkMÞ−∇hðxkMÞTωkÞT ðxkþ1
S −xkMÞo0 for all k

and suppose, contrary to our desired conclusion, that there exists an
ε40 and infinite set of iteration numbers, T , such that
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ðGðxkMÞ−∇hðxkMÞTωkÞT ðxkþ1
S −xkMÞo−ε for all k∈T . Adding ð ~GkðxkMÞ−

GðxkMÞÞT ðxkþ1
S −xkMÞ to both sides yields: ð ~GkðxkMÞ −∇hðxkMÞTωkÞT

ðxkþ1
S −xkMÞ o−εþ ð ~GkðxkMÞ−GðxkMÞÞT ðxkþ1

S −xkMÞ for all k∈T : For any k

and j with j4k, xkþ1
S is one of the proposals available to

Master� VIjð ~Hj
;ΛjÞ, so we may use the complementarity conditions

in New Theorem 3 to derive an inequality. We do this by examining the

dual feasibility constraint (12) in Master� VIjð ~Hj
;ΛjÞ associated with

the primal variable λjkþ1 which is the weight associated with the

proposal xkþ1
S : xkþ1T

S
~G
jðxjMÞ− xkþ1T

S ∇hðxjMÞTωj þ ψ j≥0. We may elimi-
nate the variable ψj by using the complementarity slackness condition

∑j
i ¼ 1ðxiTS ~GjðxjMÞ− xiTS ∇hðxjMÞTωj þ ψ jÞTλji ¼ 0, and using the constraint

∑j
i ¼ 1λ

j
i ¼ 1, and the fact that xjM ¼∑j

i ¼ 1λ
j
ix

i
S: ψ j ¼ −xjTM ~G

jðxjMÞ
þxjTM∇hðxjMÞTωj. This allows us to rewrite the constraint associated

with λjkþ1: ð ~G
jðxjMÞ−∇hðxjMÞTωjÞT ðxkþ1

S −xjMÞ≥0, for all k and j with j4k.
Subtracting this from the strict inequality derived earlier, yields

ð ~GkðxkMÞ−∇hðxkMÞTωkÞT ðxkþ1
S −xkMÞ−ð ~G

jðxjMÞ−∇hðxjMÞTωjÞT ðxkþ1
S −xjMÞ o−ε

þ ð ~GkðxkMÞ− GðxkMÞÞT ðxkþ1
S −xkMÞ, for all k; j∈T with j4k. Note that

continuity of ~G
k
(and ~G

j
) makes the left of the inequality continuous

in ðxM ;ω; xSÞ: By the property that any infinite subsequence of
fðxkM ;ωk; xkþ1

S Þg∞k ¼ 1has at least one limit point, there exists a subset

T̂ ⊂T such that limk-∞; k∈T̂ ðxkM ;ωk; xkþ1
S Þ ¼ ðx̂M ; ω̂; x̂SÞ, a limit point.

Also note that limk-∞; k∈T̂ fð ~GkðxkMÞ−GðxkMÞÞT ðxkþ1
S −xkMÞg ¼ 0, because

limk-∞j ~G
kðxkMÞ−GðxkMÞj ¼ 0. Finally, we let j-∞ through values j∈T̂ , in

the inequality, and then let k-∞ through values k∈T̂ (this order of
limits ensures that j4k throughout the limiting process), and note that
~G
kðxkMÞ-Gðx̂MÞ and ~G

jðxjMÞ-Gðx̂MÞ. This gives the contradiction

0¼ ðGðx̂MÞ−∇hðx̂MÞT ω̂ÞT ðx̂S−x̂MÞ−ðGðx̂MÞ−∇hðx̂MÞT ω̂ÞT ðx̂S−x̂MÞo−εo0. □
Remark 1. The requirement (b) in the original Theorem 8 and in
New Theorem 8 – that any infinite subsequence of
fðxkM ;ωk; xkþ1

S Þg∞k ¼ 1has at least one limit point – is justified in Fuller
and Chung [16] by noting that Assumption 1 (K is bounded)
ensures that xkM and xkþ1

S have limit points, while the practice of
introducing artificial variables in the complicating constraints
creates bounds on the dual variables ωk, which ensures that the
dual variables have a limit point.
Remark 2. New Theorem 5 shows that if the convergence gap plus
an additional term is less than zero, CGk þ ð ~GkðxkMÞ−
GðxkMÞÞT ðxkþ1

S −xkMÞo0, then the next master problem feasible region
strictly includes the previous iteration's feasible region; i.e., the
algorithm continues to make progress, and it is worthwhile to
continue. However, since the stopping condition in Step 1 is
different from this requirement, it is important to show that, if
the stopping condition is violated, a useful proposal is generated.
Because there are two convergent processes in the algorithm, a
proposal can be useful either because it enlarges the master
feasible region, or because it brings ~G

kðxkMÞ closer to GðxkMÞ. The
stopping condition can be violated in one or both of two ways; in
particular, if ð ~GkðxkMÞ−GðxkMÞÞT ðxkþ1

S −xkMÞ≥ε, then the algorithm con-
tinues, j ~Gkþ1ðxkþ1

M Þ−Gðxkþ1
M Þjoαj ~GkðxkMÞ−GðxkMÞj with α∈(0,1) (see

Step 2), but the master feasible region may or may not be enlarged.
If instead, ð ~GkðxkMÞ−GðxkMÞÞT ðxkþ1

S −xkMÞoε and the stopping condition
is violated because CGko−ε, then the requirement of New
Theorem 5 is satisfied, and so the master feasible region is
enlarged, because

CGk þ ð ~GkðxkMÞ−GðxkMÞÞT ðxkþ1
S −xkMÞo−εþ ε¼ 0:

To summarize, as the algorithm proceeds, either ~G
k
becomes

more accurate, or the new proposal enlarges the master feasible
region (or both).

3.3. Alternative forms of the master problem

In Section 4, we employ slight variations on DW decomposition
as described above. For the first test model of Section 4, we form a
subproblem which uses a subset of the variables in the vector x,
while the master problem formulation uses the remaining vari-
ables and convex combinations of proposals from the subproblem.
The test model fits the form of VI(G,K), and the convergence theory
as found in Gabriel and Fuller [17]. In that paper,
x¼ ðxT1 ; xT2ÞT ; GðxÞ ¼ ðG1ðx1ÞT ;G2ðx2ÞT ÞT , gðxÞ ¼ gðx2Þ and hðxÞ ¼ h1

ðx1Þ þ h2ðx2Þ, where x2 is a vector containing the variables that
appear in the subproblem. The convergence gap CGk is defined over
the subset of variables that appear in the subproblem, i.e., (7)

above is modified as CGk ¼ ðG2ðxk2MÞ−∇hðxk2MÞTωkÞT ðxkþ1
2S −xk2MÞ.

When master problem approximation is applied, the expression

ð ~GkðxkMÞ−GðxkMÞÞT ðxkþ1
S −xkMÞ that appears in Section 3.2 above should

be replaced by ð ~G2
kðxk2MÞ−Gðxk2MÞÞT ðxkþ1

2S −xk2MÞ, and if G1(x1) is
calculated exactly in the master problem (i.e., only G2 is approxi-
mated) as is true of the first test model in Section 4, then the
convergence theory for the modified algorithm of Section 3.2
is valid.

For the second test model of Section 4, the subproblem
decomposes into two separate models, each providing distinct sets
of proposals to the master problem in matrices Xk

A and Xk
B. As is

common in DW decomposition applied to optimization models, we
employ two distinct sets of weights in the master problem, λkA and
λkB, so that xkM ¼ ðxkTAM ; xkTBMÞT , with xkAM ¼ Xk

Aλ
k
A, xkBM ¼ Xk

Bλ
k
B. The

convergence theory for the standard and modified DW algorithms
of Sections 3.1 and 3.2 is unaffected by this variation.
4. Numerical results

In this section, we illustrate the approximate solution of the DW
master problem on two energy market equilibrium models. They
are briefly described in the subsequent sections. All models are
coded in GAMS using a Windows 2003 Server, Dual Core AMD
Opteron 2.6 GHz computer with 32 GB memory. The VI problems
are solved by the GAMS/EMP framework and the PATH solver, and
the convex optimization problems are solved by the NLP solvers
CONOPT3 (Section 4.1) or MINOS5 (Section 4.2). The MCP models
are also solved by the PATH solver in GAMS.

4.1. TOU pricing models with transmission network constraints

We illustrate the algorithms of Sections 3.1 and 3.2 using the
TOU pricing models with linearized DC network constraints, as
detailed and illustrated in Chapter 3 of Çelebi [4] (also see Çelebi
and Fuller [5] for similar models without network constraints).
These models use the Hobbs’ [22] framework to determine TOU
prices in Nash–Cournot game setting in electricity markets on a
linearized DC network with line limits. The models were calibrated
to represent the Ontario electricity system, with a 66-bus approx-
imation of the transmission system. See Appendix B for model
description, VI formulation and the DW algorithms.
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We first solved the original models (perfect competition and
Nash–Cournot cases) using the MCP and VI formulations, without
decomposition. Computational results showed that there is not
much difference in solution times and number of PATH iterations
for MCP and VI formulations without line limits. However, with
line limits the VI solved by GAMS/EMP with PATH is considerably
faster than the MCP solved by PATH. The MCP formulation takes
18,240 (�5)–22,672 (�7) seconds (hours) and 163,876 to 256,281
PATH iterations to reach the equilibrium solution for perfect
competition and Nash–Cournot models, respectively. On the other
hand, the VI formulation takes 54.5–69.9 seconds and 735–483
PATH iterations to reach the same equilibrium solution for perfect
competition and Nash–Cournot models, respectively. The GAMS/
EMP framework, in fact, converts the VI formulation into an
equivalent MCP formulation and with this conversion process
some additional equation/variable pairs are added to the new
MCP formulation. We have noted that the MCP (VI) formulation
has 16,500 (16,662) and 16,824 (17,310) equation/variable pairs for
perfect competition and Nash–Cournot models, respectively. These
additional equation/variable pairs are most probably the reason for
a faster computation of the equilibrium. Since there is no technical
documentation about the GAMS/EMP framework yet (other than a
general guide in [13]), at this point, we can presume that these
added equation/variable pairs make the VI formulation better for
PATH than its pure MCP counterpart. As pointed out in Garcia et al.
[19], an increase in dimension can improve the formulation for
integer programs and for certain structured LPs and NLPs; perhaps
something similar happens in the EMP conversion of a VI to an
MCP. Hence we have used the VI formulation and GAMS/EMP
framework for models in the rest of our computational results.

We next applied standard DW decomposition of Section 3.1,
with the complicating constraints h(x) as the market clearing
conditions at the transmission buses, i.e., for each hour and bus
in the model, total demand at the bus minus total generation at the
bus equals net injection from transmission lines into the bus.
Once they are eliminated the ISO's problem can be separated from
the firms’ problems but since prices at a bus and demand block
depends on all firms’ sales, the firms’ problems cannot be
decomposed by firm. In our computational illustrations, the
subproblem was left as one large subproblem and it was not split
into two separate subproblems for the ISO and the firms; this had
no significant consequences for the computing times in our
experiments because, in all our experiments, almost all the
computation times are spent for the master problem. In the master
problem for standard DW decomposition, we used separate λ
weights for the ISO and firms subproblem proposals, as discussed
in Section 3.3.

For all variations of the DW algorithms, computations for
subproblem and master problem start from their equilibrium
solution found in the previous iteration. This may be computa-
tionally advantageous for the iterations that use slightly modified
data from the previous iteration (e.g., it may reduce the number of
iterations required for convergence) [30]. The convergence gap,
CGk, at each iteration of all the DW algorithms is an economically
meaningful term—e.g., for the perfect competition model, the
absolute value of CGk measures the increase in the overall produ-
cers’ surplus, comparing the subproblem solution with the pre-
vious master problem solution. Therefore, the convergence
requirement that CGk−1≥−ε ensures that, at the market clearing
bus prices calculated by the master problem, the next subproblem
can find a solution that increases total producers’ surplus by no
more than the small amount ε.

For all algorithms in this subsection, we have set ε¼0.1 and the
dual variables of the market clearing constraints β0njh ¼ 0 (β0njh is this
model's symbol for components of the vector ωk of Section 3).
For approximations of the master problem (see Appendix B,
approximate DW algorithm), we have set φ0¼the demand quan-
tities in x* (where x* is the equilibrium solution for the perfect
competition model without line limits). We did not implement the
requirement j ~GkðxkMÞ−GðxkMÞjoαj ~Gk−1ðxk−1M Þ−Gðxk−1M Þj, and so there
was no need to choose a value for α; see below for further details
on this point. In the master problem, artificial variables are added
to the constraint set with large cost coefficients (e.g., big-M). After
some experimentation, big-M values are set to 325. Also in the
subproblem, large upper/lower bounds are set for all x variables
that do not already have any upper/lower bounds.

We were not able to reach an equilibrium solution for the
standard DW algorithm for the TOU pricing models with 66-bus
network (with or without line limits) within a reasonable time
framework and we terminated the algorithm after 48 hours of
computation time. This is expected, because once the market
clearing constraints at buses are relaxed in the subproblem, the
links between the ISO's problem and the firms’ problems are also
disconnected. Proposals from the subproblem are so far from
satisfying the relaxed constraints that artificial variables become
positive in most of the iterations (i.e., no feasible solution is found).
The convergence theory is not violated—for a smaller 3-bus test
system, the standard DW algorithm found a feasible solution after
30 iterations and converged to the equilibrium solution after 84
iterations. The problem with the 66-bus system is that there are
many complicating constraints −24�66¼1584 of these con-
straints, versus only 3 in the smaller test problem.

For the standard DW algorithm, we also observed that the
master problem weights λ for the ISO's variables (see Section 3.3)
were all positive at least once during the algorithm. This suggests
the idea to include the ISO's problem in the master problem
instead of the subproblem, as discussed in Section 3.3. Since the
market clearing conditions are eliminated from the subproblem's
feasible set K , in the standard DW algorithm, the ISO's problem can
be moved into the master problem, leaving only the firms repre-
sented in the subproblem. Moreover, to ensure feasibility for the
master problem and to produce better proposals from subpro-
blems, we add extra constraints to the subproblem's feasible set K .
These extra subproblem constraints are obtained by summing the
market clearing constraints over all buses, to produce constraints
that require that total generation equals total demand during every
hour (without mentioning the ISO's variables). This algorithm, with
the ISO's problem in the master problem and the extra subproblem
constraints, is denoted the ‘modified’ DW algorithm; details can be
found in Appendix B. As mentioned in Section 3.3, this modified
DW algorithm fits the form of VI(G,K), and the convergence theory
as found in Gabriel and Fuller [17]. Although the extra subpro-
blem's constraints change the subproblem feasible set K , the
original model's feasible set is still contained in the subproblem's
feasible set, KDK , which is crucial property needed in the
convergence theory.

Without line limits, the modified DW decomposition method
converges in only one iteration. This is not surprising, because
without line limits, the congestion based wheeling fees would be
zero and using a starting guess of zero for the duals of linking
constraints (i.e., β0njh ¼ 0) would cause the subproblem to provide
the equilibrium solution.

With line limits, for the perfect competition model (Nash–
Cournot model), the modified DW algorithm converged in 125
(307) iterations, taking more than 1.2 hours (4.2 hours), with the
master problem calculations taking most of the time, see
Tables 1 and 2. Therefore, we seek better computational results
with master problem approximation as in Section 3.2 (see
Appendix B for details for this model). We test two types of
approximations: a symmetrization of the Jacobian of G (labeled
‘Approximate’ in the tables) and a diagonalization of G as in
the PIES algorithm (labeled ‘Approximate (PIES)’ in the tables).
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These approximations for the inverse demand functions (perfect
competition model) or marginal revenue functions (Nash–Cournot
model) in the mapping ~G

kðxÞ satisfy the approximation properties.
Since ~G

kðxÞ becomes the gradient of a convex function, it can be
integrated to form a convex optimization problem, e.g., NLP.

As mentioned above, we did not implement the requirement
j ~GkðxkMÞ−GðxkMÞjoαj ~Gk−1ðxk−1M Þ−Gðxk−1M Þj for the master problem
approximation algorithms; instead, we solved only two NLP for
the approximate master problem at each iteration, and calculated
the implied value α¼ j ~GkðxkMÞ−GðxkMÞj=j ~G

k−1ðxk−1M Þ−Gðxk−1M Þj, as
reported in Tables 3 and 4 (α columns). These computed values
of α are all less than 0.125.

In the approximate DW algorithm, we have the two-part
stopping condition CGk−1≥−ε¼−0.1 and ð ~GkðxkMÞ−GðxkMÞÞT
ðxkþ1

S −xkMÞoε¼ 0:1. We note that the latter condition has been
satisfied at every iteration of the DW algorithm, except for some
very early iterations in the perfect competition case (see
Tables 3 and 4, ð ~Gk

−GÞT ðxkþ1
S −xkMÞ columns). As mentioned in

Section 3.2, Remark 2, accuracy of the approximation ~G
k
is enough

(usually ð ~Gk
−GÞT ðxkþ1

S −xkMÞ term equals to zero or less than the
tolerance set, ε¼0.1, for most of the iterations, and becomes much
Table 1
Computational results for the DW algorithms for perfect competition TOU pricing
models (with line limits).

DW algorithm Computation time (s) DW iterations

Sub Master Total

Standard N/A N/A 448 hours 4500
Modified 42.1 4336.7 4378.8 125
Approximate 51.6 2469.4 2521.0 145
Approximate (PIES) 43.1 1891.6 1934.7 133

Table 2
Computational results for the DW algorithms for Nash–Cournot TOU pricing models
(with line limits).

DW algorithm Computation time (s) DW iterations

Sub Master Total

Standard N/A N/A 448 hours 4500
Modified 138.1 14,798.1 14,936.2 307
Approximate 124.5 11,674.5 11,799.0 317
Approximate (PIES) 117.8 9,992.6 10,110.4 295

Table 3
Progress of iterations, approximate DW algorithms (perfect competition, line limits).

DW iteration PC-APPROX

CGk ð ~Gk
−GÞT ðxkþ1

S −xkMÞ α

2 −1.95E+07 1.37E+03 5.29
10 −6.47E+05 2.81E−13 0
20 −3.67E+05 −5.02E−09 0
30 −6.42E+04 3.07E−11 0
40 −8.62E+03 −2.33E−11 0
50 −5.39E+03 2.03E−03 2.23
60 −1.88E+03 −5.58E−11 0
70 −1.51E+03 1.18E−03 1.16E
80 −9.22E+02 2.22E−03 6.92
90 −1.41E+02 7.70E−05 7.30E

100 −4.48E+01 −5.87E−06 3.73
110 −1.11E+01 1.37E−06 3.21E
120 −5.42E+00 4.19E−07 1.23E
130 −9.91E−01 8.93E−08 3.59
133 −6.52E−01 8.92E−08 8.27
145 −1.99E−02 5.32E−08 6.26
smaller as the algorithm proceeds) to ensure that whenever
CGk−14−ε, the next proposal enlarges the master feasible region.

Computational results and progress of DW iterations for all
algorithms are summarized in Tables 1–5, for the cases with line
limits.

For the cases without line limits, the approximate DW algo-
rithms converge, again, in only one iteration. With line limits, it
takes about 42 minutes (3.3 hours) to converge to the equilibrium
solution for the perfect competition (Nash–Cournot) model. The
computational results in Tables 1 and 2 show that the approximate
DW algorithms outperform the standard and modified DW algo-
rithms in terms of computation time. However, the number of DW
iterations is sometimes larger for the approximate DW algorithm
than for the modified DW algorithm: the NLP computation at each
approximate master problem is faster than the EMP/PATH master
calculation of the modified DW algorithm, for less computation
time overall.

The approximate (PIES) DW algorithm converges in the least
time of all tested algorithms, and with fewer iterations than the
approximate DW algorithm.

In Tables 3 and 4, we have presented the progress of iterations
for DW algorithms for perfect competition (PC) and Nash–Cournot
(NC) TOU pricing models, respectively. On the other hand, Table 5
displays the accuracy of prices at each DW iteration for approx-
imate DW algorithms for perfect competition and Nash–Cournot
TOU pricing models, i.e., accuracy measured as maximum of the
relative percentage of differences in prices between solutions of
master problem (denoted by subscript M) and subproblem
(denoted by subscript S)/original problem (denoted by superscript
n). After convergence, the accuracy of most decomposition algo-
rithms, by either measure, is 0.01%, but for the approximate (PIES)
algorithm in perfect competition TOU pricing case, the accuracy is
worse, at 0.1%. The difference is mainly due to fewer DW iterations
required for the approximate (PIES) algorithm. If this algorithm is
run for several more DW iterations (e.g., by imposing a tighter
convergence tolerance ε), the accuracy is improved.

This approach of approximation of the master problem allows
one team of analysts to manage/maintain generation companies’
problems (the subproblem) and another team to manage/maintain
the system operator's problem (the master problem). In practice,
this could be especially useful for the system operator, since
network constraints are constantly monitored and updated by
the system operator. Although the standard DW decomposition
algorithm (with the system operator's problem in the subproblem)
takes impractically long time to converge, the modified DW and
PC-APPROX-PIES

CGk ð ~Gk
−GÞT ðxkþ1

S −xkMÞ α

E−03 −1.95E+07 −1.86E+03 2.86E−03
−6.47E+05 4.27E−08 0
−3.67E+05 −2.69E−07 0
−6.42E+04 1.71E−10 0
−7,006.29 −6.91E−12 0

E−03 −1.14E+04 1.34E−11 0
−1.82E+03 −1.06E−02 2.26E−02

−02 −1.68E+03 −4.87E−11 0
E−03 −2.34E+03 −1.40E−02 1.20E−02
−03 −1.97E+02 1.93E−11 0

E−03 −3.47E+01 −9.03E−04 2.76E−02
−03 −1.04E+01 5.42E−05 6.31E−02
−02 −6.50E−01 −3.83E−07 1.23E−01
E−03 −1.44E−01 −5.36E−07 4.08E−02
E−03 −8.74E−02 1.61E−08 5.28E−02
E−03 N/A N/A N/A



Table 4
Progress of iterations, approximate DW algorithms (Nash–Cournot, line limits).

DW iteration NC-APPROX NC-APPROX-PIES

CGk ð ~Gk
−GÞT ðxkþ1

S −xkMÞ α∞ CGk ð ~Gk
−GÞT ðxkþ1

S −xkMÞ α

2 −4.96E+07 0 0 −4.96E+07 0 0
20 −8.17E+05 −6.86E−11 0 −8.10E+05 1.23E−10 0
40 −4.26E+05 −2.61E−05 2.47E−05 −3.94E+05 3.86E−11 0
60 −2.77E+05 −2.80E−04 7.50E−05 −1.43E+05 −7.78E−01 2.40E−02
80 −1.05E+05 −1.64E−03 2.10E−03 −1.30E+05 −8.83E−04 1.90E−02

100 −1.08E+05 5.72E−03 3.02E−04 −6.94E+04 −4.87E−01 2.61E−02
120 −8.22E+04 3.74E−06 1.96E−03 −6.11E+04 5.71E−03 7.98E−03
140 −4.07E+04 −1.15E−04 1.23E−03 −3.40E+04 −2.94E−02 1.24E−02
160 −2.19E+04 3.41E−04 5.79E−04 −1.45E+04 9.32E−03 7.85E−03
180 −1.25E+04 1.49E−04 1.71E−03 −8.34E+03 −2.35E−02 4.09E−02
200 −6.65E+03 6.80E−04 3.31E−03 −3.91E+03 −1.39E−02 1.27E−02
220 −2.62E+03 −2.16E−05 1.05E−03 −1.23E+03 3.51E−03 2.24E−02
240 −1.19E+03 5.30E−04 7.83E−03 −1.08E+02 1.91E−05 2.93E−02
260 −4.09E+01 9.53E−06 6.29E−03 −4.41E+00 −3.71E−06 1.73E−02
280 −8.14E+00 1.86E−06 9.34E−03 −9.04E−01 −5.10E−07 1.30E−02
295 −1.37E+00 1.10E−06 6.74E−03 −4.01E−02 −3.09E−07 1.39E−02
317 −9.13E−02 5.39E−08 9.32E−03 N/A N/A N/A

Table 5
Maximum of relative error in prices (in percentages) for approximate DW algorithms (perfect competition and Nash–Cournot TOU pricing models with line limits).

DW iter. PC-APPROX PC-APPROX-PIES DW iter. NC-APPROX NC-APPROX-PIES

��� ðpM−pS Þ
pM

��� ��� ðpM−pn Þ
pM

��� ��� ðpM−pS Þ
pM

��� ��� ðpM−pn Þ
pM

��� ��� ðpM−pS Þ
pM

��� ��� ðpM−pn Þ
pM

��� ��� ðpM−pS Þ
pM

��� ��� ðpM−pn Þ
pM

���
2 100.00 17.72 812.66 135.12 2 156.75 34.26 343.24 50.77

10 57.34 4.67 57.31 4.67 20 23.25 28.54 23.44 28.54
20 55.93 4.65 55.97 4.65 40 8.31 22.45 6.07 22.17
30 42.61 3.93 42.16 3.93 60 3.83 20.01 8.64 19.92
40 4.63 1.68 18.32 1.31 80 9.05 17.47 5.07 17.50
50 18.61 1.41 12.29 0.99 100 5.88 14.85 8.49 14.17
60 15.64 1.72 4.62 1.64 120 5.06 12.63 5.51 13.44
70 13.37 1.19 13.08 1.29 140 6.32 12.03 6.86 9.97
80 3.98 0.82 9.30 1.22 160 4.52 8.68 4.80 6.85
90 1.52 0.54 2.58 0.82 180 5.01 6.77 3.77 5.24

100 0.39 0.35 1.01 0.69 200 3.69 4.81 2.52 3.33
110 0.35 0.34 0.59 0.59 220 2.02 2.62 0.87 1.28
120 0.34 0.33 0.13 0.11 240 0.94 1.33 0.45 0.48
130 0.16 0.13 0.11 0.09 260 0.38 0.37 0.11 0.11
133 0.15 0.12 0.10 0.09 279 0.13 0.13 0.03 0.03
145 0.01 0.01 N/A N/A 295 0.05 0.05 0.01 0.01

317 0.01 0.01 N/A N/A
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the approximate DW algorithms improve the computation time
substantially, especially for the perfect competition model.

4.2. Two region Canadian energy model

In this subsection, we provide numerical results on the perfor-
mance of the approximation of the master problem in the DW
decomposition algorithm using a realistic two-region energy equili-
brium model for Canada. The complicating constraints, relaxed in the
subproblem, are the import/export balances between two regions.
See Fuller and Chung [16] for the model description. The potential
model management advantage of decomposition is to allow different
teams to manage/maintain the two regional models.

Fuller and Chung [16] illustrated their numerical results using the
PIES algorithm (with several PIES steps until a very precise solution
was found) to solve for the master problem and the subproblem at
each iteration of standard DW decomposition. The approximate DW
algorithm of Section 3.2 proposes that instead of using the exact
mapping G(x) for the equilibrium master problem, an integrable
approximation of it ( ~G
kðxÞ) can be used. The PIES algorithm also

approximates the original mapping of the equilibrium problem by an
integrable one—see Ahn and Hogan [1] for further details on PIES
algorithm. It solves the equilibrium problem iteratively until there is
not much change in the solution of two consecutive iterations. The
approximate DW algorithm also proposes to solve the master
problem as a series of approximate master problems. Instead of an
exact solution, even an approximate solution (i.e., with one or more
steps of PIES) within the DW algorithm is sufficient for convergence,
as we illustrate below. We have tested the approximate DWalgorithm
on a two-region energy equilibrium model for Canada and provide
the results for three cases (where ε set to 10−4 for all cases):
(A)
 PIES with up to 25 steps for both the subproblem and master
problem, i.e., standard DW decomposition.
(B)
 PIES with up to 25 steps for the subproblem and only one PIES
step for the master problem, i.e., approximate DW decomposition.
(C)
 PIES with only 1 step for both the subproblem and master
problem.



Table 6
Progress of iterations for the three DW algorithms for the two-region Canadian energy equilibrium model (Cases A, B and C).

DW iter. Case A Case B Case C

CGk
��� ðpM−pS Þ

pM

��� Extra term CGk
��� ðpM−pS Þ

pM

��� Extra term CGk
��� ðpM−pS Þ

pM

��� Extra term

1 −11262.157 944.243 3.53E−05 −11267.200 944.243 1.87E+00 −13699.659 944.250 −1.68E+01
5 −20317.036 37.006 1.16E−04 −505.152 22.131 −6.05E−01 −47332.506 322.908 1.88E+00

10 −49.441 2.753 9.17E−06 −41.205 8.063 −3.13E−01 −30.493 8.779 7.58E−02
15 −7.538 1.171 9.65E−06 −1.329 0.483 −1.55E−02 −25.336 5.355 3.48E−03
20 −0.199 0.140 −1.53E−06 −0.106 0.124 −1.15E−03 −1.210 0.665 −4.36E−03
25 −0.014 0.033 8.71E−07 −0.002 0.015 −2.44E−05 −0.183 0.246 7.46E−04
31 1.04E−05 7.03E−03 −3.03E−07 1.19E−05 6.58E−03 2.18E−06 −2.08E−03 1.89E−02 −1.82E−05
33 N/A N/A N/A 1.31E−05 6.23E−03 5.86E−07 −2.05E−03 1.84E−02 1.01E−05
38 N/A N/A N/A N/A N/A N/A −7.02E−05 1.35E−02 −3.75E−07

Table 7
Accuracy of the three DW algorithms for Canadian energy equilibrium model.

DW iter. Case A Case B Case C

��� ðqM−qn Þ
qn

��� ��� ðpM−pn Þ
pn

��� ��� ðqM−qn Þ
qn

��� ��� ðpM−pn Þ
pn

��� ��� ðqM−qn Þ
qn

��� ��� ðpM−pn Þ
pn

���
1 288.87% 94.52% 288.87% 330.77% 380.70% 94.52%
5 69.07% 3295.58% 69.09% 3296.18% 67.38% 5532.41%

10 18.76% 103.15% 34.28% 175.85% 17.53% 189.06%
15 7.62% 15.18% 3.93% 9.78% 13.45% 59.63%
20 2.30% 7.09% 3.11% 9.45% 4.06% 25.95%
25 1.15% 2.29% 0.50% 0.95% 1.91% 13.06%
31 0.17% 0.42% 0.12% 0.44% 0.29% 1.23%
33 N/A N/A 0.12% 0.42% 0.47% 1.11%
38 N/A N/A N/A N/A 0.18% 0.99%

Table 8
Computation times (in seconds) for the three DW algorithms and reference case
(original model) for energy equilibrium model of Fuller and Chung [16].

Cases Master
problem

Subproblem for
region 1

Subproblem for
region 2

Total % of
Case A

Case A 0.924 0.312 0.425 1.661 100
Case B 0.142 0.377 0.641 1.16 69.84
Case C 0.047 0.359 0.167 0.573 34.50
Reference
case

– – – 0.045 2.71

E. Çelebi, J. David Fuller / Computers & Operations Research 40 (2013) 2724–27392732
Case C mixes approximation of the master problem, as in
Section 3.2, with approximation of the subproblem as in Chung
and Fuller [6]. The results on progress of the iterations for these
three cases are summarized in Table 6.

In Table 6, the “CGk” column shows the convergence gap at each
decomposition iteration as in Fuller and Chung [16] and the
“jðpM−pSÞ=pM j” column is the maximum, overall price values in
vector p, of the absolute difference between the master problem
solution and the subproblem solution, expressed as a percent of
the master problem solution. The column “Extra Term” is the
ð ~GkðxkMÞ−GðxkMÞÞT ðxkþ1

S −xkMÞ term at each DW iteration. Similar to
Section 4.1 results, the accuracy of the approximation ~G

k
is enough

here (i.e., ð ~GkðxkMÞ−GðxkMÞÞT ðxkþ1
S −xkMÞ approaches to zero as the

algorithm proceeds) to ensure that whenever CGk−14−ε, the next
proposal enlarges the master feasible region (see Section 3.2,
Remark 2).

The numbers of DW iterations required for the approximate DW
algorithms in Cases A, B and C are 31, 33 and 38, respectively. For
the master problem, the maximum of the number of PIES steps
required6 at each DW iteration for the whole DW algorithm for
each case are 17, 1 and 1, respectively. Similarly, for the subproblem
of region 1, the maximum of the number of PIES steps required for
each case are 6, 7 and 1, respectively. For the subproblem of region
2, in each case, they are 7, 22 and 1, respectively.

In Table 7, we have also compared the reference solution (i.e.,
original model solution without decomposition and up to 25 PIES
steps) with the solutions of the DW algorithms in each case. This
can be regarded as a measure of accuracy for each case. In this
respect, the measure “jðqM−qnÞ=qnj” is the maximum, overall
demand quantities in vector q, of the absolute difference between
master problem's solution and the reference solution, expressed as
a percent of the reference solution. Similarly, “jðpM−pnÞ=pnj” is an
accuracy measure for the price vector p. Table 7 presents these
measures.

Case B has the greatest accuracy after 33 DW iterations and for
Cases A and C, we can have a better degree of accuracy with further
DW decomposition iterations. Moreover, as Table 8 shows, the
extra time to compute subproblem solutions in Case B compared
with A is more than offset by the computational improvement for
the master problem in Case B. Case C is the least accurate, but also
the fastest of the three cases. Although it takes the most DW
iterations (Table 8), Case C takes the least time for both the master
and subproblem calculations, due to the NLP approximations for
both master and subproblem.
6 PIES method with up to 25 steps has the convergence condition that there
should be no more than 0.1% change in the price of any demand commodity from
one PIES iteration to the next.
The computational results are quite different from those of
Section 4.1, where the master problem approximations greatly
improve the computational times compared with the standard (or
modified) DW algorithm. In Section 4.1, the total computational
time is dominated by the master problem calculations, but for the
Canadian energy model, the subproblem computational time is
comparable to that of the master problem. Therefore, if the master
approximation causes more iterations to be required, then the total
computational time can increase unless the subproblem calcula-
tions can be done more quickly (Case C).

Note that without any decomposition and using the PIES
algorithm for the original model, it takes only 0.045 seconds and
nine PIES iterations to reach the equilibrium solution. Decomposi-
tion is not useful here to improve computational speed; its value is
potentially for model management/maintenance.

In this illustration, note that both the subproblem and the
master problem solutions are approximated in Case C (i.e., only one
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PIES iteration is allowed for subproblem/master problem). Chung
and Fuller [6] study approximations of the subproblem for DW
decomposition of VI problems and this illustration combines their
ideas with the approximation of the master problem. We did not
provide any theorems for this algorithm and leave it for future
research. However, we note that any real implementation neces-
sarily has some degree of error in the solutions of the master
problem and the subproblem. With approximate solutions pro-
posed in this paper, one can control the amount of computational
effort required at each iteration in order to decrease the overall
computational burden.

For this illustration of approximation of the master problem,
one team of analysts can manage/maintain the subproblem
(e.g., regional models represented without linking constraints) and
another team of analysts can manage/maintain the master problem
(e.g., coordination problem with linking constraints enforced).
5. Conclusions and future research

In this paper, we present DW algorithms with approximation of
the master problem and we test them on two models of energy
markets, with comparisons to the standard DW algorithm without
such approximations. The standard DW algorithm fails to converge
within a reasonable time for some of our illustrations. However,
the approximate DW algorithms converge to the equilibrium
solution with some computational improvements over the stan-
dard DW algorithm in all cases.

Although the models without any decomposition can be solved
considerably quicker than any DW algorithm, the benefits of mana-
ging the subproblem and master problem separately may compen-
sate for the additional time to obtain a solution. For the TOU pricing
models, separate teams of analysts can maintain the subproblem
(containing only firms’ problem) and the master problem (contain-
ing convex combinations of the proposals from subproblems and the
ISO's problem with network constraints). With further approxima-
tion in the subproblems (as in Chung and Fuller [6] or Luna et al.
[24]), models with special structure can be decomposed by other
dimensions. As an example, energy market models can be decom-
posed by region (e.g., western and eastern Canada) or by commodity
(e.g., electricity, gas, oil). Therefore, the resulting subproblems can
be managed and maintained separately. Consistent solution of the
whole model may be obtained by the proposed DW algorithms.

For some very large models, memory limits may cause problems
(e.g., a stochastic model with many scenarios) and the only
practical option may be the decomposition of the problem (see
Gabriel and Fuller [17] and Egging [12] for an account).

Although the numerical results are presented for the VI problems,
the theoretical results also hold for variety of problems, e.g., NLPs and
nonlinear complementarity problems that satisfy the assumptions.

There are several avenues for future research on algorithms and
computational efforts for large-scale VI problems. Theoretical work
on convergence of algorithms which combine approximations of the
mappings in both the subproblem and the master problem could be
explored within the general framework laid out for subproblem
approximation by Luna et al. [24]. Another possibility is to extend
the ideas for approximate DW decomposition algorithms to the
Benders decomposition for VI problems. A third possibility is
presented by Goffin et al. [20] and Denault and Goffin [10,9] who
introduce the analytic center cutting plane method (ACCPM) to
solve VI problems. In the context of column generation and cutting
planes, ACCPM is a centering concept from interior point methods. A
direct application of this method to the algorithms in this paper is
that, ACCPM can be used to compute “central prices” (e.g., central
prices for congestion based wheeling) at each iteration of the DW
decomposition. Instead of solving the master problem at each
iteration, central prices can be used to compute a new proposal
from the subproblem (e.g., a proposal provided by the ACCPM
method). However, computing the analytic center can be computa-
tionally very challenging. Therefore, a proximal (i.e., approximate)
analytic center can be useful within the Benders decomposition of VI
problems in order to reduce the computational effort.

On the other hand, column generation methods (e.g., DW,
simplicial decomposition) usually include some column dropping
schemes that drops the columns that are no longer believed to be
necessary in order to express an optimal solution [28,32,34,33,19,18].
The computational aim is to generate profitable columns in the
search process of an optimal solution and, hence, to reduce the
number of iterations and to increase efficiency of computations. In
DW algorithm for VI problems, computational difficulties may arise
when solving the master equilibrium problem, because the problem
size grows with added columns. But using the background from
optimization problems, these difficulties may sometimes be alleviated
with a column dropping method.
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Appendix A

We provide the theorems from Fuller and Chung [16] in this
appendix. Proofs can be found in Fuller and Chung [16] and Chung
and Fuller [6]. Statements and proofs of Theorems 3, 5 and 8 must
be altered for the approximate DW algorithm, due to the master
problem's use of the approximate mapping ~G

k
; these are found in

Section 3.2. All other theorems – numbered 1, 2, 4, 6, 7, 9 and 10 –

do not rely at all on the approximate mapping ~G
k
, and conse-

quently, they hold true for the approximate DW algorithm, as
readers may verify by examining the proofs in Fuller and Chung
[16] and Chung and Fuller [6].

Theorem 1. x* solves VI(G,K) iff there exists x*∈Rn, sn∈Rm
þ and

ωn∈Rl
þ such that all the following conditions are satisfied:

GðxnÞ−∇gðxnÞTsn−∇hðxnÞTωn ¼ 0 ðA:1Þ

gðxnÞ≥0 ðA:2Þ

hðxnÞ≥0 ðA:3Þ

snTgðxnÞ ¼ 0 ðA:4Þ

ωnThðxnÞ ¼ 0 ðA:5Þ

Theorem 2. xkS solves Sub−VIkðG−∇hðxk−1M ÞTωk−1;KÞ iff there exists
xkS∈R

n and skS∈R
m
þ such that all the following conditions are

satisfied:

GðxkSÞ−∇hðxk−1M ÞTωk−1−∇gðxkSÞTskS ¼ 0 ðA:6Þ

gðxkSÞ≥0 ðA:7Þ

skTS gðxkSÞ ¼ 0 ðA:8Þ

Theorem 3. λk solves Master-VIk(Hk,Λk) iff there exist λk∈Rk
þ, ω

k∈Rl
þ

and ψk∈R such that all the following conditions are satisfied:

XkTGðXkλkÞ−XkT∇hðXkλkÞTωk þ ekψk≥0 ðA:9Þ



7 Power transfer distribution factor for bus n on line l (PTDFln) describes the per
megawatt (MW) impact (e.g., increase or decrease) in flow resulting from 1 MW of
power injection at hub bus and 1 MW of withdrawal at bus n. Summation of such
impacts over all buses gives the total flow on line l.
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hðXkλkÞ≥0 ðA:10Þ

ekTλk ¼ 1 ðA:11Þ

λkT ðXkTGðXkλkÞ−XkT∇hðXkλkÞTωk þ ekψkÞ ¼ 0 ðA:12Þ

ωkTh Xkλk
� �

¼ 0 ðA:13Þ

Theorem 4. If xkM solves Sub-VIk+1(G−∇hðxkMÞTωk;K), then xkM solves
VI(G,K).

Theorem 5. If CGko0, then conv(Xk)⊂conv(Xk+1) (strict inclusion).

Theorem 6. Assume that Assumption 5 is true (either G is strictly

monotone, or GðxÞ ¼
−pðdÞ
∇cðzÞ

 !
where x¼ d

z

� �
, −p(d) is strictly

monotone and c(z) is a convex function). If CGk≥0, then xkM solves VI
(G,K).

Theorem 7. In the special case that VI(G,K) is a LP, CGk equals the
difference between the value of the dual feasible solution provided
by the subproblem and the value of the master problem.

Theorem 8. Assume that (a) G is continuous, and (b) any infinite
subsequence of fðxkM ;ωk; xkþ1

S Þg∞k ¼ 1has at least one limit point.
Either CGk≥0 at a finite iteration number k, or CGko0 for all
iterations k. In the latter case, limk-∞CG

k ¼ 0.

Theorem 9. If G is strictly monotone, then the solution to VI(G,K) is

unique. If the mapping GðxÞ ¼
−pðdÞ
∇cðzÞ

 !
where x¼ d

z

� �
, −p(d) is

strictly monotone and c(z) is a convex function, then the solution is
unique in d if −p(d) is strictly monotone; and the solution is unique
in d and z if c(z) is strictly convex.

Theorem 10. If G is strongly monotone and continuous, then
either xkM ¼ xkþ1

S for a finite iteration number k, or limk-∞

jxkþ1
S −xkM j ¼ 0. If the mapping GðxÞ ¼

−pðdÞ
∇cðzÞ

 !
where x¼ d

z

� �
,

−p(d) is strongly monotone and continuous, and c(z) is a convex

function, then limk-∞jdkþ1
S −dkM j ¼ 0

Appendix B

In this appendix, we have provided the details about the models
and DW algorithms used in Section 4.1 (see Çelebi [4] and Çelebi
and Fuller [5] for further details).

Hobbs’ [22] framework is used to determine TOU prices in
Nash–Cournot game setting in electricity markets on a linearized
DC network with line limits. In this setting, it is assumed that
there are no power losses during transmission, and congestion is
the basis for geographical differentiation in pricing. ISO is the
owner of the grid and it operates the transmission system (not
only the market operator, and not only ensuring that supply
equals demand at every hour). ISO charges a congestion based
fee (e.g., wheeling fee) for transmitting power from an arbitrary
hub bus to any bus. But these fees are exogenous to its problem
(i.e., adopting the Nash–Bertrand assumption that it cannot alter
the fees it gets). Also, there are no arbitragers in their model and
this allows non-cost based price differences to arise. Hence,
suppliers can raise prices where competition is weak or demand
is inelastic.

The supplier firms have their decision making process based
on a bilateral market model. In this process, generation firms
bilaterally contract with consumers to deliver electricity and
generation firms pay the cost of transmitting power from the
point of generation to the point of consumption. The schedule of
injections and withdrawals by generation firms are then pro-
vided to the ISO, who collects the transmission fees from these
firms for their use of the transmission network. The network
constraints have already increased the complexity of the model,
hence, we suppose only single period (e.g., a month). It is
straightforward to include several periods. The model consists
of four parts: the ISO's problem, supply side (e.g., firm f's
problem), demand side and the market clearing conditions.

Symbols for the ISO's and supply side problems are defined in
the following list. Symbols for the demand side are defined in
“Demand Side” section of this appendix.

Sets

set of generation facilities: i¼1,…,I.
set of demand blocks: j¼1,…,J (alias index k).
set of buses: n¼1,…,N (Nd set of demand buses; Ng: set of
generation buses).
set of hours in a demand block j: h¼1,…,Hj (defined by the
market regulator).
set of firms: f¼1,…,F.
set of lines: l¼1,..,L.

Parameters

cfni¼operating cost per unit of energy for firm f's facility i at bus
n ($/MWh).
κfni¼capacity of firm f's facility i at bus n (MW).
δnjh¼fraction of total energy demand at bus n during block j of a
month that occurs during hour h.
PTDFln ¼ power transfer distribution factors.7

Tl−, Tl+¼ lower and upper bounds on real power flows through
line (interface) l (MW).

Decision variables

zfnijh¼ the energy flowing from firm f's facility i to demand
block j for hour h at generation bus n, n∈Ng (MWh).
dfnj¼ sales by firm f to demand block j at demand bus n,
n∈Nd (MWh).
pnj¼ TOU prices (e.g., uniform block prices) for demand block j
at bus n (off-peak, mid-peak and on-peak, $/MWh) (a function
of dfnj variables).
ynjh¼ net injections from transmission lines into bus n for
demand block j at hour h (conceptually, power from hub bus to
bus n) (MW).
βnjh¼ a congestion based fee (e.g., wheeling fee) for transmit-
ting power from an arbitrary hub bus to bus n.

B.1. ISO's problem

In (B.1), the ISO (also the grid owner) maximizes its profit by
allocating transmission capacity efficiently. It chooses ynjh by
naively assuming that it is a price taker for transmission services
(i.e., wheeling fees βn

njh are exogenous in its problem). This is
equivalent to a competitive market for transmission rights in
which suppliers do not exercise market power [22]. In this market
setting, congestion (wheeling) charges are sufficient to ration the
use of the transmission network (i.e., transmission service is



8 A firm pays −βn

njh to transmit power to the hub bus from a generator at bus n
and it pays ∑Hj

h ¼ 1δnjhβ
n

n′jh to convey power to sales bus n’ from hub bus. Generation is
charged straightforwardly at the hourly wheeling fee, but consumption is more
complicated because it is measured only in a block of hours, so it is charged at the
weighted average of the hourly wheeling fees for the hours within the demand
block j.
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allocated efficiently and it maximizes social welfare) [3].

max
y

∑
N

n ¼ 1
∑
J

j ¼ 1
∑
Hj

h ¼ 1
βn

njhynjh

subject to ½dual�

− ∑
N

n ¼ 1
PTDF lnynjh ≤Tl− ∀ l; j;h ½γljh−�

∑
N

n ¼ 1
PTDF lnynjh ≤Tlþ ∀ l; j;h ½γljhþ�

∑
N

n ¼ 1
ynjh ¼ 0 ∀ j;h ½ηjh�

ðB:1Þ

where γljh−; γljhþ are the dual variables of the negative and positive
power flow through line l for demand block j at hour h ($/MW) and
ηjh is the dual variable for flow balance equation. The model (B.1)
differs from that of Hobbs [22] in the inclusion of hours h and
demand blocks j.

Consistent with the linear DC approximation, flows through line l
are modeled with PTDFs, which are derived based on Kirchhoff's
current law (net flow into a bus equals zero) and Kirchhoff's voltage
law (net voltage drop around any loop in the network is zero).
The net MW flow through line l is ∑N

n ¼ 1PTDF lnynjh. The last
constraint is the flow balance constraint at the hub bus. Note that
ynjh variables are not restricted in sign. A positive (negative) ynjh
means that there is a net flow into (out of) bus n from (to) hub bus. It
is trivial to note that ynjh¼0 is always a feasible solution to the ISO's
problem, because Tl− and Tl+ are positive scalars [22].

B.2. Supply side: firm f's problem

In the supply side of the model, formulated in (B.2), firm f
computes its nodal sales and generation to maximize its profit,
πf, i.e., the total revenues of firm f minus the total operating cost
of firm f's hourly generation by different technologies of produc-
tion (e.g., nuclear, hydro, coal, gas/oil, indexed by i) to meet its
sales in different demand blocks (e.g., off-peak, mid-peak, on-
peak, indexed by j) minus the ISO's congestion (e.g., wheeling)
fees.

max
d;z

πf ¼ ∑
n∈Nd

∑
J

j ¼ 1
pnjð⋅Þ− ∑

Hj

h ¼ 1
δnjhβ

n

njh

" #
dfnj− ∑

n∈Ng

∑
I

i ¼ 1
∑
J

j ¼ 1
∑
Hj

h ¼ 1
½cf ni−βn

njh�zf nijh

subject to ½dual�

∑
n∈Nd

dfnj− ∑
n∈Ng

∑
I

i ¼ 1
∑
Hj

h ¼ 1
zf nijh ≤0 ∀ j ½ρf j�

zf nijh≤κf ni ∀ n; i; j;h ½μf nijh�
zf nijh≥0 ∀ n; i; j;h

ðB:2Þ

The first set of constraints ensures that electricity supply of firm
f is sufficient to meet its sales to demand block j overall buses; at an
optimal solution, these constraints are binding equalities. The
second set of constraints contains the capacity constraint for each
generation facility owned by firm f at each bus.

We have examined the Nash–Cournot structure where either all
firms or some large firms act à la Cournot. In this structure, firms
see their knowledge of the dependence of pnjð⋅Þ on total market
demand (i.e., in firm f's problem, pnj is a function of dfnj þ ∑f≠gd

n

gnj,
where other firms sales, dn

gnj, are exogenous—denoted by super-
script n). It is also presumed that the ISO's wheeling fees, βn

njh, are
exogenous to firm f's problem (i.e., all firms are “price taker” for
transmission services) and yet endogenous in the overall
equilibrium model (i.e., they will become endogenous in the MCP
or VI formulation of the whole model).

The ½cf ni−βn

njh� term in the objective function is denoting the per
unit cost of the firm f to transmit power to the hub bus. The
½pnjð⋅Þ−∑

Hj

h ¼ 1δnjhβ
n

njh� term is denoting the per unit revenue of the
firm f for conveying energy from hub bus to the sales bus for
demand block j.8 Note that dfnj is a variable for demand block j
(for several hours), and βn

njhis an hourly wheeling fee. δnjh para-
meters are the connection between these different time scales (e.g.,
dfnj: sales to demand blocks j at demand bus n; zfnijh :hourly
generation output at generation bus n). Wheeling fee for sales
in demand block j at demand bus n is represented for several
hours, i.e., ∑Hj

h ¼ 1δnjhβ
n

njhdf nj:

B.3. Demand side

The demand side is represented by demand equations that use
only the prices as independent variables. Dð0Þ

n is the lagged demand
term and it is a parameter in the single period model. A multi-
commodity case where each commodity is the electricity demand
in different times of day (e.g., demand blocks: on-peak, mid-peak,
off-peak) at each bus n

Dn ¼ An þ BnPn þ EnDð0Þ
n ðB:3Þ

where

An¼vector of the factors representing non-price effects at bus n.
Dn¼vector of all demands for electricity at bus n (i.e., on-peak,
mid-peak, off-peak demand at bus n) where Dn ¼ ½dnj� and
dnj ¼∑F

f ¼ 1dfnj :
D 0ð Þ
n ¼ vector of all lagged demands for electricity at bus n.

Pn ¼ vector of TOU electricity prices at bus n (i.e., on-peak, mid-
peak, off-peak prices).
Bn ¼ a square matrix of the price coefficients (i.e., own-price
and cross-price) for bus n.
En ¼ a square diagonal matrix of the lag coefficients for bus n.

Bn is assumed to be invertible for our analyses (i.e., inverse
demand functions are well defined).

B.4. Market clearing conditions

The total transmission service demanded by generators and
consumers from the hub to any bus n, demand block j, hour h must
equal the transmission service the grid provides between these
buses

δnjh ∑
F

f ¼ 1
dfnj− ∑

F

f ¼ 1
∑
I

i ¼ 1
zf nijh ¼ ynjh ∀ n; j;h ½dual� : ½βnjh� ðB:4Þ

where βnjh is the dual variable for the market clearing condition
(i.e., wheeling fees that clear the markets). Note that total genera-
tion by all firms for hour h at bus n in demand block j is a fraction
ðδnjhÞ of total energy sales by all firms to demand block j at bus n.
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Also note that in the special case of δnjh ¼ δjh at all buses, we can
add up (B.4) over all buses to derive (together with the last
constraint of (B.1))

δjh ∑
n∈Nd

∑
F

f ¼ 1
dfnj− ∑

n∈Ng

∑
F

f ¼ 1
∑
I

i ¼ 1
zf nijh ¼ 0 ∀ j;h: ðB:5Þ

This set of constraints states that the hourly generation at all
generation buses for all different facilities and all firms should
meet the total sales of all firms overall demand buses for every
hour h. With this condition, the ISO imposes the historical shape
of the load duration curve within the hours of demand block j
over all buses and βnjh can be additionally interpreted as a
penalty/payment for deviations from the historical shape of the
load duration curve.

Notice that demand variations over hours within the
demand block j at each bus n is modeled with δnjh parameters
(when enough data are available for each bus). This pattern of
variation in demand at bus n, δnjh; is imposed on total sales of
all firms, not individually for each firm. A firm may produce
more or less than δnjh∑n∈Nd

df nj in an hour, but its total produc-
tion for demand block j must meet its sales in demand block j,
∑n∈Nd

df nj:
B.5. MCP and VI Formulations for the TOU pricing models on a
linearized DC network

Firstly, we formulate the perfect competition model as a MCP, by
writing out the necessary KKT conditions for the ISO's and firm f's
problems along with the demand equation and the market clearing
conditions

MCP: find dfnj; zf nijh; pnj; ρf j; μf nijh; ynjh; γljh−; γljhþ; ηjh; βnjh that
satisfy

dfnj≥0⊥ −pnj þ ∑
Hj

h ¼ 1
δnjhβnjh þ ρf j≥0 ∀ f ;n; j

zf nijh≥0⊥ cf ni−ρf j þ μf nijh−βnjh≥0 ∀ f ;n; i; j;h

ρf j≥0⊥ ∑
n∈Nd

df nj− ∑
n∈Nd

∑
I

i ¼ 1
∑
Hj

h ¼ 1
zf nijh≤0 ∀ f ; j

μf nijh≥0⊥ zf nijh ≤κf ni ∀ f ;n; i; j;h

μf nijh≥0⊥ −βnjh þ ∑
L

l ¼ 1
PTDFlnðγljhþ−γljh−Þ þ ηjh ¼ 0 ∀ n; j;h

γljh−≥0⊥ − ∑
N

n ¼ 1
PTDFlnynjh ≤Tl− ∀ l; j;h

γljhþ≥0⊥ ∑
N

n ¼ 1
PTDFlnynjh ≤Tlþ ∀ l; j;h

ηjh f ree ⊥ ∑
N

n ¼ 1
ynjh ¼ 0 ∀ j;h

βnjh f ree ⊥ δnjh ∑
F

f ¼ 1
dfnj− ∑

F

f ¼ 1
∑
I

i ¼ 1
zf nijh ¼ ynjh ∀ n; j;h

∑
F

f ¼ 1
dfnj ¼ anj þ ∑

K

k ¼ 1
bnjkpnk þ enjj ∑

F

f ¼ 1
dð0Þf nj ∀ n; j

ðB:6Þ

where anj and pnj are the jth elements of vectors An and Pn,
respectively. Similarly, bnjk and enjj are the elements of matrices Bn

and En, respectively. Note that pnj variables are implicitly defined
by the dfnj variables. Instead, an explicit inverse demand function
can be used for a more compact formulation without pnj variables,
but for ease of readability of the formulation, the pnj variables
are used.
We can also formulate (B.6) as a VI problem. The feasible set for
the VI problem is defined as follows:

K ¼ dfnj; zfnijh; pnj; ynjh

∑
n∈Nd

df nj− ∑
n∈Nd

∑
I

i¼1
∑
Hj

h¼1
zf nijh ≤0 ∀ f ; j

zf nijh ≤κf ni ∀ f ;n; i; j; h
zfnijh≥0 ∀ f ;n; i; j; h

−∑
N

n¼1
PTDFlnynjh ≤Tl− ∀ l; j; h

∑
N

n¼1
PTDFlnynjh ≤Tlþ ∀ l; j; h

∑
N

n¼1
ynjh ¼ 0 ∀ j;h

δnjh ∑
F

f¼1
dfnj−∑

F

f¼1
∑
I

i¼1
zf nijh ¼ ynjh ∀ n; j; h

∑
F

f¼1
dfnj ¼ anj þ ∑

K

k¼1
bnjkpnk þ enjj ∑

F

f¼1
dð0Þf nj ∀ n; j

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
In the feasible set K , the first six constraints are from the firm f's

and ISO's problems and the last two equations are the market
clearing condition and the linear distributed lagged demand
equation, respectively.

The VI problem for the perfect competition model is as in (B.7).
Note that for dfnj; zf nijh and ynjh the corresponding elements of G
are the partial derivatives of the objective functions of firm f's
problem (B.2) and the ISO's problem (B.1)

Find ðdn

f nj; z
n

f nijh; p
n

nj; y
n

njhÞ∈K such that

− ∑
F

f ¼ 1
∑

n∈Nd

∑
J

j ¼ 1
pn

nj− ∑
Hj

h ¼ 1
δnjhβnjh

 !
ðdfnj−dn

f njÞ

þ ∑
F

f ¼ 1
∑

n∈Ng

∑
I

i ¼ 1
∑
J

j ¼ 1
∑
Hj

h ¼ 1
ðcf ni−βnjhÞðzf nijh−znf nijhÞ

− ∑
N

n ¼ 1
∑
J

j ¼ 1
∑
Hj

h ¼ 1
βnjhðynjh−yn

njhÞ≥0

∀ðdfnj; zf nijh;pnj; ynjhÞ∈K ðB:7Þ

Also note that the βnjh terms are canceled out in (B.7) (i.e., due
to market clearing condition), and a more compact form is derived
as follows:

Find ðdn

f nj; z
n

f nijh; p
n

njÞ∈K such that

− ∑
F

f ¼ 1
∑

n∈Nd

∑
J

j ¼ 1
pn

njðdfnj−dn

f njÞ

þ ∑
F

f ¼ 1
∑

n∈Ng

∑
I

i ¼ 1
∑
J

j ¼ 1
∑
Hj

h ¼ 1
cf niðzf nijh−znf nijhÞ≥0

∀ ðdfnj; zf nijh; pnjÞ∈K ðB:8Þ

The VI problem (B.8) in primal variables has the KKT conditions
listed in (B.6) and hence is equivalent to the MCP (B.6).

We only provide the VI formulation for Nash–Cournot market
structure, for ease of representation. It is straightforward to derive
its equivalent MCP formulations as in the perfect competition case.
The Nash–Cournot market structure has the same feasible set K .
The VI problem for the Nash–Cournot model is formulated as in the
following equation:

Find ðdn

f nj; z
n

f nijh; p
n

njÞ∈K such that

− ∑
F

f ¼ 1
∑

n∈Nd

∑
J

j ¼ 1
ðpn

nj þ θnf njÞðdfnj−dn

f njÞ

þ ∑
F

f ¼ 1
∑

n∈Ng

∑
I

i ¼ 1
∑
J

j ¼ 1
∑
Hj

h ¼ 1
cf niðzf nijh−znf nijhÞ≥0

∀ ðdfnj; zf nijh; pnjÞ∈K ðB:9Þ

where the term pn

nj þ θnf nj is the marginal revenue for firm f at bus n
and demand block j, and θnf nj is the “extra” marginal revenue term.
This marginal revenue term is derived from the partial derivative of
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the objective function in (B.2), with respect to dfnj, when the firm is
aware of the price–quantity relation of the distributed lagged
demand equation

∂πf
∂dfnj

¼ pnj þ
∂pnj
∂dfnj

df nj ¼ pnj þ θf nj ðB:10Þ

where ½∂pnj=∂dfnj� ¼ B−1
n .

Note that the congestion fees charged by the ISO are neither
included in the VI formulation (B.9) nor in the marginal revenue term
(B.10), because they are canceled out in the overall formulation.
B.6. Standard DW algorithm

In this part of the Appendix B, we relate the standard DWalgorithm
to the VI formulation of perfect competition TOU pricing models in
Chapter 3 of Çelebi [4]. For brevity, Nash–Cournot extension is not
provided in this appendix, but it is a straightforward extension of
perfect competition TOU pricing models. To relate general VI form (B.7)
to the subproblem (3) and master problem (6), we have

x¼

dfnj
zf nijh
ynjh
pnj

2
66664

3
77775 ∀ f ;n; i; j;h; GðxÞ ¼

−pnj
cf ni
0
0

2
6664

3
7775 ∀ f ;n; i; ωk ¼ ½βknjh� ∀ n; j;h;

−∇hðxkMÞTωk ¼

∑
Hj

h ¼ 1
δnjhβ

k
njh

−βknjh
−βknjh
0

2
66666664

3
77777775

∀ n; j;h;

Xk ¼

Dk
fnj

Zk
f nijh

Yk
njh

Pk
nj

2
6666664

3
7777775
¼

d1f nj; d
2
f nj;…; dkf nj

z1f nijh; z
2
f nijh;…; zkf nijh

y1njh; y
2
njh;…; yknjh

p1nj;p
2
nj;…; pknj

2
6666664

3
7777775

∀ f ;n; i; j;h:

The vector x contains the variables dfnj; zf nijh; ynjh and pnj for all
f ; n; i; j and h, and the elements of the vector-valued mapping GðxÞ
are as follows: −pnj is the element of G that corresponds to dfnj;
cf ni is the element of G that corresponds to zfnijh; and the elements
of G that corresponds to ynjh and pnj are zero. Note that for dfnj and
zf nijh, the corresponding elements of G are the partial derivatives of
the objective function of firm f's problem (B.2), but the terms
involving the dual variables βknjh are left out. Because, these dual
terms βknjh are canceled out in the original VI formulation and
therefore, they do not appear in the mapping G. The feasible set for
the subproblem and the master problem are as follows:

K ¼ dfnj; zf nijh; pnj; ynjh

∑
n∈Nd

df nj− ∑
n∈Ng

∑
I

i ¼ 1
∑
Hj

h ¼ 1
zf nijh ≤0 ∀ f ; j

zf nijh ≤κf ni ∀ f ;n; i; j;h

zfnijh≥0 ∀ f ;n; i; j; h

− ∑
N

n ¼ 1
PTDFlnynjh ≤Tl− ∀ l; j;h

∑
N

n ¼ 1
PTDFlnynjh ≤Tlþ ∀ l; j;h

∑
N

n ¼ 1
ynjh ¼ 0 ∀ j; h

∑
F

f ¼ 1
dfnj ¼ anj þ ∑

K

k ¼ 1
bnjkpnk þ enjj ∑

F

f ¼ 1
d 0ð Þ
f nj ∀ n; j

�������������������������������

9>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>;

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

Kk ¼ fdfnj; zf nijh; pnj; ynjh∈convðXkÞj δnjh ∑
F

f ¼ 1
dfnj− ∑

F

f ¼ 1
∑
I

i ¼ 1
zf nijh ¼ ynjh ∀ n; j; hg
B.7. Modified DW algorithm

For the ‘modified’ DW decomposition algorithm, we first
present the relation of the mapping and variables for the
subproblem to the general form of subproblem in (3) as
follows:

x¼
dfnj
zf nijh
pnj

2
64

3
75 ∀ f ;n; i; j;h; GðxÞ ¼

−pnj
cf ni
0

2
64

3
75 ∀ f ;n; i; ωk ¼ ½βknjh� ∀ n; j;h;

−∇hðxkMÞTωk ¼
∑
Hj

h ¼ 1
δnjhβ

k
njh

−βknjh
0

2
66664

3
77775 ∀ n; j;h:

The feasible set for the subproblem is as follows:

K ¼ dfnj; zfnijh; pnj

∑
n∈Nd

dfnj− ∑
n∈Ng

∑
I

i ¼ 1
∑
Hj

h ¼ 1
zfnijh ≤0 ∀ f ; j

zf nijh ≤κf ni ∀ f ;n; i; j;h

zf nijh≥0 ∀ f ;n; i; j;h

δjh ∑
n∈Nd

∑
F

f ¼ 1
dfnj− ∑

n∈Ng

∑
F

f ¼ 1
∑
I

i ¼ 1
zfnijh ¼ 0 ∀ j;h

∑
F

f ¼ 1
dfnj ¼ anj þ ∑

K

k ¼ 1
bnjkpnk þ enjj ∑

F

f ¼ 1
dð0Þf nj ∀ n; j

���������������������

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:
In this subproblem, the vector x contains the variables
dfnj; zf nijh and pnj for all f ; n; i; j and h, and the elements of the
vector-valued mapping GðxÞ are as follows: −pnj is the element of G
that corresponds to dfnj; cf ni is the element of G that corresponds to
zf nijh; and the element of G that corresponds to pnj is zero. Note that
the feasible set for the subproblem does not include any
constraints of the ISO's problem. These constraints are included
in the master problem. Also the subproblem does not include
any ynjh variables in the VI formulation (i.e., the subproblem has
no variables for the linearized DC network constraints). Moreover,
to enforce feasibility for the master problem and to produce
better proposals from subproblems, we add extra constraints to
the subproblem's feasible set K , the fourth set of constraints. These
extra constraints are obtained by summing the complicating
constraints (market clearing conditions) over all buses.

For the ‘modified’ DW decomposition algorithm, we relate the
mapping, variables and set for the master problem to the general
form of the master problem in (6) as follows:

x¼

dfnj
zf nijh
ynjh
pnj

2
66664

3
77775 ∀ f ;n; i; j;h; GðxÞ ¼

−pnj
cf ni
0
0

2
6664

3
7775 ∀ f ; n; i;

Xk ¼
Dk
fnj

Zk
f nijh

Pk
nj

2
6664

3
7775¼

d1f nj; d
2
f nj;…; dkf nj

z1f nijh; z
2
f nijh;…; zkf nijh

p1nj; p
2
nj;…; pknj

2
6664

3
7775 ∀ f ; n; i; j; h:
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The feasible set for the master problem is as follows:

Kk ¼ dfnj; zfnijh; pnj∈convðXkÞ; ynjh

− ∑
N

n ¼ 1
PTDFlnynjh ≤Tl− ∀ l; j; h

∑
N

n ¼ 1
PTDFlnynjh ≤Tlþ ∀ l; j; h

∑
N

n ¼ 1
ynjh ¼ 0 ∀ j; h

δnjh ∑
F

f ¼ 1
dfnj− ∑

F

f ¼ 1
∑
I

i ¼ 1
zfnijh ¼ ynjh ∀ n; j; h

��������������������

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:
For the master problem, the vector x contains the variables

dfnj; zf nijh; ynjh and pnj for all f ; n; i; j and h, and the elements of
the vector-valued mapping GðxÞ are as follows: −pnj is the element
of G that corresponds to dfnj; cf ni is the element of G that
corresponds to zf nijh; and the element of G that corresponds to
pnj and ynjh are zero. Note that, in the feasible set of the master
problem dfnj; zf nijh; pnj∈convðXkÞ and ynjh are the variables of the
master problem only (e.g., subproblem only provides proposals for
dfnj; zf nijh; pnj variables).
B.8. Approximate DW algorithms

In this part of Appendix B, we present the approximation of the
master problem by different mappings ~G

kðxÞ and relation of the
mappings and variables for the subproblem and the approximate
master problem to the general form of subproblem in (3) and
approximate master problem in (8).

Instead of using the asymmetric inverse demand function, pnjðdÞ
(where d¼ ½dfnj�), we define a symmetric inverse demand function,
~pnjðd;φkÞ, where φk equals the d variables from the most recent
solution of the master problem, dk−1M

~pnjðd;φkÞ ¼ pnjðφkÞ þ ~B
−1ðd−φkÞ ¼ pnjðdÞ þ ð ~B−1

−B−1Þðd−φkÞ;

where ~B ¼ ð1=2ÞðBþ BT Þ: We denote this algorithm as
‘approximate’.

Another approximation in the master problem of the DW
algorithm is to apply the PIES algorithm to the master problem,
i.e., ~B ¼DiagðBÞ. This approximation allows for a diagonal inverse
demand function, ~pnjðd;φkÞ, (e.g., with cross-demand variables
fixed at the φkÞ. We call this approximation, ‘approximate-PIES’.
The difference between these two approximations is the difference
between symmetrization (approximate) and diagonalization
(approximate-PIES) of the mapping GðxÞ.

To relate TOU pricing models to the approximation of the
master problem in (8), we have

x¼

dfnj
zf nijh
ynjh
pnj

2
66664

3
77775 ∀ f ;n; i; j;h; ~G

kðxÞ ¼

− ~pnjðd;φkÞ
cf ni
0
0

2
6664

3
7775 ∀ f ;n; i;

Xk ¼
Dk
fnj

Zk
f nijh

Pk
nj

2
6664

3
7775¼

d1f nj;d
2
f nj;…; dkf nj

z1f nijh; z
2
f nijh;…; zkf nijh

p1nj;p
2
nj;…; pknj

2
6664

3
7775 ∀ f ;n; i; j;h:

The subproblem in (3), however, uses the exact mapping

GðxÞ ¼
−pnj
cfni
0

2
64

3
75 as in the ‘modified’ DW algorithm. The feasible set
for the master problem and subproblem for the approximate DW
algorithms are same as the ‘modified’ DW algorithm.
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