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Abstract
We define a new grading, which we call the ‘level grading’, on the algebra of
polynomials generated by the derivatives uk+i over the ringK(k) ofC∞ functions
of x, t, u, u1, . . . , uk, where u j = ∂ ju

∂x j . This grading has the property that the
total derivative and the integration by parts with respect to x are filtered algebra
maps. In addition, if u satisfies the evolution equation ut = F[u], where F is
a polynomial of order m = k + p and of level p, then the total derivative with
respect to t, Dt , is also a filtered algebra map. Furthermore, if the separant ∂F

∂um

belongs to K(k), then the canonical densities ρ(i) are polynomials of level 2i+1
and Dtρ

(i) is of level 2i + 1 + m. We define ‘KdV-like’ evolution equations as
those equations for which all the odd canonical densities are non-trivial. We use
the properties of level grading to obtain a preliminary classification of scalar
evolution equations of orders m = 7, 9, 11, 13 up to their dependence on x,
t, u, u1 and u2. These equations have the property that the canonical density
ρ(−1) is (αu2

3 + βu3 + γ )1/2, where α, β and γ are functions of x, t, u, u1, u2.
This form of ρ(−1) is shared by the essentially nonlinear class of third order
equations and a new class of fifth order equations.

PACS number: 02.30.Ik
Mathematics Subject Classification: 35Q53, 37K10

1. Introduction

The classification of evolution equations has been a long-standing problem in the literature
on evolution equations. The existence of higher symmetries or conserved densities and the
existence of a recursion operator or the Painleve property of reduced equations have been
proposed as integrability tests. Among these, we follow the ‘formal symmetry’ method of
Mikhailov–Shabat–Sokolov [8], which is based on the remark that if the evolution equation
admits a recursion operator, than its expansion as a formal series satisfies an operator equation
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that has to be solved in the class of local functions. This requirement gives a sequence
of conserved density conditions, called the ‘canonical conserved densities’ ρ(i) and their
existence is proposed as an integrability test [8].

The Korteweg–deVries (KdV) hierarchy [4] consists of the symmetries of the well-known
third order KdV equation at every odd order. This hierarchy is characterized by the existence
of conserved densities that are quadratic in the highest derivative at each order. In fact the
canonical even and odd densities ρ(2i) and ρ(2i−1) have the same order, but it is well known
that even canonical densities are trivial while the odd ones are non-trivial [8]. At fifth order,
there are two basic hierarchies that start at this order; these are the Sawada–Kotera [15] and
Kaup [7] hierarchies, which are derived from a third order Lax operator, and their symmetries
give integrable equations at odd orders that are not divisible by 3. The recursion operators of
these hierarchies have order 6 and generate the flows of orders 3k + 1 and 3k + 2 for each
hierarchy [3]. These equations are characterized by the triviality of the canonical densities of
orders divisible by 3.

The non-existence of integrable hierarchies starting at higher orders was studied by Wang
and Sanders, who proved that scale homogeneous scalar integrable evolution equations of
orders greater than or equal to 7 are symmetries of lower order equations [13]. In subsequent
papers, these results were extended to the cases where negative powers are involved [14] but
the case where F is arbitrary remained open.

The general case where the functional form of F is arbitrary was studied in the [2] and
[10]. The first result in this direction was obtained in [2], where the canonical densities ρ(i),
i = 1, 2, 3, 4 were computed for evolution equations of arbitrary order m. It was first proven
that, up to total derivatives, conserved densities of order n > m are at most quadratic in the
highest derivative. Then assuming that an evolution equation ut = F(x, t, u, . . . , um) admits
a conserved density ρ(1) = Pu2

m+1 + Qum+1 + R, where P, Q, R are functions independent
of um+1, it has been shown that for m � 7, PFmm = 0, where Fmm = ∂2F

∂u2
m

[2]. Finally, it

was shown that the coefficient P in the canonical density ρ(1), has the form P = Fm, where
Fm = ∂F

∂um
[2], hence it was concluded that evolution equations of order m � 7 that admit the

canonical density ρ(1) are quasi-linear. In [10], the same scheme was applied to quasi-linear
equations and it was proven that if the canonical densities ρ(i), i = 1, 2, 3 are conserved then
the evolution equation has to be polynomial in the derivatives um−1 and um−2. The existence of
essentially nonlinear third order equations is well known [5, 6]. Recently we have shown that
there are also candidates for integrable fifth order equations that are not quasi-linear (work in
progress).

In these derivations we have observed that the partial differential equations leading to a
classification had a hierarchical structure with respect to the orders of the derivatives of the
unknown function u. This observation led to the definition of a graded algebra structure [9],
the ‘level grading’, which is the main subject of this paper. Roughly speaking, if a function f
depends on the derivatives of u up to order k, then its jth derivative Dj f depending on uk+i,
i � j has a certain homogeneity reflecting the order of differentiation j. For example, D3 f is
a linear combination of uk+3, uk+2uk+1, u3

k+1, uk+2, u2
k+1, uk+1 with coefficients depending on

functions of ui, i � k. According to definition 3.2, the first three terms are of level 3, the next
two are of level 2 and the last one is of level 1. We have called this graded algebra structure as
‘level grading’ above the ‘base level k’. The crucial property of the level grading is its invariance
under integrations by parts which allows us to perform conserved density computations for
each level separately, starting from the higher levels that give simpler equations.

We introduce the notation and the terminology in section 2. Section 3 is devoted to the
description of level grading and the proofs of the properties that will be used in conserved
density computations. In section 4, we prove that, essentially, the canonical densities of level
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homogeneous equations are also level homogeneous and we apply this to the classification
of evolution equation of orders m = 7, 9, 11, 13 admitting non-trivial conserved densities
at all orders. We obtain the dependence of these equations on uk for k � 3, i.e, up to their
dependences in x, t, u, u1 and u2. We have seen that at all orders the candidates for integrable
equations are characterized by the common form of

ρ(−1) =
(

∂F

∂um

)−1/m

= (
αu2

3 + βu3 + γ
)1/2

,

where α, β and γ are functions of x, t, u, u1, u2. As discussed in section 5, this form of
ρ(−1) is, up to a function of x, t, u, u1, u2, the same as the form of ρ(−1) for the essentially
nonlinear class of third order equations. Furthermore, fifth order KdV-like equations with a
nonconstant separant, recently classified again up to their dependences on u, u1 and u2 [12],
and a non-quasi-linear candidate of integrable fifth order equation, admit the same canonical
density. We discuss these relations and possible directions for future work in section 5.

2. Notation and terminology

Let u = u(x, t), where x and t are spatial and temporal variables respectively. A function ϕ of
x, t, u and the derivatives of u up to a fixed but finite order, denoted by ϕ[u], will be called
a ‘differential function’ [11]. We shall assume that ϕ has partial derivatives of all orders. For
notational convenience, we shall denote indices by subscripts or superscripts in parentheses
such as in α(i) or ρ(i) and reserve subscripts without parentheses for partial derivatives, i.e.,
for u = u(x, t),

u0 = u, ut = ∂u

∂t
, ux = ∂u

∂x
, uk = ∂ku

∂xk

and for ϕ = ϕ(x, t, u, u1, . . . , un),

ϕt = ∂ϕ

∂t
, ϕx = ∂ϕ

∂x
, ϕk = ∂ϕ

∂uk
, ϕk, j = ∂2ϕ

∂uk∂u j
.

We will use either the explicit form or the short form as appropriate.
Algebraic structures such as rings or modules will be denoted by calligraphic letters such

as K or M. For such symbols, to simplify the notation subscripts will always denote indices.
If ϕ is a differential function, the total derivative with respect to x is denoted by Dϕ and

it is given by

Dϕ =
n∑

i=0

ϕiui+1 + ϕx. (2.1)

Higher order derivatives can be computed by applying the binomial formula as given below

Dkϕ =
n∑

i=0

⎡
⎣ k−1∑

j=0

(
k − 1

j

)
(Djϕi)ui+k− j

⎤
⎦ + Dk−1ϕx. (2.2)

If ut = F[u], then the total derivative of ϕ with respect to t is given by

Dtϕ =
n∑

i=0

ϕiD
iF + ϕt . (2.3)

The ‘order’ of a differential function ϕ[u], denoted by ord(ϕ) = n is the order of the highest
derivative of u present in ϕ[u]. The total derivative with respect to x increases the order by 1.
From the expression of the total derivative with respect to t given by (2.3) it can be seen that

3
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if u satisfies an evolution equation of order m, Dt increases the order by m. Equalities up to
total derivatives with respect to x will be denoted by ∼=, i.e.,

ϕ ∼= ψ if and only if ϕ = ψ + Dη.

The effect of the integration by parts on monomials is described as follows. Note that if a
monomial is nonlinear in its highest derivative we cannot integrate by parts and reduce the
order. Let k < p1 < p2 < . . . < pl < s − 1 and ϕ be a function of x, t, u, u1, . . . , uk. Then
a product of ϕ and powers of upi , denoted by uai

pi
can be integrated by parts provided that the

power of the highest derivative is 1, as shown below

ϕua1
p1

. . . ual
pl

us
∼= −D

(
ϕua1

p1
. . . ual

pl

)
us−1,

ϕua1
p1

. . . ual
pl

up
s−1us

∼= − f rac1p + 1D
(
ϕua1

p1
. . . ual

pl

)
up+1

s−1 .

The integrations by parts are repeated successively until one encounters a ‘non-integrable
monomial’ of the following form:

ua1
p1

. . . ual
pl

up
s , p > 1.

The order of a differential monomial is not invariant under integration by parts, but we will
show in the next section that its level decreases by 1 under integration by parts [9]. This will
be the rationale and the main advantage of using the level grading.

3. The ring of polynomials and ‘level grading’

The scaling symmetry and scale homogeneity are well-known properties of polynomial
integrable equations. We recall that scaling symmetry is the invariance of an equation under
the transformation u → λau, x → λ−1x, t → λ−bt. If a = 0, then scale invariant quantities
may be non-polynomial and the scaling weight is just the order of differentiation. In the early
stages of our investigations we have noticed that if F is a function of the derivatives of u
up to order k, and we differentiate F j times, the resulting expressions are polynomial in
uk+1, . . . , uk+ j. Furthermore, the sum of the order of differentiations exceeding k has some
type of invariance. This remark led us to the definition of ‘level grading’ as a generalization
of the scaling symmetry for the case a = 0, as a graded algebra structure.

We consider the ring of functions of x, t, u, . . . , uk the algebra generated by the derivatives
uk+1, . . .. This set up is given a graded algebra structure as described below. Let M be an
algebra over a ring K. If we can write M = ⊕i∈NMi, as a direct sum of its submodules Mi,
with the property that MiM j ⊆ Mi+ j, then we have a ‘graded algebra’ structure on M. For
example if K = R and M is the algebra of polynomials in x and y, then the Mi may be chosen
as the submodule consisting of homogeneous polynomials of degree i. In the same example,
we may also consider the submodules consisting of polynomials of degree i (not necessarily
homogeneous) that we denote by M̃i. Then M̃i is the direct sum of the submodules M j, j
ranging from zero to i. It follows that the full algebra M can be written as a union of the
submodules M̃ j. This structure is called a ‘filtered algebra’. The formal definitions are given
below.

Definition 3.1. Let K be a ring, and M be an algebra over K. M is called a ‘graded algebra’,
if there exists a decomposition of M

M = ⊕i∈NMi and MiM j ⊆ Mi+ j

where the Mi, i ∈ N are submodules of M.
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Given a graded algebra M, we can obtain an associated ‘filtered algebra’ M̃ [16], by
defining M̃i = ⊕i

j=0M j . Then we have

M̃ = ∪i∈NM̃i.

If the algebra M is characterized by a set of generators, then the submodules Mi can also be
characterized similarly.

We now give the setup for the definition of the level grading. Let K(k) be the ring of C∞

functions of x, t, u, . . . , uk, and M(k) be the polynomial algebra over K(k) generated by the
set

S (k) = {uk+1, uk+2, . . .}.
A monomial in M(k) is a product of a finite number of elements of S (k). We define the ‘level
above k’ of a monomial as follows.

Definition 3.2. Let μ = ua1
k+ j1

ua2
k+ j2

. . . uan
k+ jn

be a monomial in M(k). The level of μ above k is
defined by

levk(μ) = a1 j1 + a2 j2 + · · · + an jn.

The level of the differential operator D is defined to be 1. The level of a pseudo-differential
operator ϕDj, j ∈ Z, is thus levk(ϕDj) = levk(ϕ) + j.

Let B(k)
p be the set of monomials of level p above the base level k. Then, the module

generated by the set B(k)
p is denoted by M(k)

p ; M(k)

0 = K(k) and M̃(k)
p = ⊕p

j=0 M
(k)
j .

It can be seen that for any two monomials μ and μ̃,

levk(μμ̃) = levk(μ) + levk(μ̃),

hence the ‘level above k’ gives a graded algebra structure to M(k). The elements of M̃(k)
p

are called ‘polynomials of level p’ (in analogy with polynomials of a given order). If a is a
polynomial in M̃(k)

p , a = ∑p
j=0 a j where a j ∈ M(k)

j , is called a ‘homogeneous component’
of a of level j above k. In particular the image of a under the natural projection

π : M̃(k)
p → M(k)

p

denoted by π(a) is called the ‘top level part of a’.
We will now present certain results that demonstrate the importance of the level grading.

We will prove that partial derivatives with respect to ui, total derivatives with respect to x,
total derivatives with respect to t and the integration by parts, hence the conserved density
conditions, are filtered algebra maps.

Proposition 3.1. Let ϕ be a polynomial of level p > 0 above k.

(i) If ∂ϕ

∂uk+ j
	= 0, then the partial derivative of ϕ with respect to uk+ j decreases the level by j.

(ii) The total derivative with respect to x, D is a filtered algebra mapM(k)
p → M(k)

p+1

⊕
M(k)

p ,
i.e, increases the level by at most 1.

Proof.

(i) If ϕ is level homogeneous above k of level p, i.e, in M(k)
p , then it is a linear combination

of monomials

B(k)
p = {

uk+p, uk+p−1uk+1, uk+p−2uk+2, uk+p−2u2
k+1, . . . , up

k+1

}
.

Clearly if ∂ϕ

∂uk+ j
	= 0, the effect of differentiation with respect to ∂ϕ

∂uk+ j
decreases the level

by j.

5
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(ii) Let ϕ be as above and A be a function of x, t, u, . . . , uk, i.e, in K(k). The effect of the total
derivative operator D on Aϕ is D(Aϕ) = DAϕ + A Dϕ. If ϕ has level p, then Dϕ has level
exactly p+ 1 while DA = ∂A

∂uk
uk+1 + ∂A

∂uk−1
uk +· · ·+ ∂A

∂u u1, hence has level at most 1. Thus
the action of D on K(k) increases the level by at most 1, while its action on the generators
of M(k)

p increases the level by exactly 1. �

We now study the effect of integration by parts. The subset of the generating set S (k)
p of

the module M(k)
p , consisting of the monomials that are nonlinear in the highest derivative and

the submodule that it generates are denoted by S̄ (k)
p and M̄(k)

p , respectively. If a monomial is
nonlinear in its highest derivative it cannot be integrated. If it is linear, one can proceed with
the integrations by parts until a term that is nonlinear in its highest derivative is encountered.
By virtue of the propositions above, these operations will be filtered algebra maps.

Proposition 3.2. Let α be a polynomial in M̃(k)
p . Then

∫
α = β − ∫

γ where β belongs to
M̃(k)

p−1 and γ belongs to M̃(k)
p .

Proof. Let μ = ua1
k+i1

ua2
k+i2

. . . u
aj

k+i j
, i1 > i2 > · · · > i j, i1a1 + i2a2 + · · · + i ja j = p. We have

the following three mutually exclusive cases.

(i) When a1 > 1, the monomial is not a total derivative and μ ∈ S̄ (k)
p,n. We cannot proceed

with integration by parts.
(ii) When a = 1 the term ϕμ where ϕ ∈ K(k) can be integrated. For i2 < i1 − 1∫

ϕμ =
∫

ϕua1
k+i1

ua2
k+i2

. . . u
aj

k+i j

= ϕua1
k+i1−1ua2

k+i2
. . . u

aj

k+i j
−

∫
ua1

k+i1−1D
(
ϕua2

k+i2
. . . u

aj

k+i j

)
.

(iii) When a = 1 but i2 = i1 − 1 then∫
ϕμ =

∫
ϕua1

k+i1
ua2

k+i1−1ua3
k+i3

. . . u
aj

k+i j

= ua2+1
k+i1−1

a2 + 1
ua3

k+i3
. . . u

aj

k+i j
−

∫ ua2+1
k+i1−1

a2 + 1
D

(
ϕua3

k+i3
. . . u

aj

k+i j

)
.

In (i) and (ii), the level of the term that has been integrated decreases by 1 while the terms
under the integral sign have levels p or lower. �

We will now give an example that illustrates the effect of total derivatives and integration by
parts.

Example 3.1. Let R = ϕu8 + ψu7u6 + ηu3
6, where ϕ,ψ, η ∈ K(5) be a polynomial in M(5)

3 .
It can easily be seen that DR is a sum of polynomials in M(5)

4 and M(5)

3

DR = [
ϕu9 + (ϕ5 + ψ)u8u6 + ψu2

7 + (ψ5 + 3η)u7u2
6 + η5u4

6

]
+ [

(ϕ4u5 + · · · + ϕx)u8 + (ψ4u5 + · · · + ψx)u7u6 + (η4u5 + · · · + ηx)u
3
6

]
where the first and second groups of terms in the brackets belong to M(5)

4 and M(5)

3
respectively. Note that the projection to M(5)

4 depends only on the derivatives with respect to
u5. In order to write down compactly the effect of integration by parts, we define the operator
D0 by D0ϕ = Dϕ − ϕkuk+1 to denote the part of Dϕ depending on lower order derivatives. It

6
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follows that D2ϕ = ϕkuk+2 + ϕk,ku2
k+1 + (D0ϕ)kuk+1 + D0(D0ϕ) is a sum of level 2, level 1

and level 0 terms. The integration by parts of R gives∫
Rdx =

[
ϕu7 + 1

2
(ψ − ϕ5)u

2
6 − D0ϕu6

]
+

∫ [
1

2
ϕ5,5 − 1

2
ψ5 − η

]
u3

6

+
[

1

2
D0ϕ5 − 1

2
D0ψ + (D0ϕ)5

]
u2

6 + D0(D0ϕ)u6,

where the first term in the bracket belongs to M(5)

2 while the integrand belongs to M(5)

3 .

Now we deal with time derivatives. Given ut = F(x, t, u, ..., um) where F is of order m,
if ρ = ρ(x, t, u, . . . , un) is a differential polynomial of order n, then clearly, Dtρ is of order
n + m. A similar result holds for level grading.

Proposition 3.3. Let ut = F[u], where F is a differential polynomial of order m and of level q
above the base level k. Then Dt is a filtered algebra map M̃(k)

p → M̃(k)
p+q.

Proof. Let ρ be a differential polynomial of order n and of level p above the base level k. Then

Dtρ = ρt +
k∑

i=0

ρiD
iF +

n−k∑
j=1

ρk+ jD
k+ jF.

Note that ρt has level at most p. Similarly, the level of ρi for i � k, is at most p hence
each of the terms in the first sum are of levels at most p + q + i, and the sum has level at
most p + q + k. In the second sum, ρk+ j has level p − j, hence the level of ρk+ jDk+ jF is
(p − j) + (k + j) + q = p + q + k. �
We will now prove a very useful proposition stating that the top level depends only on the
dependence of the coefficients on uk.

Proposition 3.4. Let ρ be a differential polynomial in M̃(k)
p . Then the projection π(Djρ)

depends only on the dependence of the coefficients in ρ on uk.

Proof. Let ρ = ∑
i ϕiPi where ϕi ∈ K(k) and Pi ∈ M(k)

p . Without loss of generality we may
assume that ρ = ϕP where ϕ is of level zero and P = ua1

i1
. . . uan

in
.

Dρ = (Dϕ)P + ϕ(DP) =
[
ϕx +

k−1∑
i=0

ϕiui+1 + ϕkuk+1

]
P + ϕDP

=
[
ϕx +

k−1∑
i=0

ϕiui+1

]
P

︸ ︷︷ ︸
M(k)

p

+ϕkuk+1P + ϕDP︸ ︷︷ ︸
M(k)

p+1

. (3.1)

It follows that the projection π(Djρ) is independent of ϕ j for j < k and independent of ϕx.
It follows that in the conserved density computations, if ρ and F[u] are level homogeneous,
then ρt up to total derivatives is also level homogeneous. �

We will use the level grading structure in the conserved density computations for
the classification of evolution equations. A crucial implication of the level grading is
proposition 4.2, which states that the canonical densities of level homogeneous equations
are level homogeneous. Thus, we may write the form of the canonical densities without the
burden of computing them explicitly. In the next section we shall obtain the classification of
evolution equations of orders m = 7, 9, 11, 13, up to their dependences on u, u1 and u2, under
the assumption that there are non-trivial conserved densities of all orders.

7
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4. Preliminary classification of KdV-like evolution equations of orders m = 7, 9, 11, 13

In this section we will study the classification of scalar evolution equations of orders
m = 7, 9, 11, 13 using the level grading structure. In [10] we have shown that if F = ut

is integrable in the sense of admitting a formal symmetry, then it is of the form

ut = F = amum + Bum−1um−2 + Cu3
m−2 + Eum−1 + Gu2

m−2 + Hum−2 + K, (4.1)

where a, B, C, E, G, H and K are functions of x, t, u, ui, i � m − 3, i.e. they belong to Km−3.

Note that F is a sum of level homogeneous terms of levels 3, 2 1 and 0 above the base level
k = m − 3. We shall assume that the conserved densities ρ(−1), ρ(1) and ρ(3) are non-trivial.
We recall that a non-trivial conserved density should be nonlinear in the highest derivative. We
have checked that ρ(1) is always non-trivial, but the cases where at least one of the canonical
densities ρ(−1), ρ(3) is trivial is not treated in this paper. We characterize such equations as
‘KdV-like’. It is well known that the canonical densities of even order are trivial, hence we
give the definition as below.

Definition 4.1. An evolution equation ut = F[u] is called ‘KdV-like’ if the sequence of odd
numbered canonical densities is non-trivial.

When we substitute the form of F given by (4.1) in the canonical conserved densities ρ(i) and
we integrate by parts we can see that the canonical densities are of the form given below

ρ(−1) = a−1

ρ(1) ∼= P(1)u2
m−2 + Q(1)um−2 + R(1)

ρ(3) ∼= P(3)u2
m−1 + Q(3)u4

m−2 + R(3)u3
m−2 + S(3)u2

m−2 + T (3)um−2 + V (3). (4.2)

where the coefficients are differential functions belonging to K(k).

4.1. Level homogeneity of the canonical densities

We will now prove a proposition stating, essentially, that if the evolution equation is level
homogeneous above a base level k and its separant belongs to K(m−3), then its canonical
densities are also level homogeneous.

Let R be a recursion operator of order n for the evolution equation ut = F . We can express
R as a formal series in inverse powers of D, i.e,

R = R(n)D
n + R(n−1)D

n−1 + · · · + R(1)D + R(0) + R(−1)D
−1 + R(−2)D

−2 + . . . .

R satisfies the operator equation

Rt + [R, F∗] = 0, (4.3)

where F∗ is the Frechet derivative of F . We will first prove the following proposition on the
relation of the levels of F and of the coefficients R( j).

Proposition 4.1. Let R be a recursion operator of order n for the evolution equation ut = F,
where F is of order m = k + p. If F is in M̃(k)

p , and if its separant belongs to K(k), then the
coefficient of Dj in R, R( j), is in M̃(k)

n− j .

Proof. Let R be a recursion operator of order n. The operator equation (4.3) is of order n+m−1
and gives an infinite sequence of partial differential equations. Note that the commutator [R, F∗]
is of order n+m−1 while Rt is of order at most n. Thus the first m equations are independent of

8
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the time derivatives of the functions R( j). In finding R, we solve these equations sequentially,
starting from the top order. The coefficient of Dn+m−1 gives

mDR(n)Fm = nDFmR(n). (4.4)

Using the fact that the separant belongs to the base, we solve (4.4) as

R(n) = R(n,o)(Fm)n/m (4.5)

where DR(n,o) = 0. If we introduce the notation a = F1/m
m , and take R(n,o) = 1 (assuming no

explicit time dependence), we have R(n) = an, which belongs to K(k). Then, the coefficient of
Dn+m−2 is an expression of the form

DR(n−1) = n − 1

m

DFm

Fm
R(n−1) + G

or

DR(n−1) = (n − 1)
Da

a
R(n−1) + G (4.6)

where G depends on the Fi and R(n) only. Equation (4.6) is a first order ordinary differential
equation that can be integrated easily as

R(n−1) = R(n−1,o)a
n−1 + an−1

∫
a−n+1G, (4.7)

after making use of the fact that Fm = am. Here also DR(n−1,o) = 0 and we take this
integration constant as R(n−1,o) = 0. This integrand belongs to M̃(k)

1 , provided that a belongs
to K(k). Iteratively, for each R( j), one obtains first order differential equations whose right-
hand sides are level homogeneous. Thus provided that a belongs to K(k) the solutions belong
to M̃(k)

n− j. �

It is well known that the nth root of R and its powers also satisfy the same operator
equation, hence they are also recursion operators. Thus by taking roots and powers we can
obtain recursion operators of all orders. The canonical density ρ( j) is defined to be the
coefficient of D−1 in a recursion operator of order j. We now prove the following proposition.

Proposition 4.2. Let ut = F be an evolution equation of order m = k + p. Assume that F is
in M̃(k)

p and its separant belongs to K(k). Then the canonical density ρ( j) belongs to M̃(k)

j+1.

Proof. In any commutator of pseudo-differential operators, the coefficient of the term D−1 is a
total derivative (Adler’s theorem) [1], hence the coefficient of D−1 in R should be a conserved
density. The coefficient of D−1 in a recursion operator of order j is denoted as ρ( j). Since the
coefficient of Dj belongs to K(k), the level of a recursion operator of order j is just j. By the
previous proposition the coefficient of D−1 belongs to M̃(k)

j−(−1)
, i.e., M̃(k)

j+1. �

4.2. Classification up to the dependences on x, t, u, u1, u2

We will outline below the steps leading to the classification of the top level parts of the
integrable evolution equations of odd orders m = 7, . . . , 13 for scalar evolution equations
admitting non-trivial conserved densities ρ(−1), ρ(1), ρ(3). In particular the non-triviality of
ρ(3) will be crucial.

Recall that conserved densities can be given up to total derivatives. Thus a generic
conserved density of order k + j is a polynomial in the monomials M(k)

2 j , as given in

9
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appendix B. Over any base level k � 3, the top level parts of these conserved densities
will be of the same form:

ρ(−1) = a−1,

ρ(1) ∼= P(1)u2
k+1,

ρ(3) ∼= P(3)u2
k+2 + Q(3)u4

k+1. (4.8)

We outline below the solution procedure for m = 7, . . . 13. The generating sets for the modules
M(k)

j that are referred to below are given in appendix B. At each step, the level part of F is
denoted by the projection π(F ) (see proposition 3.4).

Step 1. k = m − 3, m = 7, 9, 11, 13. Note that (4.1) is a polynomial of level 3 above the base
level k = m − 3. Hence it belongs to M̃(m−3)

3 , i.e, it is a polynomial in the generating
sets of M(m−3)

j , j = 3, 2, 1, 0, with coefficients in K(m−3). The top level part of F is

π(F ) = ak+3uk+3 + Buk+2uk+1 + Cu3
k+1, (m � 7). (4.9)

For m = 7, 9, 11, 13, we compute the conserved density conditions (4.8), integrate by
parts and collect the top level terms. The solutions of these equations determine the
coefficients B and C as functions of a and the derivatives of a with respect to uk of
various orders and finally we find that a is independent of uk. It follows that the top
level part of F consists of the linear term amum only. Since a is independent of uk, the
linear term is of level 4 above the base level k = m − 4. Then, we use the dependence
of a on um−4 to prove that F is a polynomial in uk and its level is at most 4 above the
base level m − 4. It follows that F belongs to M̃(m−4)

4 .
Step 2. k = m−4, m = 7, 9, 11, 13. The generic form of the evolution equation for k = m−4

is a polynomial in the generators of M(m−4)
j , for j = 4, . . . , 0, with coefficients in

K(k). The top level part is

π(F ) = ak+4uk+4 + Buk+3uk+1 + Cu2
k+2 + Euk+2u2

k+1 + Gu4
k+1, (m � 7). (4.10)

The conserved densities have the same form (4.8). Computing the top level parts of the
conserved density conditions and integrating by parts we obtain systems of equations
for the coefficients in the top level part of F . For m = 7, k = m − 4 = 3 and we see
that a satisfies the third order differential equation

a3,3,3 − 9a3,3a3a−1 + 12a3
3a−2 = 0. (4.11)

For m > 7 we obtain am−4 = 0 and the top level part of F reduces to the linear term
amum, which is of level 5 above k = m − 5. As in the first step, we use the dependence
of a on um−5 to prove that F is polynomial in uk and of level at most 5 above the base
level m − 5. It follows that F belongs to M̃(m−5)

5 .
Step 3. k = m − 5, m = 9, 11, 13. For k = m − 5 the generic form of the evolution equation

is a polynomial in the generators of M(m−5)
j , j = 5, . . . , 0. The top level part is

π(F ) = ak+5uk+5 + Buk+4uk+1 + Cuk+3uk+2 + Euk+3u2
k+1

+ Fu2
k+2uk+1 + Guk+2u3

k+1 + Hu5
k+1, (m � 9). (4.12)

We repeat the computations as described above to obtain am−5 = 0 and to prove that
for m = 9, 11, 13, F belongs to is M̃(m−6)

6 .
Step 4. k = m − 6, m = 9, 11, 13. For k = m − 6 the generic form of the evolution equation

is a polynomial in the generators of M(m−6)
j , j = 6, . . . , 0. The top level part is

π(F ) = ak+6uk+6 + Buk+5uk+1 + Cuk+4uk+2 + Euk+4u2
k+1 + Gu2

k+3

+ Huk+3uk+2uk+1 + Kuk+3u3
k+1 + Lu3

k+2 + Mu2
k+2u2

k+1 + Nuk+2u4
k+1

+ Pu6
k+1, m � 9. (4.13)

10
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We repeat the computations as described above and for m = 9, surprisingly we find
that a satisfies the same equation as (4.11). For m > 9 we find that am−6 = 0 and we
show that F is polynomial in uk and belongs to M̃(m−7)

7 .
Step 5. k = m − 7, m = 11, 13. At this step, F is a polynomial in the generators of M(k)

j ,
j = 7, . . . , 0 with coefficients in K(m−7). We omit the explicit expressions here. The
conserved density conditions imply that am−6 = 0 and F belongs to M̃(m−8)

8 .

Step 6. k = m−8, m = 11, 13. F is now a polynomial in the generators ofM(k)
j , j = 8, . . . , 0.

The conserved density conditions imply that for m = 11, a satisfies the equation above
(4.11) and for m > 11, am−8 = 0. We find that m > 11, F belongs to M̃(m−9)

9 .

Step 7. k = m − 9, m = 13. F is a polynomial in the generators of M(k)
j , j = 9, . . . , 0.

The conserved density conditions imply that am−9 = 0 and we find that F belongs to
M̃(m−10)

10 .

Step 8. k = m − 10, m = 13. F is a polynomial in the generators of M(k)
j , j = 10, . . . , 0. For

m = 13, a satisfies that equation above (4.11).

In sections 4.3 and 4.4 we will outline the solution procedures in some detail for m = 7
and m = 9. The final results for m = 11 and m = 13 will be given in appendix C.

4.3. Detailed computations for m = 7

For m = 7, the explicit form of the evolution equation and its canonical densities are

ut = a7u7 + Bu5u6 + Cu3
5 + Eu6 + Gu2

5 + Hu5 + K, (4.14)

ρ(−1) = a−1

ρ(1) ∼= P(1)u2
5 + Q(1)u5 + R(1)

ρ(3) ∼= P(3)u2
6 + Q(3)u4

5 + R(3)u3
5 + S(3)u2

5 + T (3)u5 + V (3), (4.15)

where B,C, . . . K and P(1), . . . ,V (3) are functions of x, t, u, . . . , u4. According to
proposition 3.4, the top level term in Dtρ

(i), i = −1, 1, 3 depends on the u4 dependence
of all coefficients. At the top level we have

π(Dtρ
(−1)) ∼= (a−1)4D4F

π(Dtρ
(1)) ∼= 2P(1)u5D5F

π(Dtρ
(3)) ∼= 2P(3)u6D6F + 4Q(3)u3

5D5F. (4.16)

We use the symbolic programming language REDUCE for our conserved density
computations. For top level computations we declare dependences on u4 only for the functions
above and integrate by parts Dtρ

(1) and Dtρ
(3). Assuming that P(1) 	= 0 and P(3) 	= 0, the

coefficients of {u2
8u5, u3

7, u2
7u6u5} in Dtρ

(1) and the coefficients of {u2
9u5, u2

8u7} in Dtρ
(3) give

B = 14a4a6, C = a5

[
7

2
a4,4a + 21a2

4

]
, P(1)

4 = 7
a4

a
P(1), P(3)

4 = 9
a4

a
P(3),

and finally we obtain a4 = 0, hence B = C = 0. At order 7, the computations are slow but
still feasible even if we keep dependences in lower order derivatives. We compute Dtρ

(−1) and
from the coefficients of {u2

6, u4
5, u3

5, u2
5} we obtain

∂2E

∂u4
2

= 0,
∂G

∂u4
= 0,

∂3H

∂u4
3

= 0,
∂5K

∂u4
5

= 0,

11
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hence all coefficient functions are polynomials in u4. It follows that ut is of the form below
where E ( j) denotes the coefficient of u j

4 in E and so on:

ut = [
a7u7 + E (1)u6u4 + G(0)u2

5 + H (2)u5u2
4 + K(4)u4

4

] + [
E (0)u6 + H (1)u5u4 + K(3)u3

4

]
+ [

H (0)u5 + K(2)u2
4

] + K(1)u4 + K(0) (4.17)

ut = F is a sum of level homogeneous terms over the base level k = 3. We can repeat the
same type of computations to determine the dependence on u3. Here we present only the top
level part

ut = a7u7 + 14a3a6u6u4 + 21
2 a3a6u2

5 + a5
(

35
2 a3,3a + 63a2

3

)
u5u2

4

+ a3a4
(

399
8 a3,3a − 21

4 a2
3

)
u4

4,

where a satisfies the equation (4.11).

4.4. Detailed computations for m = 9

We start with the form

ut = a9u9 + Bu7u8 + Cu3
7 + Eu8 + Gu2

7 + Hu7 + K. (4.18)

At the top level, the evolution equation and the canonical conserved densities are

ut = a9u9 + Bu7u8 + Cu3
7

π(ρ(1)) ∼= P(1)u2
7

π(ρ(3)) ∼= P(3)u2
8 + Q(3)u4

7. (4.19)

The top level parts of the conserved density conditions are used to express B and C in terms
of the derivatives of a with respect to u6 and finally we get

a6 = 0, B = 0, C = 0.

We integrate by parts Dtρ
(−1) = Dt (a−1) to get

∂2E

∂u6
2

= 0,
∂G

∂u6
= 0,

∂3H

∂u6
3

= 0,
∂5K

∂u6
5

= 0,

hence these functions are polynomial in u6.
We re-parameterize ut as

ut = a9u9+Bu8u6+Cu2
7+Eu7u2

6+Gu4
6+Hu8+Iu7u6+Ju3

6+Ku7+Lu2
6+Mu6+N, (4.20)

and consider the top level parts of the equation

ut = a9u9 + Bu8u6 + Cu2
7 + Eu7u2

6 + Gu4
6. (4.21)

At this step, we also use the conserved density conditions to compute the coefficients B,C, E, G
as functions of the derivatives of a with respect to u5, and finally we obtain

a5 = 0, B = 0, C = 0, E = 0, G = 0.

Then, we integrate by parts Dtρ
(−1) and use the explicit expressions of ρ(1) and ρ(3) to obtain

∂2H

∂u5
2

= 0,
∂I

∂u5
= 0,

∂J

∂u5
= 0,

∂3K

∂u5
3

= 0,
∂2L

∂u5
2

= 0,
∂4M

∂u5
4

= 0,
∂6N

∂u5
6

= 0.

Thus we prove that ut = F is a sum of level homogeneous terms of levels 5, 4, . . . , 0 above
the base level u4.

12
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We collect level homogeneous terms and rename to obtain

ut = [a9u9 + Bu8u5 + Cu7u6 + Eu7u2
5 + Fu2

6u5 + Gu6u3
5 + Hu5

5]

+ [Iu8 + Ju7u5 + Ku2
6 + Lu6u2

5 + Mu4
5] + [Nu7 + Ou6u5 + Pu3

5]

+ [Qu6 + Ru2
5] + [Su5] + T. (4.22)

Top level computations give

a4 = 0, B = 0, C = 0, E = 0, F = 0, G = 0, H = 0

and lower level computations using the explicit expressions of the canonical densities ρ( j),
j = −1, 1, 3 imply that

∂2I

∂u4
2

= ∂J

∂u4
= ∂K

∂u4
= L = M = 0,

∂3N

∂u4
3

= ∂2O

∂u4
2

= ∂P

∂u4
= 0,

∂4Q

∂u4
4

= ∂3R

∂u4
3

= 0,
∂5S

∂u4
5

= 0,
∂7T

∂u4
7

= 0.

At top level the explicit form of the equation is

ut = u9a9 + 27u8u4a3a8 + 57u7u5a3a8 + u7u2
4a7

(
105

2 a3,3a + 255a2
3

) + 69
2 u2

6a3a8

+ 3u6u5u4a7
(
63a3,3a + 284a2

3

) + 330u6u3
4a3a6

(
4a3,3a + a2

3

)
+ u3

5a7
(

91
2 a3,3a + 199a2

3

) + u2
5u2

4a3a6
(

11187
4 a3,3a + 1023

2 a2
3

)
+ u5u4

4a5
(

6699
8 a2

3,3a2 + 11385a3,3a2
3a − 19569

2 a4
3

)
+ u6

4a3a4
(

39325
16 a2

3,3a2 + 9295
2 a3,3a2

3a − 37895
4 a4

3

)
where a satisfies (4.11).

5. Results and discussion

In this paper, we introduced a new grading, which we called the ‘level grading’, on the algebra
M(k) of polynomials generated by the derivatives uk+ j, j = 1, 2, . . . over the coefficient ring
K(k) of C∞ functions of x, t, u and ui, i = 1, 2, . . . , k. We proved that this grading has the
property that the total derivatives with respect to x and t and the integrations by parts are
filtered algebra maps. We also proved that if u satisfies an evolution equation ut = F[u] of
order m = k + p and F belongs to a submodule M̃(k)

p , then the canonical densities belong to
M̃(k)

p+m. We applied this ‘level homogeneity’ property to the classification of scalar evolution
equations of orders m = 7, 9, 11, 13 admitting non-trivial conserved densities of all orders,
and we obtained their explicit expressions up to their dependences on u2, u1 and u. It was a
remarkable fact that at all orders a = (Fm)1/m satisfies the same equation

a3,3,3 − 9a3,3a3a−1 + 12a3
3a−2 = 0. (5.1)

We note that the substitution a = Z−1/2 leads to Z3,3,3 = 0, hence

a = (
αu2

3 + βu3 + γ
)−1/2

, (5.2)

where α, β, γ are functions of u, u1 and u2 in general.
The occurrence of the same form for a strongly suggests that these equations belong to a

hierarchy. In fact we have shown that the same form of a has occurred in the classification of
fifth order equations [12]. These equations seem to be intrinsically related to the class of fully
nonlinear third order equations [13],

ut = F = (
αu2

3 + βu3 + γ
)−1/2

(2αu3 + β) + δ.
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In this equation, when we compute ∂F
∂u3

we find that(
∂F

∂u3

)1/3

= P
(
αu2

3 + βu3 + γ
)−1/2

,

where P = (2αγ − 1
2β2)1/3. This result suggests that the equations that we have obtained

possibly belong to a hierarchy starting at the fully nonlinear third order equation, and that the
hierarchy is possibly generated by a second order recursion operator.

As a final remark, we emphasize that our results on the classification of evolution equations
are only preliminary. We recall that in [10], we have proved that arbitrary (non-polynomial)
evolution equations of orders m are of the form (4.1). Here, assuming that E = G = H = K = 0
and ρ(−1) and ρ(3) are non-trivial, we prove that for m = 7, 9, 11, 13 the expressions that we
obtain are unique up to the dependence of the functions α, β and γ in x, t, u, u1, u2.

To obtain a complete classification, first of all we should study the cases where ρ(−1)

and/or ρ(3) are trivial. The triviality of ρ(3) is the common property of the Sawada–Kotera/Kaup
equations and of the fifth order equation [2]

ut = − 3

2A
(Au5 + B)−2/3 + C, A5 = B5 = C5 = 0.

Thus we expect that higher order equations characterized by the triviality of ρ(3) will be
symmetries of these fifth order equations. The equations characterized by a nonzero but trivial
ρ(−1) turn out to be harder to analyze. We note that the nonlinear third order equation given
[8],

ut = F = (Au3 + B)−2 + C, A3 = B3 = C2 = 0,

has the property that
(

∂F
∂u3

)−1/3
is linear in u3. We may thus suspect that higher order

equations with trivial ρ(−1) are related to the equation above. The second assumption,
E = G = H = K = 0, is of a more technical nature. At order m = 5 we have included
an almost complete classification of KdV-like equations including lower order terms [12], but
this turned out to be practically impossible at higher orders. Although it would be possible to
force computational power, we are hoping to prove that the top level part determines integrable
evolution equations up to certain transformations to be discussed below.

The last problem with the incompleteness of our classification is related to the dependences
of the functions α, β and γ on x, t, u, u1, u2. In preliminary computations we have seen that
there seem to be identities among the derivatives of these functions, hence one has to possibly
use analogues of contact or Miura transformations in order to eliminate the arbitrariness. The
situation is more or less the same with the constant separant case, where at third order a large
number of the equations are reduced to the KdV or the Krichever–Novikov equation.

Appendix A. Conserved densities

If the evolution equation ut = F[u] is integrable, it is known that the quantities

ρ(−1) = F−1/m
m , ρ(0) = Fm−1/Fm,

where

Fm = ∂F

∂um
, Fm−1 = ∂F

∂um−1

14
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are conserved densities for equations of any order [8]. Higher order conserved densities are
computed in [2] as below, with the following notation

a = F1/m
m , α(i) = Fm−i

Fm
, i = 1, 2, 3, 4

ρ(1) = a−1(Da)2 − 12

m(m + 1)
Daα(1) + a

[
12

m2(m + 1)
α2

(1) − 24

m(m2 − 1)
α(2)

]
,

ρ(2) = a(Da)

[
Dα(1) + 3

m
α2

(1) − 6

(m − 1)
α(2)

]

+ 2a2

[
− 1

m2
α3

(1) + 3

m(m − 1)
α(1)α(2) − 3

(m − 1)(m − 2)
α(3)

]
,

ρ(3) = a(D2a)2 − 60

m(m + 1)(m + 3)
a2D2aDα(1) + 1

4
a−1(Da)4

+ 30a(Da)2

[
(m − 1)

m(m + 1)(m + 3)
Dα(1) + 1

m2(m + 1)
α2

(1) − 2

m(m2 − 1)
α(2)

]

+ 120

m(m2 − 1)(m + 3)
a2Da

[
− (m − 1)(m − 3)

m
α(1)Dα(1) + (m − 3)Dα(2)

− (m − 1)(2m − 3)

m2
α3

(1) + 6(m − 2)

m
α(1)α(2) − 6α(3)

]

+ 60

m(m2 − 1)(m + 3)
a3

[
(m − 1)

m
(Dα(1))

2 − 4

m
Dα(1)α(2)

+ (m − 1)(2m − 3)

m3
α4

(1) − 4
(2m − 3)

m2
α2

(1)α(2) + 8

m
α(1)α(3)

+ 4

m
α2

(2) − 8

(m − 3)
α(4)

]
.

Appendix B. Submodules and their generators

The submodules M(k)
i and their generating monomials where: i = 1, 2, 3, . . . , 13 and the

base k = m − 3, m − 4, . . . , 3. The generating monomials of the quotient submodules (the
monomials that are not total derivatives) are shown in bold. The generators of a submodule
M(k)

p can be obtained by using the partitions of the integer p into a sum of integers, as
for example in 4 = 4 + 0 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1 or
5 = 5 + 0 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1.

M(k)

1 = 〈uk+1〉
M(k)

2 = 〈
uk+2, u2

k+1

〉
M(k)

3 = 〈
uk+3, uk+2uk+1, u3

k+1

〉
M(k)

4 = 〈
uk+4, uk+3uk+1, uk+2u2

k+1, u2
k+2, u4

k+1

〉
M(k)

5 = 〈
uk+5, uk+4uk+1, uk+3uk+2, uk+3u2

k+1, uk+2u3
k+1, u2

k+2uk+1, u5
k+1

〉
M(k)

6 = 〈
uk+6, uk+5uk+1, uk+4uk+2, uk+4u2

k+1, uk+3uk+2uk+1, uk+3u3
k+1, uk+2u4

k+1,

u2
k+3, u3

k+2, u2
k+2u2

k+1, u6
k+1

〉
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M(k)
7 = 〈

uk+7, uk+6uk+1, uk+5uk+2, uk+5u2
k+1, uk+4uk+3, uk+4uk+2uk+1, uk+4u3

k+1,

uk+3u2
k+2, uk+3uk+2u2

k+1, uk+3u4
k+1, uk+2u5

k+1, u2
k+3uk+1, u3

k+2uk+1,

u2
k+2u3

k+1, u7
k+1

〉
M(k)

8 = 〈
uk+8, uk+7uk+1, uk+6uk+2, uk+6u2

k+1, uk+5uk+3, uk+5uk+2uk+1, uk+5u3
k+1,

uk+4uk+3uk+1, uk+4u2
k+2, uk+4uk+2u2

k+1, uk+4u4
k+1, uk+3u2

k+2uk+1, uk+3uk+2u3
k+1,

uk+3u5
k+1, uk+2u6

k+1, u2
k+4, u2

k+3uk+2, u2
k+3u2

k+1, u4
k+2, u3

k+2u2
k+1, u2

k+2u4
k+1, u8

k+1

〉
M(k)

9 = 〈
uk+9, uk+8uk+1, uk+7uk+2, uk+7u2

k+1, uk+6uk+3, uk+6uk+2uk+1, uk+6u3
k+1, uk+5uk+4,

uk+5uk+3uk+1, uk+5u2
k+2, uk+5uk+2u2

k+1, uk+5u4
k+1, uk+4uk+3uk+2, uk+4uk+3u2

k+1,

uk+4u2
k+2uk+1, uk+4uk+2u3

k+1, uk+4u5
k+1, uk+3u3

k+2, uk+3u2
k+2u2

k+1, uk+3uk+2u4
k+1,

uk+3u6
k+1, uk+2u7

k+1, u2
k+4uk+1, u3

k+3, u2
k+3uk+2uk+1, u2

k+3u3
k+1, u4

k+2uk+1, u3
k+2u3

k+1

u2
k+2u5

k+1, u9
k+1

〉
M(k)

10 = 〈
uk+10, uk+9uk+1, uk+8uk+2, uk+8u2

k+1, uk+7uk+3, uk+7uk+2uk+1, uk+7u3
k+1, uk+6uk+4,

uk+6uk+3uk+1, uk+6u2
k+2, uk+6uk+2u2

k+1, uk+6u4
k+1, uk+5uk+4uk+1, uk+5uk+3uk+2,

uk+5uk+3u2
k+1, uk+5u2

k+2uk+1, uk+5uk+2u3
k+1, uk+5u5

k+1, uk+4u2
k+3, uk+4uk+3uk+2uk+1,

uk+4uk+3u3
k+1, uk+4u3

k+2, uk+4u2
k+2u2

k+1, uk+4uk+2u4
k+1, uk+4u6

k+1, uk+3u3
k+2uk+1,

uk+3u2
k+2u3

k+1, uk+3uk+2u5
k+1, uk+3u7

k+1, uk+2u8
k+1, u2

k+5, u2
k+4uk+2, u2

k+4u2
k+1, u3

k+3uk+1,

u2
k+3u2

k+2, u2
k+3uk+2u2

k+1, u2
k+3u4

k+1, u5
k+2, u4

k+2u2
k+1, u3

k+2u4
k+1, u2

k+2u6
k+1, u10

k+1

〉
.

Appendix C. Results for m = 11, m = 13

We present the top level parts of F computed as described in section 4.2, Steps 1–8, for m = 11
and m = 13.

Scalar integrable evolution equations of order m = 11 have the form:

ut = a11u11 + B0u10u4 + B1u9u5 + B2u9u2
4 + B3u8u6 + B4u8u5u4 + B5u8u3

4

+ B6u2
7 + B7u7u6u4 + B8u7u2

5 + B9u7u5u2
4 + B10u7u4

4 + B11u2
6u5

+ B12u2
6u2

4 + B13u6u2
5u4 + B14u6u5u3

4 + B15u6u5
4 + B16u4

5 + B17u3
5u2

4

+ B18u2
5u4

4 + B19u5u6
4 + B20u8

4

where

B0 = 44a3a10, B1 = 121a3a10, B2 = a9
(

231
2 a3,3a + 726a2

3

)
, B3 = 209a3a10,

B4 = 198a9
(
3a3,3a + 17a2

3

)
, B5 = a3a8

(
9867

2 a3,3a + 3432a2
3

)
, B6 = 253

2 a3a10,

B7 = 66a9
(
14a3,3a + 75a2

3

)
, B8 = a9

(
1353

2 a3,3a + 3333a2
3

)
,

B9 = a3a8
(

63 921
2 a3,3a + 17 160a2

3

)
,

B10 = a7 (
39 039

8 a2
3,3a2 + 78 936a3,3a2

3a − 96 525
2 a4

3

)
,

B11 = a9
(

1749
2 a3,3a + 4026a2

3

)
, B12 = a3a8

(
81 081

4 a3,3a + 9867a2
3

)
,

B13 = 858a3a8
(
67a3,3a + 26a2

3

)
, B14 = a7

(
70 785

2 a2
3,3a2 + 552 981a3,3a2

3a − 376 662a4
3

)
,

B15 = a3a6
(

708 279
4 a2

3,3a2 + 465 465a3,3a2
3a − 738 309a4

3

)
,

B16 = a3a8
(

54 483
8 a3,3a + 8437

4 a2
3

)
,

B17 = a7
(

100 815
4 a2

3,3a2 + 385 242a3,3a2
3a − 280 709a4

3

)
,
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B18 = a3a6
(

9988 407
16 a2

3,3a2 + 1571 856a3,3a2
3a − 10 401 105

4 a4
3

)
,

B19 = a5
(

1210 495
16 a3

3,3a3 + 18 214 911
8 a2

3,3a2
3a2 − 4236 375

4 a3,3a4
3a − 6180 031

2 a6
3

)
,

B20 = a3a4
(

28 717 403
128 a3

3,3a3 + 86 866 923
64 a2

3,3a2
3a2 − 89 492 403

32 a3,3a4
3a + 4538 677

16 a6
3

)
.

Scalar integrable evolution equations of order m = 13 have the form:

ut = a13u13 + B0u12u4 + B1u11u5 + B2u11u2
4 + B3u10u6 + B4u10u5u4 + B5u10u3

4

+ B6u9u7 + B7u9u6u4 + B8u9u2
5 + B9u9u5u2

4 + B10u9u4
4 + B11u2

8 + B12u8u7u4

+ B13u8u6u5 + B14u8u6u2
4 + B15u8u2

5u4 + B16u8u5u3
4 + B17u8u5

4 + B18u2
7u5

+ B19u2
7u2

4 + B20u7u2
6 + B21u7u6u5u4 + B22u7u6u3

4 + B23u7u3
5 + B24u7u2

5u2
4

+ B25u7u5u4
4 + B26u7u6

4 + B27u3
6u4 + B28u2

6u2
5 + B29u2

6u5u2
4 + B30u2

6u4
4

+ B31u6u3
5u4 + B32u6u2

5u3
4 + B33u6u5u5

4 + B34u6u7
4 + B35u5

5 + B36u4
5u2

4

+ B37u3
5u4

4 + B38u2
5u6

4 + B39u5u8
4 + B40u10

4

where

B0 = 65a3a12, B1 = 221a3a12, B2 = a11
(

429
2 a3,3a + 1664a2

3

)
, B3 = 494a3a12,

B4 = 130a11(11a3,3a + 76a2
3), B5 = 260a3a10(53a3,3a + 62a2

3), B6 = 793a3a12,

B7 = 273a11(11a3,3a + 71a2
3), B8 = a11

(
4433

2 a3,3a + 12 857a2
3

)
,

B9 = a3a10
(

239 473
2 a3,3a + 114 062a2

3

)
,

B10 = a9 (
147 147

8 a2
3,3a2 + 699 855

2 a3,3a2
3a − 241 917

2 a4
3

)
,

B11 = 923
2 a3a12, B12 = 13a11(330a3,3a + 2077a2

3), B13 = 13a11(638a3,3a + 3351a2
3),

B14 = a3a10
(

433 043
2 a3,3a + 183 937a2

3

)
, B15 = a3a10

(
614 601

2 a3,3a + 220 779a2
3

)
,

B16 = 39a9(4895a2
3,3a2 + 88 882a3,3a2

3a − 39 704a4
3),

B17 = a3a8
(

8620 989
8 a2

3,3a2 + 7607 925
2 a3,3a2

3a − 9264 099
2 a4

3

)
,

B18 = a11
(

10 153
2 a3,3a + 26 065a2

3

)
,

B19 = a3a10
(

525 395
4 a3,3a + 107 900a2

3

)
, B20 = a11

(
13 299

2 a3,3a + 31 655a2
3

)
,

B21 = 13a3a10
(
73 438a3,3a + 45 379a2

3

)
,

B22 = 195a9(1529a2
33a2 + 27 189a3,3a2

3a − 13 286a4
3

)
,

B23 = a3a10
(

452 751
2 a3,3a + 113 269a2

3

)
,

B24 = a9
(

2563 275
4 a2

33a2 + 11 068 278a3,3a2
3a − 6059 391a4

3

)
,

B25 = a3a8
(

94 273 959
8 a2

3,3a2 + 77 468 235
2 a3,3a2

3a − 102 276 369
2 a4

3

)
,

B26 = a7
(

11 510 785
16 a3

3,3a3 + 195 575 055
8 a2

3,3a2
3a2 − 765 765

4 a3,3a4
3a − 82 683 835

2 a6
3

)
,

B27 = 91a3a10(2239a3,3a + 1222a2
3), B28 = a3a10

(
1739 647

4 a3,3a + 184 639a2
3

)
,

B29 = a9
(

3302 871
4 a2

3,3a2 + 14 017 107a3,3a2
3a − 8104785a4

3

)
,

B30 = a3a8 (
120 547 323

16 a2
3,3a2 + 96 860 985

4 a3,3a2
3a − 130 949 793

4 a4
3

)
,

B31 = a7( 62 945 883
8 a3

3,3a3+ 522 998 931
2 a2

3,3a2
3a2 − 59 372 313

2 a3,3a4
3a − 427 213 332a6

3

)
,

B32 = a9
(

1584 297
2 a2

3,3a2 + 13 011 531a3,3a2
3a − 8261 656a4

3

)
,

B33 = a3a8
(

85 420 257
2 a2

3,3a2 + 130 920 621a3,3a2
3a − 185 780 556a4

3

)
,

B34 = a3a6
(

136 530 485
4 a3

3,3a3 + 978 346 005
4 a2

3,3a2
3a2 − 409 150 560a3,3a4

3a − 36 300 355a6
3

)
,

B35 = a9
(

457 743
8 a2

3,3a2 + 1813 227
2 a3,3a2

3a − 1244 997
2 a4

3

)
,

B36 = a3a8
(

242 491 587
16 a2

3,3a2 + 176 827 183
4 a3,3a2

3a − 263 231 553
4 a4

3

)
,
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B37 = a7
(

149 426 277
16 a3

3,3a3
3 + 2445 811 641

8 a2
3,3a2

3a2 − 227 840 613
4 a3,3a4

3a − 972 312 705
2 a6

3

)
,

B38 = a3a6
(

5405 460 879
32 a3

3,3a3
3 + 18 948 697 131

16 a2
3,3a2

3a2 − 16 438 417 359
8 a3,3a4

3a − 455 797 251
4 a6

3

)
,

B39 = a5
(

1410 011 603
128 a4

3,3a4 + 2339 829 765
4 a3

3,3a2
3a3 + 9914 229 507

16 a2
3,3a4

3a2

− 7090 620 355
2 a3,3a6

3a + 13 127 824 983
8 a8

3

)
,

B40 = a3a4
(

8400 372 435
256 a4

3,3a4 + 3249 837 045
8 a3

3,3a2
3a3 − 19 344 268 125

32 a2
3,3a4

3a2

− 3278 936 115
4 a3,3a6

3a + 14 521 758 615
16 a8

3

)
.

It is a remarkable fact that at all orders m � 7, the separant a satisfies the same equation (4.11).
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