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a b s t r a c t

In deregulated power markets, power firms bid into the day-ahead power market either with buy offers

or sell offers. The auction mechanism and competition determine the equilibrium price and quantity for

each hour. If the bid price of a company is below the market clearing price, then the offer of the

company is accepted and rewarded with the market price. A company can be a price maker or price

taker depending on the capacity it offers to the market. A price-taker unit must determine the right

offer that will maximize their profit given price uncertainty and blind auction rules. This paper first

examines power supply in the Turkish electricity market and bidding process. Then a marginal cost-

based Monte Carlo method is developed to determine hourly and block bidding strategies of price taker

units. Historical market prices are then implemented in a normal distribution to generate hourly price

scenarios. A solution methodology is developed that maximizes the expected profit of each hourly and

block bidding strategy over price scenarios. The generator is able to both evaluate the hourly bidding

and block bidding strategies and find the best bidding strategy that will be submitted to the market

using the proposed methodology. The model is illustrated for two coal units in Turkish power market

and the results are presented.

& 2013 Elsevier Ltd. All rights reserved.
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1. Introduction

One of the main market competition structures used in newly
deregulated markets is the poolco [1]. A poolco market is a central
auction that brings regional buyers and sellers together. All compe-
titive power generators (supply) and buyers (demand) are required to
submit blocks of energy quantities and corresponding prices they are
willing to receive from or pay into the pool. The prices and quantities
submitted by the market participants are binding obligations as they
require financial commitments to the market. Once all the supply and
demand bids have been submitted and the bidding period ends, an
ll rights reserved.
Independent System Operator (ISO) ranks these quantity-price offers
based on the least-cost for selling bids and the highest price for
buying bids. The ISO then matches the selling bids with buying offers
such that the highest offers are matched with the lowest selling bids.
The market clearing price (MCP) occurs at the point where the
demand is met. All sellers whose bids are below the MCP are paid
MCP which is called uniform pricing. It is also possible for a company
to get its offer price paid. This strategy is rare and called pay-as-bid
strategy. The former strategy is preferred by market authorities to
lower market prices.

The electricity supply industry has unique features such as a
limited number of producers, large investment size (which
makes it more difficult to enter the market), transmission con-
straints (which are obstacles for consumers to effectively reach
many generators), and transmission losses (which discourage
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consumers from purchasing power from distant suppliers) [2].
These features force market players to be more aggressive with
their bidding strategies, and it also makes them construct models
that carefully take into account their constraints and the uncer-
tainty of the market price.

The deregulated electricity market usually has a few genera-
tors (market suppliers) that tend to dominate the market, making
the market seem more similar to an oligopoly. In such oligopo-
listic markets, an individual generator can exercise market power
and manipulate the market price via its strategic bidding beha-
vior [3]. On the other hand, a price taker unit does not have the
power to change the market price and must be willing to accept
the market price. Companies have to determine bidding strategies
so that they can make a profit even if they are price takers and do
not dominate the market. There are several approaches to
analyzing and developing bidding models. The bidding strategies
used in the market are discussed in [4] which include a literature
survey of the current approaches to the bidding problem. The
game theory approach is commonly used in the literature to
model the behavior of market players [5]. The idea is to model the
interactions given that the reaction of a market player is affected
by other players’ actions. Several methods used in modeling
bidding strategies are explained in [6]. The authors compare the
game theory approach with the conjectural variation-based
method. In both approaches, each firm in the market rationally
tries to maximize its profit while considering the reactions of its
competitors. They show that firms can increase their profit by
using the conjectural variation-based method, and the equili-
brium found corresponds to the Nash equilibrium.

In [7], a genetic algorithm is used to solve the bidding
problem. Although the solution obtained is a heuristic one, it
could be used by a company in its daily bidding process. The
authors explain the process of bidding and how the equilibrium
price is determined. They construct their model based on the
assumption of exogenous prices. In [8], an optimization tool to
determine a bidding curve for the Ontario power market was
developed. The authors used different scenarios of market prices
and load. The decision process for the generator is based on the
probability distribution of forecasted prices. The model assumes
exogenous prices and includes operational constraints such as
ramp-up limits, start-up limits and minimum up-down times. In
[9], bids are represented as quadratic functions of power levels.
The model optimizes the parameters of each function during a
two-phase process. In the first phase, the ISO minimizes the total
system cost in which the parameters for other generators are
known. In the second phase, solutions are plugged into the
generator’s model. The Lagrangian relaxation procedure is used
to solve the expected cost minimization problem.

In [2], the authors assume that suppliers bid linear supply
functions; the coefficients of the functions are chosen for each
supplier in such a way that the expected profit is maximized
subject to the behavior of one’s rivals. They formulate a stochastic
optimization model and use a Monte Carlo-based method to tune
the parameters of the function. They also include the level of
information known for each generator in a symmetric and
asymmetric market. In [10], the authors develop a lognormal
distribution-based price generation method and solve an MILP to
find the bidding strategy for a price taker generator. They use
historical prices to approximate a lognormal distribution and
estimate a confidence interval for the hourly prices. Then a
convex bidding curve is estimated that maximizes the profit for
power price scenarios. In [11], a stochastic programming model is
introduced for a price taker hydro electricity unit. They employ
historical data to validate the model. A stochastic linear program-
ming model and a case study for a price taker Norwegian
company is developed in [12].
In [13], the authors propose a profit maximization model for
price taker units in a day-ahead market in which risk is involved.
They include energy sales with bilateral contracts, a spot market
and options in the market, and the main objective is to determine
the best course of trading action when there are normally
distributed power prices. A bilevel programming and particle
swarm optimization (PSO)-based method is developed for strate-
gic bidding in competitive electricity markets in [14]. They
assume that the competitive power market is based on a
multileader-one-follower nonlinear bilevel model in which each
player tries to maximize profits through strategic bidding. On the
other hand, the system operator tries to minimize the overall cost
by solving the PSO-based problem while dispatching the lower
cost generators. In [15] a probabilistic model for a price taker
Genco is developed in which a marginal cost-based bid determi-
nation method is employed. The authors estimate the market
prices using a statistical distribution and then based on the power
quantity and corresponding bid price of marginal cost they
determine the profit of the Genco. In [16], the authors develop a
stochastic optimization model for a generator which submits a
bid as a premium and strike price in energy call option auctions.
The uncertainties in fuel supply and fuel switch options are
included, which makes the problem more complex. The objective
of the model is to find the bidding strategy that ensures a desired
rate of return taking into account uncertain fuel supply and risk
constraints. In [17], the authors review the models for
optimization-based bidding in day-ahead markets. The models
are classified as price takers and nonprice takers and then
classified as linear and nonlinear integer mathematical programs
with equilibrium constraints and stochatic models. In [18], a
bielevel programming algorithm is developed to determine the
strategic bidding for a Genco in a transmission constrained
environment. The first level maximizes the profit of the Genco
and the second level minimizes the cost of the independent
system operator to minimize consumer payoff. The authors
present a method to identify a bidding strategy for pumped hydro
storage systems in a pool-based electricity market in [19]. The
operation of a pumped storage system requires significant effort
and it needs to be combined with the bidding strategy as the
market price also affects the cost of power consumption. In [20],
the authors present their research on optimal bidding strategies
for Gencos in an environment where bilateral contracts and
transmission constraints exist. The problem is modeled as a bi-
level optimization algorithm in which in the first step each player
maximizes its own revenue without considering transmission
constraints and in the second stage the transmission constraints
are included and units are dispatched.

Much research in the literature has been conducted on market
price forecasting. Stochastic time series methods, casual models,
statistical distribution based methods, artificial intelligence mod-
els [21], neural networks [22,23] and the Wavelet neural network
based method [24] are some examples of this research.

The bidding mechanism is actively used in most deregulated
power markets in developed countries. The auction mechanism
has been successfully implemented in power markets such as
in the USA, Canada, West Europe, Japan, and Hong Kong. The
uniform pricing scheme is the preferred pricing method. How-
ever, the time period for which the bid is valid varies. The
liberalization of the electricity industry is relatively new in the
Middle East, Balkans, Russia and Caucasus. The developing econo-
mies and the largest countries in region, which are Russia, Turkey
and Iran, began privatization roughly in the same time period.
Russia started to liberalize electricity prices in 2007 and the plan
was to fully liberalize the market by 2011 [31]. Iran is also in the
process of liberalizing the electricity industry, and has begun to
transfer state-owned plants to private owners. The market



A. Yucekaya / Renewable and Sustainable Energy Reviews 22 (2013) 506–514508
structure is different in each of these countries, and all of
themhave attained some level of deregulation [32]. Due to the
fact that Iraq and Syria have been plagued by war and a unstable
political environment for the past few years, the electricity
industry is still state-owned and controlled but they have wel-
comed private investors for power plant investments. Greece and
Bulgaria, which are members of European union, have undergone
privatization and deregulation of electricity as in many European
states, and they have benefited from this experience. In the
many smaller countries in the region, such as Georgia, Armenia,
Macedonia, Albania and Bosnia [33], the political and economical
conditions are not yet conducive for privatization and deregula-
tion of the markets.

The Turkish power market began to be deregulated in 2001,
and daily bidding was implemented in 2011. Each day ISO
announces the hourly power demand for the next day until
11:30. After the bilateral transactions between power sellers
and consumers are deducted, the remaining amount of power
is provided from the market. Each power producer submits an
offer to get a chunk from this demand. The offer consists of a price
($/MW h) and corresponding power quantity (MW h) [25].
A company can submit an offer for each hour of the next day
which is called hourly bidding. Alternatively, a company can
submit an offer for the whole day and this offer would be
accepted whenever the bid price is less than the power price. In
this paper, two different models are developed for different
bidding alternatives and a solution methodology is proposed for
a price taker company. Section 2 gives the details of the bidding
process and development stages in Turkish power market. Section
3 provides the model development and notation. The solution
approach is given in Section 4. The case study is given in Section 5
and conclusions are provided in Section 6.
Fig. 1. Estimated power demand and bilateral contracts, July 13, 2012.

Table 1
Activities in a day-ahead market.

Daily activities Time

Submit the bilateral contracts (before day-ahead) 16:00

Submit the available capacity 09:30

ISO determines the day-ahead demand and constraints 11:30

Submit buy/sell bids 11:30

Verify the bids 12:00

ISO determines the hourly day-ahead market prices and dispatched

resources

13:00

Submit the objections 13:30

ISO announces the final results 14:00

The operational day begins 00:00
2. Bidding process in the Turkish power market

State directed regulations for the restructuring of electricity
markets started in 2001 with the founding of the Energy Market
Regulatory Authority (EMRA). Law 4628 aims for the deregulation
of the electricity industry and the privatization of assets that used
to belong to the state. According to this law, the electricity
industry is to be divided into smaller and managable pieces in
which generation, transmission and distribution are handled by
different companies. The EMRA is the main authority that
manages this process and oversees all related activities. The
monopoly of state-owned resources is divided up into different
companies such as EUAS (generation), TETAS (trading), TEDAS
(distribution) and TEIAS (transmission). The main objective is to
increase efficiency and provide a competitive market environ-
ment which can lower the cost of electricity and increase the
reliability of power supply. The first step of the market design,
which involves financial transactions in a deregulated electricity
market, started on December 1, 2003. The power supplier and
large number of consumers were encouraged to participiate and
invest in power markets at this time. The second step of the
market design was defined as balance and conciliation, and it was
launched on August 1, 2006. Participants carried out bidding and
bilateral contracts in this step until the end of 2009. After this,
participants started to submit monthly capacity and bids along
with their schedules and a final market environment became
active at the end of 2011. Currently, a day-ahead planning and a
day-ahead market structure are employed in which the auction
mechanism determines the MCP.

On a typical day, the estimated day-ahead demand for each
hour of the next day is announced by the ISO. The offers from the
demand side (buyers) are also considered during this process.
Each participant submits the amount of power they will supply,
using bilateral contracts. These contracts are agreements between
two parties that allow each participant to determine the power
delivery conditions and price. The total amount of power that will
be provided with the bilateral contracts is determined and
deducted from the total estimated demand. Fig. 1 shows the
estimated demand and amount of power that was provided with
bilateral contracts on July 17, 2012. The remaining amount should
be supplied from competitive and reliable offers in the market.
Hence, this is suportive of open competition [25].

The day-ahead process is divided into two different entities:
the day-ahead planning and the day-ahead market. It is obligatory
to submit the available capacity to the day-ahead planning so that
the ISO can observe the status of resources. On the other hand, it
is not obligatory to join to the day-ahead market and submit
an offer.

The market participants include the wholesale supplier, power
plants, independent generation units and state resources that
have the available capacity to submit sell bids to obtain power
from day-ahead demand. In day-ahead planning, the main objec-
tive is to balance the supply and demand. On the other hand, in a
day-ahead market, the objective of each participant is to max-
imize its portfolio. The planning allows the system operator to
balance generation with buy requests submitted by market
participants without considering the offer prices. In a day-ahead
market, suppliers and buyers can balance their portfolio based on
price levels. It is possible to submit hourly and block offers each
day in both. Table 1 shows the order of activities in a day-ahead
market on a typical day [25].

The bilateral contracts should be submitted before the day-
ahead planning begins. The contracts are submitted until 16:00
on the day before the day-ahead. Each participant is required to
submit the available capacity and status of their resources by
9:30. The ISO estimates the day-ahead demand for each hour of
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the next day based on the temperature, submitted buy offers,
bilateral contracts, and historical data. It is expected that there
will be deviations from the estimated demand, as the demand and
power consumption have stocthastic and unpredictable features.
The ISO also considers the transmission and outage constraints
that affects dispatch decisions. Once the amount of power
provided from the bilateral contracts is deducted, that amount
of power must be supplied from the market for each hour. Each
market participant submits buy and sell bids to the market at
11:30 and verifies the bids by 12:00 noon. The bids can be block
bids or hourly bids that consist of power price and correspoding
power quantity. ISO runs a security constrained cost minimiza-
tion program to optimize the schedule of the resources. It is
essential to order the sell offers from cheapest to highest and
order the buy offers from highest to cheapest. Then the market
clearing price for each hour is determined based on the offers and
constraints, and then announced by the operator. Each market
participant is allowed to submit an objection within a given time
limit. The final results are released after objections are resolved or
the program is updated based on the requests. The program starts
operation at midnight and runs for 24 h. It is worth noting that
usually 10–15% of power is supplied from the day-ahead market.
Fig. 2 shows the structure of the Turkish electricity market.

Almost 80–85% of demand is still supplied using bilateral
contracts. The idea of dergulation and its mechanism are not
widely known or understood, as it is still under development and
is relatively new. Power companies and large consumers still
prefer to have bilateral contracts as the risk is low and it does not
require dealing with a market mechanism. The contracts are
usualy prepared months or years ago before day-ahead activities.
In this system, the day-ahead market and real-time balance
should be considered together. The schedule for the day-ahead
market is determined 10 h before the actual day. On the other
hand, the real time balance or real-time market is used to balance
deviations from the estimated demand or planned schedule. Zero
to five percent of electricity is handled in real time balance in
which hourly decisions are effective. Generators, wholesale sup-
pliers and consumers are allowed to submit bids to the day-ahead
market or real-time balance. A supplier can submit in a day-ahead
Fig. 2. Turkish power mar
market or have reserves to be used in a real time balance. This
reserve should also be offered to the real time market and hence
the power that is not supplied through bilateral contracts and
day-ahead market can be supplied in real time balance. The
system operator determines the real time market price that will
be used to calculate the payments for each resource in the real-
time market. The system operator calculates the revenue or cost
of each market participant based on the day-ahead market price,
real time price and amount of power supplied from each resource.
This process is called financial concilliation, in which each party is
billed for the consumption or rewarded for the supply of power.
The derivative market in Turkey began operations in 2005, and
the operations for electricity options started in November 2011,
and as such is relatively new. Financial products such as futures,
forwards and options are generated and financial transactions are
completed in a financial concilliation stage. This is usually weeks
or months after the operation day.

The demand for energy in Turkey is increasing to an extent
almost parallel to the economic growth of the country. The
country has an average economic growth of 7%, and this entails
increasing industrial production, new investments, and a growing
population, all of which drive up the demand for energy. The
available generation capacity is dominated by coal-based
resources and natural gas-fired plants. A nuclear power plant
project has been proposed but it is still in the development stage,
and is expected to be operational in 2015. As a result, the
available capacity should be used efficiently through the proper
planning and scheduling of power resources. The objective of
deregulation in Turkish market is to successfully reach this point
by providing a competitive market environment.
3. Model development for a price taker unit

The cost of the energy produced by the generating unit is
dependent on the amount of fuel consumed, and it is typically
approximated by a quadratic cost function C(q)¼a1þa2qþa3q2

($/MW), where q is the amount of energy generated in 1 h
[26–28]. The coefficient a1 represents the fixed cost or no-load
ket after deregulation.
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cost for each hour. This cost includes the labor and the cost of
non-direct goods necessary to produce power for the correspond-
ing hour. The value a2 represents the linear cost which is
proportional to the amount of power produced. The parameter
a3 is the quadratic cost coefficient and it is related with the
amount of fuel used to produce electricity [27].

Generators use a single cost function when they bid into the
market but it is also possible to combine the number of cost
functions and get an approximated cost function. Most of the
time, this approach is used by firms which have several gen-
erators and prefer to bid into the market using portfolio-based
cost functions. Generators also have start-up costs, minimum-
load operating costs and minimum up-down constraints. These
are also used by the ISO when bids are evaluated [29].

In the block bidding method, a company submits an offer that
consists of a power quantity and corresponding price to be
accepted by the market whenever the market price is higher than
the offer price. The mathematical model of the block bidding
problem is presented below [30]:

Pðqb,bbÞ ¼Max
qb ,bb

E Profit
� �

¼
1

K

XK

k ¼ 1

XT

t ¼ 1

½Pk
t qk

b�Cðqk
bÞ�

for k¼ 1,. . .,K; t¼ 1,. . .,T ð1Þ

Subject to the following constraints:

0rbk
brBmax for i¼ 1,. . .,N: ð2Þ

0rqk
brQmax for i¼ 1,. . .,N: ð3Þ

qk
t ¼

qk
b if bk

brPk
t

0 otherwise
for k¼ 1,. . .,K; t¼ 1,. . .,T

(
ð4Þ

Cðqk
bÞ ¼ a1þa2qk

bþa3ðq
k
bÞ

2 for k¼ 1,. . .,K ð5Þ

In the hourly bidding method, a company submits an offer
consisting of a 24-h power quantity and corresponding price
blocks for each hour to be accepted by the market whenever the
market price is higher than the offer price for that hour. In other
words, the player bids for each hour. The mathematical model of
the hourly bidding problem is presented below.

Pðqt ,btÞ ¼Max
qt ,bt

E Profit
� �

¼
1

K

XK

k ¼ 1

XT

t ¼ 1

½Pk
t qk

t�Cðqk
t Þ�

for k¼ 1,. . .,K; t¼ 1,. . .,T ð6Þ

Subject to the following constraints:

0rbk
t rBmax for i¼ 1,. . .,N: ð7Þ

0rqk
t rQmax for i¼ 1,. . .,N ð8Þ

qk
t ¼

qk
t if bk

t rPk
t

0 otherwise
for k¼ 1,. . .,K; t¼ 1,. . .,T

(
ð9Þ

Cðqk
t Þ ¼ a1þa2qk

t þa3ðq
k
t Þ

2 for k¼ 1,. . .,K; ð10Þ

The notation of the parameters and decision variables for both
methods are collected and presented below:
Parameters
C(q)
 Cost of generating q MW ($)
a1,a2,a3

No-load, linear, and quadratic coefficients of the
generator’s cost function
Pk
t

Market clearing price at hour t of scenario k ($/MW h)
Qmax
 Maximum generation capacity of the unit (MW h)
Bmax

Maximum allowable bid price in the market
($/MW h)
st
 Standard deviation of the market price at time t
Decision variables
bk
b

Bid price of block bidding of scenario k ($/MW h)
qk
b

Bid energy amount of block bidding of k (MW h)
qk
t
 Total energy generated at hour t of scenario k (MW h)
bk
t

Bid price of hourly bidding at hour t of scenario
k ($/MW h)
qt ,bt

Bid energy amount and price of hourly bidding at
hour t
qb,bb
 Bid energy amount and price of block bidding
4. Solution approach

A price taker market player should first figure out a way to
maximize its expected profit over a set of uncertain market prices.
A way to ensure its loss for a price taker player in a competitive
market is to limit its decisions with its marginal cost. Given that a
company has a profit function of

Pðq,bÞ ¼ Pq�a1�a2q�a3ðqÞ
2

ð11Þ

the first order derivative of the function with respect to quantity
leads to its price and quantity relationship as

dPðq,bÞ

dq
¼ P�a2�2a3q¼ 0 ð12Þ

which would lead to the general equation:

P¼ a2þ2a3q ð13Þ

According to the relationship, for the market price P power
quantity q is generated. The market price is a stochastic variable
that depends on parameters such as the temperature, load, and
hour of the day. As mentioned, a forecasted market price for each
hour of the next day is provided by the ISO. Notice that this
market price is not certain and deviations are expected for each
hour. One common approach is to define a search space for the P,
and for each market price scenario the corresponding power
quantity can be estimated based on the equation given in (13).
On the other hand, the standard deviation of each hour that is
required for the search space can be estimated based on the
historical data. If the forecasted market price is taken as the mean
and standard deviation is used, a normal distribution with N(P, st)
can be used to estimate bid prices. Then the power quantity for
block bidding alternative can be calculated as below:

qb ¼
NðP,stÞ�a2

2a3
where bb ¼NðP,stÞ and P¼

P24

t ¼ 1

Pt

24
ð14Þ

Note that the Pt is the forecasted market price that is
announced by the ISO. However, deviations would occur in the
close range of this price. Hence a normal distribution with mean
Pt and standard deviation is used to handle the noise. If K bid
quantities (MW h) and bid prices ($/MW h) and M price samples
for 24 h are generated, a bid strategy that will return the
maximum expected profit over M samples can be found for the
block bidding. The pseudo code of the methodology is given in
Fig. 3.

Each bidding strategy n, a block of price and corresponding
quantity, is evaluated for each price scenario k. Then the average
profit is found using N profits. The strategy that returns the
highest average profit is selected as the best strategy.

For the hourly bidding, analysis is performed for each hour.
For each hour of the day, K bid quantities (MW h) and bid prices
($/MW h) are generated. Then M price scenarios for 24 h are
generated. A bidding strategy that will provide the maximum



1: Generate N hourly bid quantities and prices each consists of 24 pairs

2: Generate K price samples each for 24 hours

3: For each n

4:      For each k

5:  For each hour t

6:                If hourly bid price at time t <= Market price at time t

7:    Calculate hourly profit for t

8:                Else

9:                        Hourly profit for t=0

10: Next hour 

11:        Daily profit = Sum (Hourly profit)

12:      Next k

13: Average profit = Sum (Daily profit )/N

14: Next candidate block

Fig. 4. Pseudo code of the simulation for hourly bidding.

1: Generate N block of bid quantities and prices

2: Generate K price samples each for 24 hours

3: For each n

4:      For each k

5:  For each hour t

6:                If block bid price <= Market price at t

7:    Calculate hourly profit for t

8:                Else

9:                       Hourly profit for t=0

10: Next hour

11:        Daily profit = Sum (Hourly profit)
Fig. 3. Pseudo code of the simulation for block bidding.

Fig. 5. Hourly day-ahead market price samples.
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expected profit over M samples is found at the end of N�M

simulations. The bid prices and quantities are generated as in (15).

qt ¼
NðPt ,stÞ�a2

2a3
where bt ¼NðPt ,stÞ ð15Þ

Each bidding strategy is a vector of 24 price-quantity pairs and
it is evaluated for each price scenario k which is a vector of 24
prices. The average profit is found for each scenario and the
strategy that returns the highest average profit is selected. The
pseudo code of the algorithm is given in Fig. 4.
5. A case study for Turkish power market

The market price in the Turkish day-ahead market is highly
variable and depends on stochastic variables such as generating
unit availabilities, total demand, capacities, operational con-
straints, and fuel costs, among others. The market price fluctuates
every hour because of changes of any or all of these stochastic
inputs that effect the consumption of electricity. A historical price
data set is needed for the analysis. March 7th, 2011, has been
chosen arbitrarily, and day-ahead market prices are used to
produce 24-h price scenarios. The prices are assumed to deviate
from the historical data set and the deviation level is uncertain. To
handle the uncertainty, K¼10,000 samples are drawn from a
normal distribution with a mean equal to the price at that hour of
March 7th and a standard deviation equal to the historical price
deviation of that hour. Fig. 5 shows the market price samples and
Fig. 6 shows the standard deviation of the market prices for each
hour. Note that the day is a typical workday in which the demand
is low at night.

Two coal-fired power generators are the source of electricity.
Seyitomer is a coal fired power plant located in the midwest of
Turkey with a capacity of 600 MW. The Soma coal plant is located
in the west of Turkey and has a capacity of 1000 MW. Table 2
provides the details of the units [34]. It is assumed that each
generator should bid hourly or determine a block bidding strategy
for the market. The unit does not know which strategy to use and
if it chooses a strategy in which the bidding price and quantity are
unknown. The main objective is to decide the bidding method and
bidding prices and quantities that will maximize the expected
profit.

The problem involves a huge amount of data interaction and
computatinal work. The solution methodology is implemented in
visual basic. The simulation is run first and K¼10,000 market
price samples are obtained. The next step is to generate
M¼10,000 pairs of block bidding strategies, each with a price
and power quantity, and M¼10,000 hourly bidding strategies,
each of which includes 24 pairs of price and power quantities.
This process is repeated for the two units. Each vector of scenarios
is then evaluated using price samples as explained in Figs. 3 and
4. The profit for each scenario is found and the statistics for the
results of the block and hourly bidding for Seyitomer and Soma
are provided in Table 3. The mean profit for block bidding for
Seyitomer is 685,020 TL whereas the mean profit for hourly
bidding is 621,732 TL. The maximum profit for block bidding is
1227,795 TL whereas the maximum profit for hourly bidding is
1100,198 TL. Standard deviation of profit samples in block
bidding is 158,774 and it is 163,882 in hourly bidding. The
corresponding results for Soma are also provided in the table.
Notice that the mean and maximum profits are higher for block
bidding in comparison with the hourly bidding for both units. On
the other hand, the standard deviation of the profits of block



Fig. 6. Standard deviation of hourly price samples.

Table 4
Bid price and quantity for best solution of hourly bidding.

bt qt

Seyitomer 101 600

Soma 83 1000

Table 2
Generator unit characteristics.

Seyitomer Soma

a1 3128 10268

a2 6.2576 12.4464

a3 0.0278 0.0336

Capacity (MW) 600 1000

Table 3
Results of the two bidding methods.

Seyitomer Soma

Block

bidding

Hourly

bidding

Block

bidding

Hourly

bidding

Mean profit (TL) 685,020 621,732 793,208 697,650

Maximum profit (TL) 1227,795 1100,198 1607,906 1366,806

Standard deviation 158,774 163,822 209,079 220,991

Table 5
Bid price and quantity for best solution of hourly bidding.

Hour Seyitomer Soma Hour Seyitomer Soma

bt qt bt qt bt qt bt qt

1 110.36 600 113.58 1000 13 131.96 600 144.98 1000

2 81.08 600 87.32 1000 14 162.52 600 122.33 1000

3 52.39 600 55.65 642.94 15 149.93 600 148.22 1000

4 52.43 600 72.2 889.25 16 135.97 600 134.29 1000

5 7.5 9.44 13.11 9.92 17 117.78 600 137.84 1000

6 81.83 600 63.72 762.96 18 139.35 600 127.96 1000

7 119.35 600 87.68 1000 19 135.66 600 148.28 1000

8 91.69 600 90.63 1000 20 123.07 600 130.2 1000

9 117.88 600 127.55 1000 21 129.4 600 108.74 1000

10 154.91 600 167.64 1000 22 105.44 600 110.14 1000

11 161.42 600 140.4 1000 23 108.74 600 105.16 1000

12 161.97 600 139.33 1000 24 112.54 600 135.06 1000
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bidding is lower than that of hourly bidding in both methods. It
shows the solution methodology is robust for different data sets.

Notice that statistical results are calculated based on the 10,000
different bidding scenarios for block and hourly bidding methods and
those are evaluated on 10,000 different price samples. It was
determined that in the block bidding of Seyitomer, the bid price of
bb(TL/MW h)¼101 and the bid quantity of qb(MW h)¼600, and in
that of Soma the bid price of bb(TL/MW h)¼83 and the bid quantity
of qb(MW h)¼1000. Tables 4 and 5 provide the best solutions for
block and hourly bidding strategies, respectively. Note that the model
is developed assuming that uniform pricing is used. If the pay-as-bid
strategy is preferred, then the problem formulation and the solution
will be different.

In uniform pricing, the market mechanism applies pressure on
market prices as the units with lower prices have higher chances
for dispatching and they will be paid the MCP. Hence, they are
more likely to offer lower prices. On the other hand, in pay-as-bid,
the participants will be paid what they bid. Therefore, they bid
higher prices to maximize their revenue [4,5,17].
The market price plays an important role in the acceptance of
bidding offer and profit. If the price is too low, the power
producer will not be able to cover its cost and hence either will
not be dispatched or will lose money. Fig. 7a and Fig. 8a show the
hourly profit distribution for hourly bidding for the Seyitomer and
Soma plants and Fig. 7b and Fig. 8b show that of block bidding.

The figures show that the overview of profit distributions
follows a similar pattern. However, block bidding returns better
profits for all price samples. It is observed that the profits are
higher in Fig. 7b and Fig. 8b than in Fig. 7a and Fig. 8a.

The proposed methodology aims to both find the best bidding
method and bidding strategy for a price taker unit. Hence, it is
different from the research given in [10] and [15]. In [15], the
marginal cost based bidding is not considered and no bidding
scenarios are included. In [10], the marginal cost is included and a
probabilistic method is proposed and a piecewise bidding struc-
ture is used. In this paper, both price samples and bid samples are
considered and no limits on the bidding structure are imposed.
The best strategy is searched for on the edge of market prices and
the corresponding power quantity which is derived from the
marginal cost. A two-sided search is performed in both market
prices and bid samples. Hence, as the number of simulations is
large enough, it is more likely that a wider search space is
scanned and a better solution is reached in comparison with the
other proposed methods.
6. Conclusions

Bidding into the market is an important process in competitive
markets that need to be carefully handled. The right bidding
methodology should be selected and then the right price and
corresponding power quantity need to be determined within a



Fig. 7. (a) Profits in hourly bidding in Seyitomer (b) profits in block bidding in Seyitomer.

Fig. 8. (a) Profits in hourly bidding in Soma (b) profits in block bidding in Soma.
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limited time frame and under uncertain market conditions with
imperfect information. In this paper, the deregulation, power
supply and bidding in Turkish market are examined. A generator
needs to select an hourly bidding or block bidding methodology
when they submit an offer to the market. Two models for each
bidding methodology are proposed for a price taker unit that aims
to maximizes its profit under uncertain market prices. To handle
the uncertainty in market prices, historical price data and stan-
dard deviation of the prices are used to get normally generated
price samples. Finally, a marginal cost and market price based bid
scenario estimation method is developed to solve the problem.

The solution approach includes a market price generation
module and a bid strategy generation method that incorporates
the marginal cost of the generating unit. Two generators, Seyito-
mer and Soma, were selected for the case study. The solution
methodology is run and the bidding methodology and the bid
prices and quantities are determined for each plant. The results
show that block bidding returns higher profits with lower
standard deviation over 10,000 price samples. In block bidding,
a bid price that is sufficient to cover the power generation cost is
submitted to the market. In hourly bidding, on the other hand, the
profit for each hour is lower than the block bidding, as for some
hours not bidding achieves better results. Hourly profit distribu-
tions also show that it is not likely to make a profit for all hours
and the company should focus on those hours when the power
price is higher. The results also show that the methodology is
robust and it can be used to determine the bidding method and
strategies used by power units.
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National Congress, 22–25 September; 2005. _Istanbul, Turkey.

http://mpra.ub.uni-muenchen.de/28047/
http://mpra.ub.uni-muenchen.de/28047/

	Bidding of price taker power generators in the deregulated Turkish power market
	Introduction
	Bidding process in the Turkish power market
	Model development for a price taker unit
	Solution approach
	A case study for Turkish power market
	Conclusions
	References




