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a b s t r a c t

This research proposes a stochastic programming model to determine how supplies should be

positioned and distributed among a network of cooperative warehouses. The model incorporates

constraints that enforce equity in service while also considering traffic congestion resulting from

possible evacuation behavior and time constraints for providing effective response. We make use of

short-term information (e.g., hurricane forecasts) to more effectively preposition supplies in prepara-

tion for their distribution at an operational level. Through an extensive computational study, we

characterize the conditions under which prepositioning is beneficial, as well as discuss the relationship

between inventory placement, capacity and coordination within the network.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Coordinating emergency supplies during the aftermath of
a disaster is one of the main challenges associated with immedi-
ate response efforts. Information about available resources is
often unknown and contributions of suppliers can be un-
predictable (Kovacs and Spens, 2007). Adding to the challenge is
the fact that the disaster relief environment in large-scale,
catastrophic events often involves many actors such as non-
governmental organizations (e.g. Red Cross); various local, state,
and federal government agencies (e.g. FEMA); faith based orga-
nizations (e.g. churches); and firms in the private sector (e.g. local
grocers). Some organizations function autonomously providing
specialized products (e.g. food, water) or services (e.g. medical
assistance, sheltering.). Others work within a larger collaborative
structure led by either the governmental authority of the affected
area (NRF, 2008) or a coordinating agency such as the United
Nations Joint Logistics Center (Kaatrud et al., 2003; Balcik et al.,
2010).

Most scholars agree that coordination can improve effectiveness
of initial response efforts (e.g. Stephenson, 2005; Van Wassenhove,
2006; Chandes and Pache, 2010; Balcik et al., 2010). However,
coordination can also be quite challenging as evidenced by the
Indian Ocean tsunami. The relief operation for this particular
disaster was described as ‘‘chaotic’’ due to the large influx of new
and inexperienced organizations and volunteers, an overwhelmed
ll rights reserved.

: þ1 336 334 7729.
government, and an absence of regulatory measures to control and
manage the entry of volunteers and goods (Van Wassenhove, 2006).

A number of quantitative models in the disaster relief litera-
ture have addressed issues related to inventory management such
as inventory placement/prepositioning, determining quantities of
relief supply to stock in advance of a disaster, and determining
how the inventory should be distributed post-disaster. However,
inventory coordination during disaster relief efforts has largely
been unexplored. There is some evidence that inventory coordi-
nation in the form of sharing information and/or warehouse space
occurs during disaster relief efforts (Balcik et al., 2010). For
example, the UN Humanitarian Response Depot supports strategic
stockpiling efforts of the UN, international, governmental and
non-governmental relief organizations (www.hrdlab.eu). The
state of Florida has a logistics warehouse to coordinate the efforts
of state and federal responders (SLRC, 2012). However, many non-
governmental organizations that participate in disaster relief have
their own warehouse network where they stock supplies. For
example, Feeding America, a non-profit hunger relief organiza-
tion, has warehouses across the United States where they receive
donated food. Some faith based organizations (e.g. Church World
Service, United Methodist Committee on Relief) that participate in
disaster relief activities through the Voluntary Organizations
Against Disasters (VOAD) own warehouses that stock relief
supplies. Coordination among these various participants requires
accurate information as well as frequent communication regard-
ing the availability of their resources. Better planning and infor-
mation regarding disaster resources will help to eliminate
redundancy, duplication of effort and potentially unused supply.

In this paper, we address inventory management decisions in
the context of coordination. Specifically we consider the problem
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of prepositioning local and external supplies within a cooperative
distribution network prior to an upcoming natural disaster, such
as a hurricane. The term local refers to supplies that are stored
close to the affected area and perhaps managed by a local
governmental authority. External supplies refer to those goods
available from an outside agency. We define a cooperative dis-

tribution network as a group of entities who normally act auton-
omously, but under severe disaster conditions, try to come
together to provide assistance and aid to the affected population.
We explore a specific coordination structure characterized by two
parameters: reserve capacity (warehouse space) and inventory
commitment (relief supplies) and identify conditions under which
coordination and supply allocation decisions are beneficial. We
take into consideration road congestion resulting from (i) pre-
disaster evacuation activities and (ii) post-disaster road damage.

Prepositioning is not a new concept, as the military has used
this for quite some time (Johnstone et al., 2004). However, it is
becoming more widely studied and applied in the context of
emergency response (e.g. Duran et al., 2011; Lodree and Taskin,
2009; Rawls and Turnquist, 2010 ). The majority of the research
on prepositioning occurs at the strategic level addressing long-
term supply network decisions such as where to establish supply
locations, and how much material to stock there. The best
location is weighed against disaster uncertainty (demand for
resources) through the use of probability distributions that
represent the likelihood of potential disaster scenarios. The
majority of the data used to determine these probability distribu-
tions are historical in nature; that is they do not often incorporate
information such as forecasted hurricane paths that affect the
probability a particular site will be affected by a disaster. The
model presented in this paper incorporates forecasted hurricane
path and intensity to determine how best to preposition supplies
in an established single commodity supply network where one or
more of the nodes is in a high-risk path for a particular event. This
situation could arise either when strategic prepositioning deci-
sions have been made, or when an existing network is already
used to service the community. Since the network under con-
sideration already exists, the problem we consider makes no
location decisions. We instead consider the relocation of supplies
in advance of a disaster to minimize the possible destruction of
those goods, and to aid the distribution of supplies to service
those affected by the disaster after it occurs. In our context,
relocation of supplies can be considered repositioning rather than
prepositioning. However we adopt the term prepositioning as the
supplies are positioned prior to the occurrence of the disaster
event. We consider uncertainty in demand and available supply
and use a stochastic linear programming model to determine the
placement of supply within the network to minimize the number
of people who cannot be served post-disaster. In addition, we
address the uncertainty in the location of the disaster using short-
term forecasts such as those available prior to hurricanes.

This paper makes the following contributions to the literature.
The problem we consider is in the preparedness domain (vs. post-
response). To the best of our knowledge, this is the first paper in
the preparedness domain to consider inventory coordination in
emergency planning. Secondly, we consider uncertain supply as
well as uncertain demand. It should also be noted that the
majority of papers consider historical information to determine
where to preposition supplies. In contrast, we consider short-term
forecasts to determine where to preposition supplies so as to prevent
damage to supplies, while also considering timely service to those
affected by the disaster. Lastly, we examine the impact of coordina-
tion in the network to provide improved response post-disaster.
The coordination decisions considered determine (1) how much
supply from external suppliers to preposition, (2) how much local
(internal) supply to reposition, and (3) where the external/internal
prepositioning activity should take place in the network. Since the
first 72 h following a disaster are critical (Salmeron and Apte, 2010),
coordination is characterized as a function of the response time and
average fill rate. Lastly, we explore the impact of the coordination
decisions from a cost and service perspective.

The remainder of the paper is organized as follows. In Section
2 a review of related literature is presented. The model and
assumptions are presented in Section 3. Section 4 outlines the
numerical study considered in this work, including the specific
research questions that are addressed and assumptions made
regarding the data used. Computational results are reported in
Section 5, followed by concluding remarks in Section 6.
2. Literature review

Much of the prepositioning literature addresses stock levels for
relief supplies, location of relief supplies, and/or distribution of
relief supplies. Inventory stocking and location decisions are
typically implemented in advance of the emergency event, and
often reflect long term strategic resource allocation decisions.
Distribution of relief supplies happen during the response phase
after event demand has been realized and reflects short term
resource allocation decisions. Several prepositioning models inte-
grate both preparedness and response decisions using scenario-
based approaches such as stochastic programming. The following
discussion of the relevant prepositioning literature is classified by
the preposition decision. Specific aspects of the model relating to
supply and demand uncertainty and the planning horizon are
highlighted, where applicable. Short term resource allocation
models in the context of humanitarian relief are also discussed.

2.1. Location determination

Many of the location determination models used in the
humanitarian relief context are modeled as extensions of the well
known facility location models which are adapted to consider
uncertainty in demand induced by disaster events. Jia et al. (2007)
develop models to determine the location of medical services
during large scale emergencies under various objectives:
(i) maximize the demand covered by a certain number of facil-
ities, (ii) minimize the demand weighted distance between the
new facilities and the demand points, and (iii) minimize the
maximum service distance. Both proactive (strategic) facility
location decisions and reactive (short term) location decisions
are considered. The proactive location case determines where
facilities should be located for long term storage of medical
supplies such that they can be delivered quickly to demand
points, if a terrorist attack occurs. The reactive location case
determines where staging centers should be positioned to receive
and distribute medical supplies from strategic inventory stockpile
locations. Uncertainty in demand is a function of the population
covered by a demand point and the impact the attack scenario is
likely to have on the demand point. Ukkusuri and Yushimito
(2008) also model the supply prepositioning problem as a facility
location problem, incorporating routing as well as location
decisions. They consider a network location model where existing
demand points are considered as candidate locations to preposi-
tion supplies, taking into account that possible disruptions in the
transportation network can occur via node or link failures. The
objective is to choose the locations and routes in such a way that
the reliability of reaching a demand point is maximized. Demand

surge and supply quantities are not considered in this model. Yi and
Ozdamar (2007) also consider preposition location and routing
decisions. They present a multi-period capacitated location-routing
problem that incorporates multiple commodities, different categories
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of wounded victims, selection of temporary emergency sites that can
be established in the affected area, and a set of available hospitals
that can provide care for victims. The objective is to coordinate
transportation of commodities from major supply centers to dis-
tribution centers in affected areas, as well as transport the wounded
to temporary and permanent emergency units. The optimal locations
and transportation routes minimize the delay in providing prior-
itized service for commodities and health care. More specifically, the
weighted sum of unsatisfied demand over all commodities and the
weighted sum of wounded people waiting for service is minimized.

2.2. Location and inventory quantity determination

The optimal location and stocking quantities for relief supplies
has been considered by a number of researchers. Duran et al. (2011)
approach this problem using a mixed integer programming formu-
lation. The objective is to minimize the average response time
required to transport items from selected preposition ware-
houses or global suppliers to a regional demand location. The best
decision is weighed against a set of likely demand scenarios that an
international relief organization may face. Balcik and Beamon (2008)
approach this problem using a scenario-based mathematical model
that is a variant of the maximal covering location problem. The
number and location of the distribution centers and the amount of
relief inventory to stock is determined such that the total expected
demand covered by the distribution centers is maximized. The
model considers multiple commodities, priority levels associated
with commodities, response time requirements for commodities,
and budget constraints on prepositioning and distribution activities.
Ample supply is assumed to be available to support prepositioning
activity. Disaster scenarios are based on worldwide earthquakes and
demand is estimated based on the population residing in the
affected area. Rawls and Turnquist (2010) also consider distribution,
location and inventory stocking decisions. The context for their work
is based on hurricane scenarios faced by the gulf coast of the United
States. A mixed-integer stochastic programming model is developed
that incorporates multiple commodities, possibility of damage to
roads, and damage to prepositioned warehouses and thus supplies.
The optimal preposition strategy is considered from a cost-based
perspective that incorporates (i) the fixed cost of opening a facility
and variable purchase cost for commodities; (ii) expected transpor-
tation cost associated with distribution of relief supplies to the
affected area (post-disaster), penalty for unmet demand and inven-
tory holding costs for unused supply (post-disaster). It is assumed
that relief supplies are purchased from an unspecified source with
ample quantity. Hurricane scenarios (demand estimates and net-
work damage) are constructed using historical information from
past storms. Salmeron and Apte (2010) address the relief needs of an
affected population through a prepositioning strategy that involves
location, capacity expansion, and resource quantity determination
decisions. The affected population is partitioned into three cate-
gories: critical population, stay-back population and transfer popu-
lation. The critical population requires emergency medical
evacuation to relief locations. The stay-back population requires
delivery of certain commodities from relief locations. The transfer
population requires evacuation to relief locations due to short-term
displacement. A multi-objective stochastic programming model is
developed where the first objective minimizes the total casualties
from the critical population and the stay back population. The
second objective minimizes unmet demand for the transfer popula-
tion. The model incorporates parameters to reflect the health
deterioration of individuals from the critical population who are
not evacuated, budgetary constraints on expansion decisions, and a
percentage of the stay-back population that will perish if not
supplied with commodities. Decisions made in advance of the
disaster (strategic) are location and capacity expansion of relief
location assets, expansion of ramp space in the affected areas,
prepositioning of additional health workers at relief locations,
warehouse expansion for commodities at relief locations, and
location of shelters for the displaced. Second stage decisions
consider ramp size and transportation needs (size of vehicle fleet)
to move the critical population as well as deliver commodities to
the stay back population. This model does not explicitly consider
acquisition of supplies from local or outside suppliers.

2.3. Short term resource allocation models

A few models exclusively address allocation of relief resources
over short term planning horizons. Lodree and Taskin (2009)
address the problem of supply planning for retail firms facing
demand surges caused by hurricanes. It is assumed that the level
of the demand surge can be predicted using wind speed forecast
updates. The model is developed as an optimal stopping problem
that determines the optimal stocking quantity and the number of
observations (forecast updates) to sample. The optimal ordering and
sampling policy minimizes the expected order, holding, and short-
age costs associated with hurricane induced demand. Taskin and
Lodree (2011) extend the prior work to consider multiple retailers
and include a wind speed prediction model used by the National
Hurricane Center to estimate location specific storm intensity.
Taskin and Lodree (2010) develop a multi-period stochastic pro-
gramming model that addressing production planning decisions for
a single manufacturer during the pre-hurricane season planning
horizon. Demand for items is a function of the predicted hurricane
landfall counts for the upcoming season and hurricane landfall
count rate probabilities are determined from a Markov chain model.
Rawls and Turnquist (2012) extend their prior work to consider
prepositioning supply to satisfy short-term (within 72 h of evacua-
tion order) shelter demand. A multi-period stochastic programming
model is presented where the first stage decisions determine where
and how many relief supplies to stock; the second stage decisions
address how the supply should be distributed over the 72 h period.
The model incorporates constraints on shipment of available supply
by (i) location specific vehicle loading and dispatching rates, (ii)
delivery lags based on distance between storage and demand
locations, and (iii) reduced transportation capacity as a result of
damaged or destroyed transportation links. The optimal preposition
strategy minimizes the expected costs associated with selection of
facility sizes and locations, relief supply stocking decisions, unmet
demand penalties and distribution of supply to shelter locations.

Sheu (2007) considers an emergency distribution network con-
sisting of multiple suppliers and relief distribution centers capable
of responding to the needs of the affected population immediately
after an event. A time varying forecast for demand is proposed and
integrated within a comprehensive emergency distribution frame-
work. A fuzzy clustering approach is used to group demand areas
and accounts for urgency of demand determined. A multi-objective
model is used to determine the distribution of relief supply to the
affected groups. The 2 objectives considered are maximizing fill rate
and minimizing transportation costs. Lastly, distribution of supply
to the distribution centers is performed accounting for the urgency
associated with the distribution center. The objective is to minimize
the weighted transportation costs.

2.4. Research contribution

In the preceding discussion, several stochastic programming
models have been proposed to address prepositioning decisions,
particularly when both preparedness and response decisions are
considered. The reader is referred to Birge and Louveaux (1997)
and Higle (2005) for a more comprehensive discussion on stochas-
tic programming models. Our model also uses this approach.



Fig. 1. Tropical cyclone forecast cone for Hurricane Katrina.
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The specific decisions addressed in the model are the placement
of commodities within a network, and distribution of supplies.
Furthermore, we assume there is a finite level of supply avail-
able in the network as opposed to considering prepositioning
via supply purchases. This allows us to address coordination
aspects within the relief network. Our model also explores how
short term forecasts can be used to drive operational-level
decisions as opposed to using historical season-level forecasts
many have used at a tactical level. Much of the work that has
been done in prepositioning that uses short term hurricane
forecast information has primarily been done by Lodree and
Taskin (2009, 2010) for manufacturing firms using forecasted
wind speeds in a multi-period framework to determine the
appropriate time to order hurricane supplies. In our model, we
use storm intensity and error associated with the forecasted
storm center (size) to geographically approximate the area that
will be affected by the storm.
3. Problem definition

3.1. Background and assumptions

When a storm occurs, meteorologists provide information to
the public regarding the likely path, intensity and expected time
to landfall. This information is based on several forecast models
used by the National Hurricane Center (NOAA, 2009). One
particular way this information is conveyed to the public is via
the tropical cyclone track forecast cone. The tropical cyclone track
forecast cone is a graphical depiction of the current position of the
hurricane’s center along with the forecasted position over the
next 5 days (Fig. 1). It is one of several products produced by the
National Hurricane Center. The size of the forecast cone is
measured in nautical miles and is based on historical forecast
error over the past five years. This particular type of product is
typically used by a weather forecaster to provide the viewing
audience some information about the likely path of the storm. It is
possible for storm effects to be experienced outside of the forecast
cone; however it still provides a reasonable approximation for
determining the area likely to be affected by the storm.

In the context of the problem under study, this particular product
drives the determination of the affected area and likely demand
surge experienced as a result of the storm. Certain warehouses
within a cooperative distribution network, as well as the surround-
ing counties supported by supplies within these warehouses, are in
the predicted path of the storm. The affected counties and ware-
houses are determined based on the forecast cone (i.e., the probable
track of the hurricane) generated at a specific point in time by the
National Hurricane Center. Based on the size and position of the
cone over the 5 day period, the supply and demand nodes that lie
within the cone can be determined. The details of this particular
approach will be explained in a subsequent section of the paper.

Since this particular product is a point in time forecast and is
frequently updated, it is important to determine when prepara-
tory actions should be taken. An issuance for a hurricane watch is
a natural trigger for taking preparatory actions. As defined by the
NHC, hurricane watches are issued for a specific area when
tropical storm force winds are predicted to make landfall within
48 h. It is noted that ‘‘outside preparedness activities become
difficult once winds reach tropical storm force’’ (NHC, 2012a).
Therefore, the hurricane watch serves as the trigger to start the
decision making process in this study. There may still be uncer-
tainty about the category at landfall as well as the direction the
storm will travel in the next 48 h. However, we assume 48 h is the
maximum time available for taking preparatory actions.

As a result of the tropical cyclone forecast, the warehouse
network can be partitioned into affected and non-affected sets
(i.e., those warehouses that the forecast indicates will be within
the cone and are likely to be affected by the hurricane, and those
that lie outside of the storm’s predicted path). The capability of any
warehouse outside of the affected area to provide aid is character-
ized by 2 parameters: reserve capacity and maximum amount of
inventory available to be shipped to the affected area. The reserve
capacity can essentially facilitate the transshipment of commodities
from affected warehouses to disaster sites after the hurricane.
Warehouses in the affected area are characterized by two
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parameters: initial inventory and capacity. The initial level of inven-
tory is used to satisfy demand due to normal operations. This can be
attributed to warehouses that are used to serve a dual role/need in
the community. More specifically, there is a normal flow of supplies
into these areas when there is no storm which is a function of the
population served in the area. This particular scenario is more likely
when Food Bank warehouses serve as points of distribution in the
community during non-disaster and disaster situations. After the
storm event has passed, the inventory that is undamaged is subse-
quently used in the response effort to satisfy the demand require-
ments of the affected population.

A percentage of the population will evacuate to shelters, thus
creating additional demand for supplies outside of the normal
warehouse operating conditions. We assume shelters are located
in counties and thus demand is aggregated to the county level. The
level of demand is affected by the nature of the event and is thus
different from the expected demand during normal operations.

The basic assumptions of the problem described are represen-
tative of what may be experienced by a relief organization such as
Feeding America, consisting of a network of food banks which
satisfy needs of the community daily and during disasters. We
formalize the problem assumptions as follows.

We consider a supply and demand network, where each
supply node corresponds to a facility such as a warehouse or
distribution center with the purpose of holding large amounts of
supplies. These supply nodes can be categorized into affected nodes
(set A) that fall within the forecast cone and non-affected nodes
(set N) that fall outside it. The set of all supply nodes is denoted by
Nþ¼N[A. The set of all demand nodes is denoted by H.

Prior to the event, an initial demand forecast for items supplied
by the facilities is known and reflects an estimate of the population
that is served at a demand location. After an event, the actual
quantity demanded may increase if nearby and displaced residents
require supplies, decrease if residents of an area are displaced to
other areas or stay the same if an area is largely unaffected. This
change is determined by what we call a demand changing factor,
which is a function of the initial demand forecast and the proximity
of the demand node to the forecast cone.

Similarly, in the event that the warehouse location is affected
by the event, the supply at a supply node may decrease due to
facility damage. This change in supply is determined by a supply

changing factor which is a function of the event severity and the
supply node’s proximity to the forecast cone.

Interconnections between the supply nodes represent physical
transportation routes between facilities such as interstate or state
highways. These connections are utilized in both the preposition-
ing and response stages of the model. Usually each of these arcs
will also have capacity limitations. In this model, a specific limit
on an arc is not considered. Instead, we consider a congestion
factor to represent decreased levels of transportation service
(slower travel time between nodes) during the response phase
resulting from damaged roadways.

We assume the decision maker has some foreknowledge about
the event and takes a proactive approach to planning distribution of
supplies after the event. Prior to the event occurrence, supplies are
transported between supply nodes only, where capacity is available.
After the event occurrence, supplies are shipped between supply
and demand nodes to satisfy demand.

3.2. Formulation

We develop a two-stage recourse model where the first-stage
decision corresponds to the prepositioning decision and is made
prior to the event. This first stage incorporates information
obtained from forecast data prior to the event (e.g., the forecast
cone obtained 48 h before landfall). The second-stage decision is
made after the event has been realized and is referred to as the
response phase. We adopt the notation of Higle (2005) and denote
a specific realization of the event (scenario) by o with associated
likelihood parameter po. The first-stage decision variables,
second-stage scenario specific decision variables and associated
model parameters are presented below.
First-stage decision variables
Sn
 Quantity of supplies at supply node n, nANþ after supply
reallocation
xnj
 Quantity of supply units shipped from supply node n to
supply node j, nANþ , jAN
zn
 Unutilized capacity at supply node n, nANþ
anj
 1 if any supply is shipped from supply node n to supply
node j; 0 otherwise nANþ , jAN
Second-stage Decision Variables:

uho
 Unmet demand quantity at node h, per scenario o, hAH
wjno
 Quantity of supplies shipped from supplier j to supplier
n, per scenario o, nANþ
ynho
 Quantity of supplies shipped from supplier node n to

demand node h, per scenario o, nANþ , hAH
bnho
 1 if any supply is shipped from supply node n to demand
node h per scenario o; 0 otherwise
Supply node parameters
In
 Initial inventory stored at supply node n, nANþ before
supply reallocation
Cn
 Storage capacity (nAA)/ Reserve capacity (nAN) at supply
node n, nANþ
cp
 Penalty cost for damaged supplies.
ds
nj
Distance in miles from supply node n to supply node j, n,
jANþ
T1
 Maximum time allowed for prepositioning in the first
stage
K1
 Congestion factor (in miles per hour) used to
approximate travel speed
Demand node parameters
Fh
 Forecasted demand at demand node h prior to the event,
hAH
vh
 Unit cost for unmet demand at demand node h, hAH
dd
nh
Distance in miles from supply node n to demand node h,

nANþ , hAH
mho
 Fraction of demand that must be satisfied

T2
 Maximum time allowed for response in the second stage

K2o
 Scenario specific congestion factor (in miles per hour)

used to approximate travel speed

Supply and demand changing factors:

Rno
 Supply changing factor at supply node n per scenario o,

nANþ with 0rRnor1.

gho
 Demand changing factor at demand node h per scenario

o, hAH
Using the notation defined above, we formulate the two-stage
stochastic linear programming model as follows.

min Z ¼
X

nAN þ

X
jAN þ

xnjd
s
nj

þ
X
oAO

po
X

nAN þ

X
hAH

ynhodd
nhþ

X
nAN þ

X
jAN þ

wnjods
nj

8<
:

þ
X
hAH

uhovhþ
X

nAN þ
Snð1�RnoÞcp

)
ð1Þ

s.t.

P
jAN

xnjþSn ¼
P

jAN

xjnþ In 8nANþ
ð2Þ
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P
jAN

xnjr In 8nANþ
ð3Þ

Snþzn ¼ Cn 8nANþ ð4Þ

anjd
s
njrT1K1 8n,jANþ ð5Þ

xnjr Inanj 8nANþ , jAN ð6Þ

P
jAN þ

wnjoþ
P

hAH

ynhorSnRnoþ
P

iAN þ
wino 8nANþ ,oEO

ð7Þ

P
nAN þ

ynhoþuho ¼ Fhgho 8hAH,oEO
ð8Þ

P
nAN þ

ynhoZmhoFhgho 8hAH,oEO
ð9Þ

bnhodd
nhrT2K2o 8n,jANþ ,oAO ð10Þ

ynhorSnRnobnho 8n,jANþ ,oAO ð11Þ

xnj,zn,wnjo,ynho,uho,SnZ0 8n,jANþ ,hAH,oAO ð12Þ

anj,bnhoA 0,1f g 8n,jANþ ,hAH,oAO ð13Þ

In the objective function (1), the first term captures the first-
stage cost associated with prepositioning and the remaining
terms represent the expected second-stage costs including redis-
tribution cost between supply nodes, distribution cost from
supply nodes to demand nodes, supply shortage cost, and pre-
positioned supply loss cost. It should be noted that per unit
transportation cost is assumed to be a linear function of the
distance between two nodes. Minimizing the expected total cost
ensures that the minimal amount of supplies moved from initial
supply facilities to safer locations (based on Rn,o) and redistribu-
tion of the supplies (via supplier to supplier movement, wnj,o, and
supplier to demand movement, ynh,o) to minimize unmet demand
is performed. The first-stage shipments required to preposition
supplies to safer locations are constrained by flow balance Eq. (2)
where the summation of the outbound flows and prepositioned
supply quantity equals the summation of the inbound flows and
initial inventory. Constraints (3) ensure that only the currently
available inventory can be repositioned, thus eliminating the
possibility of transshipments. Constraints (4) guarantee that the
prepositioned supply does not exceed the available storage
capacity of the facility. Constraints (5) and (6) ensure the amount
of time taken to preposition supplies in the network does not
exceed the available time remaining before the storm hits. The
second-stage flow balance constraints (7) are modeled in a similar
manner to the first-stage flow balance constraints with a larger
network now including supplier to supplier (wnjo, wino) and
supplier to demand shipments (ynho). Constraints (8) capture
the supply and demand requirements. Constraints (9) ensure a
minimum fraction of demand is satisfied at all demand nodes.
Constraints (10) and (11) reflect the permissible time associated
with providing response into the affected area, and is influenced
by the travel congestion in the network. Finally, we include the
typical non-negativity constraints (12) on all decision variables,
along with definition of the binary variables (13). The formulation
is a stochastic mixed integer linear programming problem. An
optimal solution can be found for this problem using appropriate
optimization software.
4. Experimental design

4.1. Background and scope

The experimental design is constructed around a core set of
research questions which would be helpful in understanding the
tradeoffs between coordination, prepositioning, and response.
1.
 When there is no coordination in the network, what is the
fraction of demand that can be met during the response
phase?
2.
 How much additional supply is needed to ensure 100% of the
demand is met within the first 48 h? More generically, how
much inventory must be available at non-affected warehouses
to ensure that X% of demand can be satisfied within Y days of
the event?
3.
 When the decision maker has the opportunity to influence
coordination decisions, how does the best coordinated deci-
sion look like (i.e. where should the warehouses be and how
much inventory should be placed there)?

Our secondary area of interest will be to quantify the benefit of
preposition in terms of cost and unmet demand quantity as well
as understand the sensitivity of the solution with respect to the
reserve capacity and available supply within the network.

In order to quantify the results of the work and formally define
the scope of the experiments we introduce the following definitions.

Definition 1. Total demand worst case is defined as TDwc ¼

maxo ShmhoFhgho
� �

. This value represents the largest scenario-
specific total demand. It can equivalently be referred to as the
largest demand surge in the network.

Definition 2. Total demand best case (no demand surge) is defined
as TDbc ¼mino ShmhoFhgho

� �
. This expression reflects the smal-

lest scenario specific total demand.

Definition 3. Total supply worst case (experience supply loss) is
defined as TSwc ¼mino ShSnRno

� �
. The value of the supply avail-

able for satisfying demand after the event, corresponds to the case
where the supply loss is the highest (i.e. available supply is the
lowest).

Definition 4. Total supply best case (experience no supply loss) is
defined as TSbc ¼maxo ShSnRno

� �
. In this case, there is no supply

loss and therefore the supply available to satisfy the demand
corresponds to the case with the largest scenario-specific total
supply.

Definition 5. No Coordination is defined as follows: In¼0, Cn¼0
8nAN. This implies there is no reserve capacity or no inventory for
relief operations at the non-affected warehouses.

Definition 6. Limited Coordination is defined as follows: In¼0,
Cn40 8nAN. This implies there is no inventory available at non-
affected warehouses to support relief operations. However, there
is capacity to accept incoming supply from affected warehouses.

Definition 7. Demand equity is defined as follows: mho¼a 8hAH,
aA(0,1].

4.2. Model data and scenario generation

The generation of the model data is summarized in five areas:
(1) warehouse network, (2) scenario generation, (3) affected area
determination, (4) demand estimation for affected area, and (5)
initial inventory for affected warehouses.



Fig. 2. Supply network.
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4.2.1. Warehouse network

The warehouse network is based on the southeastern part of
the United States and is depicted in Fig. 2. This area is chosen for
the numerical study since it is more likely to experience severe
storms such as hurricanes. The locations are summarized in
Table 1 and were selected using publicly available information
about food banks located in the southeastern states. The parishes
within the state of Louisiana serve as potential demand nodes.
A county level view is appropriate since most counties provide
shelters for residents using schools, sports or religious facilities.
4.2.2. Scenario generation

There are two levels of uncertainty with respect to the storm:
the location of the center and the intensity at landfall. Time-
specific forecasts produced by the National Hurricane Center
(NHC) are used to represent these two factors. Several hurricane
forecast products are generated by NHC as outlined in the NHC
product description document (NHC, 2010). However the two
operational level forecasts that will drive the development of the
scenarios are the tropical cyclone track forecast cone and the
maximum one-minute wind speed probability. These forecast
advisories are issued every six hours for active cyclones. The
forecast cone depicts the current position of the storm center
along with the forecasted center position over the next 5 days.
The maximum 1-min wind speed probability table provides the
likelihood that the tropical cyclone will be in various intensity
ranges (according to the Saffir–Simpson scale) over the next
5 days. The size of the forecast cone as well as the probability
associated with the various intensity ranges are derived from
error statistics based on the forecasted and observed position and
intensity from prior years. It is constructed by enclosing the
predicted center location by a circle that is set to 2/3 of the official
forecast errors over the past 5 years (NHC, 2010). The forecast
cone is used to determine the size of the affected area as it
characterizes the likely position of the center. Table 2 summarizes
the radii of NHC forecast cone circles for each forecast period.
Based on this information, at any particular point in time the
specific radius of the circle is known and the distance between the
forecasted center and location of a demand node can be deter-
mined. Therefore, if the distance between a supply node and the
forecasted center is less than or equal to the radius, the node is in
the forecast cone and thus has the potential to be affected by the
hurricane. The reader is referred to the NOAA/NHC (2012b) for
more detailed information about this forecast product.

For each tropical cyclone track forecast cone advisory, there is
a corresponding maximum wind speed probability forecast. These
probabilities are defined across 5 possible intensity outcomes:
Tropical Storm/Tropical Depression, Category 1, Category 2, Cate-
gory 3, Categories 4 and 5. The intensity along with the forecast
cone defines 6 possible scenarios as depicted in Fig. 3. For any
specific scenario o, the scenario probability is the product of the
probabilities associated with each outcome (relative forecast cone
position and intensity).

4.2.3. Affected area determination

The affected area is based on the set of warehouses identified
in Table 1 and counties within the state of Louisiana. The set of
affected warehouses and counties is calculated using the tropical
cyclone forecast track at time period t as follows. Let (p1t,p2t)
represent the forecasted position (longitude and latitude in
decimal degrees, respectively) of the hurricane center at time t

for a specific advisory, tAT¼{12,24,36,48,72,96,120}. Let (z1h,z2h)
represent the longitude and latitude (in decimal degrees) of node
h within the supply/demand network. Then the great circle
distance in miles between these 2 points is defined by Eq. (14).
A node inside this 2/3 probability forecast cone satisfies Eq. (15)
where rt is the radius of the forecast cone circle in nautical miles
at forecast period t (refer to Table 2). As a result, any warehouse in
this forecast cone has the potential to experience supply loss and



Table 1
Warehouse locations.

City State

1. Abilene TX

2. Amarillo TX

3. Austin TX

4. Beaumont TX

5 Corpus Christi TX

6 Dallas TX

7 Ft. Worth TX

8 Houston TX

9. Laredo TX

10. Lubbock TX

11. McAllen TX

12. Odessa TX

13. San Antonio TX

14. Tyler TX

15. Victoria TX

16. Wichita Falls TX

17. Alexandria LA

18. Baton Rouge LA

19. Monroe LA

20. New Orleans LA

21. Shreveport LA

22. Jackson MS

23. Theodore AL

24. Memphis TN

25. Ft. Myers FL

26. Jacksonville FL

27. Orlando FL

28. Pembroke Park FL

29. Sarasota FL

30. Tallahassee FL

31. Tampa FL

32. Bethel Heights AR

33. Ft. Smith AR

34. Jonesboro AR

35. Little Rock AR

36. Texarkana AR

37. Athens GA

38. Atlanta GA

39. Augusta GA

40. Columbus GA

41. Macon GA

42. Savannah GA

43. Valdosta GA

44. Chattanooga GA

45. Birmingham AL

46. Huntsville AL

47. Montgomery AL

Table 2
Radii of NHC forecast cone circles for 2010, based on error

statistics from 2005–2009: (obtained from NHC product descrip-

tion document, 2010).

Forecast period
(h) (t)

2/3 Probability circle, Atlantic
Basin (nautical miles) (rt)

12 36

24 62

36 85

48 108

72 161

96 220

120 285

Inside
Cone

Outside
Cone

TS/TD

Category
1

Category
4-5

Category
3

Category
2

Relative
position

Hurricane
Intensity

Fig. 3. Scenario structure.
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any county inside the cone has the potential to experience a
demand surge.

dgcðt,hÞ ¼ cos�1ðsinp2tsinz2hþcosp2tcosz2hcosðp1t�z1hÞÞ
� �

� 3963:34�13:35sin
p2t�z2h

2

� �h i
ð14Þ
dgcðt,hÞn0:868976rrt ð15Þ

4.2.4. Demand estimation

The demand for supplies is approximated based on the size of
the population within each county in the affected area. It is
realistic to assume that some portion of the population would
evacuate to a shelter or require some sort of emergency service
after the storm depending on the forecasted intensity. Population
estimates are obtained from the 2000 Census and provide the
basis for estimating the change in demand per scenario. It should
be noted that scenario (1) corresponds to the case where the
affected counties and warehouses experience no variations in
demand or supply respectively.

The change in demand is reflected by the demand changing
factor. This factor is calculated as follows.

gh,o ¼ d0gcðt,hÞ
h io

ð16Þ

where d0gcðt,hÞ is a normalized distance metric for demand node h

and d0gcðt,hÞ ¼ ðmaxkAHdgcðt,kÞÞ=dgcðt,hÞ for oA{0,1,2,3,4} where

0 denotes the tropical storm/tropical depression case, and 4 cor-
responds to hurricane categories 4 and 5. For a fixed location, this
function is increasing with respect to the hurricane category and
ensures that for a fixed category, the demand changing factor is
decreasing as the distance increases. As a result, the demand
increases as the distance between the county and the forecasted
storm center decreases. It should be noted that we bound this
value to ensure that the total demand does not exceed the total
population in the affected county.
4.2.5. Initial inventory estimation

Initial inventory for warehouses in the affected area is a
function of the population in the adjacent counties in addition



Table 5
Scenario probabilities.

Advisory –

Forecast

period

Relative

position

Relative

position

probability

Hurricane

intensity

Intensity

probability

o Po

17–48 h Outside

cone

0.33 – 1.00 1 0.33

Inside

cone

0.67 TS/TD 0.0 2 0
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to the county where the warehouse is located. This is based on the
assumption that the adjacent counties make up the primary
service area for the affected warehouse. This implies that if a
hurricane strikes, each warehouse will (potentially) experience a
demand surge. If Ph represents the population in county h, then
In ¼ aSh1nðhÞPh where nAA, 1n(U) is an indicator function which
equals 1 if county h is adjacent to warehouse n, 0 otherwise, and a
is a scaling factor between 0 and 1 to represent the proportion of
the population that is served by the affected warehouse.
1 0.0 3 0

2 0.25 4 0.17

3 0.30 5 0.20

4 and 5 0.45 6 0.30

4.3. Summary of experimental data

Table 3 summarizes the affected warehouses and counties
considered for the case study. Initial values for the model
parameters are summarized in Table 4. Table 5 summarizes the
scenario probabilities. We consider demand equity in the network
and therefore set mho to the same value for all demand nodes in a
specific scenario. The remaining parameter values that are varied
as part of the experimental design are presented in the discussion
of the results.
4.4. Performance measures

In addition to the expected cost determined from the objective
function of the mathematical model, the following additional
Table 3
Affected warehouse and counties based on Advisory 17.

Forecast
Period

Node
type

State County Population estimate
(in 1000 s) (Ph)

48 h
Demand Louisiana Assumption 22,874

Demand Louisiana Jeffersona 443,342

Demand Louisiana Lafourche 93,682

Demand Louisiana Orleansa 354,850

Demand Louisiana Plaqueminesa 20,942

Demand Louisiana St. Bernarda 40,655

Demand Louisiana St. Charles 51,611

Demand Louisiana St. James 21,054

Demand Louisiana St. John The Baptist 47,086

Demand Louisiana St. Mary 50,815

Demand Louisiana St. Tammanya 231,495

Demand Louisiana Terrebonne 109,291

Total 1,487,697

Total in service area for warehouse

a Part of service area for warehouse.

Table 4
Data summary.

Parameter Value

Supply node parameters for affected warehouse

In 0.2Sh1n(h)Ph

Cn 2*In

Rno [1.0,1.0,0.95,0.90,0.85,0.80]

Cost Parameters

cp 100

vh 100

Travel time parameters

T1 15

K1 40

T2 10

K2o [55,50,45,40,35,30]

Demand node parameters

Fh 0.2*Ph
performance measures are defined.

Average Fill Rate¼
X
o

po
ShSnynho
ShFhgho

� 	
ð17Þ

Fraction Prepositioned¼
SnAASjxnj

SnAAIn
ð18Þ

Eq. (17) determines the average fraction of demand satisfied
across all scenarios. We hereafter refer to this quantity as the
average fill rate. Eq. (18) determines the fraction of supply in the
affected warehouse that is prepositioned.
5. Results of case study

5.1. Analytical results

Before discussing the results of the computational study, we
briefly describe some observations with respect to the model for
the single commodity case.

5.1.1. Feasible solution and service

In order for a feasible solution to exist, it must be true that
there must be adequate supply (i.e., TSbcZTDwc). Given the total
supply under best case is known and we assume demand equity
across all scenarios (mho is the same for all hAH, oAO ) then the
best possible (maximum) fraction of demand that can be filled
under the worst case scenario is the ratio of the total supply
under the best case to the total unweighted demand under worst
case. Formally, this is ðTSbcÞ=maxo ShFhgho

� �
.

5.1.2. Occurrence of prepositioning

Under the case of limited and no coordination, prepositioning
of supplies does not occur if TSwcZTDwc. This is true since TSwc

represents the case where there is maximum supply loss. If the
total supply under this condition can satisfy the demand, then the
first stage prepositioning costs can be driven to zero by not
moving the supplies from the hazardous location to the safe
location, provided the expected shortage cost is significantly
lower than expected first stage transportation costs.

If TSwcoTDwcrTSbc, then prepositioning will occur since there
exists a solution that can satisfy the demand which requires
moving some portion of the supply to safer locations.

5.2. Impact of coordination

Given there is limited coordination and demand equity, the
maximum fraction of demand that can be met under the worst
case is as follows.

mn ¼
TSbc

maxo ShFhgho
� �



Table 6
Attainable service level by available inventory under limited coordination.

Days of supply available at

affected warehouse

Cn for non-affected

warehouses

mn Expected cost Fraction

prepositioned

# of Warehouses

selected

Fill rate

1 360 0.25 $ 63,567.55 0.89 1 0.54

2 360 0.51 $ 86,415.80 0.99 2 0.72

3 360 0.76 $115,770.82 0.96 2 0.84

4 360 1.00n $138,809.20 0.89 4 1

Table 7
Attainable service level by available inventory under no coordination.

Days of supply available at affected

warehouse

mn Expected

Cost

Fill

rate

1 0.20 $ 40,842.01 0.51

2 0.40 $ 32,947.00 0.7

3 0.61 $ 27,013.44 0.85

4 0.81 $ 23,973.03 0.95

5 1.000n $ 22,591.07 1
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Fig. 4. Second stage cost interaction under no coordination.

Table 8
Impact of travel speed and response time.

Travel speed

(mph) in

worst case

scenario

Response

time

Number of

warehouses

selected

Total inventory

positioned in

nonaffected warehouse

(fraction of worst case

demand)

Total cost

20 8 4 0.65 $48,070.01

20 10 5 0.62 $42,396.36

20 12 6 0.59 $41,213.71

30 8 6 0.59 $41,213.71
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To examine the impact of coordination, we set mho¼m* for all
demand nodes and scenarios where o41. Initial inventory in the
affected warehouse is defined in terms of days of available supply. In
this particular case, the total demand of the population in the service
area affected is multiplied by an integer representing the number of
days. It is assumed the relationship between supplies needed and
supplies consumed is one to one. Table 6 summarizes the relationship
between the days of available supply, level of prepositioning, and
fraction of demand that is satisfied. It should be noted that even
though mn is a minimum value, when examining service from the
perspective of coverage in all scenarios, it can be seen that more than
the minimum amount of demand is being satisfied in some nodes.

The primary locations chosen for prepositioning supplies are
Louisiana (Alexandria and Baton Rouge), Alabama (Theodore), and
Mississippi (Jackson) which are the four closest non-affected
warehouses. Baton Rouge and Theodore are the closest and are
always selected when only 2 warehouses are chosen for prepo-
sitioning. The other 2 warehouses are chosen for the cases were
4 warehouses are selected, with the maximum amount being
positioned in the 2 closest warehouses.

When there is no coordination in the network, there is no
opportunity to preposition supplies to safer locations. Therefore,
the maximum fraction of demand that can be met under the
worst case scenario is as follows.

mn ¼
TSwc

maxo ShFhgho
� �

Table 7 summarizes the results for this case. Clearly, to achieve
100% demand fulfillment there must be more days of available
supply, since the opportunity to limit the potential supply loss
through coordination is not an option. However, in comparing
Tables 6 and 7, it is noticeable that the expected costs are
considerably lower under the case of no coordination. This is due
to the fact that a large portion of transportation costs are reduced as
a result of carrying extra inventory. This reduction in cost comes at
the expense of a lower fill rate. In Table 6, for the scenario when
4 days of supply are available, 66% of the total costs are attributed
to first stage prepositioning costs, and 97% of the second stage
expected costs are attributed to transportation. However, under no
coordination, the first stage costs are 0 and all of the costs are
second stage costs with the bulk being attributed to unmet
demand. Fig. 4 depicts the cost interaction as a function of the
days of available supply under no coordination. The results indicate
that even under a situation of possible supply loss, if there is more
inventory available, a large fraction of demand can be met in all
scenarios. This cost interaction is explored further in Section 5.4.

5.3. Relationship between supply and service

The following explores the relationship between supply (mea-
sured in terms of available capacity) and service. Specifically, we
address the second question posed in the experimental design in
understanding how much capacity must be in the network to
ensure 100% of the demand is met at all nodes, across all
scenarios, within the first 8 h. To address this with the current
model, the initial inventory is changed to a decision variable and a
holding cost on inventory is introduced for non-affected ware-
houses to reflect any costs associated with making inventory
available. The initial inventory at the affected warehouse is fixed
to reflect 2 days of supply are available (50% service level from
Table 6), relative to the affected population. It should be noted
that we did not introduce a holding cost parameter in the initial
model because it is a sunk cost that would not affect the solution.
Fig. 5a–d summarize the results of the model in terms of
inventory placement. When capacity is tight, more warehouses
are selected and those that are selected are the closest non-
affected warehouses, which is intuitively what one would expect.
In addition, if the warehouses were rank-ordered in terms of
supply, the closest warehouse would have the most supply,
followed by the next closest warehouse, and so on. In addition,
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as more supply becomes available at the affected warehouses,
then less supply is needed at the non-affected warehouses. This
implies there is an inverse relationship between affected ware-
house supply and non-affected warehouse supply. As warehouse
supply at the affected warehouse increases, initial inventory at
the non-affected warehouse decreases. Furthermore, the presence
of initial inventory as a decision variable ensures that the total
supply worst case equals the worst case demand. As a result no
prepositioning occurs and all demand is satisfied.

Table 8 summarizes the effect of the traffic congestion on the
selection of warehouses in the network. Fewer warehouses are
selected as the traffic congestion increases (changes from 30 mph
to 20 mph). The costs are higher when the desired response time
is tight (8 h) because more initial inventory is being made
available and immediately distributed to the affected warehouse
in the first stage. As a result, overall distribution costs are higher
than the other cases listed.

5.4. Sensitivity analysis for economic parameters

The primary economic parameters in the model are associated
with transportation of supplies, penalty for unmet demand, and
penalty for supply that is not usable (i.e. incurred damage and is
therefore considered a loss). In order to characterize the cost
behavior in the model, the following cost ratios are defined.

r1 ¼
cp

v

r2 ¼
cp

ds
n,j
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Fig. 5. (a) Capacity¼100, days of supply¼2; (b) capacity¼200, days of supply¼2; (

supply¼2.
r3 ¼
ds

nj

v

r1 represents the ratio of the supply loss cost to unmet demand
penalty. r2 represents the ratio of the supply loss cost to the first
stage transportation cost between warehouses. Since the condi-
tions for prepositioning and optimal preposition locations where
established in earlier experiments, the results are summarized
with reference to the closest non-affected warehouse (Baton
Rouge, LA). r3 represents the ratio of the first stage transportation
costs to the unmet demand penalty. Cost ratios are defined
relative to the base parameters defined in Table 4. Transportation
costs are varied by multiplying the cost parameters by a factor
(between 0 and 1) to achieve the desired percentage reduction in
cost. For example a 90% reduction in transportation costs is
determined as 0:10ds

nj. Much of the cost interaction is intuitive
and is summarized in Figs. 6–8.

If we consider the case with limited coordination, 100% of the
demand filled in all scenarios and ensure that the total supply
worst case exceeds the total demand worst case, there is no
prepositioning unless supply loss costs are extremely high in
comparison to first stage transportation costs. Fig. 6 summarizes
this behavior for cases when supply loss cost is $50 (r1¼0.5) and
$100 (r1¼1) and transportation costs are varied by a factor of 0 to
0.4. The effect of doubling the supply loss cost is evident when
r3¼0. As r3 increases, the fraction of supply prepositioned
decreases. (It should be noted that as r3 increases r2 also
increases, but the results are displayed relative to r3 for consis-
tency). In effect, increasing first stage transportation costs
decreases the fraction of supply prepositioned. Therefore, when
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c) capacity¼300, 400, or 500, days of supply¼2 and (d) Capacity¼600, days of
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there is enough supply in the network to satisfy demand in the
worst case, it is only beneficial to ensure no supply is lost if
transportation costs are relatively small in comparison to the
penalty associated with supply loss.

Fig. 7 summarizes the effect of the unmet demand penalty on
the fill rate. For this case, the minimum fraction of demand to be
met in all hurricane scenarios is 0.5 and the total supply best case
exceeds the total demand worst case. Two specific second stage
transportation cost factors are considered. The results indicate as
penalty costs for unmet demand increase, the average fill rate
increases with the closest warehouses being fully satisfied first.
In effect, if per unit penalty costs exceed per unit second stage
transportation cost for a demand node, then demand is satisfied
in its entirety. It is also interesting to note that even though there
is enough supply to satisfy demand for all scenarios at 100%, the
best possible fill rate achievable is 94%. This occurs because there
is supply loss (e.g. no prepositioning) which prevents the demand
from the worst case scenario to be fully satisfied at all demand
nodes. This is due to the fact that it is not cost effective to send
the supply to a safe location and then subsequently distribute
from that safe location to demand nodes in the second stage. In
this case, it is better to incur some loss rather than achieve 100%
fill rate for all scenarios.

Fig. 8 captures the interaction of the penalty costs when
transportation costs are kept constant. As the cost penalty for
supply loss increases, the fraction prepositioned increases.
However, the rate of increase is faster at higher unmet demand
penalty costs (r3¼0.05). Therefore, as the ratio of transporta-
tion to penalty costs increase, the fraction prepositioned
decreases. However, the percentage decrease is small when
the cost penalty for supply loss is very large. Although not
displayed in the graph, it should be clear the increasing the
fraction prepositioned, reduces supply loss and increases the
average fill rate.
6. Conclusions

We have developed a model that illustrates how to perform
inventory management coordination in the event of an extreme
event such as a hurricane. Our model confirms that the optimal
solutions we obtain are intuitive. This is helpful in that a planner’s
intuition can help guide the repositioning of inventory to safe
locations to avoid supply loss. In particular, shelters should
coordinate with the closest non-affected warehouses when deter-
mining what quantities should be positioned and how those
supplies should be distributed to the affected counties based on
the desired response time. Our model is helpful in that it can
quantify the value of coordination within disaster relief efforts
and provides solid backing for this rationale. We characterize the
level of service that can be achieved under different coordination
mechanisms. In particular, we have identified the amount of relief
supply that is necessary to satisfy the needs of the affected
population after the event, based on a management determined
threshold level.

This model is flexible enough to incorporate effects of non-
availability of warehouses as a result of multiple areas being
affected by a hurricane, as well as other forms of collaboration.
While we have only considered two collaboration cases in the
experiment (limited and no coordination), other collaborative
mechanisms can be explored by adjusting the capacity and
inventory parameters of the non-affected warehouses. The non-
affected warehouses could also serve as inventory locations of
potential donors and other governmental suppliers. We can also
consider multi-state disasters by carefully selecting the affected
area based on the forecast path over a 5 day period.

A key challenge of this approach is estimating the demand as a
result of the different hurricane scenarios. Better forecasting as it
relates to the relationship between demand and hurricane inten-
sity is critical as this determines the optimal solution.
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