
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tjor20

Journal of the Operational Research Society

ISSN: 0160-5682 (Print) 1476-9360 (Online) Journal homepage: https://www.tandfonline.com/loi/tjor20

An evolutionary approach for tuning parametric
Esau and Williams heuristics

M Battarra, T Öncan, I K Altınel, B Golden, D Vigo & E Phillips

To cite this article: M Battarra, T Öncan, I K Altınel, B Golden, D Vigo & E Phillips (2012)
An evolutionary approach for tuning parametric Esau and Williams heuristics, Journal of the
Operational Research Society, 63:3, 368-378, DOI: 10.1057/jors.2011.36

To link to this article:  https://doi.org/10.1057/jors.2011.36

Published online: 21 Dec 2017.

Submit your article to this journal 

Article views: 3

View related articles 

Citing articles: 1 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=tjor20
https://www.tandfonline.com/loi/tjor20
https://www.tandfonline.com/action/showCitFormats?doi=10.1057/jors.2011.36
https://doi.org/10.1057/jors.2011.36
https://www.tandfonline.com/action/authorSubmission?journalCode=tjor20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tjor20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1057/jors.2011.36
https://www.tandfonline.com/doi/mlt/10.1057/jors.2011.36
https://www.tandfonline.com/doi/citedby/10.1057/jors.2011.36#tabModule
https://www.tandfonline.com/doi/citedby/10.1057/jors.2011.36#tabModule


An evolutionary approach for tuning parametric
Esau and Williams heuristics
M Battarra

1�, T Öncan
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Owing to its inherent difficulty, many heuristic solution methods have been proposed for the capacitated
minimum spanning tree problem. On the basis of recent developments, it is clear that the best
metaheuristic implementations outperform classical heuristics. Unfortunately, they require long
computing times and may not be very easy to implement, which explains the popularity of the Esau
and Williams heuristic in practice, and the motivation behind its enhancements. Some of these
enhancements involve parameters and their accuracy becomes nearly competitive with the best
metaheuristics when they are tuned properly, which is usually done using a grid search within given
search intervals for the parameters. In this work, we propose a genetic algorithm parameter setting
procedure. Computational results show that the new method is even more accurate than an enumerative
approach, and much more efficient.
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1. Introduction

The capacitated minimum spanning tree problem (CMSTP)

can be defined as finding a minimal-cost tree that spans

all vertices such that the sum of the demands in each

subtree does not exceed the given capacity limitation Q.

When the demands of all vertices are equal to unity, the

problem reduces to finding a minimal-cost rooted spanning

tree in which each subtree contains at most Q vertices. This

is the unit demand or homogeneous case and is referred

to as the CMSTP in the literature. We are concerned

with both homogeneous and heterogeneous cases in this

paper. To learn more about telecommunication network

design problems, which can be formulated as CMSTPs, see

the survey by Gavish (1991). The CMSTP is a difficult

combinatorial optimization problem. It has been shown to

be NP-Hard even for the unit demand case when 2oQo
n/2 (Papadimitriou, 1978). As a result of the inefficiency of

exact methods in solving large instances, heuristics are

widely used in practice. CMSTP heuristics can be classified

as classical ones and metaheuristics. Classical heuristics

are straightforward and perform a limited exploration of

the search space compared with metaheuristics. However,

they are simple, which makes them easy to understand and

implement, and they can find good solutions quickly. Some

of them are flexible and can be extended easily to solve

many variants of the CMSTP. The performance of the

classical heuristics does not usually compare with that of

metaheuristics, but the parameter setting and the execution

of the latter demands a much higher computational cost.

Besides, the large set of parameters makes metaheuristics

context dependent and difficult to extend to other instances

even though it increases their flexibility.

In their work on vehicle routing heuristics, Cordeau

et al (2002) introduce accuracy, speed, simplicity, and

flexibility as the most important characteristics of a good

heuristic and compare well-known classical heuristics and

best available metaheuristics for the capacitated vehicle

routing problem (CVRP) according to these four criteria.

They report that none of the classical heuristics is as accu-

rate and flexible as any one of the metaheuristics, but

Clarke and Wright’s saving heuristic (CW) (Clarke and

Wright, 1964) is very fast and extremely simple to imple-

ment, which probably explains its popularity. The same

principles can be extended to the CMSTP and the Esau

and Williams heuristic (EW) (Esau and Williams, 1966), as

well. The EW heuristic is also based on a savings criterion

and ends up with a feasible solution using an extremely

modest computational effort, which makes it a widely used

solution approach for the CMSTP. It is also embedded in

many metaheuristics as a slave local search (LS) procedure
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(Amberg et al, 1996; Patterson et al, 1999; Patterson and

Pirkul, 2000; Ahuja et al, 2003), and it is regarded as

a benchmark by several researchers. In their early work,

Amberg et al (1996) emphasize the superiority of EW’s

average performance when compared with other heuristics

in the literature having similar computational cost. As a

result, the improvement of EW’s solution quality without

harming its simplicity and efficiency becomes an interesting

issue. Recently, Öncan and Altınel (2009) have suggested

a quick and intuitive approach by introducing additional

parameters and terms related to the capacity restrictions

in its savings criterion. The enhanced EW procedure

can control edge selections and combine distance and

demand information in its savings function. The authors

obtained significant improvement in the solution quality

relative to the original EW heuristic after running these

new enhancements with several thousands of different

parameter combinations.

In short, the improvement in the solution quality depends

on the appropriate tuning of three parameters, which comes

at a cost of extra computing time. This is a weakness shared

by many heuristic procedures with multiple parameters, and

the efficient determination of parameter values that allows

best possible performance over all problem instances is a

critical issue. Trial and error algorithms require long tuning

experiments; a systematic and simple way to determine

parameters would increase algorithmic efficiency.

In the literature, Van Breedam (1996) tested the

influence of the parameters of a genetic algorithm (GA)

and a simulated annealing (SA) algorithm, by considering

a Automatic Interaction Detection technique (Morgan

and Sonquist, 1963). Robertson et al (1998) considered

a fractional factorial experiment to set the parameters of

a neural network for a finance application, whereas Park

and Kim (1998) used the simplex method (for nonlinear

programming) to define the parameters of a SA algorithm.

Parson and Johnson (1997) used statistical design to set the

parameters in a GA. Since these early attempts, many

algorithms have proved to be effective in tuning para-

meters. We can mention Backpropagation (Rumelhart

et al, 1986), K-Nearest Neighbour (Aha et al, 1991),

support vector machines (Cortes and Vapnik, 1995), and

C4.5 (Quinlan, 1993), as some of the most effective and

widely used algorithms in practice.

An alternative approach is to use a GA for tuning the

parameters, which was first applied by Golden et al (1998)

to determine the parameters of a CVRP heuristic, by

considering a two-stage GA. Pepper et al (2002) applied a

similar technique to the parameter setting of an annealing-

based heuristic for the travelling salesman problem, and

Chandran et al (2003) further analyzed the possibility of

applying a genetic-based parameter-setting algorithm by

introducing a simpler single-stage procedure.

In this paper, we follow this line of research and propose

an evolutionary algorithm to search for the best parameters

of the EW enhancements. The genetic search helps to

determine locally promising areas in the parameter space,

and the following local search and randomized prohibition

stages refine the search in these promising areas. On the

basid of the experimental results, we can say that the new

method is able to compute solutions of better quality

than that of Öncan and Altınel (2009) in significantly less

computing time. We summarize the parametric EW enhance-

ments in the next section, for the sake of completeness,

which is followed by a brief explanation of the evo-

lutionary parametric search in Section 3. Computational

results are provided in Section 4 and conclusions are

presented in Section 5.

2. The Esau and Williams heuristic and a three-parameter

enhancement

Suppose we have a given complete graph G¼ (V,E), where

V¼ {0, 1, . . . , n} is the set of vertices with 0 as the central

vertex, and E¼ {{i, j}: i, jAV, iaj} is the set of edges. Each

noncentral vertex has a known nonnegative demand di.

A cost cij, which is the cost of joining vertices i and j, is

associated with edge {i, j}. The subtree containing vertex i

is called the subtree of i and the set Vi denotes its vertices.

The edge connecting the subtree of vertex i to the central

vertex is the gate of i and has cost c0i. What makes the

problem capacitated is the limitation on the sum of the

individual vertex demands in a subtree: it is not allowed to

be larger than a given bound Q. When the demands of the

vertices are all equal to unity, the problem reduces to

finding a minimal-cost rooted spanning tree in which each

subtree includes at most Q vertices.

Ordinarily, the EW starts with a star tree; that is, every

vertex is directly connected to the central vertex and there

are as many subtrees as the number of vertices. The

star tree is a feasible topology, otherwise the problem is

infeasible. EW attempts to reduce the cost as much as

possible by modifying the current feasible solution without

violating capacity constraints. This is done first by identi-

fying and merging two vertices i and j belonging to two

different subtrees that yield the largest savings, so that the

total demand of subtree i and subtree j does not exceed Q.

Then, the edge {i, j} replaces the most expensive of the

edges {0, i} and {0, j}, resulting in the largest saving

sij :¼ maxfcoi; cojg � cij: ð1Þ

This operation joins the subtrees of vertices i and j.

EW is a myopic and greedy algorithm. Once two vertices

are joined, it is not possible to disconnect them later, which

can produce results with low solution quality. In order to

remedy this drawback, EW can be modified to exercise

greater control over the merge operations. A concise review

of such attempts can be found in the recent work by Öncan
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and Altınel (2009), where they introduce several parametric

EW enhancements.

The most accurate of the proposed enhancements

consists of a parametric savings expression in which the

tree shape parameter a, a new term considering asymmetry

between vertices i and j with respect to the central vertex,

weighted by b, and a third term considering bin packing

aspects, weighted by g, are included. The resulting savings

expression is

sij ¼maxfc0i; c0jg � acij þ bjc0i � c0jj
þ gð

X
k2Vi[Vj

dkÞ= �d; ð2Þ

where di is the demand of vertex i and d is the average

demand. Note that this savings formula mimics the one

considered by Altınel and Öncan (2005), while enhancing

the performance of CW.

3. Evolutionary search for the best parameters

The idea of considering GAs for tuning the parameters of

the heuristics is first introduced by Golden et al (1998) in

their work on the CVRP in order to calculate the

parameters of a Lagrangean heuristic. This is a two-phase

procedure. During the first phase, the procedure is trained

on a small set of representative problem instances called

the analysis set by determining a parameter vector p that

guarantees a good performance. During the second phase,

the generated parameter vectors are linearly combined into

an overall vector with the weights of the linear combination

determined by the genetic procedure, so that the best

overall performance is reached.

Previous results show that the obtained parameter values

are more robust than the ones obtained by traditional

experimental design methods. Pepper et al (2002) use a

similar technique to set the parameter of an annealing-

based heuristic for the travelling salesman problem (TSP),

and Chandran et al (2003) analyze further the possibility

of applying a genetic parametric search procedure by

introducing a simpler single-stage procedure. Their new

single-stage algorithm considers the analysis set as a whole,

and produces a single parameter vector resulting in high

quality results. They apply this approach on a variant

of the so-called demon algorithm for the TSP. In a more

recent paper, Battarra et al (2008) propose a single-stage

procedure for tuning the parametric CW enhancement of

Altınel and Öncan (2005), and report substantial improve-

ments in the efficiency. In this work, we also proceed in this

direction and propose a single-stage genetic search

procedure for finding the best parameter values of the

three-parameter EW enhancement (EW3) with the saving

expression (2). It is originally proposed in Öncan and

Altınel (2009), where they determine the best values of the

parameters using a brute force evaluation procedure within

given intervals. We call this enhancement EWBF3 in the

sequel.

3.1 Genetic search

The global genetic search procedure is trained with a

suitable analysis set, consisting of a few instances as a

representative subset of the benchmark test instances.

Different strategies can be used while forming the analysis

set. The choice of the analysis set affects the overall

performance of the algorithm. Hence, we performed an

investigation based on different strategies. The results of

this investigation are reported in Appendix A. According

to these results, we can argue that the more ‘difficult’ the

instances in the analysis set are, the better the algorithm

performs. However, the choice of a suitable analysis set is

not crucial for the overall algorithm behaviour and a larger

number of representative instances in the analysis set does

not remarkably improve the solution quality.

The performance of a parameter vector p is evaluated by

means of the fitness function

FðpÞ ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

jAj
X
i2A
ððDðp; iÞ=BðiÞÞ � 1Þ2

s
ð3Þ

where A is the analysis set. For each instance, iAA, the

value D(p, i) is computed by considering the parameter

set p; it is the final objective value computed by running

the parametric EW with given a, b, and g values. Then, the
ratio between D(p, i) and the best-known solution value,

B(i), is evaluated. A parameter vector p with a smaller

fitness value F(p) is accepted to be more promising.

The GA begins with an initial population constructed

using 21 random individual generated according to a uni-

form distribution within [0.1, 2] for a, and within [0, 2]

for b and g, which are the ranges considered by Öncan and

Altınel (2009) in their tree-parameter brute force evaluation

enhancement EWBF3. The fitness function (3) is evaluated

for each individual in the initial population over the

instances in the analysis set, and these values are stored as

the initial fitness values. Then, the algorithm iteratively

performs the following three steps until a stopping criterion

is satisfied:

1. Crossover. The best parameter set in terms of fitness

value is selected as the queen mother. Each one of the

remaining parameter vectors is a father and produces

a new child by combining his vector with that of hers.

Each offspring parameter vector is generated using

a uniform distribution in the interval bounded by the

values in the parameter vectors of the queen mother

and of the father. For example, let us assume the queen

mother is the parameter vector (a1,b1, g1) and the

current father is the parameter vector (a2,b2, g2). Then,
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the offspring parameters are random numbers generated

in the interval [a1, a2], [b1,b2], and [g1, g2].
2. Mutation. For each offspring vector, the value of each

parameter is mutated with probability r¼ 0.2. The new

parameter values are generated by considering a

uniform distribution in the original range of each

parameter, therefore the parameter value is essentially

reset. The fitness function of each child is evaluated by

means of (3) and the fitness values are saved.

3. Selection. The 21 best individuals, in terms of fitness

value, are selected from the 20 new offspring and the

current population of 21 parameter vectors, thereby

maintaining the same population size.

The steps 1–3 are repeated until the stopping criterion is

met. In our implementation, we imposed a 12min time

limit (as in Battarra et al, 2008), but if the average fitness

value does not decrease for 35 consecutive iterations, the

bottom half of the population (consisting of the individuals

with higher fitness values) is refreshed randomly. This is

done by randomly generating p¼ (a,b, g) from a uniform

distribution within [0.1, 2] for a, and [0, 2] for b and g.
Note that the mutated offspring generated during the

genetic algorithm execution is saved in a pool. At the end

of the execution, the best individual in terms of the fitness

function is chosen from this pool and included in the

parameter set P, where jPj ¼ 5. In addition, jPj ¼ 1 other

individuals are selected from the pool and included in P.

The selection criterion is based both on the fitness value of

the individuals (the parameter sets inP cannot have fitness

value larger than 1.5 times that of the minimum fitness)

and their distances to the best individual. More specifically,

in addition to the one with the best fitness value, say p0, the

jPj � 1 parameter vectors farthest away from p0 that are

within 50% of the fitness of p0 are also included in P. We

calculate the distance dist(p1, p2) between the parameter

vectors p1¼ (a1,b1, g1) and p2¼ (a2,b2, g2) as

distðp1; p2Þ ¼ja1 � a2j þ jb1 � b2j
þ jg1 � g2j: ð4Þ

3.2 Local search improvements

The set P contains several interesting parameter vectors,

having a good fitness value and being far away in para-

meter space from the best one. For each problem in our

benchmark set, the parameter vectors in P are ‘potential

starting points’ of a LS within the parameter space. More

precisely, each of the parameter vectors in the set P is used

to initialize EW3. The neighbourhood is a cube centered

around p 2 P, having edge length l¼ 0.2. The performance

of EW3 is tested by setting its parameters to 8 vertices and

6 face centers of the cube. The resulting 14 parameter

vectors in the neighbourhood are then evaluated. The LS

can be iterated by considering the best incumbent in the

neighbourhood as the new cube center. An example of

iterated LS is depicted in Figure 1, where the parameter

vector p is shown by the solid black circle.

In the first cube, 14 parameter vectors are considered

(6 are the face centers and 8 are the cube vertices) plus

the original parameter vector p. The best incumbent (the

light cross in the bottom figure) becomes the center of

a new cube. Note that, the number of parameter vectors to

be evaluated in the subsequent cubes is 13. The previous

cube’s best incumbent becomes one of the vertices of the

new search cube (ie the black circle in the figure below

is the center of the previous search cube, which is shown

with dashed lines). If the number of cubes explored is 1,

the overall number of EW3 runs is 1þ 14 for each starting

parameter vector, whereas if the number of explored cubes

is n41, the number of EW3 runs becomes 1þ 14þ
13(n�1) for each p 2 P. For example, when jPj ¼ 5, 75,

140, 205, 270, and 335 EW3 runs for n¼ 1, 2, 3, 4, and 5

cubes, respectively. Note the drastic decrease in the number

of EW3 runs when np5 compared to 8820 runs required

by Öncan and Altınel’s three-parameter brute force

enhancement EWBF3 (Öncan and Altınel, 2009).

This simple LS operator substantially improves the

solution quality. Figure 2 represents the average percent

improvement with respect to the EW solutions, by con-

sidering up to five cubes of LS. The first one or two cubes

substantially improve the algorithm performance, whereas

a larger number of cubes provides marginal improve-

ment. The GA detects promising areas in the parameters’

space fairly well (corresponding to zero cubes in Figure 2).

However, when the number of cubes is high the search

Figure 1 LS using cubes.
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moves away from these regions, which makes the

improvement marginal. We present the effect of the num-

ber of LS cubes and the choice of analysis set in Table A1

of Appendix A.

On the basis of the results, we can say that it make sense

to use two cubes for LS for each parameter set.

In order to confirm the robustness of our LS operator,

we compared its performance with two well-known LS

algorithms, namely the algorithms by Hooke and Jeeves

(1961) and Nelder and Mead (1964). Both algorithms

have been implemented as described in Bazaraa et al (2005)

and were executed for the same number of iterations as

the cubic LS operator, so as to perform a fair comparison.

The improvement obtained by considering these two LS

operators is quite small (ie, at most an average improve-

ment of 0.38% over all instances). A more detailed descri-

ption of our computational experience can be found in

Battarra (2010). Moreover, the two alternative LS algo-

rithms require the tuning of their own parameters, in

contrast to the simplicity of our evolutionary approach.

They also increase the overall computing time. Moreover,

the unimodality assumption of most of the interval search

methods is not satisfied by our parametric search. There-

fore, our cubic LS operator represents a good compromise

between the algorithm’s simplicity and the solution quality.

3.3 Further improvements using randomized prohibition

The storage of the savings allows the consideration of

different selection rules. One approach is to adopt a ran-

dom selection strategy from the elements of the list as done

previously in the randomized enhancements of CW by

Daskin (2002) and Bard et al (1998).

The randomized prohibition (RP) is a multi-start EW

algorithm, in which, given a saving list, the indicated

merger at each step (determined by the best savings) is

accepted with 95% probability, otherwise it is skipped. The

disregarded savings are not likely the same from one

iteration to the next, giving rise to an effective iterative

approach. The algorithm is straightforward to code and it

can be slightly faster since the initial saving list has to be

evaluated and ordered once, not at each iteration as a

regular savings algorithm does.

We thought that a fair comparison with the LS algo-

rithm would be obtained by comparing the same number

of EW iterations. As reported in Section 3.2, the LS

algorithm marginally benefits from the latter three cubes.

We substitute these cubes with the same number of RP

executions, such as 13 � 3 � 5¼ 195 EW iterations, and

we compared the performance of these two methods.

For each instance, the best three parameter sets found

during the first two LS cubes are collected. These para-

meter sets are defined with the same criteria used for

defining P, such a combination of fitness function and

distance with respect to the best parameter (see Section 4).

Each parameter set produces an EW3 saving list, and the

RP algorithm is run for 195/3¼ 65 iterations, for each list.

Computational results are reported in Section 4,

however, in order to verify the consistency of RP, we con-

ducted additional experiments. We proved that RP is

effective if initialized with high quality saving lists such as

the ones produced during the LS step. A summary of these

experiments is given in Appendix B.

4 Experimental results

In order to demonstrate the improvement in efficiency

while preserving the simplicity and solution quality of the

EW enhancement, we conducted computational experi-

ments with EWBF3, the new genetic enhancement (EWG),

the new genetic enhancement combined with LS (EWLS),

and the new genetic enhancement combined with both LS

and RP (EWR).

4.1 Test environment

The instances we consider are from the tc40, te40, tc80,

te80, cm50, cm100, and cm200 test problem sets down-

loaded from Beasley’s ORLIB library, at http://people

.brunel.ac.uk/Bmastjjb/jeb/info.html. The tc instances

have the central vertex (ie, the root of the final tree)

located in a central position with respect to the other

vertices. The te instances have the central vertex in an

eccentric position with respect to the other vertices (ie, in a

corner). In both cases, the vertices have unit demands,

which is not the case for the cm instances. All of the

vertices do not necessarily have unit demands. Besides the

capacity bounds are significantly larger. The last two or

three digits are the number of vertices. Each set consists of

three groups of five instances of the same capacity

limitations. This makes 15 test problems per set and 105

test problems in total. The characteristics of the instances

are summarized in Table 1.

Im
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Figure 2 The effect of the number of cubes on the solution
quality.
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The best known solutions are obtained from Uchoa et al

(2008), except tc80 and te80, for which the ones given in

Öncan and Altınel (2009) are considered. In fact, it is

noticed in the ORLIB that some of the 80 vertex instances

have been slightly modified by Uchoa et al (2008) in order

to obtain symmetric cost matrices. We did not consider

neither these modified instances, nor the new ones

proposed by Uchoa et al (2008), in order to be consistent

with Öncan and Altınel (2009). Finally, the experimental

testing is conducted on an AMD Athlon 64X2 Dual, 2.20

GHz PC, and our algorithms are coded in C++ pro-

gramming language.

4.2 Validation of the re-implementation

We have re-implemented the EW algorithm and its para-

metric enhancement EW3, in order to provide an objective

assessment of the algorithms’ performance. The new codes

are more efficient, since they use the component oriented

data structures, by Dai and Fujino (2000) during the tree

merge operations, which cause a substantial decrease in the

number of saving updates. Moreover, an early stopping

criterion for the EW algorithm has been established, based

on a bin packing lower bound. In fact, the number of

subtrees in any feasible solution is greater than or equal to

LB ¼
P

i2V di

Q

� �
: ð5Þ

During the EW execution, if the number of subtrees is

equal to LB, the algorithm can be stopped. When

customers require unit demand (ie, tc and te sets), this

early termination condition occurs quite early and most of

the (n�1)2/2 merge operations can be disregarded.

In order to verify our codes, we compared the EW

implementations with the parametric enhancements by

Öncan and Altınel (2009). In Table 1, results are reported

for each problem set. The ‘Dev.(%)’ columns are the ave-

rage percent deviations over each set with respect to the

best-known solutions, calculated according to the formula

100 � ((z�z�)/z�), where z is the current solution value

and z� is the best known value reported in the literature.

The ‘Imp(%)’ columns report the average percentage

improvement introduced by a parametric enhancement

over EW, for each set. The ‘Time (s)’ columns are the total

CPU times in seconds, for each set. The computing time

is the sum of 20, 20 � 21¼ 420 and 20 � 21 � 21¼ 8820

EW executions, when b¼ g¼ 0 (EWBF1), when g¼ 0

(EWBF2), and when EWBF3 is applied, respectively.

Finally, the last row of the table includes column averages.

The overall average percent deviations from the best-

known solution values is 11.89% for the new EW imple-

mentation, compared to 10.15% for the Oncan and

Altınel’s implementation. This becomes 8.16%, 6.60%,

and 5.99% for the new implementations of the brute force

parametric enhancements EWBF1, EWBF2, and EWBF3.

They are, respectively, 9.083%, 6.456%, and 5.876%

according to Öncan and Altınel (2009). Notice that the

parametric enhancements improve the solution quality

performance of the EW algorithm quite substantially. In

fact, the deviation with respect to the best-known solutions

is usually halved. However, the ‘brute force’ parameter

search procedure increases the computing times consider-

ably. For example, the total computing time required to

solve a single instance in the largest set (ie, cm200) using

EWBF3 is almost 1 h. Moreover, Table 2 reports the

maximum (ie, Max) and the standard deviation (ie, Std.

Dev.) over the Dev. (%), the Imp. (%), and the Time (s).

As expected, the maximum deviations and the standard

deviations become smaller as the number of iterations

increases (ie, EWBF3), whereas the maximum improve-

ments become larger.

4.3 Evolutionary versus brute force parametric search

The results obtained by considering EWBF3, EWG,

EWLS, and EWR are summarized in Table 3. For each

test set, the average percentage improvements with respect

to EW (Imp (%)) and the total CPU time in seconds (Time

(s)) are reported.

The bottom lines report the average values (Average),

the maximum values (Max), and the standard deviations

(Std. Dev.) of the average improvements and the compu-

ting times, over all instances. The last line reports the

overall computing time (Total).

The re-implementation of EWBF3 results in an average

improvement of 4.82% versus EW, but it is obtained by

executing EW3 with 8820 distinct parameter vectors. The

total computing time is 59403.50 s. The average percentage

improvement is 2.81%, by executing EW3 with the 5

parameter vectors in P, namely EWG. Note that EWG

does not consider any refinement step and the general/

deterministic analysis set is chosen (see Appendix A). The

EWG execution requires 5 EW3 runs, resulting in a total

computing time of 753.73 s (note that 720 s of the 753.73

are spent on the genetic parametric search). By introducing

five cubes of LS for each p 2 P and maintaining the same

analysis set, the EWLS average improvement increases to

4.67%, which is very close to the improvement by the brute

Table 1 Summary of the instances characteristics

n Q d Central vertex

tc 40 3, 5, 10 Unit weights Central location
80 5, 10, 20 Unit weights Central location

te 40 3, 5, 10 Unit weights Eccentric location
80 5, 10, 20 Unit weights Eccentric location

cm 50 200, 400, 800 Non-unit weights Random location
100 200, 400, 800 Non-unit weights Random location
200 200, 400, 800 Non-unit weights Random location
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force approach. The overall number of EW3 runs is 335

for each instance, resulting in a total computing time of

3106.55 s, 720 s of which are spent on the genetic search. In

our last experiment, namely EWR, the last three cubes

of LS are replaced by the RP method, by preserving the

same overall number of EW3 iterations of EWLS. The

average improvement is 5.50% and the overall computing

time is 2994.09 s. Note that the EWLS computing time is

larger than that of EWR, even if the number of iterations

is the same. This is probably due to the fact that the RP

algorithm computes the initial saving list once, whereas the

saving list has to be computed and ordered every time a

new parameter set is considered in EWLS (ie, a vertex

or face of a cube). With respect to both time and solu-

tion quality, EWR outperforms brute force parametric

enhancement EWBF3.

The variability of EWR, because of its random nature,

has been tested by executing the algorithm with 10 different

randomly generated seeds. The mean average improve-

ment of the Imp (%) over the 10 executions is 5.38%,

the maximum average improvement is 5.59%, and the

minimum average improvement is 5.19%. These results

confirm the robustness of the EWR approach.

5. Conclusions

The EW heuristic has low solution quality, very high speed,

and considerable simplicity. In the recent work by Öncan

and Altınel (2009), the authors attempted to increase the

solution quality of the EW without harming its speed and

simplicity very much by introducing new parameters and

terms. The result was a substantial increase in the solution

quality without affecting its simplicity. However, there was

a considerable decrease in the efficiency because of the

search effort spent on the determination of good parameter

values. In this work, we proposed a GA-based procedure

to tune efficiently a three-parameter enhancement of the

EW heuristic.

GAs also proved in this context to be effective tools in

tuning parametric algorithms. In fact, this paper shows not

only the robustness of the GA proposed in Battarra et al

Table 2 The solution quality and efficiency of the EW re-implementation

Instance set EW EWBF1 EWBF 2 EWBF3

Dev. (%) Time (s) Dev. (%) Imp. (%) Time (s) Dev. (%) Imp. (%) Time (s) Dev. (%) Imp. (%) Time (s)

tc 40 3.08 0.03 1.83 1.20 0.83 1.25 1.77 17.52 1.14 1.87 371.22
te 40 5.98 0.03 3.86 1.98 0.80 3.11 2.67 17.56 2.91 2.86 372.42
tc 80 6.73 0.22 4.89 1.71 5.41 2.83 3.60 132.59 2.67 3.76 3102.33
te 80 7.81 0.24 6.52 1.18 5.74 5.24 2.34 137.20 5.01 2.55 3180.34
cm 50 3.68 0.06 2.94 0.70 1.42 2.44 1.18 33.38 1.95 1.66 748.22
cm 100 24.68 0.44 15.36 7.32 11.95 13.40 8.78 262.38 11.70 10.09 5680.78
cm 200 31.24 3.17 21.75 7.14 81.52 17.95 9.86 1921.72 16.57 10.91 45948.19

Average 11.89 0.60 8.16 3.03 15.38 6.60 4.31 360.34 5.99 4.82 8486.22
Max 48.53 0.25 35.77 17.26 6.06 25.83 17.59 141.58 25.00 18.57 3390.50
Std. dev. 12.93 0.07 8.96 3.59 1.83 7.32 4.16 43.05 6.69 4.48 1031.98

Table 3 The solution quality and the efficiency of the evolutionary enhancements

Instance set EWBF3 EWG EWLS EWR

Imp (%) Time (s) Imp (%) Time (s) Imp (%) Time (s) Imp (%) Time (s)

tc 40 1.87 371.22 1.23 0.20 1.77 14.27 2.13 12.72
te 40 2.86 372.42 1.93 0.22 2.68 14.28 3.22 12.81
tc 80 3.76 3102.33 2.19 1.55 3.55 110.30 3.95 104.81
te 80 2.55 3180.34 1.30 1.55 2.09 110.36 2.75 101.91
cm 50 1.66 748.22 0.17 0.41 1.50 26.23 2.28 24.00
cm 100 10.09 5680.78 5.26 3.44 9.05 243.75 11.20 231.11
cm 200 10.91 45948.19 7.56 26.36 12.03 1867.36 13.00 1786.73

Average 4.82 8486.21 2.81 4.82 4.67 340.94 5.50 324.87
Max 18.57 3390.50 17.59 2.08 19.87 143.17 21.82 138.41
Std. Dev. 4.48 1031.98 4.27 0.60 4.98 42.33 5.86 40.57
Total — 59403.50 — 753.73 — 3106.55 — 2994.09
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(2008), but it also demonstrates that high quality results

can be achieved by combining the parameters proposed by

a genetic approach, or any other effective algorithm from

the literature, with some effective refinement steps.

Note that a few iterations of a LS algorithm and a

prohibition algorithm increased the solution quality sub-

stantially, without compromising the simplicity or the

speed of the overall method. These refinements steps are

able to capture the specific characteristics of each problem,

not considered in the genetic search.

Moreover, it is interesting to observe that only a few

steps of LS are sufficient; in fact, the third, the fourth, and

the fifth cube provide a negligible improvement. The LS

algorithm plays a subtle role in our evolutionary approach,

it does not guide the search far away in the parameter

space, but it leads to slight improvements. The solutions

proposed by the GA proved to be promising ‘seeds’ in the

solution space.

Finally, we observe that the sequence of two simple

refinement steps (ie, LS and RP) provided a more

exhaustive search in the parameter space. The strength of

the two approaches is synergistic and the overall method

benefits from both.

Possible directions of further research could be the

analysis of the performance of alternative algorithms for

obtaining promising seeds in the parameter space. For

example, neural networks could be employed instead of

our GA. Moreover, it would be interesting to analyze the

performance of our evolutionary approach, when applied

to new and different tuning problems.

In conclusion, we proposed a three-stage evolutionary

approach for tuning a parametric variant of the EW

algorithm. A genetic algorithm provides robust ‘seeds’ in

the parameter space for a large set of instances, whereas the

sequence of a LS algorithm and a RP algorithm provides

the refinements necessary to capture the characteristics of

each problem and improve the solution quality. The evolu-

tionary approach is able to produce high quality results in

a limited amount of computing time and without harming

the simplicity of the method.
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Appendix A

Analysis set choice

The strategy used to select the analysis set can affect the

performance of a GA. We test four analysis set selection

strategies for EWG, EWLS, and EWR.

The first analysis set is obtained through the general

and deterministic (G/D) strategy. It is general, because it

includes instances from all test problem sets. The first two

instances with the two smallest capacities are determi-

nistically selected from the sets cm50, cm100, and cm200,

which totally makes six instances. We qualify these three

sets as more difficult than the problem sets tc40, tc80, te40,

and te80, since the EW and its parametric enhancement

end up with larger deviations on them.

The remaining three strategies are dedicated in the

sense that they determine the analysis instances particu-

larly from one of the three problem groups tc, te, and cm.

We believe that this can give the genetic search proce-

dure a higher chance to learn better the set’s structural

characteristics, but at the expenses of three executions of

the GA. Moreover, we use three rules to determine the

dedicated instances in the analysis set. The first rule is

deterministic. We choose the first two instances from each

one of the two smallest capacity groups, as in G/D; this is

what we call D/D. The second rule selects the most

difficult instances and it is denoted by D/M. The two

instances for which EW3 produces the smallest improve-

ments over EW are selected from the test problem

groups. Finally, the third rule is based on the random

selection of two instances from each group, and it is

referred as D/R. Notice that the size of the analysis sets

are four for tc and te, and six for the cm instances, for any

analysis set strategy. The five parameter vectors forming

the set P are listed in Table A1, for the four analysis set

selection strategies.

The average percentage deviations and CPU times

computed running EWBF3 and EWLS are summarized

in Table A2. Note that they are obtained according to four

distinct analysis set strategy for 0, 1, 2, 3, 4, and 5 search

Table A1 Results of the genetic search: parameters (P) versus analysis sets

Strategy tc te cm

a b g a b g a b g

1.8176 0.0654 0.5100 1.8176 0.0654 0.5100 1.8176 0.0654 0.5100
1.1590 0.1470 1.9512 1.1590 0.1470 1.9512 1.1590 0.1470 1.9512

G/D 0.6423 0.1143 0.0098 0.6423 0.1143 0.0098 0.6423 0.1143 0.0098
1.5894 0.2391 1.7056 1.5894 0.2391 1.7056 1.5894 0.2391 1.7056
1.5636 0.1470 1.8867 1.5636 0.1470 1.8867 1.5636 0.1470 1.8867
1.3868 0.3828 0.3057 1.2439 0.3036 1.6855 1.6605 0.2555 0.0831
1.9040 0.7834 0.3977 1.6494 0.2161 0.0727 0.7322 0.2525 0.6862

D/D 0.9468 0.2382 0.0093 0.9374 0.2828 0.0150 0.5470 0.2556 0.0835
1.9263 0.3654 0.6699 0.9218 0.2104 0.1178 0.5471 0.2555 0.0830
1.8313 0.5427 0.0991 0.9374 0.3045 0.0150 0.5591 0.2555 0.0832
1.4759 0.1569 0.2416 0.7883 0.2868 0.6258 1.9530 0.3279 0.7855
1.9043 0.7340 1.7159 1.9286 1.4390 1.3930 0.6804 0.0864 1.7958

D/M 1.9893 1.5519 0.7553 1.5384 0.7017 1.7770 0.6357 0.1584 0.0357
0.6111 0.2016 1.7518 1.9326 1.0202 0.2324 0.6357 0.1584 0.0357
0.4866 0.1553 1.5659 1.7314 0.2875 1.8910 0.6357 0.1584 0.0357
1.8176 0.0654 0.5100 1.8339 0.1445 0.7756 1.7862 0.1201 0.7431
1.1590 0.1470 1.9512 0.7443 0.1141 0.2393 0.6423 0.1143 0.0098

D/R 0.6423 0.1143 0.0098 1.5395 0.2159 1.9500 1.1590 0.1152 1.9512
1.5894 0.2391 1.7056 1.0072 0.0910 1.4902 1.0871 0.1087 1.8619
1.5636 0.1470 1.8867 1.8898 0.1364 1.9852 1.3512 0.1894 1.7056
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Table A2 The effect of the analysis set and the number of search cubes on the performance of EWLS

0 cubes 1 cube 2 cubes 3 cubes 4 cube 5 cubes Average

EWBF3 1.87 (371.22)
G/D 1.23 1.72 1.75 1.75 1.77 1.77 1.66
D/D 1.29 1.64 1.69 1.69 1.71 1.81 1.64

tc40 D/M 1.26 1.68 1.76 1.76 1.78 1.87 1.69
D/R 1.27 1.65 1.73 1.78 1.78 1.78 1.67

Time (s) 0.21 3.10 5.97 8.85 11.73 14.53 7.40

EWBF3 2.86 (372.42)
G/D 1.93 2.44 2.58 2.59 2.62 2.68 2.47
D/D 2.16 2.40 2.48 2.55 2.58 2.58 2.46

te40 D/M 2.12 2.54 2.71 2.71 2.71 2.72 2.59
D/R 1.60 2.42 2.48 2.61 2.61 2.67 2.40

Time (s) 0.21 3.11 6.03 9.00 11.79 14.72 7.48

EWBF3 3.76 (3102.33)
G/D 2.19 3.29 3.31 3.35 3.47 3.55 3.19
D/D 2.94 3.39 3.47 3.48 3.48 3.54 3.39

tc80 D/M 2.77 3.44 3.50 3.58 3.60 3.62 3.42
D/R 2.54 3.34 3.42 3.45 3.47 3.49 3.28

Time (s) 1.60 23.95 46.23 68.20 90.41 112.34 57.12

EWBF3 2.55 (3180.34)
G/D 1.30 1.99 2.02 2.04 2.07 2.09 1.92
D/D 1.35 2.07 2.32 2.40 2.44 2.46 2.17

te80 D/M 1.58 2.07 2.24 2.46 2.52 2.54 2.23
D/R 1.42 2.02 2.15 2.27 2.31 2.36 2.09

Time (s) 1.59 23.84 46.06 68.23 90.29 112.71 57.12

EWBF3 1.66 (748.22)
G/D 0.17 1.13 1.41 1.43 1.43 1.50 1.18

cm50 D/D 0.17 1.13 1.41 1.43 1.43 1.50 1.18
D/M 0.30 1.17 1.43 1.46 1.54 1.54 1.24
D/R 0.19 1.37 1.44 1.65 1.70 1.70 1.34

Time (s) 0.39 5.54 10.75 15.94 21.12 26.28 13.34

EWBF3 10.09 (5680.78)
G/D 5.26 8.29 8.94 8.96 9.04 9.05 8.26

cm100 D/D 5.26 8.29 8.94 8.96 9.04 9.05 8.26
D/M 3.43 8.89 9.30 9.33 9.33 9.63 8.32
D/R 3.17 7.95 8.61 8.91 9.23 9.23 7.85

Time (s) 3.47 51.82 99.37 147.79 195.47 243.61 123.59

EWBF3 10.91 (45948.19)
G/D 7.56 11.15 11.63 11.83 11.96 12.03 11.03

cm200 D/D 7.56 11.15 11.63 11.83 11.96 12.03 11.03

D/M 4.59 11.19 11.77 12.07 12.07 12.22 10.65
D/R 4.26 9.72 10.30 11.38 11.68 11.77 9.85

Time (s) 26.33 393.87 760.88 1129.28 1499.22 1867.87 946.24
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cubes. The first column denotes the sets of test problem

sets. The second column includes the four analysis set

selection strategies. Notice that the average relative percent

improvements made on EW and total CPU time in seconds

are reported; they are computed with the new re-

implementations.

The results show that a dedicated analysis set can

produce slightly better results than the general analysis set.

In some cases, the dedicated algorithm produces even better

results than EWBF3; these are marked in bold in Table A2.

Moreover, the improvements seem to be larger when the

instances solved are large (namely, cm200). The most

effective analysis set choice seems to be the D/M, but the

results obtained with other strategies are not substantially

different.

Moreover, results obtained by increasing the number of

cubes considered in the LS step are quite interesting. In

fact, the first two cubes introduce major improvements

in the solution quality, whereas a higher number of

cubes result in marginal improvements for a relatively

higher computational cost. This behaviour shows that

EWG is able to detect promising areas in parameter

space fairly well. Whenever we move unnecessarily far

away from these regions, by considering a higher number

of cubes, the performance of the method does not improve

anymore.

Appendix B

Initialization of the randomized prohibition heuristic

The RP heuristic is effective even by considering a

very limited number of EW3 iterations, as reported

in Section 4. However, we think we should test the

performance of the standalone method and we should

verify if the solution quality is dependent or not on the

saving list quality.

The first experiment consists in initializing RP with a ran-

dom saving list. Three random parameters are generated in

[0, 2] and the corresponding EW3 saving list initializes

195 iterations of RP. The solution quality obtained is

definitely not satisfactory, in fact a single run of EW is on

the average better than 195 iterations of the randomly

initialized RP algorithm.

On the other hand, if the EW3 saving list is initialized

with the EW parameters (ie, a¼ 1, b¼ g¼ 0), the RP’s

average improvement is 3.86% with respect to a single EW

execution. If the saving list is computed by considering

higher quality parameters, such as the three best parameter

vectors obtained after the genetic algorithm (ie, the first

three parameter sets in P) and each saving list initializes

195/3¼ 65 RP iterations, the average improvement in-

creases to 4.16%. RP proves to be strongly dependent on

the quality of the saving list considered. When the saving

list is initialized by even better parameters, as the best

parameter set found by EWLS, even with 65 RP iterations

are performed, the average improvement is 5.11%. If the

parameter vectors are the best three found and 65 RP

iterations are run for each corresponding saving list, the

average improvement increases to 5.50%.

For the sake of completeness, we pushed this latter

configuration by considering a larger number of iterations.

We executed 1500 and 3000 iterations of the RP algorithm.

The average percentage improvement grows to 5.99%

for 3000 iterations, but the improvements beyond 1500

iterations are considerably smaller.
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