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In this paper, a preference-based, interactive memetic random-key genetic algorithm (PIMRKGA) is
developed and used to find (weakly) Pareto optimal solutions to manufacturing and production problems that
can be modelled as a symmetric multi-objective travelling salesman problem. Since there are a large number of
solutions to these kinds of problems, to reduce the computational effort and to provide more desirable and
meaningful solutions to the decision maker, this research focuses on using interactive input from the user to
explore the most desirable parts of the efficient frontier instead of trying to reproduce the entire frontier. Here,
users define their preferences by selecting among five classes of objective functions and by specifying weighting
coefficients, bounds, and optional upper bounds on indifference tradeoffs. This structure is married with the
memetic algorithm – a random-key genetic algorithm hybridised by local search. The resulting methodology is
an iterative process that continues until the decision maker is satisfied with the solution. The paper concludes
with case studies utilising different scenarios to illustrate possible manufacturing and production related
implementations of the methodology.

Keywords: multi-criterion decision making; genetic algorithms; Pareto optimisation; metaheuristics; interac-
tive computing; travelling salesman problems

1. Introduction

In modelling production and manufacturing problems, the travelling salesman problem (TSP) or variants of TSP are
widely used. Onwubolu and Clerc (2004) modelled the path of an automated CNC drilling machine as a TSP, where
the drill-bit is the salesman visiting the points to be drilled, and the drilling locations are the cities. Their objective
was to minimise the total distance moved by the machine in order to cut the total drilling time and production costs.
Emmons and Mathur (1995) studied a no-wait flowshop, which manufactures large numbers of copies of a few basic
job types, and modelled the related problem as a TSP. Leon and Peters (1996) compared different set-up strategies
for printed circuit card assembly, and tried to minimise the makespan on a single machine using methods based on
the assignment problem and TSP. Bagchi et al. (2006) presented a review of literature in which flowshop scheduling
problems are modelled as a TSP. In their review, they mentioned no-wait flowshops, blocking flowshops, group
scheduling of parts in a flowshop using a generalised extension of the TSP, lot streaming and scheduling problems,
and scheduling of parts and robot movements in automated production cells. Lee and Kuo (2008) studied the multi-
order picking problem in an automated carousel conveyor, where they determined the picking sequence for a given
number of orders and the picking sequence for the items within each order while minimising the total picking cost or
time. They modelled the problem as an open loop version of the multi-travelling salesman problem since the picker
does not need to return to the starting point and goes to process the next order without returning to the first order.
Lee and Kwon (2006) worked on generating an optimal 2D cutting path for a stock plate nested with a set of regular
or irregular parts while minimising the total non-productive travelling distance of a cutter. They formulated the
problem as a generalised case of TSP where the locations of visiting nodes are not known in advance. Cattrysse et al.
(2006) considered the single press brake problem, where they determined how to sequence a selected subset of
production layouts and how to allocate all the jobs to the selected stations while minimising the makespan. They
used two mathematical models: the Travelling Purchaser Problem and the Generalised Travelling Salesperson
Problem to capture the structure of the problem. Dolgui and Pashkevich (2006) worked on the cluster-level welding
operations planning for a robotic cell with a positioning table. They presented a generalised TSP model to determine
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the optimal welding cluster sequence and the corresponding optimal motions of the positioned, while minimising the
overall manufacturing time by finding a reasonable trade-off between the positioner motion times and the cluster
processing times. Kim et al. (2003) modelled the order picking sequence problem of a gantry robot in an automated
warehouse as a special type of TSP. They determined the optimal sequence of order picking with given vertical
paths, while minimising the travelling time of the robot to fulfill the orders. Ganesh and Narendran (2008) worked
on the reverse logistics problem of simultaneous distribution of commodities and the collection of reusable empty
packages, when there is a single depot and a single vehicle with limited capacity. They modelled the problem as the
travelling salesman problem with simultaneous delivery and pick-up, where they minimised the total distance
travelled by the vehicle. Yadollahpour et al. (2009) studied the hot strip mill scheduling problem with consideration
of the selection and sequencing of slabs to be hot rolled. They presented a mathematical model based on the prize
collecting vehicle routing problem, where each customer represents a slab and its prize measures the utilisation of
processing that slab. In their model, they combined two objectives: transition costs, which include quality,
temperature, thickness, and width costs, and utilities, which include length, temperature, earliness, and tardiness
utilities into a single objective using the weighted sums method.

As seen in these applications, most of the production and manufacturing problems that are modelled as TSP or its
variants in fact include multiple objectives. Some of these objectives could be minimising total cost, total time, total
distance, total risk, total waste, and maximising quality, and customer satisfaction. The multi-objective travelling
salesman problem (mo-TSP) combines the familiar general requirement of the TSP of finding a tour that begins in a
specific city, visits each of the remaining cities exactly once, and returns to the initial city, and the added dimension of
classic multi-objective optimisation where there are several objectives such as total distance travelled, total time, total
risk, total cost, etc. that must simultaneously be optimised but that potentially conflict. This research is restricted to
the symmetric problem, meaning the measures are known and are symmetric; for example, the time to travel from
City A to City B is the same as from City B to City A. There are a number of strategies for finding a ‘‘solution’’ to this
problem but the underlying fact is that there is not a single solution; rather, there are a number of solutions that taken
together form an efficient frontier. This research focuses on using interactive input from the user to explore the most
desirable parts of the efficient frontier instead of trying to reproduce a large number of solutions along the entire
frontier. This will reduce the computational effort and provide more desirable and meaningful solutions to the
decision maker (DM) while solving production and manufacturing problems that can be modelled as mo-TSP. To be
precise, this research centres on finding (weakly) efficient solutions to mo-TSP that are preferred by the DM by using
a preference-based interactive memetic random-key genetic algorithm (PIMRKGA). In PIMRKGA, the DM may
set goals for changes in objective function values with bounds on those changes (classifying), may mandate relative
weightings of the objective functions (weighting), or may set bounds on the increase of one objective function value
relative to the decrease of another objective function value (tradeoff-bounding). None of the interactive multi-
objective optimisation methods or interactive, preference-based multi-objective evolutionary algorithms in the
literature, incorporate all of these features.

In multi-criterion decision making, one way of categorising existing methods is based on when the DM is
engaged in the solution process. In a priori methods such as the Value Function Method, Goal Programming and
Lexicographic Ordering, a model is constructed and a solution is generated based on preferences provided by the
DM. The main disadvantage of these methods is that the DM preferences might be unrealistic. A posteriori methods
such as the "-Constraint Method, the Weighting Method, the Method of Weighted Metrics and the Achievement
Scalarizing Function Approach generate or approximate the entire Pareto front without incorporating the DM
preferences into the process. The DM then selects the most preferred solution among the set of solutions. The main
disadvantage of this strategy, regardless of implementation, is that generating the entire Pareto front might be
impossible or, if it can be done, will be extraordinarily expensive computationally. Interactive methods seek to
overcome these drawbacks by combining parts of a priori and a posteriori methods. Generally, interactive
algorithms start with an initial feasible solution and new solutions are generated iteratively in coordination with
consistent preference information provided by the DM. This allows a final solution to be obtained with only a
portion of the (weakly) Pareto optimal solutions being produced and evaluated.

For many years, the research related to multi-objective evolutionary algorithms has focused on approximating
the shape and extent of the Pareto front but then not really focusing on a specific solution based on preference
information. The first preference-based interactive procedure (I-EMO) was suggested by Deb and Chaudhuri
(2003). This approach starts by presenting the extent and the shape of the complete or partial Pareto front, knee or
robust solutions to the DM and then generates an improvement using any of several techniques. This allows the DM
to focus on the desired portion(s) of the Pareto front or individual solution(s). One limitation is that the I-EMO

5672 F. Samanlioglu et al.



software can handle, at most, three objectives. There are other interactive evolutionary multi-objective algorithms in

the literature that are typified by IIMOM (Huang et al. 2005), and i-MOM (Caballero et al. 2006). These methods,

however, do not offer the DM the level of control in search strategy (i.e., classifying, value bounding, weighting, and

tradeoff-bounding) in higher-order Pareto-optimal solution sets (i.e., solution sets for five or more objectives).
Some researches combine interactive, preference information with evolutionary algorithms to solve real life

problems. Quan et al. (2007) introduced a new method based on incompletely specified multiple attribute utility

theory (ISMAUT) so that the DM can target a subset of Pareto optimal solutions based on the DM’s preferences,

specifically by ranking a small set of initial solutions. They applied their method to schedule preventive maintenance

tasks to ensure critical equipment availability in heavy industry maintenance facilities while simultaneously

minimising the conflicting objectives, makespan and workforce. Ecemis et al. (2008) implemented a GA and

interactive evolutionary computation-based software entitled Mobius and developed a drug candidate design

environment. Brintrup et al. (2007) proposed an interactive genetic algorithm, handling qualitative and quantitative

objectives simultaneously in design optimisation that could address, for example, the manufacturing plant layout

design problem. In a similar vein, Brintrup et al. (2008) implemented an interactive genetic algorithm to design an

ergonomic chair, fusing qualitative and quantitative criteria. While all of these methods have interesting features,

none offer the level of flexibility and control to the mo-TSP that is proposed in this research.
Successfully designing an interactive procedure requires careful consideration of a number of criteria including:

the amount and form of information taken from and provided to the DM; the robustness, convergence and ease of

use of the algorithm; and the computational efficiency of the algorithm. Existing methods differ from each other and

the methodology proposed in this research, particularly in terms of these criteria and assumptions. The closest

interactive system to our research is an interactive method that was specifically designed for nondifferentiable

functions called Nondifferentiable Interactive Multiobjective Bundle-based optimization System (NIMBUS)

(Miettinen 1999, Miettinen and Makela 2000, 2002, 2006, Miettinen et al. 2003, WWW-NIMBUS). NIMBUS is

capable of solving nonlinear, nondifferentiable, and nonconvex problems. In NIMBUS, DM incorporates

preferences by classifying objective functions into five classes based on demanded changes. NIMBUS has more

objective function classes than STEM (Benayoun et al. 1971), STOM (Nakayama and Furukawa 1985), Bi-reference

procedure (Michalowski and Szapiro 1992), and the Reference Direction Method (Narula et al. 1994) so the DM

has more flexibility in specifying the desired changes in objective functions. NIMBUS uses local and global

optimisers. The local solver is the proximal bundle method and the global optimisers are a GA with the constraint

handling technique suggested by Deb (2000), and a GA with the method of adaptive penalties for handling

constraints (WWW-NIMBUS). The GA of NIMBUS is real-coded and includes elite reproduction, mutation, and

heuristic crossover with tournament selection operators (Miettinen et al. 2003, WWW-NIMBUS).
The proposed PIMRKGA is substantially different, unique from all the methodologies in the literature because

of the flexibility and control provided to the DM through classifying, value bounding, weighting, and tradeoff-

bounding as well as using an RKGA specifically designed for mo-TSP.
Attention is now turned to describing the details of the global optimiser, memetic RKGA, and its application to

mo-TSP.

2. Memetic RKGA applied to TSP and mo-TSP

TSP and mo-TSP belong to the class of NPC (Nondeterministic Polynomial-time Complete) problems, so heuristic

methods which provide approximate solutions are justified and widely used. As such, several meta-heuristic methods

have been developed for mo-TSP including Hansen (2000), Jaszkiewicz (2002) and Samanlioglu et al. (2008). It is

noted that a TSP with a larger number of cities often benefits from combining approaches to enhance the ability of

the algorithm to find good solutions; the caveat is that it is critical for the search space to remain diverse. In

particular, methods that combine domain-specific local search and evolutionary algorithms have received special

attention and are called memetic or hybrid algorithms (Knowles and Corne 2005). In this research, the 2-opt local

search is combined with RKGA (Bean 1994) so that the RKGA is allowed to work in a search space of local minima

but with diversity preserved via different genetic operators to avoid trapping. The memetic algorithm utilising the

random-keys encoding is used as the global optimiser during the interactive search procedure of PIMRKGA rather

than other GA approaches because it progresses using only feasible tours, thereby eliminating the need for a repair

algorithm.
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In general, the random keys representation for the TSP encodes a solution with random integers between a lower
and upper value, which are then used as ‘‘sort keys’’ to decode the solution. Each node is assigned a key in the
chromosome. To decode a chromosome, the nodes are sorted in the ascending order of their corresponding keys to
indicate the travel order of a salesman. For example, for a five-node problem, the random key encoding of a
chromosome C¼ {2, 15, 13, 98, 24} decodes as the tour 1! 3! 2! 5! 4! 1. The random key encoding
eliminates the possibility of infeasible tours that might occur during the implementation of some genetic operators
such as crossover in the algorithm. This avoids the need for repair algorithms to reconstruct feasible solutions that
are required when literal encoding such as binary vector is used. Genetic operators are executed on the random key
encoding, not on the decoded tour, so that all the resulting chromosomes decode to produce feasible solutions.
Details of this procedure and an illustration of application of crossover to literal encoding and random key encoding
can be found in Samanlioglu et al. (2007).

While the existing interactive methods have never been integrated with RKGA and applied to a mo-TSP which is
the focus of this research, there is some important research that must be acknowledged in this general area. Since its
introduction by Bean (1994), RKGA has been applied to sequencing and scheduling problems (Kurz and Askin
2004), and a single objective generalised TSP (Snyder and Daskin 2006). Recently, memetic RKGA has been applied
to a symmetric TSP (Samanlioglu et al. 2007) and a symmetric mo-TSP (Samanlioglu et al. 2006, 2008). We now
present our memetic RKGA, and the methodology by which this can be applied to the interactive procedure.

The genetic operators used in the research are elitist reproduction, immigration, parameterised uniform
crossover with tournament selection, and swap mutation, similar to those in the Bean (1994), Ryan et al. (2004), and
Samanlioglu et al. (2006, 2007, 2008) research. Since memetic RKGA is an iterative procedure, a stopping criterion
is required and, in our approach, the algorithm is stopped after a specified number of generations (MAX_GEN) is
reached. The basic steps of the memetic RKGA are:

(1) Randomly generate the initial population of POP_SIZE chromosomes representing POP_SIZE feasible
tours and apply 2-opt to all chromosomes.

(2) Perform elitist reproduction whereby the best ELITE_NUM chromosomes of the current generation are
copied to the next generation.

(3) Perform swap mutation with 2-opt applied after each chromosome creation to each chromosome in the next
generation, adding the resulting chromosomes to the next generation. Here, s nodes are selected at random
along the chromosome, all the possible permutations of the keys of these s nodes are created (implementing
2-opt after each permutation), and the best found chromosome is kept. We repeat this procedure r times for
the same chromosome. The next generation now has 2*ELITE_NUM chromosomes.

(4) Perform parameterised uniform crossover with tournament selection and 2-opt to create CROSS new
chromosomes. Basically, in parameterised uniform crossover with tournament selection and 2-opt, two
chromosomes are randomly selected from the population. Then, for each gene that corresponds to a city in
the TSP, a random number between 0 and 1 is generated. If the number is less than or equal to the crossover
probability PAR1_PERCENT, the gene from the first chromosome is copied to the first new chromosome,
and the gene from the second chromosome is copied to the second new chromosome. If the number is greater
than PAR1_PERCENT, the genes are swapped.Then 2-opt is applied to both new chromosomes, and as a
result of the tournament selection, both chromosomes are evaluated and the better one is included in the next
generation. The next generation now has 2*ELITE_NUMþCROSS chromosomes.

(5) Use immigration (randomly create new chromosomes) to generate the remaining members of the next
generation, applying 2-opt to these chromosomes. The next generation is now complete with POP_SIZE
chromosomes.

(6) If the stopping criterion is satisfied, go to step 7, otherwise, go to step 2.
(7) Present the best chromosome and terminate the algorithm.

In a single objective TSP, the evaluation function consists of total cost, distance, risk, or time of the travelling
salesman tour, so the aim is to find the ‘‘best’’ tour, which has the lowest evaluation function. Memetic RKGA must
be adapted for use in multi-objective optimisation because 2-opt, genetic operators and the stopping criterion are
aligned for one objective when the concept of ‘‘best’’ solution is unambiguous. This is not the case with multi-
objective problems in general and mo-TSP in particular; therefore, a modification is required to adjust memetic
RKGA to mo-TSP and an interactive environment. In fact, the only adjustment is the modification of the
evaluation function in memetic RKGA based on the phases in the interactive search procedure as explained in the
following section.
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3. Interactive search procedure of PIMRKGA

In PIMRKGA, the goal is to find a DM-preferred solution when several objective function characteristics are
determined by the DM and the DM is allowed to change them as the search progresses. Specifically, the DM is
allowed to set goals for changes in objective function values with bounds (classifying), mandate relative weightings
of the objective functions (weighting), or set bounds on the increase of one objective function value relative to the
decrease of another objective function value (tradeoff-bounding). The overall structure of the PIMRKGA involves:
(1) Initialisation phase – an initial weakly Pareto optimal solution is obtained, (2) Classification phase – the DM is
queried for preferences and the preferences are incorporated into the memetic RKGA and preferred (weakly) Pareto
optimal solutions are obtained, (3) Alternative solutions phase – alternative (weakly) Pareto optimal solutions
between the solutions already obtained are computed, and (4) Pareto optimality test phase – final solution is tested
for Pareto optimality. It should be noted that the interactive nature of the PIMRKGA methodology allows the DM
to continue searching iteratively or stop if he or she is satisfied each time a solution is presented. We now present a
few essential definitions related to multi-objective optimisation before describing the phases of PIMRKGA.

A multi-objective program (MOP), min fðxÞ ¼ f1ðxÞ, f2ðxÞ, . . . , fkðxÞ
� �

s:t: x 2 X is assumed to have k (k� 2)
competing objective functions ( fi : <n ! <) that are to be minimised simultaneously.

Definition: A decision vector x� 2 X is efficient (Pareto optimal) for MOP if there does not exist a x 2 X, x 6¼ x�

such that fiðxÞ � fiðx
�Þ for i ¼ 1, . . . , k with strict inequality holding for at least one index i. (x� 2 X is efficient, f ðx�Þ

is non-dominated.)

Definition: A decision vector x� 2 X is weakly efficient (weakly Pareto optimal) for MOP if there does not exist a
x 2 X, x 6¼ x� such that fiðxÞ5 fiðx

�Þ for i ¼ 1, . . . , k. (x� 2 X is weakly efficient, f ðx�Þ is weakly non-dominated.)

Definition: z00i ¼ ðz
00
1, z
00
2, . . . , z00kÞ with z00i ¼ min fi xð Þ s:t: x 2 X is called the ideal point.

Theorem: We assume that wi 4 0 for all i ¼ 1, . . . , k and
Pk

i¼1 wi ¼ 1, where the wi are weighting coefficients
provided by the DM. Weakly efficient solutions can be generated with any reference point z

:::
2 Rk by solving the

achievement scalarising problem (Wierzbicki 1982, Miettinen 1999)

min max
i

wi fi xð Þ � z
:::� �� �

s:t: x 2 X: ð1Þ

Definition: Two feasible solutions are said to be situated on the same indifference curve if the DM finds them
equally desirable. For any two solutions on the same indifference curve, there is a tradeoff involving the amount of
increment in the corresponding value of an objective function fi that the DM is willing to tolerate in exchange for
one unit decrement in the value of objective function fj, while the values of all the other objectives remain unaltered
and i 6¼ j. This tradeoff is called ‘‘indifference tradeoff’’ or ‘‘marginal rate of substitution’’. Indifference tradeoffs can
be approximated by mij �

Dfi
Dfj

i, j ¼ 1, . . . , k, i 6¼ j where Dfi is the amount of increment in objective function i, and
Dfj is the amount of decrement in objective function j. The approximation becomes arbitrarily exact when D! 0
(Miettinen 1999).

3.1 Initialisation phase of PIMRKGA

At the initialisation phase of PIMRKGA, the achievement scalarising problem (1) is used as the evaluation function
to locate an initial weakly Pareto optimal solution. Here, the ideal point is used as the reference point (z

:::
¼ z00) in

problem (1).

3.2 Classification phase

The proposed methodology allows the DM to classify the objective functions into five classes. Without loss of
generality, simultaneous minimisation of all objectives is assumed. The objective function values of the hth iteration
are defined as zhi ¼ fiðx

hÞ. The classes for the hth iteration are defined in terms of goals that the DM has for each
objective function, namely:

(1) objective functions that should be decreased ði 2 I5,hÞ,

International Journal of Production Research 5675



(2) objective functions that must be decreased to a value less than or equal to a certain bound �zhi ði 2 I�,hÞ, such
that �zhi 5 fiðx

hÞ, �zhi 4 z00i , fiðxÞ � �zhi 8i 2 I�,h,
(3) objective functions that are satisfactory at the moment ði 2 I¼,hÞ,
(4) objective functions that are allowed to increase to a certain upper bound �hi ði 2 I4,hÞ, such that

fiðx
hÞ5�hi , fiðxÞ � �

h
i 8i 2 I4,h,

(5) objective functions that are allowed to change freely ði 2 I},hÞ. Note that, in practice, this class means that
not all objective functions need to be classified by the DM. If the DM does not want to classify an objective
function, he or she can assume that the objective function belongs to this class.

Clearly, objectives can belong to only one of the five classes and, furthermore, we require I5,h [ I�,h 6¼1 and
I¼,h [ I4,h [ I},h 6¼1.

We can introduce the following sets of constraints (Equations (2)–(5)) to enforce goals 1–4 above as follows:

fiðxÞ5 fi x
h

� �
8i 2 I5,h ð2Þ

fiðxÞ � fi x
h

� �
8i 2 I¼,h ð3Þ

fiðxÞ � �zhi 8i 2 I�,h ð4Þ

fiðxÞ � �
h
i 8i 2 I4,h ð5Þ

3.2.1 Weighting

For objective functions fi that belong to classes I5,h and I�,h, the DM may specify optional weighting coefficients
(for the hth iteration) to adjust the order of importance, wh

i 4 0 and
P

i w
h
i ¼ 1. If weighting coefficients are not

assigned by the DM, they are assumed to be equal. These are included by adapting the objective function to be
min max

i2I5 ,h[I�,h
wh
i fi xð Þ � z00i
� �� �

. Note that this is an achievement scalarising function.

3.2.2 Tradeoff-bounding

Here, the DM may define optional upper bounds Th
ij on the approximate ‘‘indifference tradeoffs’’ between objective

functions fi ði 2 I4,hÞ and fj ð j 2 I5,hÞ. For the hth iteration, this is computed as fiðxÞ�fiðx
hÞ

fj ðxhÞ�fj ðxÞ
� Th

ij which relates the
fiðx

hÞ ði 2 I4,hÞ and fj ðx
hÞ ð j 2 I5,hÞ. So, we can introduce the following set of constraints to enforce DM tradeoff-

bounding as follows:

fiðxÞ � fiðx
hÞ

fj ðxhÞ � fj ðxÞ
� Th

ij i 2 I4,h, j 2 I5,h ð6Þ

3.2.3 DM-preferred mo-TSP formulation

Objective classification, weighting and tradeoff-bounding resulted in additional constraints and a transformed
objective function, as shown in problem (7) below.

min max
i2I5 ,h[I�,h

wh
i fiðxÞ � z00i
� �� �

s:t: fiðxÞ5 fi x
h

� �
8i 2 I5,h

fiðxÞ � fi x
h

� �
8i 2 I¼,h

fiðxÞ � �zhi 8i 2 I�,h

fiðxÞ � �
h
i 8i 2 I4,h

fiðxÞ � fi x
h

� �
fj xhð Þ � fj ðxÞ

� Th
ij i 2 I4,h, j 2 I5,h

x 2 X

ð7Þ
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Problem (7) consists of an achievement scalarising function (ideal point is used as the reference point) that includes
objective functions fi, i 2 I5,h, I�,h and several constraints (2)–(6), so the result of this problem is a weakly Pareto
optimal solution. We can linearise the objective function in problem (7), creating problem (8) below.

min �

s:t: � � wh
i fiðxÞ � z00i
� �

8i 2 I5,h [ I�,h
� �

fiðxÞ5 fi x
h

� �
8i 2 I5,h

fiðxÞ � fi x
h

� �
8i 2 I¼,h

fiðxÞ � �zhi 8i 2 I�,h

fiðxÞ � �
h
i 8i 2 I4,h

fiðxÞ � fi x
h

� �
fj xhð Þ � fj ðxÞ

� Th
ij i 2 I4,h, j 2 I5,h

x 2 X

ð8Þ

This problem can be solved using a standard solver such as ILOG CPLEX and exact solutions can be found easily
for mo-TSP containing a small number of nodes. Recall, that both TSP and mo-TSP are NPC so heuristic
methodologies like the one presented here are justified for larger problems.

3.2.4 A preference-based evaluation function

Once the DM has conveyed his or her preferences during the classification phase memetic RKGA is modified by
taking the original problem’s (7) objective function and adding constraints (2)–(6). Now, there are several ways of
handling constraints in GAs (Coello Coello 2002); this research utilises penalty functions to incorporate constraints
(2)–(6). The approach used here assigns penalty coefficients P1, P2, P3 and P4 to the deviations between the current
objective function value and the goals set by the DM in the DM classification phase. The implementation yields the
revised, preference-based evaluation function in problem (9). P1 is used to penalise solutions that do not reduce
objective functions in I5,h and I¼,h; P2 is used to penalise solutions that do not reduce objective functions in I�,h

below the desired bound; P3 is used to penalise solutions that allow objective functions in I4,h to increase beyond the
desired upper bound; and P4 is used to penalise solutions that violate the tradeoff-boundings. These coefficients are
assumed constant for all iterations. The revised, preference-based evaluation function (9) therefore consists of the
sum of the maximum weighted deviation from the ideal point for the objective functions in I5,h and I�,h and the
penalty terms for violating constraints (2)–(6):

min

max
i2I5 ,h[I�,h

wh
i fiðxÞ � z00i
� �� �� 	

þ P1 max
8i2I5 ,h[I¼,h

0, fiðxÞ � fi x
h

� �� �� �� 	

þ P2 max
8i2I�,h

0, fiðxÞ � �zhi
� �� �� 	

þ P3 max
8i2I4,h

0, fiðxÞ � �
h
i

� �� �� 	

þ P4 max
8i2I4,h, 8j2I5,h

0, fiðxÞ þ Th
ijfj ðxÞ


 �
� fi x

h
� �
þ Th

ijfj x
h

� �
 �
 �h i� 	

2
666666664

3
777777775

s:t: x 2 X:

ð9Þ

Preliminary tests were performed to determine the values of the penalty functions that yielded high quality
solutions with a reasonable amount of computing time. These values were used in the experimentation that we
present in a later section.

3.3 Alternative solutions phase

The achievement scalarising problem (1) is used during the alternative solutions phase to find weakly Pareto optimal
alternatives located between solutions already obtained. To find P alternatives between solutions zh and ẑh, problem
(1) is implemented as the evaluation function of PIMRKGA with reference point z

:::
¼ fiðx

hÞ þ tjd
h where tj ¼

j
Pþ1

and dh ¼ ẑh � zh for each alternative j ( j ¼ 1, 2, . . . ,P).
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3.4 Pareto optimality test phase

A solution, xh, can be tested for Pareto optimality by solving problem (10), where xh 2 X is given and x 2 X, " 2 Rk
þ

are decision variables.

max
Xk
i¼1

"i

s:t: fiðxÞ þ "i ¼ fiðx
hÞ 8i ¼ 1, . . . , k

"i � 0 8i ¼ 1, . . . , k

x 2 X, " 2 Rk
þ

ð10Þ

Let the solution of problem (10) be ð ~x, ~"Þ. The vector xh is Pareto optimal if and only if problem (10) has an optimal
objective function value of zero ð ~" ¼ 0Þ. In that case, ~x ¼ xh: If problem (10) has a finite nonzero optimal objective
function value ð ~"4 0Þ obtained at point x

^
( ~x ¼ x

^
), then x

^
is Pareto optimal (Miettinen 1999).

The Pareto optimality test phase utilises the memetic RKGA with an adapted evaluation function and sorting
method to solve problem (10). First, the chromosome corresponding to the solution that must be tested for Pareto
optimality is inserted into the initial population. Then, the objective function in problem (10) is maximised, while
testing each new solution if "i � 0 8i ¼ 1, . . . , k in order to find a preferred Pareto optimal solution. The
population is sorted in such a way that when two chromosomes are compared: (1) the one satisfying the constraints
("i � 0 8i ¼ 1, . . . , k) is better, (2) if both satisfy the constraints ("i � 0 8i ¼ 1, . . . , k), the one with the larger
evaluation function is better since we try to maximise the objective function in problem (10), and (3) if neither
satisfies the constraints ("i � 0 8i ¼ 1, . . . , k), the one with the larger evaluation function is better since we assume
that would be the least violating chromosome.

Once memetic RKGA terminates, the value of the objective function for the best chromosome is checked. If this
value is zero, the tested chromosome is found to be Pareto optimal. If this value is positive, then the corresponding
new chromosome is Pareto optimal, not the one tested for Pareto optimality. This phase of PIMRKGA terminates
when the Pareto optimal solution is presented to the DM.

4. Case studies

PIMRKGA is implemented in Cþþ and applied to two case studies, a 50-node five-objective mo-TSP and a 100-
node five-objective mo-TSP based on TSPLIB (Reinelt 1995). These case studies utilising different scenarios are
created to illustrate possible manufacturing and production related implementations of the methodology. The
parameters used for the algorithm are presented in Table 1 and were selected based on previous experience and
preliminary testing (Samanlioglu et al. 2008). Now, as in all heuristics akin to genetic algorithms, choice of
parameter can sometimes dramatically influence performance. Since the focus of this research is to present a new
methodology by addressing mo-TSP problems and not improved computing efficiency, the choice of parameter is
not considered critical; hence, selection was based on finding solutions in a reasonable time. With this in mind, it
might be interesting to note that keeping values for the penalty coefficients reasonably small was important in
finding Pareto optimal solutions in a modest amount of computing time. It seemed important to keep the value
small enough that violating a constraint did not create a large impact on the objective function but large enough that
the infeasible solutions were sufficiently poor that they were discounted in the next generation.

Table 1. Parameters used in PIMRKGA.

Parameter Value

Genetic algorithm parameters used in PIMRKGA ELITE_NUM 0.20*POP_SIZE
CROSS 0.59*POP_SIZE
PAR1_PERCENT 0.70
MAX_GEN 6
POP_SIZE 500
S,R 4,10

Penalisation weights P1, P2, P3, P4 20
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4.1 Case study with exact solutions

A 50-node, five-objective mo-TSP is created by modifying Euclidean TSP instances (kroA100, kroB100, kroC100,
kroD100, and kroE100) taken from TSPLIB, and using the first 50 nodes of kroA100, kroB100, . . . , kroE100
instances to calculate the values of five different objectives. The results obtained from PIMRKGA are then
compared with exact solutions obtained from ILOG OPL Development Studio 4.2 (ILOG CPLEX 10.0). To get
exact solutions from CPLEX, ideal point calculations (z00i ¼ ðz

00
1, z
00
2, . . . , z00kÞ with z00i ¼ min fiðxÞ s:t: x 2 X), and

problems (1), (7), and (10) are used during the interactive search procedure. The problem size is limited to 50 nodes
in order to allow comparison of the results of the mathematical formulations shown in problems (1), (7), and (10)
with PIMRKGA at each phase of the interactive search procedure.

An interactive scenario is created to demonstrate the implementation of PIMRKGA. The results obtained from
PIMRKGA matched completely with exact solutions obtained from ILOG OPL Development Studio 4.2 (ILOG
CPLEX 10.0) so only one solution is presented in Table 2.

As shown in Table 2, the procedure starts with finding the ideal point (z00i ) and an initial weakly Pareto optimal
solution (z0). Based on this initial solution, the DM classifies five objective functions, specifies bounds, weights and
tradeoff-bounding. According to this classification, a new weakly Pareto optimal solution is found (ẑ0). The DM is
not satisfied and decides to make another classification at the point z1¼ ẑ0. According to this classification a new
weakly Pareto optimal solution is found (ẑ1). The DM wants to see two weakly Pareto optimal alternatives between
z1 and ẑ1, so alternatives z1ðA1Þ and z1ðA2Þ are presented. The DM prefers the second alternative and wants to stop, so
z1ðA2Þ is tested for Pareto optimality and found to be Pareto optimal. Note, that � values presented here are as a
result of linearisation of achievement scalarising functions (1) and (7) as shown in problem (8).

4.2 A more realistic case study

A more realistic, five-objective, 100-node mo-TSP (kroABCDE100) is created by combining five Euclidean TSPLIB
instances (kroA100, kroB100, kroC100, kroD100, and kroE100). Optimal solutions for each problem (kroA100,
kroB100, . . . , kroE100) are listed in TSPLIB, so the ideal point was readily available for use in the created mo-TSP.
Also, the best result found so far for the initialisation phase of PIMRKGA was available from our previous research
(Samanlioglu et al. 2008).

Since we were not able to obtain exact solutions of the kroABCDE100 experiments from ILOG OPL
Development Studio 4.2 (ILOG CPLEX 10.0) in a few days time due to computer limitations (the software stopped
without finding solutions), in Table 3 only PIMRKGA solutions are presented. Comparison with other interactive
multi-objective optimisation methods or interactive, preference-based multi-objective evolutionary algorithms was
not performed because they do not address the type of problem presented here.

Table 2. Interactive results for a 50-node five-objective mo-TSP.

Ideal point: z00i ¼ ð16,461, 16,520, 15,772, 16,319, 15,911Þ
Initialisation: z0 ¼ f ðx0Þ ¼ ð48,211, 48,214, 47,434, 47,782, 47,368Þ � ¼ 6350

Classification at z0 ¼ f ðx0Þ : f1ðx
0Þ 2 I5 ,0, w0

1 ¼ 0:25, f2ðx
0Þ 2 I�,0, �z02 ¼ 47,500, w0

2 ¼ 0:75,

f3ðx
0Þ 2 I¼,0, f4ðx

0Þ 2 I},0, f5ðx
0Þ 2 I4,0, �05 ¼ 55,000, T0

51 ¼ 2

ẑ0 ¼ f ðx̂0Þ ¼ ð44,544, 35,273, 47,323, 89,063, 54,571Þ � ¼ 14,065

x1 ¼ x̂0,z1 ¼ ẑ0: Classification at

z1 ¼ f ðx1Þ : f1ðx
1Þ 2 I},1, f2ðx

1Þ 2 I4,1, �12 ¼ 60,000, f3ðx
1Þ 2 I¼,1, f4ðx

1Þ 2 I5 ,1,

w1
4 ¼ 0:50, f5ðx

1Þ 2 I�,1, �z15 ¼ 50,000, w1
5 ¼ 0:50, T1

24 ¼ 1:5

ẑ1 ¼ f ðx̂1Þ ¼ ð81,244, 59,917, 47,295, 37,648, 37,266Þ � ¼ 10677

Two alternatives between z1 and ẑ1:

Alternative 1: z1ðA1Þ ¼ f ðx1ðA1ÞÞ ¼ ð53,142, 39,996, 43,874, 68,184, 45,495Þ � ¼ �3308
Alternative 2: z1ðA2Þ ¼ f ðx1ðA2ÞÞ ¼ ð64,507, 47,848, 43,426, 50,060, 39,191Þ � ¼ �3843

DM prefers alternative two, and wants to stop. Pareto test and z1ðA2Þ ¼ f ðx1ðA2ÞÞ is Pareto optimal.
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Consistent with Samanlioglu et al.’s (2008) research, at each phase of the interactive search procedure of
PIMRKGA, we let memetic RKGA stop after about 10,000 function evaluations, which corresponds to setting the
population size to 500 (POP_SIZE¼ 500) and the stopping criterion to six (MAX_GEN¼ 6) as seen in Table 1. In
Table 3, results of PIMRKGA for the kroABCDE100 problem are presented including an interactive scenario.

Here, the procedure starts with finding the ideal point (z00i ) and an initial weakly Pareto optimal solution (z0).
Note, that these were readily available to us based on TSPLIB and previous research (Samanlioglu et al. 2008).
Based on this initial solution, the DM classifies five objective functions, specifies bounds, weights and tradeoff-
bounding. According to this classification, a new weakly Pareto optimal solution is found (ẑ0). The DM is not
satisfied and decides to make another classification at the point z1¼ ẑ0. According to this classification a new weakly
Pareto optimal solution is found (ẑ1). The DM wants to see two weakly Pareto optimal alternatives between z1 and
ẑ1, so alternatives z1ðA1Þ and z1ðA2Þ are presented. The DM prefers the first alternative (z1ðA1Þ), but wants to continue
from this alternative, so the DM makes another classification at point z2¼ z1ðA1Þ. Based on this classification, a new
weakly Pareto optimal solution is found (ẑ2). The DM is satisfied with this answer and wants to stop, so ẑ2 is tested
for Pareto optimality and found to be Pareto optimal.

5. Conclusions

In this paper, we have presented a PIMRKGA in order to find preferred (weakly) efficient solutions to a mo-TSP.
Different and also superior from existing interactive multi-objective optimisation methods or interactive, preference-
based multi-objective evolutionary algorithms in the literature, PIMRKGA integrates classification of objective
functions into five classes, specification of bounds and weighting coefficients and especially indifference trade-off
information in one method. Thus, the DM has more flexibility and control over the interactive search process.
This integration has never been done before and RKGA has never been combined with any other interactive method
to solve NPC problems, especially mo-TSP.

Specifically, the methodology proposed here differs from other existing methodologies in several ways. First, this
methodology allows the DM more flexibility and control during the search since the classification phase of
PIMRKGA has five classes. NIMBUS is the closest methodology in that sense since NIMBUS also classifies

Table 3. Interactive results for a 100-node five-objective mo-TSP (kroABCDE100).

Ideal point: z00i ¼ ð21,282, 22,141, 20,749, 21, 294, 22,068Þ
Initialisation: z0 ¼ f ðx0Þ ¼ ð85,604, 86,536, 84,795, 85,734, 86,499Þ � ¼ 12,888

Classification at z0 ¼ f ðx0Þ : f1ðx
0Þ 2 I4,0, �01 ¼ 94,000, f2ðx

0Þ 2 I¼,0, f3ðx
0Þ 2 I},0,

f4ðx
0Þ 2 I5 ,0, w0

4 ¼ 0:7, f5ðx
0Þ 2 I�,0, �z05 ¼ 83,000, w0

5 ¼ 0:3, T0
14 ¼ 2

ẑ0 ¼ f ðx̂0Þ ¼ ð93,353, 85,921, 168,602, 63,570, 82,993Þ � ¼ 29,593

x1 ¼ x̂0,z1 ¼ ẑ0: Classification at

z1 ¼ f ðx1Þ : f1ðx
1Þ 2 I4,1, �11 ¼ 100,000, f2ðx

1Þ 2 I¼,1, f3ðx
1Þ 2 I5 ,1, w1

3 ¼ 0:50,

f4ðx
1Þ 2 I},1, f5ðx

1Þ 2 I�,1, �z15 ¼ 80,000, w1
5 ¼ 0:50, T1

13 ¼ 1:5

ẑ1 ¼ f ðx̂1Þ ¼ ð98,198, 85,618, 70,917, 151,669, 72,231Þ � ¼ 25,084

Two alternatives between z1 and ẑ1:

Alternative 1: z1ðA1Þ ¼ f ðx1ðA1ÞÞ ¼ ð87,575, 79,349, 129,511, 86,335, 72,811Þ � ¼ �6471
Alternative 2: z1ðA2Þ ¼ f ðx1ðA2ÞÞ ¼ ð89,133, 78,006, 95,368, 115,431, 68,520Þ � ¼ �6872

DM prefers alternative one, and wants to continue.

x2 ¼ x1ðA1Þ, z2 ¼ z1ðA1Þ: Classification at z2 ¼ f ðx2Þ : f1ðx
2Þ 2 I4,2, �21 ¼ 95,000, f2ðx

2Þ 2 I¼,2,

f3ðx
2Þ 2 I5 ,2, w2

3 ¼ 0:45,

f4ðx
2Þ 2 I�,2, �z24 ¼ 86,000, w2

4 ¼ 0:55, f5ðx
2Þ 2 I},2, T2

13 ¼ 0:5

ẑ2 ¼ f ðx̂2Þ ¼ ð94,915, 79,089, 80,511, 70,292, 162,586Þ � ¼ 26,949

DM prefers ẑ2, and wants to stop. Pareto test and ẑ2 ¼ f ðx̂2Þ is Pareto optimal.
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objective functions into five classes; however, our classification is different from NIMBUS because NIMBUS
restricts objective functions in I5 to be minimised as far as possible and functions in I� to be minimised to the
aspiration level ( �zhi ). In the proposed methodology, objectives in I5,h and I�,h are to be minimised as much as
possible with the restriction that objectives in I�,h must reach a value that is less than or equal to a specified bound
( �zhi ). As a result, problem (7) is different from the ‘‘vector’’ or ‘‘scalar’’ sub-problems NIMBUS uses. Furthermore,
NIMBUS does not utilise the idea of indifference tradeoffs. There are other interactive methods based on
indifference tradeoffs in the literature, for instance, GDF (Geoffrion et al. 1972) and SPOT (Sakawa 1982);
however, these methods do not allow the DM to classify objective functions into five classes. The initialisation phase
of NIMBUS and PIMRKGA are also different. NIMBUS takes the DM-identified starting point and projects it
onto the feasible region by solving an auxiliary problem. The weakly Pareto optimal counterpart of this point is
calculated by assuming all objective functions belong to the class I5 and solving the selected ‘‘vector’’ or ‘‘scalar’’
sub-problem. Finally, NIMBUS uses different local and global optimisers whereas the memetic RKGA in
PIMRKGA is specifically designed for mo-TSP.

In conclusion, we claim that integration of objective classification with tradeoff-bounding found in PIMRKGA
provides the DM with more flexibility and control over the interactive search process than NIMBUS and other
existing methods. We do not claim that PIMRKGA would work the best for all multi-objective problems since the
memetic RKGA, the global optimiser of the interactive method, is designed specifically for mo-TSPs.

Since PIMRKGA is designed specifically for mo-TSP, future work includes adaptation of PIMRKGA to
different versions of mo-TSP such as generalised TSP, and other combinatorial optimisation problems where
RKGA can be used, such as scheduling problems. Designing interactive methods that take into account fuzziness of
objective functions, goals and bounds specified by the DM, and integrating with PIMRKGA can also be an
interesting area of research.
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