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a b s t r a c t

In humanitarian relief operations, vehicle routing and supply allocation decisions are crit-
ically important. Similar routing and allocation decisions are studied for commercial set-
tings where efficiency, in terms of minimizing cost, is the primary objective.
Humanitarian relief is complicated by the presence of multiple objectives beyond minimiz-
ing cost. Routing and allocation decisions should result in quick and sufficient distribution
of relief supplies, with a focus on equitable service to all aid recipients. However, quanti-
fying such goals can be challenging. In this paper, we define and formulate performance
metrics in relief distribution. We focus on efficacy (i.e., the extent to which the goals of
quick and sufficient distribution are met) and equity (i.e., the extent to which all recipients
receive comparable service). We explore how efficiency, efficacy, and equity influence the
structure of vehicle routes and the distribution of resources. We identify trends and routing
principles for humanitarian relief based on the analytical properties of the resulting prob-
lems and a series of computational tests.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Recent disasters have increased attention on the effectiveness of humanitarian aid; there is increased pressure from do-
nors on relief agencies to show that pledged aid and goods are reaching those in need quickly (Van Wassenhove, 2006). This
has led to a larger focus on improving humanitarian relief logistics. The recent large scale disasters and relief efforts (e.g.,
2004 Asian tsunami, 2005 Pakistan earthquake, 2010 Haiti earthquake) highlight the need for improved logistics in the field.
For example, following the Tsunami, the amount of pledged relief overwhelmed the relief agencies’ ability to properly store
and distribute the aid (Russell, 2005). Given the trends in the impact of disasters on vulnerable populations and economies
worldwide and the criticality of logistics in humanitarian relief operations, it has been increasingly highlighted that Oper-
ations Research (OR) can help improve the logistics of humanitarian aid (Van Wassenhove, 2006).

This paper focuses on last-mile distribution in a humanitarian relief chain from a distribution center to beneficiaries
(Balcik et al., 2008). Relief supplies must be delivered quickly in sufficient amounts. Given limitations in transportation
resources and relief supplies, and damaged infrastructure, it is challenging to plan last mile operations (Balcik et al.,
2008). Distribution decisions are often made ad hoc, which may lead to inefficient use of resources, slow response, and
inadequate or inequitable relief deliveries.

The classical vehicle routing problem (VRP) minimizes total transportation costs; in humanitarian relief, one is primarily
concerned with whether the routes are able to deliver the aid quickly. Focusing on relief response times, Campbell et al.
(2008) show that the choice of objective affects how aid is distributed. With alternative objectives of minimizing the last
arrival time and minimizing the sum of arrival times, the authors demonstrate that superior service times may be achieved
. All rights reserved.
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Fig. 1. A set of routes in LMDP.
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than those resulting from a traditional VRP objective. They show that minimizing total routing costs results in solutions with
longer response times.

Equitable aid distribution among recipients is also a critical consideration in humanitarian relief (Beamon and Balcik,
2008). However, equity may be hard to define both in practice and for modeling purposes. In this paper, we characterize
equity in terms of the disparity between service levels among aid recipients, where service levels are characterized by deliv-
ery speed and amount. Even so defined, it is not clear how equity should be modeled. Furthermore, it is not obvious how
different and potentially conflicting objectives of equity, efficacy and efficiency affect the route structures in the relief
context.

Balcik et al. (2008) present an analysis of last mile operations and show how modeling these operations with all the asso-
ciated complexities can make it difficult to study the underlying differences in route design that occur. Our goal in this paper
is to simplify the modeling of last mile distribution to a more stylized setting where we can more easily gain insights into the
effects of equity and other considerations in relief distribution. We refer to this problem setting as the last-mile delivery
problem (LMDP). The LMDP designs vehicle routes and distribution schedules for a fleet of vehicles delivering supplies from
a distribution center, yet unlike Balcik et al. (2008), we focus on a single period problem where each vehicle performs at most
one trip to deliver one commodity type. Although more restricted than Balcik et al. (2008), our problem setting still captures
many critical characteristics of the last mile environment; in particular, the LMDP in this paper would well address relief
operations in rural areas where each vehicle can perform only one trip per period and supplies are distributed in the form
of standard packages/pallets. Relief organizations often make daily distribution plans rather than considering multiple days
ahead, especially during the initial phases of the emergency due to the chaotic environment and lack of reliable information
(Mantyvaara, 2010). An example of LMDP routes is presented in Fig. 1. The demand of a site can be satisfied by more than one
vehicle in the LMDP, similar to the Split Delivery Vehicle Routing Problem (SDVRP). The SDVRP is motivated by the potential
savings in costs due to splitting demand among multiple vehicles (Dror and Trudeau, 1989). Split deliveries in last mile relief
distribution can allow one to quickly serve large demands using limited resources. Our problem setting allows us to analyze
the impact of different objectives on route structures and the performance of aid distribution, in terms of (i) efficiency (trans-
portation costs), (ii) efficacy (quick and adequate response), and (iii) equity (fairness as measured by deviations between
recipients in efficacy). The incorporation of equity in particular leads to unique challenges.

We develop a set partitioning model for the LMDP to incorporate alternative objectives, based on efficiency, efficacy and
equity metrics. Analytical properties of the LMDP models are examined. A numerical study of small instances, in which it is
possible to obtain optimal solutions for each of the objectives, is conducted to develop insights into route characteristics. Our
analysis shows that there exist substantial differences among solutions that attempt to minimize efficiency compared to
those that are concerned with efficacy and equity. Heuristics are developed to solve large instances of the LMDP variations.

This paper is organized as follows: in Section 2, we review the relevant literature. Section 3 gives a detailed description
and analysis of the LMDP variations. Section 4 proposes heuristics for the LMDP variations. Section 5 discusses practical
implications of this work and future directions.
2. Literature review

There is a growing literature that addresses relief supply distribution in humanitarian logistics. One of the earliest studies
that addresses distribution of relief supplies from a distribution center to several camps is Knott (1987). The author formu-
lates a linear programming model that finds the number of trips each vehicle makes to maximize the amount of deliveries
while minimizing transportation costs and discusses how considering additional aspects might make the problem very dif-
ficult to solve. More recently, the literature addresses more complicated relief supply distribution problems and captures the
inherent complexities of the humanitarian relief environment, including multiple commodities, multiple transportation
modes or vehicle types, multiple periods, uncertain or varying demand and supply levels and transportation network con-
ditions, and delivery time windows. Most studies develop heuristic algorithms to solve the proposed models (e.g., Haghani
and Oh, 1996; Barbarosoglu et al., 2002; Ozdamar et al., 2004; Lin et al., 2009; Shen et al., 2009; Van Hentenryck et al., 2010)
or use commercial solvers to test the models for small to moderate problem instances (e.g., Barbarosoglu and Arda, 2004;
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Tzeng et al., 2007; Balcik et al., 2008). Studies that focus on relief supply distribution consider a number of different objec-
tives, including minimizing logistics costs (e.g., Haghani and Oh, 1996), minimizing the amount of unsatisfied demand (e.g.,
Ozdamar et al., 2004), and minimizing service completion or delays (e.g., Barbarosoglu et al., 2002; Yi and Ozdamar, 2007).
Equity, although critical, is considered by only a few studies. Tzeng et al. (2007) consider fairness in the problem of choosing
transfer point locations in distributing supplies from a set of supply points to demand points. A multi-period multi-objective
model is developed that considers, in addition to minimizing total cost and travel time, fairness by maximizing the minimum
service satisfaction among demand points. In Balcik et al. (2008), routing and supply allocation decisions are considered
jointly in distributing multiple types of relief supplies. The authors minimize the maximum unsatisfied demand percentage
over demand locations along a planning horizon. Delivery scheduling decisions are driven by costs due to supply allocation
and transportation over multiple days. Lin et al. (2009) study a similar problem that considers delivery of prioritized items in
a relief scenario; the authors develop a multiple objective model to minimize unsatisfied demand and travel costs and ensure
equity.

Campbell et al. (2008) focus on service time and evaluate two objective functions: minimizing the maximum arrival time
of supplies (minmax), and minimizing the sum of arrival times of supplies (minsum) – thereby minimizing the average ar-
rival time. As each demand location is visited exactly once, and full satisfaction of demand is ensured, supply equity is not a
concern in the study. The authors explore the impact of different objective functions. For the traveling salesman problem and
the VRP, solutions obtained from minmax and minsum objectives are compared with solutions obtained by minimizing total
travel time. It is shown that the minmax and minsum objectives ensure better response times for the demand locations, at
the expense of reduced efficiency (i.e., increased total route length or costs). Our paper extends this work by considering de-
mands at each recipient which necessitates alternate equity metrics.

Outside of humanitarian relief, equity-related issues have been widely studied using OR models in areas such as public
facility location; see, for example, Erkut (1993), Mulligan (1991), and Marsh and Schilling (1994). Although routing decisions
affect equitable service provision, most of the routing studies in the literature address only efficacy and efficiency objectives.
In routing, equity-related issues have only recently received attention; and then, only limited to few applications mostly
addressing public/nonprofit sector problems (see Balcik et al., 2011). As stressed by Marsh and Schilling (1994), since there
may not be a single equity metric for a specific application, analyses that explore the tradeoffs between equity and other
objectives can be helpful in understanding the use of different equity policies and metrics. As such, this paper defines
and formulates different equity metrics focusing on last mile operations in humanitarian relief.
3. LMDP modeling and analysis

This section describes the LMDP in further detail. Section 3.1 presents the general problem setting. Section 3.2 presents an
integer programming formulation of the problem. Section 3.3 introduces the performance metrics for efficiency, efficacy and
equity that define the LMDP model variations; Section 3.4 discusses analytical properties of the LMDP models. Section 3.5
presents a computational study of the different models.

3.1. Problem setting

As mentioned earlier, the goal of this paper is to study a stylized version of the LMDP to gain insights into the underlying
route structures. The LMDP is defined on a graph G = (N0, A) which we assume is complete and symmetric. The node set N0

includes the depot (i = 0) and the demand locations (i e N:i, . . . , N). Travel costs (in hours), cij "(i, j) e A, are non-negative and
satisfy the triangle inequality. Routes begin at time t = 0. Demand is measured in units of full pallets of relief supplies. Pallets
are modeled as a single commodity, but each pallet may be composed of different types of supplies. The set K = {1, . . . , K}
represents a fleet of vehicles operating from the depot to serve the aid recipients and C is the capacity of each vehicle mea-
sured in pallets. Demand may be split across multiple vehicles. We assume that the demand of any recipient is less than the
capacity of a vehicle; di 6 C "i e N and sufficient supplies are accumulated at the depot which can be delivered to recipients
(KC P

P
i2Ndi). Vehicles may complete at most one trip and thus a vehicle visits a node at most once and may not return to

the depot to refill its capacity.
The LMDP involves two types of decisions. Routing decisions determine for each vehicle a set of nodes and visit sequence

(and hence the arrival times). Distribution decisions determine the number of pallets delivered at each visit. We develop per-
formance metrics to measure the effects of these decisions and use the metrics as objective functions of different models of
the LMDP. Efficiency (Z1) is measured by the total travel costs. Efficacy (Z2) is measured by the sum of each pallet’s arrival
time. Equity (Z3) is measured by several functions which capture the disparity in efficacy among nodes.

3.2. Integer program formulation

The LMDP is formulated with an extension of the set partitioning formulation of the VRP. The set partitioning formulation
of the VRP assumes that the set R = {1, . . . , R} of feasible routes is given. Each route r e R represents a set of nodes and an
order in which the nodes are visited. From this information, the following parameters can be obtained for each route. The
travel cost cr is the time required to travel the length of the route. The parameter bir denotes the presence of node i on route
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r: bir = 1 if node i is visited by route r, and 0 otherwise. The parameter air denotes the arrival time at node i on route r, if route
r visits node i (i.e., bir = 1). If route r does not visit node i (i.e., bir = 0), air equals T, an upper bound on the time horizon.

We assume that each candidate route in R is performed by at most one vehicle. In Section 3.4, we show that there exists
an optimal solution where each route is run at most once. The binary decision variables xr determine whether route r is se-
lected; xr = 1 if route r is selected, and 0 otherwise. The integer decision variables yir indicate the number of pallets delivered
to node i by route r.

We define the LMDP(Zf) as the model of the LMDP with the objective function of minimizing the generic metric Zf; specific
metrics are introduced in Section 3.3. The LMDP(Zf) is formulated as:
Min Zf ðx; yÞ ð1aÞ
subject to
X
r2R

xr 6 K ð1bÞ

yir 6 dibirxr 8i 2 N 8r 2 R; ð1cÞ
X
i2N

yir 6 C 8r 2 R; ð1dÞ

X
r2R

yir ¼ di 8i 2 N; ð1eÞ

yir integer; xr binary ð1fÞ
Constraint (1b) guarantees that the number of routes does not exceed the fleet size. Constraints (1c) ensure that a node is
delivered supplies along a route only if it is visited on the route. Constraints (1c) also set an upper bound on the delivery
amounts equal to the demand for that location. Constraints (1d) limit the amount delivered on each route to the vehicle
capacity. Constraints (1e) ensure each recipient node receives precisely the number of pallets required. Constraints (1f) spec-
ify that the delivery variables are integer and the routing variables are binary.

3.3. Performance metrics

In this section, metrics are formulated to characterize the objective functions based on efficiency, efficacy, and equity. An
example is presented to illustrate each objective’s impact on routing solutions.

3.3.1. Efficiency
Let Z1 denote the measure of efficiency which calculates total travel time for selected routes:
Z1ðx; yÞ ¼
X
r2R

crxr ð2Þ
Because the Z1-based objective is the traditional VRP objective, the LMDP(Z1) is equivalent to the SDVRP. The SDVRP re-
duces costs by allowing vehicles to fully use capacity (see Archetti et al., 2006; Archetti et al., 2008).

3.3.2. Efficacy
Let Z2 denote the measure of efficacy which calculates the speed and sufficiency of deliveries.
Z2ðx; yÞ ¼
X
i2N

X
r2R

airyir ð3Þ
The arrival time at node i on route r, air, is multiplied by the amount of pallets delivered to determine the sum of arrival times
in that delivery. Eq. (3) sums the arrival times across all pallets to yield the demand-weighted arrival time. The amount deliv-
ered, yir, represents the change in cumulative unsatisfied demand and the demand-weighted arrival time is calculated by
summing the product of arrival time and change in cumulative demand. The equivalent value of the time-weighted unsatisfied
demand can be found by summing the product of time between deliveries and cumulative unsatisfied demand.

The objective of minimizing Z2 is an extension of the objective of minimizing the sum of arrival times for unit demand
from Campbell et al. (2008). The unit demand LMDP(Z2) has been given several names in the literature including the delivery
man problem, the traveling repairman problem, and the minimum latency problem.

3.3.3. Equity
We introduce three metrics to measure equity. The first two, Za

3 and Zb
3, are deviation-type equity metrics that measure

the spread in service level across nodes. While Za
3 and Zb

3 are intuitive, they are not (as shown in Section 3.3.4) suitable as an
objective in the LMDP model; therefore, we use Za

3 and Zb
3 metrics for evaluation purposes. The third equity metric Z3 cap-
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tures response time and equity. To calculate the equity in delivery times, we disaggregate the Z2-based objective by node. Let
si be the service level of node i measured by the demand weighted arrival time normalized by the demand of node i and let �s
denote the average service level across nodes:
Si ¼
1
di

X
r2R

airyir ð4Þ

�s ¼ 1
N

X
i2N

si ð5Þ
Metrics Za
3 and Zb

3 address the disparity in the si values. Specifically, Za
3 captures the maximum pairwise difference and Zb

3

captures the standard deviation.
Za
3ðx; yÞ ¼max

i2N
si �min

i2N
si ð6Þ

Zb
3ðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i2N

ðsi � �sÞ2

N

vuut ð7Þ
The Z3 metric is a compromise between efficacy and equity. Similar to the Z2 metric, Z3 minimizes waiting time and serves
demand quickly, but also incorporates equity by weighing units of demand differently. To incorporate equity, we consider a
convex disutility function f(w), where w is the fraction of unsatisfied demand. Fig. 2 plots an example function. Because the
rate of change of the disutility is greater when the percentage of unsatisfied demand is closer to 1 (i.e., the demand served is
low), the first pallets delivered receive greater benefit than the last.

Similar to how the Z2 metric measures the demand-weighted arrival time, the Z3 metric minimizes the disutility-weighted
arrival time. The disutility function encourages a vehicle not to necessarily satisfy a node’s entire demand but rather to save
supply to serve another node. Unlike Z2 where the change between delivered demand is accessible from information in the
model (yir), the change in disutility requires a calculation dependent on many variables. It is easier to formulate the equiv-
alent value of time-weighted disutility. We discretize time horizon into hours. For each hour t e T = 1, . . ., T and each node i e N,
the percentage of unsatisfied demand of node i at time t, wit, is calculated and a penalty equal to f(wit) is accrued. Thus, Z3, the
time-weighted disutility is calculated as follows:
wit ¼ 1� 1
di

X
r:air<t

yir

 !
ð8Þ

Z3ðx; yÞ ¼
XT

t¼1

XN

i¼1

f ðwitÞ ð9Þ
Eq. (9) sums the penalties accrued due to the percentage of unsatisfied demands of each node i e N over each hour t e T. In
practice, f(wit) does not need to be calculated for every hour in T, but only when f(wit) changes. This can be found by sorting
the arrival times of deliveries to node i and determining the time between successive deliveries. The following piecewise
linear disutility function is used in our calculations:
f ðwÞ ¼

4w
13 ; w < 0:25
8w�1

13 ; 0:25 6 w < 0:5
16w�5

13 ; 0:5 6 w < 0:75
24w�11

13 ; w P 0:75

8>>><
>>>:

ð10Þ
0

1

0 0.25 0.5 0.75 1

f(w
)

w, fraction of unsatisfied demand

Fig. 2. An example piecewise-linear disutility function for unsatisfied demand.
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The function is chosen to mimic the shape of a convex polynomial function. As more pallets are delivered, w decreases;
the progressively increasing slope ensures that the last pallets delivered are weighted less than the first.
3.3.4. An illustrative comparison of objectives
Fig. 3 presents a network with three recipient nodes (i = 1, 2, 3) each with a demand of four pallets. Consider an instance

with two vehicles, each with capacity of six pallets. Fig. 4 presents the optimal solutions for each LMDP variation. The figure
shows the route path and delivery times and amounts at each node. Let p(k) denote the route that is run by vehicle k. The
routes obtained by the model variations differ in terms of delivery times and amounts. Table 1 displays the service level for
each node (i.e., si values) and the metric values for each solution. Naturally, each solution optimizes its respective metric at
the expense of other metrics.

This simple example illustrates initial trends that guide our subsequent analysis. While all equity metrics have a common
goal of reducing the disparity in service times among recipients, the model variations can yield differences in solutions. In
the solution displayed in Fig. 4c, the two vehicles travel in opposite directions, each dropping off two units of demand at each
of the nodes. The service level for all nodes is 9.5, yet nodes 1 and 3 can improve their service level without lowering the
service level at node 2 if the vehicles that visit them first deliver their full demand. In such a solution, service levels of
the nodes are s1 = 6, s2 = 9.5 and s3 = 4. Thus in the LMDP(Za

3) and LMDP(Zb
3) solutions, nodes 1 and 3 are penalized to match

the service level at node 2 to minimize the disparity between service levels. While this is only one example, one can imagine
Fig. 3. A sample distribution network with three recipient nodes. Arc lengths are shown on each arc.

Fig. 4. Optimal solutions for the LMDP variations.



Table 1
Performance of optimal solutions under different objectives.

Solution for Node service level Metric

s1 s2 s3 Z1 Z2 Za
3 Zb

3
Z3

LMDP(Z1) 11 5 4 27 80 7 3.09 19.46
LMDP(Z2) 11 4 4 34 76 7 3.30 19.00
LMDP(Za

3) 9.5 9.5 9.5 38 114 0 0 21.77

LMDP(Zb
3) 9.5 9.5 9.5 38 114 0 0 21.77

LMDP(Z3) 6 7.75 6.75 29 82 1.75 0.72 17.38
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in a large network, every route taking detours so that all nodes receive equally poor service. At a nominal cost to efficiency
and efficacy (7% and 8% increase, respectively), the LMDP(Z3) solution greatly outperforms the LMDP(Z1) and LMDP(Z2) solu-
tions with respect to the Za

3 and Zb
3 metrics. The large improvement in equity can be attributed to the allocation of demand at

node 3. Rather than completely serving node 3, vehicle 2 delivers an extra unit to node 2. The solution does not suffer large
increases in Z1 and Z2 because there is still an incentive to serve demand quickly.

Additionally, this example illustrates how multiple optima to the LMDP models may produce unfavorable results. In the
solution displayed in Fig. 4a, the solution can improve its Z2, Za

3; Z
a
3 and Z3 without worsening its Z1 metric value by reversing

the route run by vehicle 1. In the computational studies, we utilize weighted secondary objectives to select preferred options
among multiple optima, as discussed in Section 3.5.1.

3.4. Analytical properties

In this section, we explore route structures for the LMDP models. In an early SDVRP paper, Dror and Trudeau (1990) prove
Property 3.1 regarding splitting in optimal SDVRP routes. We present the related Properties 3.2 and 3.3 for the LMDP(Z2) and
LMDP(Z3). Property 3.4 validates our modeling assumption that each route is run at most once. The proofs of Properties 3.2–
3.4 are presented in Appendix A.

Property 3.1 (Dror and Trudeau). For LMDP(Z1), there exists an optimal solution where for every pair of nodes, at most one
vehicle visit both nodes.
Property 3.2. The result from Property 3.1 holds for LMDP(Z2).
Property 3.3. The result from Property 3.1 does not hold for LMDP(Z3).
Property 3.4. For each of the objective functions of the LMDP based on Z1, Z2 and Z3, there exists an optimal solution where
each route is run at most once.

Properties 3.1 and 3.2 imply that routes cannot share a subset of nodes with more than one recipient node. This sug-
gests that for the LMDP(Z1) and LMDP(Z2), splitting is only beneficial for reasons linked to capacity. For the LMDP(Z1),
splitting of demand allows for fewer vehicles to be used. With the triangle inequality, a reduction in routes run translates
to a reduction in travel costs. In contrast, in the LMDP(Z2) where response time is minimized, it is desirable to utilize the
entire fleet of vehicles. Although the entire fleet is used, splitting may occur if a vehicle can reach a recipient earlier than
the other vehicles but has insufficient supply to serve the recipient’s full demand. Properties 3.1 and 3.2 can be used to
add cuts to the formulation for their respective problems. The constraints

P
r:ðbir>0Þ&ðbjr>0Þxr 6 1 8i; j 2 N may be added to

the formulations of the LMDP(Z1) and LMDP(Z2). Because splitting a node’s demand among multiple vehicles can improve
the equity-based Z3 objective, Property 3.1 does not hold for LMDP(Z3), as shown in Fig. 4d. Splitting occurs so that a node
may receive some of its initial supply earlier at the expense of another node receiving its remaining supply later. We
show how the differences between the properties regarding Z1 and Z2 with the property regarding Z3 impact route struc-
ture in the following section.

3.5. Computational study of small instances

In this section, small instances of the LMDP models are solved using a commercial solver and solutions under the different
objectives are compared. Section 3.5.1 introduces the test cases. Sections 3.5.2 and 3.5.3 present observations on route struc-
ture and performance metrics respectively.

3.5.1. Test cases
Small instances are composed of an 8-node set and a 10-node set. For each set, five location distributions are paired

with five demand distributions. The location distributions locate the nodes on a 100 � 100 square with the depot at the
center; recipient nodes are either (1) clustered (C), (2) evenly distributed (E), or (3) randomly distributed (R1, R2, R3). The
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demand distributions allow demands to range between 1 and 4 pallets. Demand distributions are either (1) clustered by
location creating low and high demand regions (C), (2) evenly distributed (E), or (3) randomly distributed (R1, R2, R3).
Detailed descriptions of the instances are available in Appendix B of the expanded version of this paper (Huang
et al., 2010). Vehicles have a capacity of 10 pallets (C = 10); and the fleet size is one more than the minimum for
feasibility K ¼

P
idi=C

� �
þ 1

� �
. Travel costs are set to be the Euclidean distance between two nodes rounded to the

nearest integer.
To choose preferred options among multiple optima, the following objectives are used: Z1 + aZ2 for LMDP(Z1), Z2 + aZ1 for

LMDP(Z2), and Z3 + aZ1 for LMDP(Z3), where a is chosen to be small enough to ensure that the primary objective is mini-
mized. The metric Z3 is not used as a secondary objective due its complexity and the associated computational time. For
the LMDP(Z3), Z1 is used as the secondary objective because efficacy (as measured by Z2) is already partially addressed in
the Z3 metric.

A C++ program using the C++ API of ILOG Concert Technology (ILOG, 2008) is developed; the mixed integer programs are
solved using Concert 2.7 and CPLEX 11.2. The program is run on 2.4 GHz 64-bit (4 MB L2 cache) CPU machine with 8 GB of
RAM. To ensure computational tractability, we reduce the size of the candidate route set R, by restricting R to only the fea-
sible routes that do not visit more than five nodes. The restriction should not have a large impact on LMDP(Z2) and LMDP(Z3)
solutions as the solutions aim to balance the demand roughly equally; however, the restriction may affect LMDP(Z1) solu-
tions where longer routes reduce the fleet’s travel time. Therefore, although these solutions are optimal for the given setting,
we should note that the setting is restricted by route length. Lastly, a 60-h limit is imposed on the solver for each LMDP
instance.

3.5.2. Route structure
Several observations can be made regarding the general nature of the optimal solutions for the different models of the

LMDP. To illustrate these observations we provide a set of solutions for one 10-node instance of the LMDP variations in
Fig. 5. For each of the diagrams, with the exception of the depot at the center, the size of the node is representative of
the amount of demand requested by the node.

In Table 2, we present aggregate results for all instances. Columns 3 and 4 present the percentage of solutions which use
the minimum number of vehicles and the percentage of solutions that use all available vehicles (one more than minimum, in
this case). Column 5 displays the percentage of routes in which the last node visited coincides with the node on the route
that is farthest from the depot. Columns 6 through 9 display the average arrival time of nodes for the different levels of node
demand.
Demands
1
2
3
4

(a) LMDP (Z1) (b) LMDP (Z2) (c) LMDP (Z3)

Fig. 5. Optimal solutions for Z1, Z2 and Z3 for a 10-node instance.

Table 2
Summary results for route structure across 8-node and 10-node instances.

Number of nodes Model Vehicles used % Last node visited is farthest Average arrival time by node demand

Min (%) Min + 1 (%) 1 2 3 4

8-Nodes LMDP(Z1) 88 12 49 85.0 70.2 58.8 49.1
LMDP(Z2) 0 100 89 60.5 52.6 47.5 42.4
LMDP(Z3) 0 100 93 53.3 51.9 50.9 46.3

10-Nodes LMDP(Z1) 80 20 38 88.3 72.0 56.3 42.7
LMDP(Z2) 0 100 79 62.7 53.1 45.5 39.4
LMDP(Z3) 0 100 86 55.8 53.5 48.4 41.2
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Observation 1. Number of vehicles
With only a few exceptions, the optimal LMDP(Z1) solution uses the minimum number of vehicles (see columns 3 and 4 of

Table 2). This point is made in Campbell et al. (2008); given the triangle inequality, minimizing travel costs results in the use
of as few vehicles as possible. Instances where the LMDP(Z1) does not use the minimum number of vehicles occur when mul-
tiple optima exist and the use of an extra vehicle can reduce service times without adding travel time. These exceptions oc-
cur in 12% of the 8-node instances and 20% of the 10-node instances. Optimal solutions to the LMDP(Z2) and LMDP(Z3) use all
available vehicles which reduces the service time of the nodes at the cost of increased travel time. In Fig. 5a, the LMDP(Z1)
solution splits delivery to one node with demand of four pallets to use a total of three vehicles instead of four.

Observation 2. Route shape
Routes in optimal LMDP(Z1) solutions tend to be hooked-shaped, which is consistent with earlier studies of the VRP

(Daganzo, 2005). By curving back toward the depot, the routes reduce the distance from the final recipient back to the depot.
In contrast, in the optimal solutions to the LMDP(Z2) and LMDP(Z3), where the line haul from the final recipient back to the
depot is not measured in the objective, optimal routes tend to be more ray-shaped, moving away from the depot (as seen in
Fig. 5b and c). We quantify these trends over all instances by measuring the percent of solutions in which the last node
visited on a route is the farthest node from the depot on that route. For the 8-node instances, the last node visited is the
farthest from the depot 49% of the time in the LMDP(Z1) solutions, 89% of the time in the LMDP(Z2) solutions, and 93% of
the time in the LMDP(Z3) solutions. For the 10-node instances, these percentages are 38%, 79%, and 86%, respectively.

Observation 3. Impact of node demand
In the LMDP(Z2), where service time is measured in the objective, the routes are highly demand driven. Nodes that have

high demand are served at a premium, often at the expense of recipients with low demand. Nodes with demand 1 are often
served last on their respective routes. In Fig. 5b, the LMDP(Z2) solution crosses two routes so that a high-demand node may
be served earlier. In the LMDP(Z3), as long as the nodes are visited by a single vehicle, the nodes are served without regard to
their demand level. Thus, the smallest nodes are treated more equally; they are served by the closest route and are not by-
passed for nodes with higher demands. To quantify this observation we evaluate the average arrival time of nodes based on
the demand of the node. This highlights two interesting trends. The LMDP(Z1) solution has longer arrival times for all nodes
because LMDP(Z1) solutions use fewer vehicles. The use of fewer vehicles means that the nodes on average receive their de-
mand at later times. Further, nodes with lower demand often have longer arrival times as they are more likely to share their
route with more nodes; again longer routes translate to longer arrival times. While each model exhibits a higher average
arrival time for low-demand nodes, the deviation in arrival time is much lower in the LMDP(Z3) solutions than the other
models. Coincidentally, the hook-like characteristics of the routes in the LMDP(Z2) solution result from node demand as
the routes curve back to serve the smallest nodes that had been ignored earlier.

3.5.3. Metric performance
Each model (LMDP(Z1), LMDP(Z2) and LMDP(Z3)) is evaluated relative to the five metrics (Z1, Z2, Za

3; Zb
3 and Z3). To evaluate

a solution with respect to metrics Z1, Z2, and Z3, we calculate the percentage difference between the metric value of the solu-

tion and the metric value of the optimal solution for that metric. For example, let ZLMDPðZ1Þ
j be the Zj metric value of the opti-

mal LMDP(Zk) solution and Z�j ¼ Z
LMDPðZjÞ
j , then to evaluate the optimal LMDP(Z1) solution with respect to Z2 we calculate

DLMDPðZ1Þ
2 ¼ ZLMDPðZ1Þ

2 � Z�2
� �

=Z�2. For the metrics Za
3 and Zb

3, the percent difference is taken from the best solution among the

LMDP(Z1), LMDP(Z2) and LMDP(Z3) solutions.
Table 3 summarizes the results of the 8-node and 10-node instances by aggregating the 25 instances with different de-

mand and location distributions. Several observations may be made from Table 3.
Table 3
Summary of deviation in metric values for LMDP models.

Model Optimality gap by metric

8-Node instances 10-Node instances

D1 D2 D3 Da
3 Db

3
D1 D2 D3 Da

3 Db
3

LMDP(Z1) Avg – 29% 33% 65% 64% – 29% 34% 72% 68%
Max – 65% 74% 135% 119% – 61% 68% 332% 222%
Min – 7% 7% 0% 0% – 3% 2% 0% 0%

LMDP(Z2) Avg 18% – 1% 2% 2% 17% – 2% 7% 4%
Max 39% – 11% 15% 13% 39% – 14% 49% 30%
Min 5% – 0% 0% 0% 2% – 0% 0% 0%

LMDP(Z3) Avg 17% 2% – 0% 0% 17% 2% – 2% 1%
Max 38% 33% – 5% 2% 39% 13% – 23% 18%
Min 8% 0% – 0% 0% 1% 0% – 0% 0%



Table 4
Summary of deviation in metric values for LMDP models for 8-node instances with minimum number of vehicles.

Model Optimality gap by metric

D1 D2 D3 Da
3 Db

3

LMDP(Z1) Avg – 8% 12% 17% 15%
Max – 32% 56% 109% 74%
Min – 0% 0% 0% 0%

LMDP(Z2) Avg 8% – 5% 10% 11%
Max 26% – 32% 54% 38%
Min 0% – 0% 0% 0%

LMDP(Z3) Avg 7% 4% – 1% 1%
Max 29% 21% – 23% 18%
Min 0% 0% – 0% 0%
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Observation 4. The differences in route structure between the efficiency model (LMDP(Z1)) solutions and solutions of the
other variations translate into large differences in metric values.

By not considering travel from the last recipient to the depot, travel costs increase by 17% to 18%, on average, when Z1 is
not the primary objective. The LMDP(Z2) and LMDP(Z3), by minimizing arrival times, implicitly reduce distance, yet the
LMDP(Z1) does not consider efficacy and equity, and these metrics are far from optimal when Z1 is the primary objective,
with average gaps of 29% for Z2, 65–72% for Za

3, and 64–68% for Zb
3.

Observation 5. The similarities in route structure of efficacy and equity (LMDP(Z2) and LMDP(Z3)) solutions yield similar
metric values. However, differences in equity among the solutions increase when capacity is reduced

In contrast to the large difference observed between the LMDP(Z1) solutions and the other models, the optimal LMDP(Z2)
and LMDP(Z3) solutions have similar metric values; in many instances, the solutions are identical.

In terms of Za
3 and Zb

3, the LMDP(Z3) solutions perform slightly better than the LMDP(Z2) solutions. In the 8-node instances,
the LMDP(Z2) averages 2% worse than the best solution while the LMDP(Z3) averages less than 1% worse. In the results from
the 10-node instances there is a larger gap. For Za

3 and Zb
3, the LMDP(Z2) is 7% and 4% worse than the best solutions, respec-

tively, while the LMDP(Z3) is only 2% and 1% worse. We conjecture that the difference is due to a reduction in the amount of
slack capacity that is available for the 10-node instances. This is supported by results with fewer vehicles as a reduction in
number of vehicles results in a reduction of capacity.

Table 4 presents results for the 8-node instances when the number of available vehicles is reduced to the necessary min-
imum. We could not obtain LMDP(Z3) solutions for many 10-node instances in the time limit.

Observation 6. When the three models are constrained to use the minimum number of vehicles, the differences in metric
values between the LMDP(Z1) solutions and the other two LMDP models decreases.

The loss of the extra vehicle results in closer metric values between the optimal solutions of the LMDP(Z1) and the optimal
solutions of the LMDP(Z2) and LMDP(Z3); in one instance, the solutions are identical for the three models. We note the de-
crease in optimality gap when comparing Table 4 with Table 3. With respect to Z1, the optimal LMDP(Z2) and LMDP(Z3) solu-
tions average only 8% and 7% higher than the optimal LMDP(Z1) solutions, respectively, and the LMDP(Z1) has Z2 and Z3

metric values averaging only 8% and 12% higher than the optimal solutions for the LMDP(Z2) and LMDP(Z3), respectively.
Reducing the number of vehicles effectively reduces capacity, and consistent with Observation 5, the differences between

the LMDP(Z2) model and the LMDP(Z3) model become more prominent. With respect to Z2, the LMDP(Z3) performs 4% worse
and with respect to Z3, the LMDP(Z2) performs 5% worse. Most notable is that with respect to the equity metric Zb

3, the opti-
mal LMDP(Z2) solutions average 10% worse than the best solution compared to 1% of the optimal LMDP(Z3) solutions. We
posit that as total demand approaches the total capacity of the fleet, the percent difference in solutions becomes similar
to the example in Section 3.3, where the LMDP(Z3) exhibits a large improvement in equity at a nominal cost to efficiency
and efficacy.

3.5.4. Computational effort
Table 5 reports the time taken in CPU minutes. The LMDP(Z2) requires the least amount of time to solve. The LMDP(Z3)

requires the most time, occasionally reaching the 60-h limit. For larger instances, heuristics are needed to solve the LMDP;
therefore we propose heuristics in Section 4.

4. Large scale LMDP instances

The previous section shows how route structure and metric values depend on the choice of objective function for the
LMDP. Importantly, the results also show that the solution times for the LMDP(Z3) grow quickly. This section proposes heu-
ristics to solve larger instances of the LMDP. A greedy random adaptive search procedure (GRASP) framework is introduced
in Section 4.1 to solve the LMDP(Z1) and LMDP(Z2). In Section 4.2, we present a new approach for LMDP(Z3) since the



Table 5
Solution times in CPU minutes.

Model Demand distribution Time in CPU minutes
Location distribution

C E R1 R2 R3 C E R1 R2 R3

8-Node instances 10-Node instances

LMDP(Z1) C 3 1 1 1 1 23 30 26 21 100
E 1 2 1 1 1 12 12 19 12 20
R1 1 14 6 6 1 24 40 23 88 31
R2 720 10 1 6 1 722 50 57 66 57
R3 1 1 1 2 1 21 20 27 35 23

LMDP(Z2) C 0 0 0 0 0 1 1 1 3 1
E 2 0 0 0 0 5 23 6 3 3
R1 0 0 0 0 0 2 2 2 1 1
R2 0 0 0 0 1 21 2 2 3 3
R3 0 0 0 0 0 1 2 1 1 1

LMDP(Z3) C 48 1974 10 130 13 117 3619 3541 1014 3614
E 176 3613 40 223 97 3611 3607 3616 766 3620
R1 15 191 138 982 840 32 193 1098 897 3618
R2 6 369 153 2053 964 113 507 2275 1082 3615
R3 62 1390 8 66 13 15 29 695 96 3631
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methods used for the LMDP(Z1) and LMDP(Z2) cannot address the complexities of this model. Section 4.3 presents a compu-
tational study of the large instances.

4.1. Heuristics for the LMDP(Z1) and LMDP(Z2)

To solve the LMDP(Z1) and LMDP(Z2), we utilize a GRASP framework (Feo and Resende, 1995). GRASP is a metaheuristic in
which a set number of repetitions is executed. Each repetition consists of a random constructive phase and a local improve-
ment phase. In the constructive phase, a feasible solution is iteratively constructed. At each iteration, an insertion of a reci-
pient into an existing route is selected randomly from a restricted candidate list of insertions which pass an evaluation
function. The constructive phase is followed by an improvement phase where the constructive solution is improved via a
deterministic local search to find a local optima. The best solution among all the repetitions is kept. Further details including
a flowchart of the heuristic is provided in Huang et al. (2010).

4.2. Heuristic for the LMDP(Z3)

The heuristic for the LMDP(Z3) shares some similarities to the GRASP framework in that the heuristic employs a set num-
ber of repetitions. Each repetition is evaluated with respect to Z3 and the best solution is kept. However, the constructive and
improvement methods of the LMDP(Z1) and LMDP(Z2) do not adapt well to the LMDP(Z3) due to factors described in the fol-
lowing paragraph. Therefore, we pattern a heuristic for the LMDP(Z3) using an alternative two-phase approach to incorporate
the goals of equity, efficiency and efficacy. A detailed description of the heuristic (particularly the 2nd phase) is available in
Huang et al. (2010).

In the LMDP(Z3), the dependency between routes prevents the decomposition of the problem by route; it is difficult to
determine the contribution towards the Z3 value from a single route. In addition, the value of Z3 is very sensitive to the allo-
cation decisions; the swapping of a single pallet from one delivery to another may have a large impact on the objective value.
For these reasons, it is difficult to construct a solution or modify a solution to improve the objective as is done for the
LMDP(Z1) and LMDP(Z2).

We draw on the insight that the optimal solution for the LMDP(Z3) delivers a portion of demand to each node quickly and
then distributes the remainder. The two-phase approach comprises of (1) an initial phase to deliver a fraction, b, of the de-
mand to each node within a time s and (2) a second phase to satisfy the remainder of the demand either by increasing the
initial delivery amounts or by appending additional stops onto the routes. Note that the deliveries in the latter option are
appended to the end of the routes rather than inserted into a route to ensure that the initial phase deliveries are performed
before s. Equity is incorporated by ensuring that each node receives a portion of its demand initially limiting the deviation in
service level across nodes; efficacy and efficiency are incorporated via effective solutions for the two phases. The approach
may be generalized to use node-specific bi values to represent different urgency levels among the nodes.

The resulting solution is dependent on the parameter values of b and s. A large b value and a small s value correspond to
serving most of the demand quickly; however, this is often infeasible. For a given b, if s is too small, the instance is infeasible
as it is not possible to serve b of the demand within s. While one might expect that a large value of b would result in more
equitable solutions, this is not always the case. A large value for b often requires a large value of s to ensure feasibility. When
s is large, significant disparity in service levels may appear in the initial phase. A small value for b leaves opportunity for the
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service level to deviate in the second phase. Fortunately, as shown in Section 4.3.4, we find that the two-phase approach is
fairly robust with respect to the choice of b.

In the initial phase, to ensure feasibility, the value of b is set a priori and the value of s is set after the initial phase. To
deliver the initial demand, we perform one repetition of the LMDP(Z2) heuristic on the graph G = (N0, A) with reduced de-
mands dbdie for all i e N. The solution to the LMDP(Z2) for the reduced demand problem produces feasible routes that quickly
deliver the initial demand; s is set to be the latest arrival time in this solution. Using the example from Section 3.3.4, Fig. 6a
shows the solution after the initial phase when b = 0.75. This solution yields a value of s = 6.

The second phase is initialized with routes and deliveries from the initial phase; node i begins with an unsatisfied demand
equal to di � dbdie. We refer to this demand as ‘‘unassigned demand’’ since these units are not associated with routes at the
start of the second phase. The heuristic designates each vehicle as capacity feasible or capacity infeasible based on a conser-
vative estimate, which calculates the load on the vehicle plus the load from unassigned demand of nodes visited by the vehi-
cle minus the vehicle capacity. A positive value represents a capacity infeasible vehicle and a negative value represents a
capacity feasible vehicle. Delivery amounts are increased by di � dbdie for all nodes on capacity feasible vehicles. For nodes
visited by multiple vehicles, the heuristic increases the delivery amount to the node on the first vehicle found; for other vehi-
cles, the delivery amount is not increased.

The heuristic then iteratively serves the unassigned demand. In each iteration, for each node with unassigned demand,
the heuristic finds the cheapest way (in terms of travel time) to append the node to a capacity feasible vehicle. The cheapest
option among all such nodes is executed. The feasibility status is updated for vehicles: if a vehicle becomes capacity feasible
(i.e., the remaining nodes with unassigned demand on that route may be now served by the vehicle), the delivery amounts
are increased to fully satisfy demand. The loop is repeated until all demand is assigned. Like its LMDP(Z1) and LMDP(Z2)
counterparts, the heuristic runs for 5000 iterations and the best solution retained.

Fig. 6b shows the final solution for the example using this approach. The route used by vehicle 1 is extended to deliver one
pallet to nodes 2 and 3. The amount delivered to node 1 by vehicle 1 is increased to four pallets. The route used by vehicle 2
does not change. In this example, the solution is the optimal LMDP(Z3) solution.
4.3. Computational study

In Section 4.3.1, we evaluate the ability of the heuristic to achieve high quality solutions for the small instances. For the
large scale experiments, instances developed from the 100-node test cases from (Solomon, 1987) for VRP with Time Win-
dows (VRPTW) (available at http://neo.lcc.uma.es/radi-aeb/WebVRP/) are used. In the original data set, there are four unique
location configurations; instances differ by demands and time windows. Configurations C1 and C2 correspond to data sets
with clustered locations; configuration R has random locations and configuration RC is a combination of random and clus-
tered locations. For each C1 and C2 configuration, 10 instances are created by assigning nodes a random demand between 1
and 5; 20 instances are created for each R and RC configuration.
4.3.1. Performance against optimal restricted solutions
We compare the heuristic solutions against the route-length restricted optimal solutions for the LMDP(Z1), LMDP(Z2) and

LMDP(Z3) for the 8-node and 10-node instances. Overall the heuristics perform very well. The LMDP(Z1) heuristic matches or
performs better than the solver solution in all but one instance with a gap of 3.8%. Because the heuristics are not restricted to
routes that visit at most five nodes, the LMDP(Z1) heuristic does on occasion result in lower travel times than the solution
found with CPLEX. The LMDP(Z2) heuristic finds optimal solutions for every instance. The LMDP(Z3) heuristic achieves the
optimal Z3 value in all but two of the 10-node instances; in those cases, the gaps are 4.1% and 1.2%. Run times for the heu-
ristics for the 8-node and 10-node instances for all models are less than a second of CPU time.
Fig. 6. Solution using two-phase approach with b = 0.75.

http://www.neo.lcc.uma.es/radi-aeb/WebVRP/


Table 6
Summary of deviation in metric values for LMDP heuristics for large instances.

Heuristic for Gap by metric

D1 (%) D2 (%) D3 (%) Da
3 (%) Db

3 (%)

LMDP(Z1) Avg 0 27 31 63 37
Max 0 41 43 115 63
Min 0 15 14 6 9

LMDP(Z2) Avg 16 1 4 8 4
Max 26 3 9 50 21
Min 9 0 1 0 0

LMDP(Z3) Avg 16 1 0 1 0
Max 26 11 0 18 5
Min 6 0 0 0 0
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4.3.2. Metric performance for large instances
Since there is no guarantee of optimality in the heuristic solutions, in the large instances, we evaluate the solutions with

respect to each metric by calculating the percent difference between the metric value for that solution from the best solution
for that metric among the three heuristic solutions. Table 6 aggregates the 60 large instances and presents the percent dif-
ference between each heuristic and the best solution among the heuristics. Results for each location configuration is pro-
vided in Huang et al. (2010), but the three location types do not exhibit a large difference; hence, results presented here
are aggregated over the 60 instances.

While it is intuitive that each heuristic solution should perform its best on the model it attempts to solve, the LMDP(Z3)
heuristic solution often outperforms the LMDP(Z2) heuristic solution with respect to Z2. The trends in relative metric values
are similar to the observations seen in Section 3.5.3 in that the metric values for the solutions for the LMDP(Z2) model and
LMDP(Z3) model are similar to each other and differ more greatly with the solutions for the LMDP(Z1); furthermore, while the
LMDP(Z2) and LMDP(Z3) exhibit similar solutions, the LMDP(Z3) in general yields solutions that are more equitable.

Averaging over all the instances, for the Z2 and Z3 metrics, the LMDP(Z1) solutions average 27% and 31% respectively high-
er than the best heuristic solution for the respective metrics. With regards to the Z1 metric, the heuristic LMDP(Z2) and
LMDP(Z3) solutions both average 16% higher than the best heuristic Z1 solutions attained by the LMDP(Z1) heuristic. With
respect to the equity metric Zb

3, the optimal LMDP(Z2) solutions are on average 4% higher than the best heuristic solution
while the LMDP(Z3) solutions are on average less than 1% higher.

To examine the effect of excess capacity, we alter the number of vehicles and study its effect. Let M denote the minimum
number of vehicles necessary for feasibility ðM ¼ 1

C

P
idi

	 

Þ. Table 7 presents the percentage differences with M, M + 1, M + 2,

and M + 3 vehicles.
As the number of available vehicles increases, the percent difference between the heuristic LMDP(Z1) solution and the

best Z2 and Z3 heuristic solution increases. This occurs because it is preferable to use the minimum number of vehicles in
the LMDP(Z1), while the opposite is true for the LMDP(Z2) and LMDP(Z3). We also note that as more vehicles become avail-
able, the LMDP(Z2) and LMDP(Z3) metric values become closer; the extra capacity of the vehicles allows for greater parallel
delivery reducing the impact of node demand.

4.3.3. Route structure for large instances
Unlike the small instances investigated in Section 3.5, the solutions in the large instances exhibit demand splitting among

multiple vehicles. The choice of model also influences the degree to which visits to a node are split among multiple vehicles.
For instance, the LMDP(Z3) solution should have a higher number of nodes visited by multiple vehicles due to splitting for
both capacity and equity reasons.
Table 7
Average deviation in metric values for LMDP model heuristics solutions with different numbers of vehicles.

Heuristic for K = M K = M + 1

D1 (%) D2 (%) D3 (%) Da
3 (%) Db

3 (%) D1 (%) D2 (%) D3 (%) Da
3 (%) Db

3 (%)

LMDP(Z1) 0 24 29 55 33 0 27 31 63 37
LMDP(Z2) 19 4 11 34 18 16 1 4 8 4
LMDP(Z3) 15 0 0 1 0 16 1 0 1 0

Heuristic for K = M + 2 K = M + 3

D1 (%) D2 (%) D3 (%) Da
3 (%) Db

3 (%) D1 (%) D2 (%) D3 (%) Da
3 (%) Db

3 (%)

LMDP(Z1) 0 32 35 73 44 0 35 38 79 51
LMDP(Z2) 20 1 3 7 3 23 0 3 7 3
LMDP(Z3) 19 1 0 1 1 23 0 0 1 0



Table 8
Average number of split deliveries in 100-node instances.

Heuristic for Average number of nodes visited by:

1 vehicle 2 vehicles 3 + vehicles

LMDP(Z1) 93.38 6.60 0.02
LMDP(Z2) 90.65 8.87 0.48
LMDP(Z3) 89.52 9.73 0.75
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Fig. 7. Percentage of split-demand nodes relative to b.
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Fig. 8. Percent change of heuristic LMDP(Z3) metric values from base case relative to b.
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Table 8 shows the number of vehicles visiting each node for each of the heuristic solutions to the LMDP(Z1), LMDP(Z2) and
LMDP(Z3). As expected, the heuristic for the LMDP(Z3) exhibits more splitting than the other two models albeit by a slim
margin. Further, the splitting is not excessive as the large majority of the nodes are served by only one vehicle. The emer-
gence of splitting in the solutions impacts route structure; because the LMDP(Z3) heuristic attempts to deliver to each node a
fraction of its demand, some routes must double back to deliver to nodes whose demand cannot be satisfied before time s. As
a result, the ray-like structure seen in the routes of the LMDP(Z3) for small problems is no longer seen in the larger cases.
4.3.4. Choice of b for LMDP(Z3) Heuristic
This section investigates how the value of b, the fraction of demand that is served in the initial phase of the LMDP(Z3)

heuristic, impacts the LMDP(Z3) solutions. Specifically, we examine how the choice of b affects the degree of splitting and
metric values of the LMDP(Z3) solutions.

Fig. 7 shows the effect of b on splitting. The curve shows the percentage of nodes that are visited by multiple vehicles in
the LMDP(Z3) solutions with respect to b aggregated across the 60 large instances. The discrete nature of the curve is due to
the ceiling function when delivering dbdie.

Splitting is minimal when b is close to 0 or close to 1. When b = 0, the LMDP(Z3) heuristic reduces to its second phase in
which splitting for equity does not occur. At this point 10% of the nodes are visited by multiple vehicles due to vehicle capac-
ity. As b increases, the number of split nodes increases peaking at 18% in the interval between b = 0.5 and b = 0.6. As b in-
creases further, the amount of nodes split drops off rapidly. When b = 1, the LMDP(Z3) heuristic reduces to the initial
phase of the heuristic and thus is equivalent to the LMDP(Z2) heuristic; therefore no splitting is done for equity reasons.

Fig. 8 shows how the metric values of the LMDP(Z3) change as b changes. For each metric, we plot the percent difference
in metric value with respect to b compared to the metric value when b = 0.25, averaged over all 60 instances.

Overall, the choice of b does not have a large impact on the metric values of solutions. With the exception of the Za
3 metric,

the values do not change by more than 5%. However, small trends are observed. The Z1 and Z2 metric values increase (de-
crease) with increases (decreases) in node splitting observed in Fig. 7. As more nodes are visited by multiple vehicles to im-
prove equity, the distance traveled and total wait times increase. Conversely, the metric values for the equity metrics Za

3; Z
b
3

and Z3 improve when b takes values that encourage more splitting. Combining these results and factoring the rate of change
in the curves in Fig. 8, a small value for b achieves good improvements in efficiency and efficacy, with a modest loss of equity.

One can set b considering the tradeoffs among metrics and characteristics of the relief setting. For instance, if efficiency
and efficacy are emphasized, Fig. 8 suggests a low value of b is preferable; if equity is more of a concern, a higher value of b
may be more appropriate.
5. Concluding remarks

This paper formulates efficacy and equity metrics and shows that there is a significant difference between solutions that
focus on both efficacy and equity and solutions that focus on the traditional commercial concern of efficiency. In the follow-
ing sections, we discuss the implication of our findings.
5.1. Practical implications

The results from this paper provide several insights for relief operations. In practice, relief organizations tend to utilize a
vehicle fleet consisting of many small vehicles, unlike in commercial settings where large vehicles are available and may be
preferable to achieve economies of scale. The organizations acquire transportation resources locally as maintaining and ship-
ping large vehicles long distances, especially overseas, can be very expensive and time consuming. Further, local drivers are
more knowledgeable of the regions’ geography and customs. Characteristics of the post-disaster transportation network af-
fect vehicle selection decisions; for instance, remote locations in a rural area may only be accessed by small trucks. Obser-
vation 1 suggests that operating a large number of small vehicles has the additional benefit of resulting in more effective and
equitable aid distribution at the expense of a modest increase to traveling and operating costs (e.g., costs of fuel, drivers, etc.).

While having a large fleet of small vehicles is beneficial in improving the efficacy and equity of relief deliveries, operating and
coordinating a large fleet might be difficult for relief logisticians in the field. For instance, the logistics coordinator of the Finnish
Red Cross was responsible for coordinating a fleet of 150 trucks from a single warehouse during the relief operations after the
Pakistan earthquake in 2005 (Mantyvaara, 2010). While there is an increasing effort to develop and improve the logistics soft-
ware in the relief sector, the current software is mostly used for tracking, monitoring and reporting purposes and lacks modules
that would support operational decisions. Indeed, routing and delivery scheduling decisions are made mostly according to the
insights and experiences of the logisticians. Our heuristics described in Section 4 are efficient and easy to understand, and hence
could be a valuable decision support tool to manage large scale last mile operations, if embedded in such software. Observations
2 and 3 focusing on route shape dependent on objective and node demand represent a first step to developing even simpler
rules-of-thumb so that a coordinator may make decisions without advanced computing resources.

In humanitarian relief environments, there may be large differences between the needs of populations at different loca-
tions. Although Formulation (1) does not explicitly differentiate populations in terms of their vulnerabilities, our heuristic
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approach can easily incorporate the criticality and urgency of the needs at different locations. Specifically, relief supply deliv-
eries can be prioritized by modifying bi and s values so that vehicles can reach more vulnerable locations first.

While setting the b values, it is also important to evaluate the characteristics of the relief network. As discussed earlier,
while splitting may help achieve more equitable and effective solutions, it also increases travel costs. Moreover, in regions
where the transportation network is damaged and security is a concern, or when access to certain locations is problematic
for other reasons such as poor weather conditions, relief organizations may prefer satisfying the demand of a location in a
single delivery if possible. In such cases, a small b value leading to few splits may be more reasonable.

5.2. Future work

One avenue of extension to this work is to analyze the LMDP variations under uncertainty, both in relaxing demands and
travel times. In the chaotic environment that follows the immediate aftermath of a disaster there is significant uncertainty.
For instance, demand is not immediately known and can only be roughly estimated. Also, travel times between two locations
can be uncertain due to damaged infrastructure and unreliable information regarding the road conditions. Therefore, insights
into the behavior of efficiency, efficacy, and equity under a stochastic setting would be valuable.

Another avenue of focus is to use the insights gained to generate rule-of-thumb solutions that are easy to find and simple
to implement. Because relief agencies often lack technology and computational resources, solutions which may be imple-
mented by hand would be valuable. Rule of thumb solutions would also be quick to calculate and in planning stages could
serve as an approximation for costs until more sophisticated solutions are found. Our analysis of stylized distribution prob-
lems is an important first step in this area.

To gather insight on how to address concerns of efficiency, efficacy and equity, the LMDP has been separated into three
variations. However, in practice, agencies must handle these concerns concurrently. Therefore, it may be important to con-
sider a multi-objective variation of the LMDP which combines the three factors into a single objective.
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Appendix A. Proofs of the analytical properties

Property 3.2. The result from Property 3.1 holds for LMDP(Z2).
Proof. Properties 3.1 and 3.2 share a similar argument: for every solution in which two nodes i and j are visited by two vehi-
cles 1 and 2, we show that there exists a solution in which only one of the nodes is visited by both vehicles that performs, if
not better, equally as well.

Let yip(k) be the amount delivered to node i by vehicle k and aip(k) to be the arrival time of the delivery. Without loss of
generality, define node i and vehicle 1 so that yip(1) = min {yip(1), yip(2), yjp(1), yjp(2)}. Consider the following three cases and
their corresponding reallocation of the delivery amounts such that there exists only one route that serves both nodes:

Case 1: (aip(1) � aip(2)) P (aip(1) � aip(2)).

In this case, we use the following reallocation:
ynew
ipð1Þ ¼ 0 ynew

ipð2Þ ¼ yipð2Þ þ yipð1Þ ynew
ipð1Þ ¼ yipð1Þ þ yipð1Þ ynew

jpð2Þ ¼ yjpð2Þ � yipð1Þ
For each nodes i and j, the reallocation delivers the same amount as the initial allocation. Also, each vehicle devotes the same
amount of capacity. The new allocation is an improvement over the old one:
Z2ðx; yÞ � Z2ðx; ynewÞ ¼ aipð1Þyipð1Þ � aipð2Þyipð1Þ � ajpð1Þyipð1Þ þ ajpð2Þyipð1Þ P 0
Case 2: ðaipð1Þ � aipð2Þ < ðaipð1Þ � aipð2ÞÞ and yipð2Þ P yipð1Þ

We use the following reallocation:
ynew
ipð1Þ ¼ yipð1Þ þ yjpð1Þ ynew

ipð2Þ ¼ yipð2Þ � yjpð1Þ ynew
jpð1Þ ¼ 0 ynew

jpð2Þ ¼ yjpð2Þ þ yjpð1Þ

Z2ðx; yÞ � Z2ðx; ynewÞ ¼ �aipð1Þyjpð1Þ þ aipð2Þyjpð1Þ þ ajpð1Þyjpð1Þ þ ajpð2Þyipð1Þ > 0
Case 3: (aip(1) � aip(2)) < (aip(1) � aip(2)) and yip(2) < yip(1)
ynew
ipð1Þ ¼ yipð1Þ þ yipð2Þ ynew

ipð2Þ ¼ 0 ynew
jpð1Þ ¼ yjpð1Þ � yipð2Þ ynew

jpð2Þ ¼ yjpð2Þ þ yipð2Þ

Z2ðx; yÞ � Z2ðx; ynewÞ ¼ �aipð1Þyjpð2Þ þ aipð2Þyjpð1Þ þ ajpð2Þyjpð2Þ þ ajpð2Þyipð2Þ > 0



18 M. Huang et al. / Transportation Research Part E 48 (2012) 2–18
In each of the cases, the Z2 value is maintained or improved by a reallocation that sets the amount delivered by a vehicle to a
node to 0. The solution can be further improved by deleting the visit. Under the triangle inequality, the arrival time of all
nodes that were originally visited after the deleted node on the same route are reduced. Thus there exists an equal, if not
a better, solution where only one of the nodes is visited by both vehicles. h
Property 3.3. The result from Property 3.1 does not hold for LMDP(Z3).
Proof. Fig. 4d is a counterexample. Nodes 2 and 3 are visited by both routes. The demand at node 3 is split because vehicle 2
withholds one pallet so that node 2 may receive the pallet instead at time 6. Due to the convex disutility function in Z3, serv-
ing some demand early at all nodes is more important. h
Property 3.4. For each of the objective functions of the LMDP based on Z1, Z2 and Z3, there exists an optimal solution where
each route is run at most once.
Proof. Given that di 6 C"i e N, demand at a node can be fully satisfied through a direct delivery route. Therefore, a direct
delivery route is taken only once. To prove the property for more general cases, we focus on routes that visit more than
one node. Suppose there are two vehicles that run the same route that visits nodes i and j. However, such a route would con-
tradict Properties 3.1 and 3.2, which imply that for optimal solutions for LMDP(Z1) and LMDP(Z2) any subset of recipient
nodes with cardinality greater than 1 is served by at most one vehicle. Therefore, a particular route is taken at most once
under Z1 and Z2. For Z3, consider a reallocation used in the first case of the proof to Property 3.2. Because the vehicles are
performing the same route, the arrival time at the nodes are the same for the two vehicles. Therefore, skipping a node only
serves demand earlier and does not result in the demand of another node being served later. Hence the new route improves
Z3. h
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