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a b s t r a c t

Researchers often identify robust design as one of the most effective engineering design methods for con-
tinuous quality improvement. When more than one quality characteristic is considered, an important
question is how to trade off robust design solutions. In this paper, we consider a bi-objective robust
design problem for which Pareto solutions of two quality characteristics need to be obtained. In practical
robust design applications, a second-order polynomial model is adequate to accommodate the curvature
of process mean and variance functions, thus mean-squared robust design models, frequently used by
many researchers, would contain fourth-order terms. Consequently, the associated Pareto frontier might
be non-convex and supported and non-supported efficient solutions needs to be generated. So, the objec-
tive of this paper is to develop a lexicographic weighted-Tchebycheff based bi-objective robust design
model to generate the associated Pareto frontier. Our numerical example clearly shows the advantages
of this model over frequently used weighted-sums model.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction about his basic philosophy. The controversy surrounding Taguchi’s
In responses to the increasing pressure from global competi-
tiveness, there is a growing investment of efforts to enhance pro-
ductivity quality. It is also recognized that quality improvement
activities are most efficient and cost-effective when implemented
during the design stage. Based on this awareness, Taguchi (1986)
introduced a systematic method for applying experimental design,
which has become known as robust design. The primary goal of
this method is to determine the best design factor settings by min-
imizing performance variability and product bias, i.e., the deviation
from the target value of a product. Because of their practicability in
reducing the inherent uncertainty associated with design factors
and system performance, the widespread application of robust de-
sign techniques has resulted in significant improvements in prod-
uct quality, manufacturability and reliability at low cost.

Even though the ad hoc robust design methods suggested by
Taguchi remain controversial due to various mathematical flaws,
there is little disagreement among researchers and practitioners
ll rights reserved.
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assumptions, experimental design, and statistical analysis has been
well addressed by Leon, Shoemaker, and Kackar (1987),
Box (1988), Box, Bisgaard, and Fung (1988), Nair (1992), and Tsui
(1992). Consequently, researchers have closely examined alterna-
tives using well-established statistical tools from traditional theo-
ries of experimental designs. In an early attempt of such research,
Vining and Myers (1990) introduced the dual response approach
based on response surface methodology (RSM) as a superior alter-
native for modeling process relationships by separately estimating
the response functions of the process mean and variance; thus, it
achieved the primary goal of robust design by minimizing the pro-
cess variance while adjusting the process mean at the target. Del
Castillo and Montgomery (1993) and Copeland and Nelson
(1996) showed that the solution technique used by Vining and
Myers (1990) does not always guarantee optimal robust design
solutions, and proposed that the standard nonlinear programming
techniques such as the generalized reduced gradient method and
the Nelder–Mead simplex method may provide more effective
alternatives. The response surface modeling based on estimating
robust parameters and the dual response approach using fuzzy
optimization methodology were further developed by Khattree
(1996) and Kim and Lin (1998), respectively. However, Cho
(1994) and Lin and Tu (1995) pointed out that the robust design
solutions obtained from the dual-response model may not neces-
sarily be optimal since this model forces the process mean to be
located at the target value, so they proposed the mean-squared-
error model, relaxing the zero-bias assumption. While allowing
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some process bias, the resulting process variance was less than or
at most equal to the variance obtained from the Vining and Myers
model (1990); hence, the mean-squared-error model may provide
better (or at least equal) robust design solutions unless the zero-
bias assumption must be met. Further modifications to the
mean-squared-error model have been discussed by Jayaram and
Ibrahim (1999), Cho, Kim, Kimber, and Phillips (2000), Kim and
Cho (2000, 2002), Yue (2002), Miro-Quesada and Del Castillo
(2004), and Shin and Cho (2005).

Most robust design models discussed above find the robust de-
sign solutions for a single quality characteristic. Recently, Tang and
Xu (2002) and Koksoy and Doganaksoy (2003) provided the Pareto
solutions for the two process attributes (i.e., process bias and
variability) of a quality characteristic using an additive mean-
squared-error model based on weights. This weighted-sums
approach minimizes wðl̂ðxÞ � sÞ2 þ ð1�wÞr̂2ðxÞ where w, l̂ðxÞ,
r̂2ðxÞ, and s denote a weight, a response function of the process
mean, a response function of the process variance, and a desired
target value, respectively. In fact, this simple weighted-sums ap-
proach is often used by many researchers, and is considered one
of the standard optimization techniques (Steuer, 1986). However,
care must be exercised when this approach is applied to robust de-
sign problems. In most such problems, second-order models are
often adequate for representing l̂ðxÞ and r̂2ðxÞ, as evidenced by
Vining and Myers (1990), Del Castillo and Montgomery (1993),
Cho (1994), Lin and Tu (1995), Kim and Cho (2000, 2002), Tang
and Xu (2002), Koksoy and Doganaksoy (2003), and Shin and Cho
(2005, 2006). Further, Myers, Brenneman, and Myers (2005), Park
and Cho (2005), and Robinson, Wulff, Montgomery, and Khuri
(2006) developed a dual-response model using generalized linear
model, a robust design model using the weighted-least-square
method for unbalanced data, and a robust design model using a
generalized linear mixed model for nonnormal quality characteris-
tics, respectively. Govindaluri and Cho (2007) investigated the
effect of correlations of quality characteristics on robust design
solutions. Furthermore, Egorov, Kretinin, Leshchenko, and Kuptzov
(2007) and Kovach, Cho, and Antony (2008) studied on optimal
robust design solutions by using the indirect optimization algo-
rithm and physical programming, respectively. More recently, Shin
and Cho (2009) studied a bi-objective dual-response based robust
design problem which minimizes r̂2ðxÞ, subject to l̂ðxÞ ¼ target.

In real-world industrial settings, though, there are many situa-
tions in which a decision maker often needs a balance between two
quality characteristics. Reasonable control of one can apparently be
achieved only at the expense of sacrificing the other, and vice ver-
sa. When two quality characteristics are considered simulta-
neously, a bi-objective robust design problem needs to be solved.
A closer look at the mean-squared-error models for these two
quality characteristics reveals that ðl̂1ðxÞ � s1Þ2 + r̂2

1ðxÞ and
ðl̂2ðxÞ � s2Þ2 + r̂2

2ðxÞ then become fourth-order functions, which
are often neither convex nor concave. When at least one of the
objective functions for this bi-objective case has a higher order
than the second, it is known that obtaining all efficient solutions
with the weighted-sums approach is unlikely (Mattson & Messac,
2003; Messac, Sundararaj, Taapetta, & Renaud, 2000; Tind &
Wiecek, 1999). In a minimization problem, with weighted-sums
approach, supported efficient solutions which lie in the convex hull
of the Pareto front can be found. However, it is impossible to obtain
non-supported efficient solutions which are located on the non-
convex portions of the Pareto optimal set in the criterion space.
In that case, other methods such as lexicographic weighted
Tchebycheff (LWT) method or augmented weighted Tchebycheff
method needs to be used to find all efficient solutions.

In this paper, we formulate a bi-objective robust design prob-
lem in order to simultaneously consider two quality characteris-
tics, and develop a methodology to obtain the Pareto frontier
when objective functions have higher-order terms and objective
space is neither convex nor concave. Here, LWT approach is pre-
ferred over the frequently used weighted-sums approach because
regardless of the shape of the feasible region, all nondominated cri-
terion vectors returned by the LWT method are nondominated and
all nondominated criterion vectors are uniquely computable. Thus,
this method can be used in linear, nonlinear, finite-discrete, infi-
nite-discrete and polyhedral cases (Steuer, 1986). To our knowl-
edge, the LWT approach to a robust design problem has not been
addressed in the research community. The main purpose of this pa-
per is twofold. First, we show how experimental results can be
integrated into a robust design paradigm by proposing a LWT-
based robust design model. Then, we show how this proposed
model can effectively find the Pareto frontier with a numerical
example where we compare the results with the ones obtained
with the frequently used weighted-sums method.

Following this introduction, the response surface design is pre-
sented in Section 2, while the mean-squared-error model is dis-
cussed in Section 3. The proposed bi-objective robust design
model and the methodology to obtain the Pareto frontier are pre-
sented in Section 4. Finally, comparison studies are conducted in
Section 5, followed by the conclusion in Section 6.

2. Response surface design

Researchers have sought to combine Taguchi’s robust design
principles with conventional RSM to model the response directly
as a function of design variables. RSM is a statistical tool that is
useful for modeling and analysis in situations where the response
of interest is affected by several input factors. In addition, it is typ-
ically used to optimize this response by estimating a functional
form for an input response when the exact functional relationship
is not known or is very complicated. Therefore, RSM is often used
in model fitting and optimization. Using this method, the response
functions of the process mean and variance for each quality char-
acteristic are given by

l̂iðxÞ ¼ âi
0 þ xT ai þ xT Aix ð1Þ
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1k=2

âi
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2k=2 � � � âi
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and
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For both equations, the term x is the vector of the design factors,
ai and Ai represent the vector and matrix forms of the estimated
regression coefficients for the process mean for ith quality charac-
teristic, and bi and Bi represent the vector and matrix forms of the
estimated regression coefficients for the process variance for ith
quality characteristic. The ordinary method of least squares can
be used to determine all the coefficient vectors (ai, bi) and matrices
(Ai, Bi). The experimental format is shown in Table 1, where yijk
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denotes the ith quality characteristic, the jth experimental run, and
the kth replication. �y1j, �y2j, s2

1j, and s2
2j represent the sample means

of Y1 and Y2, and the sample variances of Y1 and Y2, respectively.

3. The mean-squared-error model

The dual-response model proposed by Vining and Myers (1990)
minimizes r̂ðxÞ subject to l̂ðxÞ ¼ s and x e X, where X denotes a
sample space. This dual-response model implies that the process
mean is adjusted to the target first and then the variability is min-
imized. As Cho (1994), Lin and Tu (1995), and Shin and Cho (2009)
demonstrated, this optimization scheme based on zero-bias logic
can be misleading due to the unrealistic constraint of forcing the
estimated mean to a specific value. Thus, they proposed the
mean-squared-error model to minimize ðl̂ðxÞ � sÞ2 + r̂2ðxÞ subject
to x e X. To illustrate this method graphically, the two process dis-
tributions – process A and process B as shown in Fig. 1 – are con-
sidered. Denoting s as the desired target value for both processes,
Fig. 1 clearly shows the advantage of the mean-squared-error mod-
el since further variability reduction would be achieved by allow-
ing a small magnitude of process bias.

4. The proposed bi-objective robust design paradigm

A bi-objective problem for a mean-squared-error robust design
model is as follows:

Minimize ½MSE1ðxÞ; MSE2ðxÞ�T ð3Þ
Subject to x 2 X

where MSE1(x) = ðl̂1ðxÞ�s1Þ2þ r̂2
1ðxÞ, MSE2(x) = ðl̂2ðxÞ�s2Þ2þ r̂2

2ðxÞ.
The set X of feasible solutions is closed and bounded, and the set of
all criterion vectors for all feasible solutions is denoted by W. A
point x� 2 X is an efficient solution of the bi-objective problem if
there does not exist another x 2 X for which MSE1(x) 6MSE1(x�)
Table 1
Experimental format.

Run X Replications (Y1) �y1j s2
1j

Replications (Y2) �y2j s2
2j

1 y111 . . . y11l �y11 s2
11

y211 . . . y21l �y21 s2
21

2 y121 . . . y12l �y12 s2
12

y221 . . . y22l �y22 s2
22

. . . . . . . . . . . . . . . . . . . . .

j y1j1 . . . y1jl �y1j s2
1j

y2j1 . . . y2jl �y2j s2
2j

. . . . . . . . . . . . . . . . . . . . .

g y1g1 . . . y1gl �y1g s2
1g y2g1 . . . y2gl �y2g s2

2g

Fig. 1. Process distribution functions.
and MSE2(x) 6MSE2(x�) with at least one strict inequality. The image
of an efficient solution x� in the objective space, is then a Pareto (non-
dominated, noninferior) solution.

The bi-objective problem in Eq. (3) is convex if the feasible set X
is convex, and the objective functions MSE1(x) and MSE2(x) are also
convex. It is a well-known fact that the set W on R2 of the convex
bi-objective problem is convex and that the Pareto set can be
viewed as a convex curve in R2. When the feasible set X is not con-
vex and/or at least one objective function is not convex, the
bi-objective problem becomes a non-convex problem. It is possible
that for some non-convex bi-objective problems, the set W on R2

remains convex in R2, a situation which is difficult to check
analytically (see Shin & Cho, 2009). In general, for non-convex bi-
objective problems, the Pareto curve may be non-convex and even
not connected. Since determining the general shape of the Pareto
curve is crucial for the approximation of this set, the knowledge
of the convexity is critical.

4.1. The criticism of the robust design model using the weighted-sums
method

In robust design literature, the weighted-sums approach is of-
ten utilized to generate efficient solutions of the bi-objective prob-
lem. Its associated applications are conducted by Lin and Tu
(1995), Cho et al. (2000), Tang and Xu (2002), Memtsas (2003),
Koksoy and Doganaksoy (2003), and Liu, Tang, and Song (2006).
A weighted-sums approach based on the mean-squared-error con-
cept can be formulated as follows:

Minimize w MSE1ðxÞ þ ð1�wÞ MSE2ðxÞ ð4Þ
Subject to x 2 X

where 0 6 w 6 1. The solutions of the weighted-sums approach as
shown in problem (4) is Pareto optimal if the weighting coefficient
is positive. While this weighted-sums method can generate all the
efficient solutions of convex bi-objective problems, it cannot, in
general, find all efficient points of non-convex problems (Tind &
Wiecek, 1999). With this method, only supported efficient solutions
which lie in the convex hull of the Pareto front can be found, how-
ever non-supported efficient solutions which lie in the non-convex
portions of the Pareto front cannot be found. Further, drawbacks of
the weighted-sums method are reported by Das and Dennis (1997),
Mattson and Messac (2003), and Shin and Cho (2009). Solving the
robust design optimization defined in Eq. (4), MSE1(x) and MSE2(x)
would be of a fourth-order function when l̂1ðxÞ and l̂2ðxÞ are qua-
dratic; hence, ðl̂1ðxÞ � s1Þ2 þ r̂2

1ðxÞ and ðl̂2ðxÞ � s2Þ2 þ r̂2
2ðxÞ would

be neither convex nor concave. Even in the simplest practical cases,
we suggest a lexicographic weighted Tchebycheff formulation for
this type of bi-objective robust design optimization problem when
non-convex Pareto frontiers are potentially present.

4.2. The proposed LWT-based robust design optimization

The lexicographic weighted Tchebycheff (LWT) formulation
of this problem is given as:

lex min fa; eTðu� u�Þg
s:t a P kðMSE1ðxÞ � u�1Þ

a P ð1� kÞðMSE2ðxÞ � u�2Þ
x 2 X

ð5Þ

where k > 0 is the weight, u�i (i = 1, 2) is the utopia point defined as
u�i ¼min

x2X
MSEiðxÞ � di for i = 1, 2 (di > 0) and eT is the sum vector of

ones. Regardless of the shape of the feasible region, all criterion vec-
tors obtained by the LWT program are nondominated and all are
uniquely computable. Here, a two-stage minimization process is



Table 2
Experimental results for the metal cutting experiment.

Run x1 x2 x3 �y1j s2
1j

�y2j s2
2j

1 �1 �1 �1 74 6.8 53.2 14.6
2 1 �1 �1 51 7.4 62.9 12.3
3 �1 1 �1 88 8.4 53.4 13.5
4 1 1 �1 70 12.5 62.6 10.5
5 �1 �1 1 71 6.2 57.3 9.6
6 1 �1 1 90 7.0 67.9 18.6
7 �1 1 1 66 8.0 59.8 20.0
8 1 1 1 97 3.2 67.8 10.3
9 �1.682 0 0 76 2.4 59.1 22.4
10 1.682 0 0 79 16.0 65.9 19.9
11 0 �1.682 0 85 9.0 60.0 12.6
12 0 1.682 0 97 4.4 60.7 9.6
13 0 0 �1.682 55 20.4 57.4 18.4
14 0 0 1.682 81 9.9 63.2 25.4
15 0 0 0 81 6.5 59.2 15.0
16 0 0 0 75 5.9 60.4 14.0
17 0 0 0 76 7.4 59.1 15.6
18 0 0 0 83 6.8 60.6 13.8
19 0 0 0 80 7.8 60.8 16.0
20 0 0 0 91 7.2 58.9 15.4
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used – the first stage is a weighted Tchebycheff program and the
second stage is a L1 metric. If the first stage does not yield a unique
criterion vector (in case of alternative optima), then second stage is
used to break ties (Steuer, 1986).

Note that, the weight (w) in the weighted-sums method and the
weight (k) in the LWT method have different meanings. In general,
if the same weights are used for these two methods, the results are
generally two distinct Pareto points in the objective space. There
exists, however, a particular selection of weights so that under
some conditions both methods yield the same solutions (Tind &
Wiecek, 1999).

4.3. The methodology to obtain the Pareto frontier

In robust design applications, factorial and central composite
designs are often used. In this case, the feasible set X is always con-
vex. For example, the constraints gmðxÞ 6 0 may assume the form
�1 6 xi 6 1, "i for factorial design or

Pk
i¼1xi 6 k; where k is the

number of factors, for central composite design. So, in fact, convex-
ity of the bi-objective robust design problem is closely related to
the convexity of the objective functions. The proposed methodol-
ogy obtains the Pareto frontier for the robust design problem
regardless of the shape of the objective space. The optimization
procedure is given by the following steps.

Step 1: Estimate the response functions of the process
parameters.
Step 2: Convert objective functions to minimization formula-
tions. Check the objective functions for convexity within the
feasible set with contour and surface plots. If both objective
functions are convex go to step 3. Otherwise, go to step 4.
Step 3: Use weighted-sums method to obtain the Pareto
frontier.
Step 4: Use LWT method to obtain the Pareto frontier.

5. Numerical example

An experiment has been done to examine the effects of three
design variables – cutting speed (sfpm), cutting depth (in), and cut-
ting feed (ipr) – on the metal thickness (mm), denoted by Y1, and
the metal removal rate (mm3/min), denoted by Y2, of a metal cut-
ting machine. The design variables have been coded as x1 = (cutting
speed-25.5/30), x2 = (cutting feed-55/9), and x3 = (depth of cut-1.
1/0.6). The experimental design shown in Table 2 is a central com-
posite design consisting of eight factorial points, six axial points,
and six center points, with three replicates.

From the viewpoint of the customer, the target values s1 and s2

of Y1 and Y2 are 96.5 and 57.5, respectively. The estimated response
functions of l̂1ðxÞ, l̂2ðxÞ, r̂2

1ðxÞ, and r̂2
2ðxÞ are

l̂1ðxÞ ¼ 81:09þ XT a1 þ XT A1 X and l̂2ðxÞ ¼ 59:85þ XT a2 þ XT A2 X
where
a1 ¼

1:03

4:04

6:20

2
6664

3
7775 and A1 ¼
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2:13 2:94 �3:88

11:38 �3:88 5:19

2
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3
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2
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3
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and r̂2
1ðxÞ ¼ 7:03þ XT b1 þ XT B1X, r̂2

2ðxÞ ¼ 15:11þ XT b2 þ XT B2X
where
b1 ¼
1:73
�0:22
�2:08

2
64

3
75 and B1 ¼

0:14 �0:26 �1:09
�0:26 �0:74 �1:09
�1:09 �1:09 2:25

2
64

3
75:
b2 ¼
�0:75
�0:43
1:42

2
64

3
75 and B2 ¼

1:22 �2:43 0:58
�2:43 �2:33 0:63
0:58 0:63 1:49

2
64

3
75

The optimization model for this bi-objective robust design
problem is now formulated as minimizing ½MSE1ðxÞ; MSE2ðxÞ �T

subject to x 2 X where MSE1(x) = ðl̂1ðxÞ � s1Þ2 þ r̂2
1ðxÞ; MSE2(x) =

ðl̂2ðxÞ � s2Þ2 þ r̂2
2ðxÞ: The set X = {x 2 R3:gðxÞ 6 0} where

g(x) =
Pk

d¼1x2
d � k 6 0 with k denoting number of design factors.

In order to scale (normalize) objective functions, we multiplied
each objective function with pi ¼ 1

Ri
where Ri is the range width of

the ith criterion value over the efficient set and estimated by the dif-
ference between the approximated nadir objective vector and the
ideal objective vector. For this problem, Ri values are calculated as
R1 = 24.404 � 3.1684 = 21.2356, R2 = 23.0785 � 8.5858 = 14.4927,
so corresponding pi values are (p1, p2) = (0.047091, 0.069). Note
that, these normalized objective functions are only used in calcula-
tions (Eqs. (4) and (5)), but restored objective function values in the
original scales are presented in the following tables and figures in
order to prevent confusion.

Based on the methodology given in Section 4.3, the convexity of
the objective functions within the feasible set is checked by using
contour and surface plots. As shown in Figs. 2 and 3, which are the
contour and surface plots for the two objective functions holding a
control factor one by one, both of the objective functions MSE1(x)
and MSE2(x) are non-convex. This result is consistent with the pre-
vious discussions in Section 1 about the non-convexity of functions
that are including more than two factors.

As a result, based on the proposed methodology, to obtain the
Pareto frontier, LWT method is preferred over the weighted-sums
method. To illustrate the Pareto frontiers obtained by both meth-
ods and for comparison; we have generated around one thousand
points by increasing weights, k and w (in (4) and (5)) gradually
from zero to one by 0.001. These Pareto optimal solutions are plot-
ted in the objective space with the x-axis being MSE1(x) and the
y-axis being MSE2(x) as shown in Figs. 4 and 5. MATLAB software
package (MATLAB, 2008) is used to generate all the solutions.

As shown in the figures, the robust design solutions obtained
from the weighted-sums model and the LWT model are distinctively



Fig. 2. Contour and surface plots for checking the convexity of MSE1(x).
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different for various weights. Reflected in Table 3 and Fig. 4, the
efficient solutions from the weighted-sums model are grouped
into two distinct clusters. Again, this method fails to identify
non-supported efficient solutions between the two clusters be-
cause the non-convexity occurs approximately between
3.9525 6MSE1(x) 6 11.0917 and 8.7695 6MSE2(x) 6 15.825 due
to the nature of the fourth-order model generated by MSE1(x)
and MSE2(x). Table 4 and Fig. 5 show that the proposed LWT based
model generates the Pareto frontier consisting of supported and
non-supported efficient solutions. The results obtained for this
particular numerical example clearly demonstrates the advantage
of the proposed model over the frequently used weighted-sums



Fig. 3. Contour and surface plots for checking the convexity of MSE2(x).
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approach in finding the Pareto frontier for robust design when
higher-order functions are considered.

6. Conclusion and further study

In this paper, we have developed a lexicographic weighted
Tchebycheff based bi-objective robust design model and a method-
ology to generate the Pareto frontier. Compared to the existing
models for robust design, such as the dual response and additive
weighted-sum models, the proposed approach has a significant
advantage when determining the efficient solutions of a non-
convex Pareto frontier. Models based on weighted-sums method
cannot find non-supported efficient solutions which lie in the
non-convex portions of the Pareto front. The proposed model, on
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Fig. 4. Pareto frontier with the weighted-sums method.
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Fig. 5. Pareto frontier with the lexicographic weighted Tchebycheff method.

Table 3
Pareto optimal solutions with the weighted-sums model.

w1 w2 x1 x2 x3 MSE1(x) MSE2(x)

0.00 1.00 0.0237 1.5285 �0.8144 24.4053 8.5858
0.05 0.95 0.1008 1.4612 �0.9244 12.087 8.6912
0.10 0.90 0.1133 1.4496 �0.9411 11.3765 8.7266
0.15 0.85 0.1187 1.4452 �0.9473 11.2166 8.7415
0.20 0.80 0.122 1.4429 �0.9504 11.1583 8.7498
0.25 0.75 0.1246 1.4416 �0.952 11.1312 8.7551
0.30 0.70 0.1268 1.4407 �0.953 11.1163 8.7589
0.35 0.65 0.129 1.4402 �0.9535 11.1072 8.7619
0.40 0.60 0.1312 1.4399 �0.9536 11.1009 8.7644
0.45 0.55 0.1337 1.4398 �0.9534 11.096 8.7669
0.50 0.50 0.1366 1.4399 �0.953 11.0917 8.7695
0.55 0.45 �0.9669 1.4362 0.0497 3.9525 15.825
0.60 0.40 �0.9607 1.4398 0.0627 3.8952 15.8779
0.65 0.35 �0.9522 1.4448 0.0779 3.8417 15.9389
0.70 0.30 �0.9406 1.4512 0.0961 3.7872 16.0164
0.75 0.25 �0.9249 1.4596 0.1189 3.7272 16.1252
0.80 0.20 �0.903 1.4706 0.1488 3.6564 16.2933
0.85 0.15 �0.871 1.485 0.19 3.568 16.5819
0.90 0.10 �0.8208 1.5043 0.2514 3.4526 17.1483
0.95 0.05 �0.7323 1.5292 0.354 3.3009 18.4995
1.00 0.00 �0.5376 1.5465 0.5651 3.1684 23.0787

Table 4
Pareto optimal solutions with the lexicographic weighted Tchebycheff method.

k1 k2 x1 x2 x3 MSE1(x) MSE2(x)

0.00 1.00 0.0237 1.5285 �0.8144 24.404 8.5858
0.05 0.95 0.1453 1.4336 �0.9419 11.0166 8.8669
0.10 0.90 0.1205 1.4049 �0.9171 10.799 9.1637
0.15 0.85 0.0933 1.3744 �0.8904 10.5664 9.476
0.20 0.80 0.0644 1.3421 �0.8609 10.3173 9.8048
0.25 0.75 0.0322 1.3078 �0.8288 10.0504 10.1507
0.30 0.70 �0.0027 1.2715 �0.7935 9.7637 10.5142
0.35 0.65 �0.0423 1.2333 �0.7547 9.4556 10.8956
0.40 0.60 �0.0844 1.1936 �0.7114 9.124 11.2949
0.45 0.55 �0.1321 1.1528 �0.6634 8.7671 11.7115
0.50 0.50 �0.1855 1.112 �0.6098 8.3827 12.1439
0.55 0.45 �0.2456 1.0733 �0.5497 7.9692 12.5899
0.60 0.40 �0.3137 1.0401 �0.4825 7.5253 13.0456
0.65 0.35 �0.3913 1.0179 �0.4074 7.0505 13.5059
0.70 0.30 �0.4798 1.0158 �0.3248 6.5452 13.9631
0.75 0.25 �0.5803 1.0455 �0.2365 6.0118 14.4076
0.80 0.20 �0.6913 1.1172 �0.1475 5.455 14.8283
0.85 0.15 �0.8076 1.2295 �0.0647 4.8834 15.2191
0.90 0.10 �0.9213 1.3659 0.0062 4.3082 15.5887
0.95 0.05 �0.9303 1.4568 0.1113 3.7465 16.0871
1.00 0.00 �0.5376 1.5465 0.5651 3.1684 23.079
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the other hand, is able to find supported and non-supported effi-
cient solutions since it is based on LWT program. When lexico-
graphic weighted Tchebycheff program is used, regardless of the
feasible region, all criterion vectors computed are nondominated
and all of these vectors are uniquely computable. Lexicographic
program can be used for linear, nonlinear, infinite-discrete, finite-
discrete, and polyhedral cases. The only disadvantage of lexico-
graphic approach is that, two stages of optimization are required
when the first stage, a weighted Tchebycheff program, results in
alternative optima. In that case, a L1 metric is used to break ties,
however, this does not happen very often to be important. A
numerical example was presented to illustrate the application of
the model and to compare with the commonly used weighted-
sums method. This example clearly demonstrates the proposed
methodology’s advantage over the traditional weighted-sums ap-
proach in finding the Pareto frontier when the model has higher-
order terms or is neither convex nor concave. For further research,
interactive lexicographic weighted Tchebycheff method can be ap-
plied to this problem to focus on a preferred part of the Pareto
frontier. Furthermore, this approach can be expanded to multi-
objective design optimization problems in order to consider more
than two quality characteristics.
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