• English
    • Türkçe
  • English 
    • English
    • Türkçe
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları / WOS
  • Araştırma Çıktıları / WOS
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları / WOS
  • Araştırma Çıktıları / WOS
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An efficient joint channel estimation and decoding algorithm for turbo-coded space-time orthogonal frequency division multiplexing receivers

Thumbnail
View/Open
An efficient joint channel estimation and decoding algorithm for turbo-coded space-time orthogonal frequency division multiplexing receivers.pdf (253.5Kb)
Date
2008
Author
Dogan, Hakan
Cirpan, Hakan Ali
Panayirci, Erdal
Abstract
The challenging problem in the design of digital receivers of today's and future high-speed high data-rate wireless communication systems is to implement the optimal decoding and channel estimation processes jointly in a computationally feasible way. Without realising such a critical function perfectly at receiver the whole system will not work properly within the desired performance limits. Unfortunately direct implementation of such optimal algorithms is not possible mainly due to their mathematically intractable and computationally prohibitive nature. A novel algorithm that reaches the performance of the optimal maximum a posteriori (MAP) algorithm with a feasible computational complexity is proposed. The algorithm makes use of a powerful statistical signal processing tool called the expectation-maximisation (EM) technique. It iteratively executes the MAP joint channel estimation and decoding for space-time block-coded orthogonal frequency division multiplexing systems with turbo channel coding in the presence of unknown wireless dispersive channels. The main novelty of the work comes from the facts that the proposed algorithm estimates the channel in a non-data-aided fashion and therefore except a small number of pilot symbols required for initialisation no training sequence is necessary. Also the approach employs a convenient representation of the discrete multipath fading channel based on the Karhunen-Loeve (KL) orthogonal expansion and finds MAP estimates of the uncorrelated KL series expansion coefficients. Based on such an expansion no matrix inversion is required in the proposed MAP estimator. Moreover optimal rank reduction is achieved by exploiting the optimal truncation property of the KL expansion resulting in a smaller computational load on the iterative estimation approach.

Source

IET Communications

Issue

7

Volume

2

Pages

886-894

URI

https://hdl.handle.net/20.500.12469/1149
https://dx.doi.org/10.1049/iet-com:20070387

Collections

  • Araştırma Çıktıları / Scopus [1350]
  • Araştırma Çıktıları / WOS [1335]
  • Elektrik-Elektronik Mühendisliği / Electrical - Electronics Engineering [330]

Share


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateBy AuthorsBy TitlesBy SubjectsBy TypesBy LanguagesBy DepartmentsBy PublishersBy KHAS AuthorsBy Access TypesThis CollectionBy Issue DateBy AuthorsBy TitlesBy SubjectsBy TypesBy LanguagesBy DepartmentsBy PublishersBy KHAS AuthorsBy Access Types

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV