Design of distributed-element RF filters via reflectance data modeling
Abstract
A reflectance-based modeling method is presented to obtain the distributed-element counterpart of a lumped-element network which is described by measured or computed reflectance data at a set of frequencies. Numerical generation of the scattering parameters forms the basis of this modeling tool. It is not necessary to select a circuit topology for the distributed-element model which is the natural consequence of the modeling process. Our approach supplements the known interpolation methods by a simple technique that does not involve complicated cascaded circuit topologies and whose numerical convergence is proven. To illustrate the utilization of the proposed method a lumped-element low-pass Chebyshev filter is transformed to its distributed-element counterpart. The filter designed for a frequency band around 1 GHz was fabricated and experimentally characterized. We find excellent agreement between measured and simulated transducer power gain over the entire frequency band. (c) 2007 Elsevier GmbH. All rights reserved.
Source
AEU-International Journal Of Electronics And CommunicationsIssue
7Volume
62Pages
483-489Collections
Keywords
ModelingDistributed-element networks
Filters