• English
    • Türkçe
  • Türkçe 
    • English
    • Türkçe
  • Giriş
Öğe Göster 
  •   Açık Akademik Arşiv Ana Sayfası
  • Araştırma Çıktıları / WOS
  • Araştırma Çıktıları / WOS
  • Öğe Göster
  •   Açık Akademik Arşiv Ana Sayfası
  • Araştırma Çıktıları / WOS
  • Araştırma Çıktıları / WOS
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mathematical models for phase transitions in biogels

Thumbnail
Tarih
2019
Yazar
Bilge, Ayşe Hümeyra
Öǧrenci, Arif Selçuk
Pekcan, Önder
Özet
It has been shown that reversible and irreversible phase transitions of biogels can be represented by epidemic models. The irreversible chemical sol-gel transitions are modeled by the Susceptible-Exposed-Infected-Removed (SEIR) or Susceptible-Infected-Removed (SIR) epidemic systems whereas reversible physical gels are modeled by a modification of the Susceptible-Infected-Susceptible (SIS) system. Measured sol-gel and gel-sol transition data have been fitted to the solutions of the epidemic models, either by solving the differential equations directly (SIR and SEIR models) or by nonlinear regression (SIS model). The gel point is represented as the "critical point of sigmoid," defined as the limit point of the locations of the extreme values of its derivatives. Then, the parameters of the sigmoidal curve representing the gelation process are used to predict the gel point and its relative position with respect to the transition point, that is, the maximum of the first derivative with respect to time. For chemical gels, the gel point is always located before the maximum of the first derivative and moves backward in time as the strength of the activation increases. For physical gels, the critical point for the sol-gel transition occurs before the maximum of the first derivative with respect to time, that is, it is located at the right of this maximum with respect to temperature. For gel-sol transitions, the critical point is close to the transition point; the critical point occurs after the maximum of the first derivative for low concentrations whereas the critical point occurs after the maximum of the first derivative for higher concentrations.

Kaynak

Modern Physics Letters B

Sayı

9

Cilt

33

Bağlantı

https://doi.org/10.1142/S0217984919501112
https://hdl.handle.net/20.500.12469/3570

Koleksiyonlar

  • Araştırma Çıktıları / Scopus [1565]
  • Araştırma Çıktıları / WOS [1518]
  • Elektrik-Elektronik Mühendisliği / Electrical - Electronics Engineering [320]

Anahtar Kelimeler

Sol-gel and gel-sol phase transition
Gel point
Critical point of sigmoid
Epidemic model
Generalized logistic curve

Paylaş


DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 

Göz at

Tüm Akademik ArşivBölümler & KoleksiyonlarYayın Tarihine GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreDepartmana GöreYayıncıya GöreKHAS Yazarına GöreErişim Türüne GöreBu KoleksiyonYayın Tarihine GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreDepartmana GöreYayıncıya GöreKHAS Yazarına GöreErişim Türüne Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV