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Abstract. Several areas of applications, such as model order reductiorgrliioner design, and eigenvalue problems
for spectral projectors can be found in the literature. In this papestafal sparsity preserving approach for computing the
spectral projectors is proposed. The suggested approach caedhiie bsth Newton iteration and integral representation based
methods. A comparison of the original and the suggested approactemsof computation time, sparsity preservation and
accuracy is presented in this paper.
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INTRODUCTION

The simulation of large scale dynamical systems requirege lamount of computational power. Thus, reducing
the computational cost of these types of simulations deseattention in the applied mathematics community. A
well-known solution method for these types of problems &s itodel order reduction (MOR), which aims to build
an approximate dynamical model of the system under study it order significantly smaller than that of the
original system. There are several approaches for MOR [@]important application area of spectral projectors is
the eigenvalue based model order reduction. These typestbbits are based on determination of the dominant poles
of dynamical system for approximation and named as modaloappation generally [2, 3]. To find the dominant
eigentriplet of the system matrices, one can use Matrix Sigmction (MSF) iteratively. MSF behaves like its scalar
equivalent, which extracts the sign of a real number. Silgil?MSF detects the signs of eigenvalues of a matrix and its
output is two blocks of identity matrix. The sizes of the faisid the second block matrices correspond to the number
of positive and negative eigenvalues of the matrix respelgti

Another possible application area of the spectral projedthe preconditioner design for iterative solution of a
linear equation systems. One can use the spectral prgjgct@anish the extremal eigenvalues of an ill-conditioned
coefficient matrix to accelerate the solution with Krylowospace methods like GMRES [4].

In the literature one can find several methods for computaifdMSF [5]. The inverse of a square matrix has to be
taken explicitly several times in all of these spectral petpr computation algorithms. Therefore, the computation
cost of these types of algorithms is very high. Most of theetinihhe system matrices of the large scale dynamical
systems are very large and sparse. Thus, the inverse bedalhddence, it is a challenging problem to find an
efficient and sparsity preserving method for the computadithe MSF of the system matrices. In the present work,
the MSF required by the model reduction algorithm proposef@] is computed by both the Newton-type methods
and the integral form methods with sparse approximate smwe6]. The results are compared in terms of accuracy,
sparsity preservation capability and the computatiorfadiefcy.

The rest of the paper is as follows. In the second chapteresoefinitions and well known techniques for
computation of MSF and the proposed method are given. Irhing ¢hapter, some numerical tests are shown. Finally
in the last chapter, the concluding remarks and the plarutede work are given.

COMPUTATION OF SPECTRAL PROJECTORS

Let A € O™ be given and its spectrum be composed of two different parfs(A) = A1 UA, andA;NA = 0.
Then one can define ai-invariant subspacg, which can be called as a spectral projector correspondirg tA
well-known spectral projector is matrix sign function (MSMSF can be defined aign(A) = 2P(A) — | where the
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functionP is defined as a contour integral,

P(A) = %fr'(m ~A)ldz 1)

In (1), I can be defined as any closed curve enclosing the desiredvaiges of matrixA. But for MSF,I" has to be
selected to enclose the negative eigenvalues of matiixcomplex plane.

There are several methods for computing the MSF [5]. The Igishjiterative method is based on the Newton’s
iteration, which uses the equatiofsign(A))2 —1) = 0. If Newton’s method is applied to this equation, one camiobt
an iteration, which converges to tegn(A).

[

A1 =S(AHA?), Ag=A 2

2
The iteration is quadratically convergent [5]. To accdketthis iteration, some scaling procedures can be applied.
To do this, in each step\i is replaced byO}—kAk. Some popular selections fay can be given as determinantal scaling,
norm scaling, and Robert’s scaling [7].
More general iterative schemes based on Pade approxin@iobe also found in literature [5]. Halley iteration
can be given as an example for Pade type iterations. Théiviescheme of the Halley iteration is given below.

Ari1= A3 +AD)(1+3A7) 1 3)

Once the MSF of matriX is computed, it can be used for the spectral block decomposif the matrix as shown in
Alg. 1.

Algorithm 1 BLOoCK DECOMPOSITION

Require: Spectral Projectod
Ensure: Diagonal Blocks ofA matrix

1: Compute rank revealing decomposition of the proje@ot, QRIN
2: Build A-invariant.#; subspace from the firktcolumn of the orthogonal matri®@
3: Compute the below transformation

A1l A12:| 4)

A=Q'AQ= [ 0 A

4: /\(All) =/ and/\(Azz) =/N\2

Another way of computing the spectral projector is to coremrplicitly the contour integral given in 1. The most
appropriate integration method will be the Gauss quadedR]r Let us a polygon contour with m edgeslasThen,
the integral can be written for each edge with appropriatendaries and variable changes as,

P(A) = - ,Zlfz;m(ﬂ —A) ldz 5)

After the evaluation of this integral with Gaussian quadiratin a few points, the spectral projector can be used to
decompose the matrix spectrum in a similar way with the Algt is known that the trace of the is equal to the
number of the eigenvalues of the matfixin the preselected contodir. Implementation of the spectral projector is
shown in the Alg. 2. All of these methods need matrix inversitio overcome this problem, one can use some special

Algorithm 2 BLock DECOMPOSITION WITHINTEGRATION

Require: Spectral ProjectoP
Ensure: Diagonal Blocks of matriA

: Compute the trace d® and assign it to.

. Compute the SVD decomposition of the projec®e: USV'

: LetUy =U(,1:r),andUp=U(;,r+1:n)

: Compute the transformatiorg; = U™ AU, andAy, = UpHAUp.
: /\(All) =/ al’ld/\(Azz) =Ny

a d» w NP
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sparse matrix tools like Sparse Approximate Inverse (SEBI)The SPAI algorithm computes a sparse approximate
inverseM of a given sparse matriA by minimising ||| — AM||g provided that the sparsity structure Mf is the
same as the original matrix. To compute MSFAgfone can employ the SPAI to produce the approximate inverse i
every step of the Newton iteration given in (1) or in evenegration point of Gauss quadrature given in the integral
(5). Because of the use of approximate inverse instead af @xgerse, while the number of Newton iterations in (1)
increases, the accuracy of the integration in (5) decre8s#she computation time in both cases decreases.

Another important advantage of using SPAI to obtain a speptojector is the preservation of sparsity. Because
of the matrix inversion, sparsity structure of matéixs lost. Hence, the computation of the orthogonal baseseof th
spectral projector needs more computational effort. BBRAI is employed, the sparsity structure of mathixs
completely preserved.

In this work, the effect of the usage of sparse approximatergion instead of the exact inverse methods is
investigated. To do this, matrix inversions in both type ethods (direct integration and iteration schemes) fortsplec
projector computation is replaced with the sparse appratérmverses produced by the SPAI algorithm.

NUMERICAL EXAMPLES

To illustrate the effect of SPAI usage on spectral projectomputation, some well-known electrical power network
data [4] are selected. The dimensions of the matrices anegeldafrom 106 to 530. In the first experiment, the
computational time of the algorithms for building spectadjectors are compared. The comparison of the sparsity
structures is also given. These comparisons are made fotoNeiteration and explicit integration with Gauss
guadratures. In the second test, the effect of the SPAI mudied for each method in terms of the accuracy of the
results.

In the first experimente parameter for the SPAI method is selected ds § parameter controls the quality of the
approximation of M to the inverse of A. It has to be between &an@ 1. Smallet values corresponds to usually better
results [6].

Sparsity structure of the methods are compared accordiagreasure which can be defined as,

nnzA)
n2

sparsity=

(6)

where nnz stands for the number of non-zeros ofhthken dimensional matrixA .
TABLE 1. Comparison of the computational time and sparsity structures for vaB®Is test matrices

Newton Gauss Newton Gauss

Newton * SPAI  Gauss SPAI Newton T SPAlI  Gauss SPAI
IEEE 57 1.10 1.86 1.80 0.37 |EEE 57 1 0.075 1 0.076
IEEE 118 3.81 1.40 5.19 0.87 IEEE 118 1 0.043 1 0.055
IEEE 300 65.40 5.04 4450 3.05 IEEE 300 1 0.014 1 0.006

* computational times in seconds
T sparsity measures

In the second experiment, the methods are compared to elaghwith respect to their accuracy. To do this, the
well known property of the spectral projectors is employ€le trace of a spectral projector gives the number of
the eigenvalues of the matrixin the predefined domain in complex plane. The eigenvaludiseomatrixA and the
eigenvalues computed via spectral projectors with thesstgd methods are given in Fig. 1. The traces of the spectral
projectors and the exact number of the eigenvalues in seletimains for various examples are given in Table 2. In
the experiments, the number of the integration points waligsian quadrature based methods is selected as relatively
small. So the results are not exactly true as in the Newtaatitsn based methods. On the other hand, the computed
eigenvalues are found as close enough to the original eddigew of matrixA in selected domain of complex plane.
The SPAI gives more accurate results with the Gauss quadrapproach. These results can be seen in Fig.1.
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TABLE 2. Number of the eigenvalues in the selected domain in com-
plex plain with several examples

Number of Newton Gauss

eigenvalues Newton SPAlI  Gauss  SPAI
IEEE 57 14 14 14 13.14 12.7
IEEE 118 53 53 53.28 53.37 53.35
IEEE 300 23 23 23 24 23.75

e A(A) O /\(A“) with newton A(Au) with newton+SPAI| e A(A) © A(Au) with gauss O A(An) with gauss+SPAI
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FIGURE 1. Eigenvalues computed via Newton iteration, Newton iteration with SPAI , Gauesdrature and Gauss quadrature
with SPAI methods.

CONCLUSIONSAND FUTURE WORK

In this work, a faster and sparsity preserving method forsghectral projector computation is proposed. To realize
this aim, sparse approximate inversion algorithm is usetl tie well-known computational methods for spectral
projectors. In the experiments it is shown that the sparpeoajmate inversion can be an efficient tool to accelerate
the computational time. Another important advantage ofSRAl tool is the sparsity preservation. Main reason of
using SPAI is to avoid matrix inversion.

The experimental test matrices were selected from the psygem matrices. In future work, the proposed method
will be tested on different matrices from different disaiygls. We are also planning to focus on the optimal selection
of the € value for SPAI algorithm and the realization of the algaritbn parallel environments.
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