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Abstract
In the contest literature, sabotage is defined as a deliberate and costly activity that dam-
ages the opponent’s likelihood of winning the contest. Most of the existing results sug-
gest that, anticipating a possible sabotage, contestants would be discouraged from exerting 
high efforts. In this paper we investigate the act of sabotage in a team contest wherein 
team members exert costly efforts as a contribution to their team’s aggregate effort, which 
in turn determines the contest’s outcome. For the baseline model with no sabotage, there 
exists a corner equilibrium implying a free-rider problem in each team. As for the model 
with sabotage, our characterization of Nash equilibrium reveals two important results: (i) a 
unique interior equilibrium exists so that the free-rider problem no longer is a concern and 
(ii) the discouragement effect of sabotage vanishes for some players. On top of those con-
clusions, we investigate the team owner’s problems of prize allocation and team formation 
with the objective being to maximize his team’s winning probability.

Keywords Team contests · Sabotage · Tullock contests · Free riding · Discouragement 
effect · Encouragement effect

JEL Classification C72 · D74

1 Introduction

Contests are strategic interactions in which participants expend costly resources (e.g., 
effort, time, money) aiming to win a valuable prize. Perhaps what is most important, all of 
the resources invested are lost independent of who wins the contest. Many real-life exam-
ples can be provided, including sports, war, politics, R&D competition, and advertising. In 
all of those examples, contestants exert productive efforts in order to increase their chances 
of winning; and in some of them, contestants also are able to take some actions in order to 
reduce their opponents’ winning probabilities, thereby increasing their own winning prob-
abilities indirectly. The latter action is labeled “sabotage” in the literature.
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Some actual examples of sabotage are aggressive play or attempting to provoke illegal 
responses from competitors in sports, destruction of the rival’s weaponry or resources in 
warfare, negative campaigning in politics, and so on.1 In addition to such observations, 
many scholars have reported sabotage in laboratory experiments (see Harbring and Irlen-
busch 2005, 2011; Harbring et al. 2007; Vandegrift and Yavas 2010, among others) and 
field studies (see Balafoutas et  al. 2012; Deutscher et  al. 2013; Brown and Chowdhury 
2017, among others). For example, among such studies, Harbring et al. (2007) investigated 
behavior in experimental corporate contests with heterogeneous players; whereas Vande-
grift and Yavas (2010) examined a similar framework preceded by a real-effort task that 
endogenized heterogeneity in the participants’ ability levels. As for the field studies, Bala-
foutas et al. (2012) and Deutscher et al. (2013) both reported that sabotage is more likely to 
be adopted as a strategy by relatively less qualified participants and to be targeted at more 
qualified ones, analyzing data from the Judo World Championships and German Bundes-
liga, respectively.

To the best of our knowledge, in the literature on contests/tournaments, Dye (1984) is 
the first to mention the possibility of sabotage. Lazear (1989) presented a theoretical model 
of sabotage in contests and showed that a larger prize spread between the winner and the 
loser(s) would lead to an increase in sabotage activity.2 Later, Konrad (2000) studied the 
effect of sabotage on equilibrium behavior in an n-player lobbying contest. He showed that 
sabotage may raise or lower the total lobbying effort exerted in equilibrium and that the 
total amount of sabotage declines in the number of players. Afterwards, Chen (2003) ana-
lyzed sabotage in promotion tournaments where relative performances are important and 
indicated that the highest caliber players might not have the best chances of being pro-
moted. Münster (2007) studied a case of directed sabotage in selection tournaments and 
showed that contestants who exert more productive efforts are sabotaged more heavily in 
equilibrium. He argued further that the possibility of sabotage may even deter the produc-
tive players from entering the tournament in the first place. In a related study, Amegashie 
(2012) analyzed subgame perfect Nash equilibrium of a two-stage contest in which players 
choose destructive efforts (i.e., sabotage) in stage 1 and productive efforts in stage 2. He 
showed that players engage in destructive activities only if the prize for winning is suf-
ficiently large and, beyond that threshold, productive efforts remain constant in the prize 
level.

Despite the fact that the act of sabotage already has been studied in the contest litera-
ture for over 30 years, the analysis of sabotage in team contests remains an understudied 
topic. To our knowledge, only one paper studies sabotage in a team contest. Gürtler (2008) 
assumed that each contestant, as a member of one of the two teams, chooses a productive 
effort in order to increase his team’s performance, but also is able to sabotage the members 
of the opposing team. As a main result, it is shown that a team directs all of its sabotage 
activities at the least skilled member of the opposing team. That result is rather interesting, 
since it is in stark contrast to findings that the most skilled players are most likely sabo-
taged in individual contests (see Chen 2003; Münster 2007).

We investigate sabotage in a one-shot contest between two teams having two members 
each. The team members differ in their effectiveness parameters and prizes for winning. We 
can provide several interpretations of that model: (i) Consider two football teams playing 

1 For more real-life examples, see a recent survey by Chowdhury and Gürtler (2015).
2 A result that is verified observationally by a number of studies (e.g., Garicano and Palacios-Huerta 2014; 
Harbring and Irlenbusch 2005, 2011; Vandegrift and Yavas 2010).
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a game. Each football team fields attackers and defenders.3 (ii) Consider two countries at 
war. Each country has attack forces and defensive forces. (iii) Consider two political parties 
competing over two regions in an election. The party’s representatives in different constitu-
encies can be interpreted as different team members. In the current paper, for the sake of 
expositional simplicity, we stick to the football game interpretation, keeping the alternative 
interpretations in mind. Now, in a football team, each team member chooses a productive 
effort that contributes to his team’s aggregate effort, which in turn determines the con-
test’s outcome. Additionally, each team member is able to sabotage a particular member of 
the opposing team, which we call directionally restricted sabotage.4 We then characterize 
and compare the sets of Nash equilibria in models with no sabotage and with directionally 
restricted sabotage.

One of the most common results in the literature on sabotage in contests is the discour-
agement effect (see Sect. 4 of Chowdhury and Gürtler 2015). Along that line, Chen (2003) 
and Münster (2007) showed that the most skilled players are sabotaged more heavily; 
Gürtler and Münster (2010) found that players who exerted high effort in the first stage of 
a two-stage contest are sabotaged more than those who exerted low effort. Those findings 
imply that if the possibility of being sabotaged is open, incentives are weaker to exert high 
productive efforts or even to participate in the contest at all. On top of those effects, the 
above-mentioned findings of Amegashie (2012) imply that sabotage fully crowds out any 
additional productive effort that would have been supplied by players in the absence of sab-
otage. In stark contrast to those existing results, in the interior equilibrium of our model, 
we observe the opposite effect for one of the team members. More precisely, compared to 
the equilibrium efforts exerted in the model with no sabotage, a team member exists who 
exerts more productive effort once a sabotage option becomes available. That result, which 
can be labeled as the encouragement effect, appears to be related to the collective-effort 
nature of our model.

Another interesting issue is that in the baseline model with no sabotage, we detect a free-
rider problem. Depending on the values of effectiveness parameters and prizes for winning, 
either the attackers or defenders supply no productive effort in equilibrium. In fact, simi-
lar findings were reported previously by Nitzan (1991), Baik (1993, 2008), and Baik et al. 
(2001).5 Such a result is related to seminal work by Holmström (1982), highlighting free-
rider problems in a team-production setting (i.e., a group of individuals organized so that the 
team’s output exceeds that of any one team member). The literature emerged from Holm-
ström (1982)’s paper focuses on optimal contract design for solving such free-rider problems 
and  capturing the team’s productivity advantages (see McAfee and McMillan 1991; Itoh 
1991; Vander Veen 1995; Gershkov et al. 2009, among others). Interestingly, without refer-
ring to an optimal contract, in this paper we show that the option to sabotage works as a natu-
ral solution to free riding, since the free riding team member starts contributing to his team’s 
aggregate effort once the possibility of sabotage from the opposing team members exists. On 

3 Treating a group of attackers/defenders as a single decision-maker, we label them as a team member. The 
same is true for the alternative interpretations that follow.
4 Sabotage activity is said to be directed if a player is facing multiple opponents and is able to choose 
the victim of his sabotage. Here we restrict the possible directions for sabotage, arguing that the attack-
ers/defenders in a football team are facing the defenders/attackers in the opposing team. For the interested 
reader, we analyze the case of directed sabotage in Appendix 2 and characterize the conditions under which 
the model reduces to our original model with directionally restricted sabotage.
5 Indeed, if one considers our baseline model in the context of public good provision, such results date 
back to Olson (1965).
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a related note, one can argue that not many real-life observations from sports, wars, or elec-
tions can be found in which some team members exert no productive effort. Along that line, 
anecdotal evidence suggests that the introduction of sabotage into the baseline model leads to 
more accurate predictions regarding such strategic interactions in real-life.

Finally, we are interested in the team owner’s problems of optimal design. First, con-
sider the following scenario: If a team wins the contest, the team owner receives a prize; 
a certain fraction of that prize will be distributed as a premium to the team members. The 
team owner’s problem is to allocate such prize shares optimally in order to maximize 
his team’s winning probability. Second, consider the following scenario: A team owner 
manages a budget to be spent on attackers and defenders who differ in their effectiveness 
parameters. Given that hiring more effective players is more costly, the team owner’s prob-
lem is to form the team optimally in order to maximize his team’s winning probability. 
Here we characterize the team owner’s optimal strategies in those two situations.

The rest of the paper is organized as follows: In Sect. 2, we formulate the models with no 
sabotage and with directionally restricted sabotage. We then characterize and compare their 
sets of Nash equilibria. In Sect. 3, we investigate the team owner’s problems of optimal design 
by letting the team owner (i)  allocate a given prize among team members and (ii)  spend a 
given budget for hiring players with different effectiveness parameters. Section 4 concludes.

2  The model

As mentioned earlier, for the sake of expositional simplicity, we build on a football game 
interpretation in this paper. The alternative interpretations are referred to whenever 
necessary.

2.1  A team contest

Consider two football teams playing a game: team 1 and team 2. Each team consists of two 
groups: attackers (a) and defenders (d). As we treat each group as a single decision-maker, 
each group is labeled as a team member. In this football game, each team member decides 
how much productive effort to exert. Their efforts contribute to the aggregate efforts of 
their teams, which in turn determine the contest’s outcome. If team i ∈ {1, 2} wins the con-
test, then player  j ∈ {a, d} in team  i gets a prize of Vj

i
> 0 , whereas the members of the 

losing team do not get any payoff.
Other than their prizes for winning, the team members also differ in the effectiveness of 

their productive efforts to their team’s aggregate effort function. For every team i ∈ {1, 2} , 
the aggregate effort is given by

where ej
i
∈ [0,∞) is the productive effort exerted by player j ∈ {a, d} and 𝛾 j

i
> 0 is the 

effectiveness parameter for player j ∈ {a, d} . The winner is determined by the following 
Tullock-type contest success function:

Finally, for any player j ∈ {a, d} in any team i ∈ {1, 2} , we consider the same linear cost-
of-effort function:

i = �a
i
ea
i
+ �d

i
ed
i

Pi(1, 2) =
i

1 + 2
.
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To sum up, in the specified contest, each player j ∈ {a, d} in each team i ∈ {1, 2} 
maximizes

Below we analyze the Nash equilibrium for this baseline model.

Proposition 1 In the above-described team contest, assume that for players j, j� ∈ {a, d} 
in team 1 and k, k� ∈ {a, d} in team 2:

Then, only a corner equilibrium exists in which

That result leads to the following equilibrium aggregate efforts:

Furthermore, if �a
i
Va
i
= �d

i
Vd
i
 for some team i ∈ {1, 2} , then there exist multiple equilibria 

such that both members of team i exert non-negative productive efforts reaching an aggre-
gate effort of ∗

i
.

Proof The equilibrium of this team contest is already analyzed in the literature (see Nitzan 
1991; Baik 1993). In order to make the current paper self-contained, we provide an equilib-
rium analysis in Appendix 1.   □

Let � j
i
V
j

i
 denote a measure for motivation of player j ∈ {a, d} in team i ∈ {1, 2} . The 

idea is that an increase in � j
i
 or Vj

i
 would increase player  j’s expected utility, which moti-

vates him to contribute more. Notice that in the statement of Proposition 1, the players j 
in team 1 and k in team 2 are assumed to be relatively more motivated in their teams. And 
apparently, the equilibrium aggregate efforts only depend on the effectiveness parameters 
and the winning prizes of these more motivated players. In particular, ∗

1
 is increasing in � j
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and Vj

1
 , but decreasing in �k

2
 and Vk

2
 . The symmetric is true for ∗

2
 , and the respective inter-

pretations are quite straightforward.
We complete this section by emphasizing the following remark.

Remark 1 If �a
i
Va
i
≠ �d

i
Vd
i
 for some team i ∈ {1, 2} , then there exists a free riding member 

of team i exerting no productive effort in the team contest.

This observation becomes particularly important when the option to sabotage is intro-
duced in the following section.

2.2  Introducing sabotage

In this section, we introduce an additional choice variable for the team members: sabotage. 
Any act that reduces the effectiveness of the opposing team members can be classified as a 
sabotage activity. For instance, given the football game interpretation, some of the possible 
sabotage activities would be playing more aggressively or attempting to provoke illegal 
responses from the opposing team members. With such actions one may inflict injuries or 
may cause the opponent players to receive yellow/red cards. Those would undermine the 
effectiveness of the opposing team members, thereby indirectly creating an advantage for 
one’s team.6

Here we consider a situation where each member of team 1 can sabotage only a par-
ticular member of team 2, and vice versa. The intuition is as follows: In a football game, a 
team’s attackers are faced with the opposing team’s defenders; if the opposing team’s 
defenders exert some sabotage effort, then the attackers should be the ones suffering from 
such acts. That is what we call directionally restricted sabotage.7 

We acknowledge that various ways of introducing sabotage into the baseline model are 
possible. Here we assume that a sabotage act directly reduces the effectiveness of the vic-
tim, which implies a direct reduction in the opposing team’s winning probability. For the 
sake of concreteness, we assume that if player  j ∈ {a, d} in team i ∈ {1, 2} is sabotaged in 
the amount of s ∈ [0,∞) , then player j’s effectiveness reduces to � j

i
∕(1 + s) . We argue that 

Fig. 1  A graphical illustration of 
the model

d2a1

a2d1

friendship

competition

sabotage

6 Following the war interpretation, the destruction of a rival’s weaponry or resources can be labeled as a 
sabotage act. Or, following the election interpretation, a possible sabotage activity would be negative cam-
paigning.
7 From another perspective, we study a team contest played on a small network with (i) four nodes repre-
senting the team members and (ii)  three types of links representing their interactions (see Fig. 1). In par-
ticular, a1 has a friendship link with d1; a2 has a friendship link with d2; a1 and d1 have competition links 
with both a2 and d2; a1 has a sabotage link with d2; and d1 has a sabotage link with a2.
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such an assumption is consistent with our model’s interpretations, since it captures the idea 
that a player cannot possibly reduce the effectiveness of an opposing team member to zero, 
no matter how much sabotage effort he chooses to exert. Accordingly, the aggregate effort 
functions become

and

where sj
i
∈ [0,∞) denotes the sabotage effort exerted by player j ∈ {a, d} in team i ∈ {1, 2} 

directed at the respective member of the opposing team.
The Tullock-type contest success function is preserved in terms of the aggregate efforts. 

Finally, the cost-of-effort function of player j ∈ {a, d} in team i ∈ {1, 2} is updated to

where 𝜇j

i
> 0 denotes the cost of exerting one unit of sabotage effort.

In the new contest, each player j ∈ {a, d} in each team i ∈ {1, 2} maximizes

Below we characterize the unique interior Nash equilibrium of this model.

Proposition 2 In the model with directionally restricted sabotage, the aggregate efforts 
in the unique interior equilibrium are given by

Furthermore, the respective productive and sabotage efforts are
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Such an interior equilibrium exists if and only if

for every player j ∈ {a, d} in i ∈ {1, 2} ; and those inequalities are satisfied as long as all 
of the winning prizes are sufficiently large.

Proof See Appendix 1.   □

For the comparative statics results, we focus on team 1. The equilibrium aggregate 
effort E∗

1
 increases in the effectiveness parameters and the winning prizes for both mem-

bers of team 1, as well as in the marginal costs of sabotage for both members of team 2. 
Furthermore, E∗

1
 declines when the winning prize for either of the members of team 2 

increases.
The comparative statics for the equilibrium values of productive and sabotage efforts are 

not straightforward. Accordingly, we concentrate on the ratio of productive efforts in the 
equilibrium. For instance, considering the ratio

we see that the relative productive effort of player  d in team  1 increases following an 
increase in the effectiveness parameter for that player, in the marginal cost of sabotage for 
the respective saboteur, or in the winning prize for the defenders in either of the teams. The 
converse would be true for the parameters in the denominator. As for the sabotage activity, 
considering the ratio

we see that the relative sabotage effort of player d in team 1 increases with an increase 
either in the effectiveness parameter or in the winning prize for the respective victim: 
player a in team 2. The converse would be true for the parameters in the denominator.

Our model yields an interesting insight regarding free riding. As highlighted in 
Remark 1, our result in the baseline model is related to the findings in the optimal con-
tract literature following Holmström (1982). This literature focuses on free-rider problems 
among team members and studies optimal contract design to resolve such problems (see 
McAfee and McMillan 1991; Itoh 1991; Vander Veen 1995; Gershkov et al. 2009, among 
others). By contrast, in the current paper, we show that an optimal contract analysis may 
not be necessary in the sense that none of the team members free rides once they have an 
option to sabotage their opponents.

Remark 2 Although a free-rider problem materializes in the baseline model with no 
sabotage, our model with directionally restricted sabotage generates a unique interior 
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equilibrium for which none of the team members free rides. That result indicates the pos-
sibility of sabotage turning out to be a natural solution to free riding.8

The intuition is related to the fact that sabotage reduces the victim’s marginal productive 
effort in the contest success function. That is, if a player is sabotaged more heavily, then his 
effort would have a smaller impact on his team’s probability of winning, and thus he would 
have less incentive to exert productive effort. At this point, recall that � j

i
V
j

i
 denotes a meas-

ure of motivation for player j ∈ {a, d} in team i ∈ {1, 2} . Then, our equilibrium analysis 
for the baseline model suggests that the relatively less motivated team member free rides 
if sabotage is not an option. When sabotage is available, the new motivation of player d in 
team 1 becomes

in the unique interior equilibrium. The new motivation of player a in team 1, after being 
sabotaged, turns out to be the same. Since players a and d are now equally motivated, both 
are willing to exert positive productive efforts in the equilibrium. It is worth noting that 
such an outcome does not lead to a multiplicity of equilibria, since the productive efforts 
should be chosen in such a way that they are consistent with the equilibrium sabotage 
efforts.

From an efficiency perspective, the foregoing result deserves further discussion. Exert-
ing more effort in a contest with an exogenously given winning prizes arguably is ineffi-
cient, since exerting effort is costly without returning any added value, which implies that 
solving the free-rider problem would be undesirable. Yet, it may be desirable in certain 
situations wherein third parties (e.g., spectators in sport contests, consumers in a competi-
tive market) benefit from greater contest efforts. Those issues aside, one should keep in 
mind that, in this paper, the act of sabotage is not proposed as a rule or mechanism for 
solving the free-rider problem, but rather it turns out to be a natural solution after being 
introduced as a realistic extension of the baseline model with no sabotage. That considera-
tion highlights that a designer guided by efficiency concerns should be extra careful study-
ing such team contests and should avoid relying on an oversimplified model,9 which might 
be very misleading.

Another important issue is that our findings contradict a common result in the literature 
on sabotage in contests/tournaments. More precisely, it is argued in the literature that the 
prospect of being sabotaged creates a discouragement effect in the sense that contestants 
exert less productive effort relative to the case of no sabotage. By contrast, we show here 
that the introduction of sabotage does not discourage some players, but it even encourages 
them. In our baseline model with no sabotage, the more motivated team members exert 

�d
1

1 + sa∗
2

Vd
1
=

(
E∗
1
+ E∗

2

)2
E∗
2

8 There is another well-known solution to complete free riding in team contests, even when sabotage is not 
available. If players have strictly convex cost functions, then it is possible to construct an equilibrium in 
which both team members exert positive productive efforts (see Esteban and Ray 2001). Accordingly, it can 
be argued that the introduction of sabotage plays a role analogous to that played by a strictly convex cost 
function.
9 An oversimplified model refers to a model that disregards the possibility of sabotage although the real-
life scenario to be explained includes a sabotage act. Apparently, such an oversimplified model might make 
significantly different predictions.
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positive productive efforts, while the other players choose to free ride. When the possibility 
of sabotage is introduced, however, the free riding team members are encouraged, as they 
start contributing to their teams’ aggregate efforts. We relate that result back to the collec-
tive nature of our contest success function.

Remark 3 For the free riding team members in the baseline model, the possibility of sabo-
tage creates an encouragement effect.

It is worth mentioning that here we concentrate on the productive effort exerted by a 
specific team member. If we instead analyze total productive effort for team i ∈ {1, 2} , 
which can be written as ea∗

i
+ ed∗

i
 , we can say that the possibility of sabotage has a mixed 

effect. In particular, if the marginal costs of sabotage are sufficiently low, then players have 
weaker incentives to exert productive efforts as they anticipate high levels of sabotage, 
which implies lower total productive effort compared to that in the baseline model. That 
is, although the free riding team member in the baseline model is encouraged, the active 
team member might be strongly discouraged such that a discouragement effect prevails 
overall. Conversely, if the marginal costs of sabotage are sufficiently high, then players are 
inclined to exert more productive efforts anticipating low levels of sabotage. In such a case, 
an encouragement effect is observed also in total productive efforts.

As mentioned earlier in Footnote 8, if players exhibit strictly convex cost functions, then 
the free-rider problem disappears in the baseline model with no sabotage. Since it is the 
free riding team member who is encouraged once a sabotage option becomes available, the 
following question arises: Would an encouraged player still materialize in the model with 
sabotage if the cost functions are strictly convex?10 Since the equilibrium analysis of such a 
model turns out to be rather intractable, we answer that question by referring to a numeri-
cal example. Given the cost-of-effort functions Cj

i
(e) = e2 and Cj

i
(e, s) = e2 + �

j

i
s2 for every 

player j ∈ {a, d} in team i ∈ {1, 2} for the respective models, consider the following values 
of the effectiveness parameters: �a

1
= �d

2
= 1 and �d

1
= �a

2
= 2 . Further assume that �j

i
= 1 

and Vj

i
= 10 for every player j ∈ {a, d} in team i ∈ {1, 2} . In the baseline model with no 

sabotage, the equilibrium strategies are

In the model with sabotage, the equilibrium strategies become

Observing that (i) each team has an encouraged player who exerts more productive effort 
and (ii) each team increases its total productive effort, it is verified numerically that the 
encouragement effect of sabotage is not necessarily explained by the linear cost functions 
considered.

Finally, in this paper we study a particular team contest with directionally restricted 
sabotage, which is played on a network with given sabotage links. We also could consider a 
case in which each team member can sabotage any member of the opposing team. In order 

ea
1
= ed

2
= 0.5, ed

1
= ea

2
= 1.

ea
1
= ed

2
= 0.588, ed

1
= ea

2
= 0.951

sa
1
= sd

2
= 0.272, sd

1
= sa

2
= 0.574.

10 We thank an anonymous reviewer for bringing this point to our attention.
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to provide some insights into that modification for the interested reader, such an analysis is 
given in Appendix 2.

3  Team owner’s problems

In this section we study two optimal design problems for the team owner. Throughout this 
section, we assume that the most undesirable outcome for a team owner is to have a free-
rider in his team. It is accordingly assumed that a team owner restricts his attention to cases 
in which an interior equilibrium exists.

3.1  Prize allocation

Assume that the owner of team i decides on how to distribute a total prize of Vi among 
team members a and d in case of winning. Accordingly, the respective constraints can be 
written as Va

1
+ Vd

1
= V1 and Va

2
+ Vd

2
= V2 . Obviously, given a strategy for the opposing 

team’s owner, the team owner’s objective is to maximize his team’s winning probability. 
More precisely, the owner of team 1 maximizes

The following proposition shows the optimal allocation of prize shares.

Proposition 3 In the model with directionally restricted sabotage, the owner of team 1 
should allocate a total prize of V1 according to

and

in order to maximize his team’s winning probability.

Proof See Appendix 1.   □

For comparative statics, without loss of generality, we concentrate on Vd∗
1

 . It is easy 
to see that if the expression in parenthesis is greater than 1, then Vd∗

1
> V1∕2 > Va∗

1
 , i.e., 

the owner of team 1 prefers to allocate a larger prize share to the defenders. That sce-
nario occurs when �d

1
 , �a

2
 , �d

1
 , and �a

2
 are sufficiently high. The conclusion is quite intuitive, 

since each of the parameters represents the significance of player d in team  1: �d
1
 is the 

P1(E1,E2) =
E1

E1 + E2

=

�d
1
�a
2

Vd
1

Va
2

+ �a
1
�d
2

Va
1

Vd
2(

�d
1
�a
2

Vd
1

Va
2

+ �a
1
�d
2

Va
1

Vd
2

)
+
(
�d
2
�a
1

Vd
2

Va
1

+ �a
2
�d
1

Va
2

Vd
1

) .

Vd∗
1

=
V1

2

(
�d
1
�a
2

�d
1
�a
2
+ �a

1
�d
2

+
�a
2
�d
1

�d
2
�a
1
+ �a

2
�d
1

)

Va∗
1

=
V1

2

(
�a
1
�d
2

�d
1
�a
2
+ �a

1
�d
2

+
�d
2
�a
1

�d
2
�a
1
+ �a

2
�d
1

)
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effectiveness parameter for that player; �a
2
 is the effectiveness parameter for the opposing 

team player who has a sabotage link to that player; and �d
1
 and �a

2
 are the respective costs 

of sabotage for those two players. Accordingly, if �d
1
 increases, since player d in team 1 

becomes more effective, he should be incentivized more; if �a
2
 increases, since player d in 

team 1 is less likely to be sabotaged, it is as if his effectiveness increases, so that he should 
be incentivized more; and if either �a

2
 or �d

1
 increases, then the symmetric effects would be 

observed for player a in team 2, and being the potential saboteur of that player, player d in 
team 1 should be incentivized even more so.

Let �d
1
�a
2
 be defined as the weighted effectiveness of player d in team 1. As �a

2
 declines, 

that player is apt to be sabotaged more, which in turn reduces the player’s effectiveness; so 
that the weighted effectiveness somehow captures the effectiveness of a player depending 
on his adversary. Now, returning back to Vd∗

1
 , we can reinterpret our result: The owner of 

team 1 allocates half of the prize proportional to the weighted effectiveness of the members 
of his team and the other half proportional to the weighted effectiveness of their respective 
adversaries.

3.2  Team formation

Here we model the allocation of the team owner’s budget. Consider the situation wherein a 
team owner must decide how to form his team under a given budget constraint. In particu-
lar, we let the team owner choose any effectiveness level for each team member: �a and �d . 
Since �j

i
 is not a choice variable for the owner of team i ∈ {1, 2} , in order for this analysis 

to be meaningful, we assume that �a
1
= �a

2
= �d and �d

1
= �d

2
= �a.11

Under the assumption that the cost of hiring a player with an effectiveness parameter � 
is �� where 𝛼 > 1 , the owner of team 1 aims to maximize

subject to the budget constraint (�a
1
)� + (�d

1
)� = Γ1 . We note here that E2 is independent of 

�a
1
 and �d

1
 ; as a result, the maximization problem corresponds to the maximization of E1.12

The following proposition shows the optimal effectiveness parameters.

Proposition 4 In the model with directionally restricted sabotage, given the budget con-
straint (�a

1
)� + (�d

1
)� = Γ1 , the owner of team 1 should form his team in such a way that

P1(E1,E2) =
E1

E1 + E2

=

�d
1
�a Vd

1

Va
2

+ �a
1
�d Va

1

Vd
2(

�d
1
�a

Vd
1

Va
2

+ �a
1
�d

Va
1

Vd
2

)
+
(
�d
2
�a

Vd
2

Va
1

+ �a
2
�d

Va
2

Vd
1

)

12 The setup eliminates the strategic interaction between team owners. Independent of what the owner of 
team −i does, the owner of team i would always choose the same values of effectiveness parameters for his 
team’s attackers and defenders.

11 Suppose that the effectiveness parameters could differ across teams and assume without loss of general-
ity that 𝜇d

1
> 𝜇d

2
 . That assumption implies that team 1 cannot hire a defender with a sabotage cost lower 

than that of the defenders in team 2. This conclusion surely sounds odd. Here we simply assume that �j is a 
property of a player, but not a team.
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in order to maximize his team’s winning probability.

Proof See Appendix 1.   □

We see that the optimal choice of effectiveness parameter for player  d in team  1 
increases in �a , Vd

1
 , Vd

2
 , and Γ1 , whereas it declines in �d , Va

1
 , Va

2
 , and � . Here we omit the 

interpretations of Γ1 and � , as they seem to be straightforward. The owner of team 1 invests 
more on the defensive side when (i) �a increases, which makes the sabotage by player a 
in team 2 more costly; (ii) Vd

1
 increases, which motivates player d in team 1 to exert more 

productive effort; and (iii) Vd
2
 increases, which deters player a in team 2 from exerting more 

productive effort, so that player d in team 1 can concentrate further on his productive effort 
rather than on his sabotage effort. The converse interpretations follow for �d , Va

1
 , and Va

2
.

Given Proposition 4, we also have

The foregoing result means that when 𝜇aVd
1
Vd
2
> 𝜇dVa

2
Va
1
 , the owner of team  1 focuses 

more on the defensive side. That happens when the marginal cost of sabotage is higher for 
the respective saboteurs and/or when the defenders’ prize for winning in either of the teams 
is higher. On top of those conclusions, the difference between �d∗

1
 and �a∗

1
 falls as the hiring 

cost parameter � increases.
In the analysis above, we assume that winning prizes Vj

i
 are given exogenously. On the 

other hand, if we allow endogenous prizes (referring to the analysis in Sect. 3.1), since we 
would have Vd

1
Vd
2
= Va

2
Va
1
 , the new ratio of �d∗

1
 to �a∗

1
 would become

That observation leads to the following remark.

Remark 4 In the model with directionally restricted sabotage, given the budget constraint 
(�a

1
)� + (�d

1
)� = Γ1 , if team owners choose the allocation of prize shares strategically, then 

the owner of team 1 should form his team in such a way that

�a∗
1

=

⎛
⎜⎜⎜⎜⎜⎜⎝

Γ1

1 +

�
�aVd

1
Vd
2

�dVa
2
Va
1

� �

�−1

⎞
⎟⎟⎟⎟⎟⎟⎠

1

�

and �d∗
1

=

⎛
⎜⎜⎜⎜⎜⎜⎝

Γ1

1 +

�
�dVa

2
Va
1

�aVd
1
Vd
2

� �

�−1

⎞
⎟⎟⎟⎟⎟⎟⎠

1

�

�d∗
1

�a∗
1

=

(
�aVd

1
Vd
2

�dVa
2
Va
1

) 1

�−1

.

�d∗
1

�a∗
1

=

(
�a

�d

) 1

�−1

.

�a∗
1

=

⎛⎜⎜⎜⎜⎝

Γ1

1 +

�
�a

�d

� �

�−1

⎞⎟⎟⎟⎟⎠

1

�

and �d∗
1

=

⎛⎜⎜⎜⎜⎝

Γ1

1 +

�
�d

�a

� �

�−1

⎞⎟⎟⎟⎟⎠

1

�
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in order to maximize his team’s winning probability.

It appears that when the winning prizes for both team members are determined endog-
enously by team owners, the effects of winning prizes on the optimal choices of effective-
ness parameters are suppressed. However, the rest of the aforementioned interpretations are 
preserved.

4  Conclusion

In this study, we have contributed to the burgeoning literature on team contests by intro-
ducing sabotage as an additional dimension of contestants’ strategy spaces. The members 
of a team choose not only their productive efforts, which contribute to their team’s aggre-
gate effort, but also sabotage efforts directed at a particular member of the opposing team. 
Our analysis unveils two fundamental differences in equilibrium behavior: (i) the discour-
agement effect of sabotage reported in contests between individuals does not appear for 
some players in the team contest considered herein; even more interestingly, (ii) the free-
rider problem inherent in team contests disappears with the added option to sabotage.

The foregoing results highlight the undesirable consequences of ignoring for the sake of 
simplicity a factor that could be involved in the strategic trade-offs of players. For instance, 
in this paper we have observed that analyzing strategic interaction between teams (which 
naturally includes acts of sabotage) in an oversimplified model in which team members 
are allowed only to choose their productive efforts may create a free-rider problem that in 
fact does not exist. That conclusion indicates that such an oversimplified model might mis-
lead a designer who is concerned about free riding or who values the intensity of competi-
tion between teams, and therefore the designer should not disregard the effect of sabotage 
on the players’ effort choices. Additionally, as sabotage turns out to be a natural solution to 
the free-rider problem, our model allows us to investigate two different design problems for 
a team owner: (i) allocation of prize shares among team members and (ii) team formation 
under a given budget.13

Finally, our results also are of interest from an experimental design perspective. Our 
theoretical predictions will be of practical value to experimental economists who investi-
gate team contests in the lab. Future work may elaborate on this issue.

Acknowledgements We would like to thank the editor and an anonymous reviewer, as well as seminar par-
ticipants at ADA University, Bilgi University, Bosphorus Workshop on Economic Design, and Koç Univer-
sity Winter Workshop in Economics. The usual disclaimer applies.

Appendix 1

Proof of Proposition 1 Given an aggregate effort 2 for team 2, the first-order condition 
with respect to ea

1
 for player a in team 1 is

�a
1
2

(1 + 2)
2
Va
1
− 1 = 0.

13 In the baseline model with no sabotage, the free riding result makes the team owner’s problems trivial, 
since the team owner would concentrate on the reward for the most motivated member of his team.
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For player d in team 1, a symmetric first-order condition can be written as

Accordingly, it must be that

in the equilibrium, which is not necessarily true. That leads to a corner solution such that 
if the right-hand side exceeds the left-hand side, then only the attackers exert positive pro-
ductive effort in the equilibrium, and vice versa. Considering a symmetric result for the 
other team, and under the assumption that 𝛾 j

1
V
j

1
> 𝛾

j′

1
V
j′

1
 and 𝛾k

2
Vk
2
> 𝛾k

′

2
Vk′

2
 , the respective 

equilibrium efforts are

so that

Finally, for the sake of completeness, we must note that if Eq. (1) indeed holds for team 
i ∈ {1, 2} , then multiple equilibria exist such that both members of team i exert non-nega-
tive productive efforts reaching an aggregate effort of ∗

i
 .   □

Proof of Proposition 2 Consider the maximization problems for players d in team 1 and a 
in team 2. The corresponding first-order conditions can be written as

�d
1
2

(1 + 2)
2
Vd
1
− 1 = 0.
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1
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1
= �d

1
Vd
1
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=
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From (3) we get

and from (6) we get

Thus

In a similar manner, we can write all productive and sabotage efforts in terms of each � j
i
 , Vj

i
 , 

�
j

i
 , and Ei . The values are
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=
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=
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Notice that we also have

and by symmetry,

Thus,

and

By replacing those E∗
1
 and E∗

2
 values into Eqs. (7)–(10), we can write the equilibrium values 

of all productive and sabotage efforts.
Finally, from Eqs.  (7)–(10), we can derive the necessary and sufficient conditions for 

the existence of an interior equilibrium: Given positive aggregate efforts for both teams, an 
interior equilibrium exists if and only if for every player j ∈ {a, d} in team i ∈ {1, 2} , we 
have sj

i
> 0 , i.e.,

And those inequalities are satisfied easily if all of the winning prizes are sufficiently large.14 
This completes the proof.   □

Proof of Proposition 3 For given values of � j
i
 and �j

i
 for every player j ∈ {a, d} in team 

i ∈ {1, 2} , the owner of team 1 aims to maximize
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E1

E1 + E2

=
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1

) .

14 Notice that if all winning prizes are multiplied by the same scalar, then the equilibrium values for E
1
 and 

E
2
 remain unchanged. Accordingly, for any quadruple of winning prizes, a scalar can be found above which 

the respective winning prizes lead to positive sabotage efforts for all players.
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The first-order condition for team 1 yields15

Now, considering that Va
1
 and Vd

1
 are dependent variables, we have

Similarly, for team 2 we get

After arranging terms, we are left with

Since the first term is positive, it must be that Vd
1
Vd
2
= Va

1
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2
 . From this equation we find 

that

Then, for the sake of expositional simplicity, we set
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15 Note that

so that in order for this derivative to be equal to zero, it must be that

(
f (x)

f (x) + g(x)

)�

=
f �(x)(f (x) + g(x)) − f (x)(f (x)� + g(x)�)

(f (x) + g(x))2
=

f �(x)g(x) − f (x)g�(x)

(f (x) + g(x))2
,

f �(x)g(x) = f (x)g�(x).
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and

Following some algebraic operations, the first-order condition for team 1 can be rewritten 
as

Canceling out all V1 and V2 , we have

From this equality we find

Finally, returning back to the standard notation, we have

The optimal share for the other player is Va∗
1

= V1 − Vd∗
1

 .   □

Proof of Proposition 4 Now that the strategic interaction is absent, the analysis turns out 
to be much simpler. The first-order condition with respect to �d
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Moreover, from the derivative of the budget constraint, it follows that
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which implies

Using this information in the first-order condition above, we have

so that

Then putting this finding into the budget constraint, we have

  □

Appendix 2

The alternative model with restricted sabotage

In this paper, we have considered directionally restricted sabotage allowing each member of a 
team to sabotage only a particular member of the opposing team. Here we relax that assump-
tion and analyze the case of directed sabotage: each team member can sabotage any member 
of the opposing team. Similar to our original model, ej

i
 denotes the productive effort exerted 

by player  j ∈ {a, d} in team i ∈ {1, 2} . As for the sabotage efforts, we need a new notation 
including the origin and the destination of sabotage. Let sjk

i
 denote the sabotage made by 

player j ∈ {a, d} in team i ∈ {1, 2} against player k ∈ {a, d} in the opposing team. Also let �jk

i
 

denote the corresponding marginal cost of such sabotage activity.
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Then, we can write the respective aggregate effort functions as follows:

and

Assuming that

we say that player  j ∈ {a, d} in team i ∈ {1, 2} maximizes

Utilizing the first-order conditions with respect to saa
1

 and sda
1

 , we get

In order for these first-order conditions to be satisfied simultaneously, it must be that

Otherwise, we must have a corner solution. To put it differently, unless the last equality is 
satisfied, directionally restricted sabotage would be observed in the equilibrium. Below we 
elaborate further on that issue.

Note that if any of the derivatives with respect to saa
1

 and sda
1

 are positive, then a marginal 
increment in the corresponding variable would be a possible deviation. Therefore, none can 
be positive at an equilibrium. The result implies that if one of the first-order conditions is 
satisfied, then the derivative with respect to the other variable should be negative, which 
corresponds to a corner solution for that variable. For more concrete arguments, assume 
without loss of generality that
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If the former first-order condition is satisfied, then the derivative with respect to sda
1

 would 
be positive. That cannot happen in equilibrium. Then, it must be that the latter first-order 
condition is satisfied, meaning that a corner solution exists for saa

1
 , which is saa

1
= 0.

Finally, given our model’s interpretation, it is reasonable to assume that 𝜇aa
1

> 𝜇da
1

 . That 
is because the defenders in team 1 are located closer to the attackers in team 2 than the 
attackers in team 1, so that if the attackers in team 2 are to be sabotaged, the defenders 
in team 1 should have a lower cost than the attackers in team 1.16 Accordingly, for a wide 
range of Va

1
 , Vd

1
 , Va

2
 , and Vd

2
 values, the current model would reduce to our original model 

with directionally restricted sabotage in the equilibrium.
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